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ABSTRACT
In order to take advantage of artificial intelligence (AI) solutions
in endoscopy diagnostics, we must overcome the issue of limited
annotations. These limitations are caused by the high privacy con-
cerns in the medical field and the requirement of getting aid from
experts for the time-consuming and costly medical data annotation
process. In computer vision, image synthesis has made a signif-
icant contribution in recent years, as a result of the progress of
generative adversarial networks (GANs) and diffusion probabilistic
models (DPMs). Novel DPMs have outperformed GANs in text, im-
age, and video generation tasks. Therefore, this study proposes a
conditional DPM framework to generate synthetic gastrointestinal
(GI) polyp images conditioned on given generated segmentation
masks. Our experimental results show that our system can generate
an unlimited number of high-fidelity synthetic polyp images with
the corresponding ground truth masks of polyps. To test the useful-
ness of the generated data we trained binary image segmentation
models to study the effect of using synthetic data. Results show that
the best micro-imagewise intersection over union (IOU) of 0.7751
was achieved from DeepLabv3+ when the training data consists
of both real data and synthetic data. However, the results reflect
that achieving good segmentation performance with synthetic data
heavily depends on model architectures.
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1 INTRODUCTION
The human digestive system can experience a range of abnormal
tissue changes, from minor discomforts to severe, life-threatening
illnesses [18]. Endoscopy, colonoscopy, and pilcams (wireless cap-
sule endoscopy) [15] are the most common methods for examining
the gastrointestinal (GI) tract for diagnosis. However, its effective-
ness is greatly impacted by the variability in the performance of
the operator (inter-rater reliability) [4]. In this regard, artificial in-
telligence (AI) techniques are researched to build computer-aided
diagnosis (CAD) systems to aid gastroenterologists [21, 29, 40, 43].

Supervised machine learning models have become popular in
many applications, such as image classification, image detection,
and image segmentation. However, AI models require vast amounts
of data to train. Especially supervised machine learning techniques
need annotated datasets to train. In the medical field, however,
acquiring a large annotated dataset is challenging. The challenges
include not only privacy concerns but also costly and timelymedical
data labeling and annotation. In comparison with other applications
of machine learning in the health area, we have limited annotated
datasets to trainmachine learning (ML)models. GI-tract datasets are
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also typically small and mostly limited to polyps [24]. To overcome
this issue, one solution is to expand training datasets by generating
synthetic data [17, 37].

Endoscopy diagnostics are being enhanced by AI solutions. Es-
pecially, image synthesis has made a significant contribution to
overcome the issue of the limited dataset [31]. It is now common to
use generative adversarial networks (GANs) to generate synthetic
images because GANs produce realistic images and achieve impres-
sive results in a wide range of applications [2, 7]. Thus, a GAN is a
powerful generative model, however, it suffers from convergence
instability.

To overcome the convergence issue in GANs, in recent years,
diffusion models [13] have gained attention as a potential method
for their ability to synthesize natural images. In this study, we
introduce a framework consisting of two different diffusion models
to create synthetic GI-tract images and corresponding masks. Our
contributions are listed as follows:

• We introduce a fully synthetic polyp generation system.
• Our system is able to generate realistic-looking synthetic
polyp masks using an improved diffusion model.

• Based on the generated masks, we are able to generate high-
fidelity synthetic polyp images conditioned on pre-generated
synthetic polyp masks using a conditional latent diffusion
model.

• We provide a comprehensive evaluation of using synthetic
polyp and mask data to train polyp segmentation models
and overall results.

The source code of all the experiments is available at https:
//github.com/simulamet-host/conditional-polyp-diffusion and the
pre-generated synthetic masks and the corresponding conditional
synthetic polyp images are available at https://huggingface.co/
datasets/deepsynthbody/conditional-polyp-diffusion.

2 RELATEDWORK
There are many GI image analysis datasets available for machine
learning tasks. Some of the commonly used datasets in human GI
tract are: ETIS-Larib [33], CVC-ClinicDB [3], ASU-Mayo Clinic
Polyp database [36], Kvasir [27], Kvasir-SEG [16] and Hyperk-
vasir [4]. A few datasets containing manually annotated segmen-
tation masks for polyps. However, these real-world datasets (not
limited to GI-tract data) have some limitations. The limitations
include:

• Size: medical image datasets, including those for polyp de-
tection and segmentation, are often smaller in size compared
to other image datasets, such as ImageNet [20], Microsoft
COCO [23] which can limit their ability to train complex
machine learning models.

• Annotation quality: the accuracy and consistency of the
annotations of the dataset can impact the performance of
machine learning algorithms. Annotations are dependent on
annotator and normally high inter-rater variability is there.

• Diversity: the diversity of the images in the dataset is impor-
tant for the generalization of machine learning algorithms.
If the dataset is limited to a narrow range of images, the
algorithm may not perform well on new, unseen images.

