
Swoop
An Application Generator for

ORACLE/WWW Systems

Andrew Hunter, Ian Ferguson, Steven Hedges

Abstract
The development of a software package named Swoop is described. Swoop is designed to support the
generation and maintenance of IWTC information systems which store information in ORACLE data­
bases: a so-called hyperbase program. The biggest problem with hyperbases is that they require a sophis­
ticated program to interpret Forms, query appropriate databases, and merge information into hyper­
text. There is a clear need for application-generator tools which allow hyperbase programs to be
constructed with minimal expertise on the part of the designer. It is this problem which Swoop
addresses. Keywords: ORACLE, interface, hyperbase

Introduction
Swoop is a software package designed to support
the generation and maintenance of WWW infor­
mation systems which store information in an
ORACLE database. In these hybrid systems
(which we refer to as hyperbases), information
from a relational database is merged into hyper­
text documents for presentation.

The World Wide Web has facilities which make
the provision of hyperbases possible. The basic
capability of WWW is to download text files via
hypertext links. Dynamic documents [1] are pro­
grams which can be invoked in place of a docu­
ment download, and generate the text as output;
a suitable program can hence extract information
from a database and present it as HTML. The
Forms interface, available using CGI [2], allows
Web pages to be built which include user-inter-
face elements such as fields, buttons, and check­
boxes; this can be used to provide user-input to
dynamic-document pages.

Hyperbase programs may be presented to the
user in two ways. First, the user may browse
what appear to be normal Web pages, with no
Forms interface, although the pages are actually
being dynamically constructed from the database.
Second, the user may be presented with Forms,

which generate input, for example, to specify
keywords to be used in searches. Forms could
also be used to present output, although this is
rarely done; most hyperbase programs present
the results of searches as simple hypertext.

The biggest problem with hyperbases is that they
require a sophisticated program to interpret
Forms, query appropriate databases, and merge
information into hypertext. There is a clear need
for application-generator tools which allow
hyperbase programs to be constructed with mini­
mal expertise on the part of the designer.

What Is Swoop?
A number of tools have been developed which
go some way towards merging WWW and ORA­
CLE [4]. WOW 15] allows hyperbase programs to
be written in PL/SQL and stored in an ORACLE
database; it requires appropriate ORACLE pro­
gramming skills. WOW programs may output a
mixture of raw HTML and database information.
DECOUX [6] supports an augmented form of
HTML which includes some embedded SQL
statements. This is interpreted by a forms-based
interface, and is somewhat low-level in syntax.
Nevertheless, it requires less programming skill
than WOW and provides a simple method of
describing a hyperbase page. WORA [7] dynami-

World Wide Web Journal 185

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3592626.3592640&domain=pdf&date_stamp=1995-12-11

cally constructs HTML forms as an interface to
ORACLE tables; it provides sophisticated query
facilities, but the information cannot be merged
into a hypertext presentation.

Swoop supports the construction of hyperbases
using an ORACLE database as a back-end. Infor­
mation is presented to the user as simple hyper­
text pages; these pages are specified using a sim­
ple augmented HTML syntax. It also has facilities
to aid in maintenance and specification of the
database. Swoop provides a single, integrated
solution to the generation of hyperbase systems.

Sv^oop has the following major components:

Swoopgen. This is an application generator which
produces dynamic page programs from special
augmented HTML files called swoop-files. Swoop­
files can include embedded pieces of SQL, the
standard language for accessing Relational Data­
bases 131. The SQL inserts in swoop-files corre­
sponds to points where information extracted
from the database should be merged into the
page. A tool called swoopgen translates these spe­
cial swoop-files into PRO*C programs (PRO*C is
ORACLE’S precompiler to support embedded

Maintainer User Designer

♦ ♦ *
1.

Swoopfile

1'

Swoopgen

J
ProC
program

V

Swoopform Dynamic pages Compiler

IL

ORACLE 6
database

process
data store

Figure 1:

186

Major Swoop system components

Fourth International World Wide Wed Conference Proceedings

SQL statements within the C programming lan­
guage), which when compiled act as dynamic
page programs which will extract information
from the database and present it merged into
hypertext, as specified by the swoop-file. Thus,
the system-designer using Swoop needs only a
rudimentary knowledge of ORACLE and HTML.

Swoopform. Whereas swoopgen tool provides the
facility needed to support browsing of the
merged HTML/ORACLE pages, swoopform sup­
ports database maintenance. It provides a Forms-
based interface which allows information to be
Queried, Added, Updated, and Deleted from
tables in the Swoop database. It is provided pri­
marily for the use of the system-maintainer,
rather than system users, although in practice it
has also been found useful for supporting limited
user-input. Swoopform can automatically produce
a form for any Swoop table.