• Accessibility: legal and privacy constraints can limit the
accessibility of medical image datasets, making it difficult to
obtain large and diverse datasets for machine learning tasks.

These limitations highlight the need for ongoing development
and improvement of medical image datasets to support the advance-
ment of machine learning in medical imaging. To overcome these
limitations of real-world datasets, synthetic datasets[6, 38, 39, 41,
42] have been increasingly used in medical image analysis. For
instance, to generate synthetic polyps, a GAN framework has been
proposed to generate a polyp mask and then synthesize the gener-
ated polyp with the real polyp image without the use of additional
datasets and processes [28]. There has also been research on the
augmenting of colonoscopy images with polyps by using synthetic
samples [1]. Fagereng et al. [10] present a solution to overcome the
challenge of a lack of annotated data when building CAD systems
for detecting polyps in the GI-tract. The authors propose a pipeline
called PolypConnect, which can convert non-polyp images into
polyp images to increase the size of training datasets for machine
learning models. The results show 5.1% improvement in mean in-
tersection over union (IOU) when using synthetic data in addition
to real data for training. Dhariwal et al. [8] compare the perfor-
mance of diffusion models and GANs for image synthesis tasks.
As a result, the authors found that diffusion models outperformed
GANs in terms of image quality and stability of the generated im-
ages. The results of the paper indicate that diffusion models are a
promising alternative to GANs in the field of image synthesis. This
work provides valuable insights into the strengths and limitations
of both diffusion models and GANs.

3 METHODOLOGY
In this section, first, we describe the improved diffusion model
which is used to generate realistic synthetic polyp mask images (the
blue box of Figure 1). Then, we present the latent diffusion model
which is used for generating synthetic polyp images conditioned on
the inputmasks generated from our aforementionedmask generator
(the green box of Figure 1). We evaluate the quality of the generated
synthetic data and quantify similarity between generated and real
data, representing using the last section of Figure 1. Finally, we
present our methods used to check the quality of synthetic data
using image segmentation models.

3.1 Improved diffusion model
In our pipeline, we use an improved diffusion model [25] to generate
synthetic polyp masks which looks realistic to capture the distribu-
tion of the masks of the Kvasir-SEG dataset. The improved diffusion
model is a type of generative model that uses a gradual, multi-step
process to match a data distribution and generate synthetic images.
In the context of generating synthetic mask images for the GI-tract,
improved diffusion models can be used to generate synthetic mask
images that closely resemble real images. Therefore, these models
overcome the issue of limited annotated data [25, 34].

To achieve our goal, the first step is to obtain a training set for
real mask images of the GI tract indicating the location of polyps.
Then, the mask dataset is used to train the improved diffusionmodel
to generate synthetic polyp images that closely resemble the real
images. The improved diffusion model generates synthetic mask

https://github.com/simulamet-host/conditional-polyp-diffusion
https://github.com/simulamet-host/conditional-polyp-diffusion
https://huggingface.co/datasets/deepsynthbody/conditional-polyp-diffusion 
https://huggingface.co/datasets/deepsynthbody/conditional-polyp-diffusion 
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Figure 1: The whole pipeline of generating synthetic polyps
and mask. The blue box represents the diffusion model
trained to generate realistic synthetic polyp masks. The
green box represents the conditional latent diffusion model
which is used to generate synthetic polyp conditioned on in-
put masks. The bottom box represents the evaluation matri-
ces.

images by first adding noise to a randomly selected mask image
from the training set. This noise would then be gradually reversed
through multiple steps until a synthetic mask image is generated.

The advantage of using improved diffusion models to generate
synthetic images is that we can overcome the issue of limited an-
notated data and train machine learning models more effectively.
This can lead on to improvements in the accuracy and efficiency of
CAD systems for detecting polyps in the GI-tract [10]

3.2 Latent diffusion model
The Latent Diffusionmodel [31], developed by CompVis and trained
on the LAION-400M dataset [32], operates through a series of de-
noising autoencoders and diffusion models. This model has been
utilized to generate images based on text prompts, and has shown
exceptional results in tasks related to image inpainting [9] and var-
ious other applications, surpassing the current state of the art [30].

Latent diffusion models are a suitable choice for generating syn-
thetic images of the GI tract for several reasons. Firstly, they possess
the ability to model intricate and non-linear patterns in the data,
crucial for producing convincing images of the GI tract. Secondly,
they are capable of generating a large diversity of high-quality
synthetic images, which enhances the generalizability of machine
learning models. Lastly, they can be trained with a limited amount

of real data points, which is important in medical imaging where
annotated data is often scarce.