Using swoopgen to Build
Dynamic Pages

One of the major components of Swoop is
swoopgen, an application-generation program.
Swoopgen takes as input swoop-files, which con­
tain HTML and embedded swoop statements.
Swoop statements may include pieces of SQL.

Swoopgen produces the source code for dynamic
page programs, in PRO*C. This source is then
compiled to produce the executable dynamic
page programs. When invoked from the Web,
these produce HTML on standard output, which
is displayed by the user’s Web browser. This
HTML has inserted in it information extracted
from the ORACLE database. The information
inserted is determined by the embedded swoop
statements.

This section discusses the format of swoop-files,
and how they can be used to produce interlinked
sets of Web pages.

To illustrate the discussion, a simple case study
will be used: a system to track members of staff
at an academic institution. It includes:

• A home page for each member of staff

• A telephone list of all staff in the institution,
with links to home pages

• A list of departments

• A home page for each department, including
a list of staff in the department with links to
their home pages

The database for this system is defined in Tables
1 and 2.

Table 1:
Code

Staff

Name Department Telephone Additional

GK Khan CIS 0225

AH Hunter CIS 2778

SG Garrick ENG 3425

Not to be
argued with
Likes writing
software
Hands-on
worker

CP Porter ART 2345

Table 2:
Code

Department

Name Head

CIS
ENG

Computing
Engineering

GK
ATH

World Wide Web Journal 187

Note that the database has been left deliberately
incomplete: the head of department for Engineer­
ing (ATH) hasn’t been listed in the staff table,
and the ART department has been omitted from
the departments table; CP has provided no addi­
tional information for his Home page; Swoop will
support this incomplete information to the best
of its ability.

Stage 1: Producing a Simple
Swoop-file
The first page required is a telephone list for all
staff. The HTML for a simple version of this with
no hypertext links is presented here;

<title>Telephone Listing</title>
<hl>Telephone Listing</title><hr>
Hunter, 2778<p>
Garrick, 3425<p>
Khan, 0225<p>
Porter, 2345<p>
The above HTML can be produced by a dynamic
page program called tellist, which has been auto­
matically generated by Swoop from the swoop­
file illustrated here:

$sql staff order by name$
<hl>Te1ephone Listing</title><hr>
$repeat$
$name:0$, $telno:0$<p>
$endrepeat$
Swoop-files contains HTML, augmented by
swoop statements. Swoop statements are
enclosed in dollar "$" characters (the dollar char­
acter itself is available by using $$). Swoop sup­
ports the following types of statements:

• SQL statements

• SQL variable statements

• Repetition statements

Embedded SQL is divided into two parts within
swoop-files. $sql...$ statements contain the tail
end of SQL select statements, from the table
name(s) onwards. They may be placed anywhere
in the file, although it is most convenient to place
them together at the top. Sql variable statements
are embedded within the HTML text; they con­

tain the name of a table column, a separating
colon, and a number identifying a corresponding
$sql...$ statement, swoopgen constructs appropri­
ate SQL SELECT statements by matching the vari­
ables and sql statements together. The advantage
of this dual representation is that a single SQL
statement can be used to fetch information
needed in a number of places.

In the example above, the name and telno col­
umns are required, so swoopgen will construct
the following SQL statement: select name,
telno from staff order by name;

The values retrieved from the database by the
program will be inserted in place of the sql vari­
ables at run time.

$ repeats ... $ endrepeat $ statements can be used
to produce repeated sections of HTML if the
SELECT statement is expected to return more
than a single row of information (as is the case
here). If an sql variable is encountered outside
$repeat$... $endrepeat$ statements, then it is
assumed that only a single value will be returned,
and only the first value returned is shown.

Stage 2: Producing Interlinked
Pages Using Swoop-files
The tellist program is particularly simple because
it produces a general list. However, many pages
need to provide different output depending on
some qualifying information. For example, the
staff home pages can be supported by a single
dynamic page program (called homepage'), pro­
vided that we tell it which member of staff is
required. We can do this by passing an appropri­
ate piece of information (the staff code) to home­
page as a parameter. The homepage swoop-file is
shown below. It uses a special specifier iarg-0)
within an SQL statement to qualify the search,
using the first (i.e., zeroth) argument passed to
the page; this argument should be the code of
the staff member whose home page is required.
A $arg-n.$ tag may also be used anywhere within
a file, if you want to output an argument rather
than use it to select further information.