3.3 Mask similarity
To assess the quality of generated images for generative models, the
Fréchet inception distance (FID) [12] metric is typically used, which
compares the distribution of the generated images compared to real
images. Because the improved diffusionmodel are generating binary
masks of polyps, we can also introduce the similarity measure (SIM)
metric that is analogous to accuracy. Consider real image 𝑟 together
with generated image 𝑔 of the same size, then the similarity 𝑠𝑖𝑚 is
defined as number of pixels that are same for both images divided
by the total area of image:

𝑠𝑖𝑚(𝑟, 𝑔) = #(𝑟 == 𝑔)
𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡

To measure the similarity 𝑆𝐼𝑀 of generated images to our train-
ing real images 𝑅, we simply take average of the closest pairs (high
similarities). If a generated image is 𝑔 and associated closest real
image is 𝑔∗, we can calculate largest similarity using,

𝑆𝐼𝑀 (𝑅,𝐺) = 1

|𝐺 |
∑︁
𝑟 ∈𝑅

𝑠𝑖𝑚(𝑟, 𝑔∗)

The idea here is that even if the generated images are highly
similar to some of the training images (same size, position), they
should differ in another aspects, such as rotation.

3.4 Segmentation models
We have used three different well-known image segmentation mod-
els, namely UNet++ [44], feature pyramid network (FPN) [22], and
DeepLabv3+ [5] for evaluating the effect of using synthetic data
for training polyp segmentation tasks. Initially, we trained these
three models using three different approaches, i.e., we trained the
system using i) 700 of real polyp images; ii) using 1000 synthetic
polyp images; and iii) a combination of 700 real and 1000 synthetic
polyp images. To further analyze the effect of synthetic data, we
trained these three models with another set of real and synthetic
data combinations. In these combinations, we fixed the number
of real images to 100 samples, and we increased the number of
synthetic samples from 0 to 1000 sequentially in steps of 100. The
main objective of this experiment is to identify the effect of a num-
ber of synthetic samples included in the training data. However, we
limited this experiment to using only 100 real images because of the
time limitation, but in the future we will test with different number
of real images from 200 to 700 to find the optimal combination to
get better performance.

We tested these models with 300 real images and masks (from
the segmentation data of HyperKvasir dataset [4]) which were not
used to train either the diffusion model or the segmentation models.
Then, we measured micro and micro-imagewise IOU, F1, Accuracy,
and Precision from the test dataset for all the segmentation models.
Micro values were calculated by summing true positive (TP), false
positive (FP), false negative (FN), and true negative (TN) pixels over
all images and all classes and then computing scores. In contrast,
the micro-imagewise matrices were calculated by summing TP, FP,
FN, and TN pixels for each image and then computing scores for
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Iter 0 50k 100k 150k 200k 230k
FID 140.14 128.95 117.14 105.63 88.41 141.44
SIM 88.22 89.46 90.81 91.31 92.49 88.38

Table 1: Comparison of mask models based on FID, SIM

Epoch 88 103 135 892 913 922
FID 119.34 113.83 104.78 112.66 150.97 150.85
Table 2: Comparison of polyp models based on FID

each image. Finally, average scores over the dataset were calculated.
In the micro-imagewise calculations, all images contributed equally
to the final score. However, the second method takes into account
class imbalance for each image.

4 RESULTS AND DISCUSSION
In this section, we discuss experiment setup and the result col-
lected from generative models and segmentation models. A server
with Nvidia A100 80𝐺𝐵 graphic processing units (GPUs), AMD
EPYC 7763 64-cores processor with 2𝑇𝐵 RAM were used for all
the experiments of this study. Additionally, we used Pytorch [26],
the Pytorch-lightning libraries, and the Pytorch segmentation li-
brary [14] as development frameworks.

4.1 Diffusion experiments and results
For mask generator, that is improved diffusion model we have used
FID and SIM values to quantify and select appropriate model. We
have generated 1000 masks for each of our saved model, and we
compare them with 1000 real training masks in Table 1.

We selected the model from iteration 200, 000 based on the
results from Table 1. The reason is that the model achieves lowest
FID value together with high SIM values, indicating diverse and
quality masks. We also inspected the generated masks visually to
confirm this conclusion.

Examples of generated masks in comparison with real masks
can be seen in Figure 2. We can see different masks with different
shapes and numer of polyps indicating capability to generate di-
verse synthetic masks. Further discussion with medical professional
would be required in order to determine if masks are correct.

Interestingly, high 𝑆𝐼𝑀 score doesn’t necessary imply that model
is producing identical masks, as can be seen in the Figure 3. For in-
stance, masks may be located in similar positions but have different,
smaller shapes, therefore achieving higher similarities.

We have used the generated masks made by the selected model
as conditions to our latent polyp diffusion model and produced
1000 generated images which we used for further evaluation in
Table 2.