188 Fourth International World Wide Web Conference Proceedings

There is the Swoop file for homepage-.

$sql staff where code = arg-0 $
$sql staff s, dept d where s.code = arg­

fl and s.dept = d.code$
<title>Home Page for $name:0$</title>
<hl>Home page for $name:0$</hl>
<hr>
<i>Code number:</i> $code:0$<p>
<i>Department: </i> <a href=''dept?$d.

code$">$d.name:l$<p>
<hr>
<h2>Additional information</h2>
$additional:0$
<hr>
Sample HTML output by homepage.

<title>Home Page for Hunter</title>
<hl>Home page for Hunter</hl>
<hr>
<i>Code number:</i> AH<p>
<i>Department:</i> Computing<p>
<hr>
<h2>Additional information</h2>
Likes writing <i>software</i>!
<hr>
To access the individual home pages from the
telephone list, we can modify tellist to include
URLs which invoke homepage, passing the staff
code as a parameter. The code below shows an
updated version of the tellist swoop-file, and
resulting HTML output, which contains links to
each home page.

Swoop-file:

$sql staff order by name$
<hl>Telephone Listing</title><hr>
$repeat$
$name:0$</

a>, $telno:0$<p>
$endrepeat$
HTML generated:

<title>Telephone Listing</title>
<hl>Te 1 ephone Listing</1itlexhr>
Hunter,

2778<p>
Garrick,

3425<p>
Khan, 0225<p>
Porter,

2345<p>

The second select statement in the homepage
swoop-file, shown in the code below, is used to
get information about the user’s department (spe­
cifically, its name rather than its code) from the
department table, using a JOIN condition to
ensure that the department corresponding to this
particular person is located. In the case of Porter,
this statement will not find any information, since
Porter’s department (ART) is missing. Swoop will
simply leave the department blank in this case.
The department is also further hyperlinked to the
dept page, which is listed in the sample HTML
output.

Swoop-file for dept dynamic page:

$sql dept where code = arg-0 $
$sql staff s, dept d where d.code = arg-

fl and s.dept = d.code and
s.code = d.head $
$sql staff where dept = arg-fl order by

name$
<title>Department: $name:fl$</title>
<hl>Department: $name:l$ ($arg-fl$)</hl>
<hr>
<i>Head of department:</i> $s.

name:l$<hr>
<h2>Staff</h2>
$repeat$
$name:2$<p>
$endrepeat$
<hr>
Sample HTML output:

<title>Department: Computing</title>
<hl>Department: Computing (CIS)</hl>
<hr>
<i>Head of department:</i> Khan<hr>
<h2>Staff</h2>
Hunter<p>
Khan<p>
<hr>
The interlinking of pages in this fashion is typical
of Swoop, which can thus implement interfaces
to quite complex database structures with mini­
mal effort. Many hyperbase programs tend to
concentrate on a particular, simple approach to
structuring the search space, in order to reduce
programming complexity. Swoop reduces that
complexity to a level no worse than that encoun­
tered in any database system design problem.

World Wide Web Journal 189

Linking Swoop-fiies and Other
HTML Fiies
As a final part in this section, it is worth noting
that swoop-files can be intermixed quite freely
with separate HTML files The information which
is stored in the database is itself in HTML format
(it is inserted directly into the merged page when
displayed), which means that particular pages
can include links to other information. For exam­
ple, the additional information section in the
homepages above could contain links to further
user-specific information. It is also possible to
link to information stored, for convenience, out­
side the database. For example, by adding a link
such as <iing src="$code; 0$.gif''><p> to
the home page, a picture of each member of staff
can be included, where these are assumed to be
stored in files AH.gif GK.gif etc.

Using Swoopform for Database
Maintenance
The swoopgen tool produces dynamic page pro­
grams which are invoked through hypertext links
to produce information on-screen; the user thus
sees only hypertext, and need not even be aware
that a database is being used at all. However,
somebody must provide the information in the
database in the first place. Although tables for
use in Swoop must be created using special tools
(since Swoop maintains some auxiliary informa­
tion about tables in its own special tables), once
a table has been created, it may be maintained
using whatever database facilities are available.
The maintainer might prefer to provide an sql-
forms-based interface, or to upload from an
Access database, for example.

passed as a parameter when swoopform is
invoked. Since all the tables known to Swoop are
themselves described in a special table, it is a
trivial matter to produce a swoop-file for swoop­
gen which generates a list of all tables, with
hypertext links to swoopform for each—such a
swoop-file is provided with the Swoop system.
Thus, the maintainer automatically has access to
Forms-based facilities to maintain all Swoop
tables. The downside of this powerful automatic
facility, is that swoopform is not configurable—it
always presents a Form in the same fashion,
which can be used solely to update a single
table.

Swoopform has the following features:

• There is a Submit button at the bottom,
together with a set of radio buttons for the
three options: Query, Insert, and Delete. The
action of the Submit button is determined by
which radio button is pressed.

• A Query will retrieve the first row of the
table matching the information in the fields;
the match must be exact. This is used to
retrieve table entries for update.

• Insert will update existing information or
create new entries. Swoop tables have their
Primary Key identified upon creation (and
Primary Key fields have italicized prompts in
swoopform, so that they stand out). Upon
Insert, if the Primary Key matches an exist­
ing row in the table, then it is updated; if the
Primary Key doesn’t match, a new row is
created. To avoid accidentally overwriting
existing entries, the maintainer should fill in
the Primary Key first and execute a Query to
check that nothing is retrieved.

Swoop also provides a facility to support table
maintenance via WWW: swoopform. Swoopform
is a program which generates a CGI Form con­
taining fields for each column in a table. The
form may be used to create new rows, to update
or delete existing ones, and to search for existing
rows using a query. The table to be queried is

• Delete will remove the first row of the table
matching the information in the fields; multi­
ple deletions are not supported to avoid
accidental damage to the database (these
can always be done using the native data­
base facilities).

190 Fourth International World Wide Web Conference Proceedings

• Fields are automatically sized to match the
column width.

• Fields can contain HTML source, and swoop­
form will correctly store it in the database
and merge it into pages upon display.

• A small amount of additional information
can be included for use by swoopform when
tables are created; this allows links to addi­
tional pages to be added.

• A link to table-specific help is automatically
provided, although the database designer
needs to provide the HTML file which it
attempts to access!

• A link to a general swoopform help page is
automatically provided.

• Swoop tables can be marked as secure or
insecure; if a table is marked as secure then
swoopform includes a password field, and
will not allow access to the table unless the
password is entered. Insecure tables can be
freely accessed; this allows swoopform to be
used to gather information from users. For
example, we have used a simple swoopgen
program to generate an Electronic Student
Notice Board, which includes a link to
swoopform to maintain it. Thus, students can
both read the notice board and add mes­
sages to it. Messages can be assigned priority
ratings and post/remove time stamps, all of
which are handled very simply through SQL
in the swoop-file (the notice board source is
provided as an example with the Swoop
source pack).

Swoop Maintenance Utilities
Swoop provides tools at a number of levels;
swoopgen is used by the system designer to gen­
erate dynamic page programs; swoopform is used
by database maintainers (sometimes solely the
system designer; sometimes a wider group) to
add and update information. It also provides a

small number of additional facilities to aid the
system designer.

Although ORACLE maintains a great deal of infor­
mation about individual tables, not all of it is eas­
ily retrieved, and there are some additional
pieces of information (for example, the prompts
used for fields on swoopform') which ORACLE
doesn’t support. Swoop therefore maintains two
auxiliary tables in the database: SWOOPTABLES
and SWOOPCOLUMNS. The information in these
two tables must correspond to the profile of the
tables accessed by Swoop. To make this corre­
spondence simple to maintain, the Swoop distri­
bution includes two scripts which create and
delete Swoop tables. The createhtmltable script
takes as an argument a file name; the file may
include a number of Swoop Create statements,
which are essentially augmented SQL Create
statements. The deletehtmltable script takes as an
argument a table name, and deletes both the
table and any references to it in the Swoop auxil­
iary tables.

Further details on the Swoop maintenance utili­
ties can be found in the Swoop source distribu­
tion.

Future Work
The purpose of Swoop is to make the generation
of ORACLE hyperbase programs on WWW sim­
ple. In this it has succeeded; producing a Swoop­
based database system is no harder than produc­
ing a conventional database system on any plat­
form (actually, often easier since there is no need
to generate any Forms-based interface). How­
ever, there are a number of enhancements which
could be made:

SQL syntax. The approach taken to embedding
SQL in swoop-files is effective, but untidy. Cur­
rently, the $sql ...$ statement contains only the
tail end of the SELECT statement, which is con­
structed by assembling the variable tags associ­
ated with it to form the prefix. This has several
consequences:

World Wide Web Journal 191

• It is sometimes difficult, on first reading, to
tell the exact purpose of an SQL statement
(because it is effectively scattered through
the swoop file).