We can see from Table 2 the model which achieved lowest FID
score is at 𝐸𝑝𝑜𝑐ℎ = 135. We inspected the generated images, sim-
ilarly as in Figure 4. It can be seen that the quality of generated
images deteriorates at later stages of training, reason may be overfit-
ting. This may lead to problems while generating different samples
with same condition which would be more similar.

Therefore, we selected themodel from earlier stages that achieved
lowest FID. We conditioned the model on one mask and generated
multiple samples to see if the model generalizes well, results of this
experiment can be seen in Figure 5.

4.2 Segmentation experiments and results
We used a learning rate of 0.0001 with the Adam optimizer [19] to
train the three segmenation models, UNet++, FPN and DeepLabv3+.
DiceLoss [35] was used in the training process as the loss function
to update the weights. The encoder model of resnet34 was input as
the encoder network for all three models (for more details of these
encoder networks, please refer to the documentation [14]). Micro
metrics and micro-imagewise metrics (as discussed in the Pytorch
segmentation library) were calculated from the best checkpoints
and the test dataset after training 50 epochs for all the models.
The calculated micro metrics are tabulated in Table 3, and micro-
imagewise values are tabulated in Table 4.

According to the results in Tables 3 and 4, it is clear that adding
synthetic data can improve the results of segmentation models.
However, it is not always true because some models like FPN and
UNet++ show the best IOU, F1, and accuracy when the training data
consists of only the real data. In contrast, DeepLabv3 shows the best
performance when some synthetic data is included in the training
data. Overall, the best micro-imagewise IOU of 0.7751 is achieved
from DeepLabv3+ when the training data contains the maximum
number of images from both the real data and the synthetic data.
Therefore, it is a clear evidence that synthetic data has a direct influ-
ence on the final performance of segmentation models. Moreover,
we noticed that precision is always better when the synthetic data
is in the training data than using only the real data. This implies
that synthesized TP can improve the TP predictions which is more
important in the medical domain. More visual comparisons are pre-
sented in Figure 6. This figure compares the model predictions from
the three segmentation models between baseline performance and
improved performance (marked using * in Figure 6) using synthetic
data. The improved versions of the models were selected using the
metrics of Tables 3 and 4.

Another interesting finding of these segmentation experiments
is that we get the best values of precision, accuracy, F1 and IOU
when we use a smaller number of real images and synthetic images.
For example, Unet++ and FPN shows best precision values (micro
and micro-imagewise) when the training data consist of 100 real
samples and 200 synthetic samples . However, this implies that
there is a direct correlation between synthetic data, models, and
the number of parameters. Therefore, researchers should not con-
clude performance gain or degrade of using synthetic data to train
segmentation models just by evaluating a single model.

5 CONCLUSION AND FUTUREWORKS
In this study, we used a probabilistic diffusion model-based method
to generate synthetic polyp images conditioned on synthetic polyp
masks. Our visual and quantitative comparisons show that the
generated synthetic data are unique and realistic and not a simple
copy of the training data used for the training. Our further anal-
ysis of using synthetic data to train polyp segmentation models
shows that synthetic data can be used to improve the performance
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Real

Generated

Figure 2: Examples of real masks in the first row, generated masks on the second. Note the variability of shapes and amount
of polyps in the generated masks.

SIM 95.89 98.11 93.45 84.62 87.98

Real

Generated

Figure 3: Examples of comparison of generated masks 𝑔 to real masks 𝑟 based on similarity measure 𝑠𝑖𝑚(𝑟, 𝑔).

Condition Epoch=88 Epoch=103 Epoch=135 Epoch=892 Epoch=913 Epoch=922

Figure 4: Generated synthetic polyps conditioned on the same mask illustrating changes in quality during training stages.

of segmentation models while these improvements are correlated
with model architectures. In this regard, we can clearly conclude

that synthetic data help to improve the performance of segmenta-
tion models. However, deep evaluations should be performed with
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(a)

(b)

(c)

(d)

Figure 5: Generated synthetic polyp images from our conditional probabilistic diffusion model. The first column shows in-
put conditions to the latent diffusion model. All other columns show the corresponding stochastic polyps generations with
different input noises.

multiple model architecture to see the real gain of using synthetic
data.

In future studies, we will perform more segmentation experi-
ments to get a complete result set for Tables 3 and 4, for example,
increasing the synthetic training data gradually with the full real
dataset. Moreover, we will generate more synthetic data using
our model to train the segmentation models with large synthetic
datasets to evaluate the effect of using synthetic data deeply. Gen-
erating multiple images conditioned on the same input to train the
segmentation models are an another limitation of the presented
segmentation experiments. Furthermore, the quality of generated
images can be improved using the style-transfer technique [11]
as used in the SinGAN-Seg study [41]. Cross-dataset evaluations
should be performed to measure the effect of using synthetic data
to train segmentation models to improve robustness and generaliz-
ability.
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