• If complex compound variables are to be
fetched (e.g.. SUBSTR(NAME,O,1) to extract
an initial from a forename) then these must
be included as variable tags, and are difficult
to read.

Web servers able to interpret such statements.
Obviously, the syntax of embedded SQL state­
ments would be adjusted to fit into HTML stan­
dard, specifically, by replacing the $ tag delimit­
ers with standard HTML <> delimiters. Swoop
uses $ tag delimiters specifically to highlight the
different interpretation that is placed upon them.
A suggested standard is:

• The DISTINCT clause, which comes at the
beginning of the SQL statement, necessitates
an additional tag $sql_distinct ...$.

<sql select="<select statement>">
<sql repeat>
<sql endrepeat>
<sql variable=’'<variable naine>''>

The approach taken was adopted because it pre­
cludes any need to parse the SQL statement: the
construction of a prefix is relatively easy. A better
approach would be to augment the SQL SELECT
statement with tag names and to remove these
using a parser if necessary:

Replacement for Swoop
A replacement package, which uses an intrepre-
tive approach and has a far simpler syntax,
together with an improved forms interface, is cur­
rently under development and will be available
in the near future.

$sql select distinct d.name, substr(s.
name,0,1) into dept, init from dept
d, staff s where d.code = s.dept$

is translated into the SELECT statement:

select distinct d.name, substr(s.
name,0,1) from dept d, staff s
where d.code = s.dept;

and the tag variables $dept:O$ and $init:0$ refer
to the first and second columns fetched respec­
tively.

Interpretative Swoop, swoopgen generates dy­
namic page programs, in PRO*C, which are com­
piled and run. This is the most time-efficient
approach when actually using the dynamic page

Availability
Swoop is available solely via WWW at: http://
osiris.sund.ac.uk/ahu/swoop/home.html.

If you need anonymous FTP to download it, you
have no use for it anyway! ■

References

1. Ford, A., Spinning the Web, International Thomp-
son, p.l43.

2. McCool,
html

http://hoohoc.ncsa.uiuc.edu/cgi/mdex.

programs. However, PRO*C programs are
extremely large, and take some time to compile.
An interpretative version, which read a swoop­
file and dynamically constructed pages from it
would be useful, particularly during the develop­
mental phase.

Integration into Web servers. The requirement to
integrate Web pages with SQL-based databases is
extremely common. It would be convenient if
embedded SQL was supported within an
extended version of HTML, with sophisticated

3. Stumer, G., ORACLE 7.- A User and Developers
Guide, Van Nostrand Reinhold.

4. OWWWIK. The Oracle World Wide Web Interface
Kit, http://dozer.us.oracle.com:8O8O/index.html

5. WOW. The WOW Gateway, http://dozer.us.oracle.
com:8080/sdkl 0/wow/

6. Decoux, The Decoux Gateway, http://dozer.us.ora-
cle.com:8080/sdkl 0/decoux/

7. Ocrainets, The WORA Gateway http://dozer.us.ora-
cle.com:8080/sdkl0/wora/

192 Fourth International World Wide Web Conference Proceedings

http://hoohoc.ncsa.uiuc.edu/cgi/mdex
http://dozer.us.oracle.com:8O8O/index.html
http://dozer.us.oracle
http://dozer.us.ora-cle.com:8080/sdkl
http://dozer.us.ora-cle.com:8080/sdkl0/wora/

About the Authors
Dr. Andrew Hunter
[http://osiris.sunderland.ac.uk/ahu/home.html]
Department of Computing and Information Sys­
tems, University of Sunderland, England.
csOahu@sunderland.ac.uk

Andrew Hunter is a Senior Lecturer, with inter­
ests in Genetic Algorithms, Neural Networks, and
Interactive Software. He produces the Sugai pub­
lic-domain Genetic Algorithms package.

Mr. Ian Ferguson
[http://osiris.sunderland.ac. uk/rif/welcome.htmh

Department of Computing and Information Sys­
tems, University of Sunderland, England.
csOrif@su nderland. ac.uk

Ian Ferguson is a Senior Lecturer with interests in
Object Oriented software and the Internet.

Mr. Steven Hedges
[http://wunv. iisl. co.ukA
Internet Information Services, Ltd, 498 Dereham
Road, Norwich, NR5 8TU, England.
steve@maxx. co. uk

Steven Hedges runs IISL, a WWW training and
consultancy service.

World Wide Web Journal 193

http://osiris.sunderland.ac.uk/ahu/home.html
mailto:csOahu@sunderland.ac.uk
http://osiris.sunderland.ac
ac.uk
http://wunv

