
Translating ISO 12083
Mathematical Markup for

Electronic Documents
Keith Shafer, Roger Thompson

Abstract
In this paper, we describe a general translation tool that can transform tagged text into arbitrary out
put formats. Specifically, we describe how OCLC makes scientific documents containing mathematical
markup available on the World Wide Web. The translation capabilities we developed to do this help
realize the potential of the Standard Generalized Markup Language (SGML) to provide users with a sin
gle, non-proprietary document representation that can be translated on demand to other output for
mats. This enables publishers who target the WWW as a delivery medium to use the latest advances in
HTML without constant revision of their document archives. Keywords: Mathematical markup, trans
lation, ISO 12083, entities

Introduction
The Hypertext Markup Language (HTML) is a
specification language for describing the display
characteristics of documents in a browser-inde
pendent manner [1]. Because of its small number
of tags, simple structure, and declarative nature,
HTML provides a relatively easy-to-use way of
making documents available on the Internet.
Another advantage of HTML is that it supports
active documents. Authors can encode interface
features into a document that allow readers to
make selections, provide textual information,
and, most significantly, jump to other related
documents. Other document standards such as
Postscript [2] and TeX [31 are print oriented and
thus are passive. Readers cannot interact with a
document encoded in these standards unless a
special interface is used that supports interaction
independent of the document.

While HTML provides a simple, convenient
means to “publish” active World Wide Web
(WWW) documents, it is not suitable for the con
struction of archival document databases that will
be the core of online (scholarly or otherwise)
publishing. There are several reasons for this.
One is that HTML is undergoing constant revi

sion: its first major revision (V2.0) was just com
pleted, and the second (V3.0) is under consider
ation. Furthermore, because HTML is so strongly
output oriented, advances in output capabilities
like those of Sun’s Hotjava WWW browser will
cause further revisions of the markup [4]. As a
result, authors of HTML documents typically will
choose some combination of the features speci
fied in the various versions of HTML to encode
their documents. The choice is usually depen
dent on how well the author’s browser of choice
responds to particular HTML features.

Another reason for HTML’s unsuitabilty for tag
ging archival documents is that it is primarily an
output specification. Most tags are devoted to
either describing various formatting features,
linking the document to other documents, or
providing various kinds of user interaction fea
tures. HTML contains only a few tags that outline
a document’s structure, and the minimal structure
defined is there for the convenience of WWW
browsers. A document’s true structure is only
hinted at by the different heading levels (tags Hl
through H6), and it is left to the document’s
author to use these heading tags consistently.
Because the structure is not directly specified and
cannot be enforced by an SGML document

World Wide Web Journal 323

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3592626.3592652&domain=pdf&date_stamp=1995-12-11

parser, the temptation to use heading or other
tags inconsistently to achieve desired visual
effects is always present. A good example of this
is the HTML markup required for documents
accepted to the WWW ‘95 conference. The
abstract and keywords were not specified by
structurally oriented tags like <abstract> or <key-
words>. Instead, tags designed to format defini
tion lists had to be used (<dl>, <dt>, and <dd>).
All of these factors can lead to collections of doc
uments in which the markup is inconsistent,
potentially obsolete, oriented towards a particular
software vendor’s browser, and in need of con
stant maintenance.

A better way to store the information is to use
markup that reflects abstract document structure
using the Standard Generalized Markup Lan
guage (SGML) [51. SGML is a meta-language for
writing Document Type Definitions (DTD). A
DTD describes how a conforming document
should be marked up (i.e., the tags that may
occur in the document, the ordering of the tags,
and a host of other features). HTML i.s itself an
SGML application with each of its three versions
corresponding to a different DTD.

A single, well-crafted SGML DTD can explicitly
and precisely specify the structure of a wide vari
ety of documents. For example, a DTD can
define tags for a very deep structural hierarchy
with many section/subsection levels, and at the
same time allow a document to be very shallow.
DTDs can be difficult and time-consuming to cre
ate by hand, depending on how many features of
SGML are used, but straightforward DTDs can be
generated automatically [61. Thus, the cost of
developing them can be greatly reduced. With a
DTD available, SGML parsers can be used to
ensure that tagged text conforms to the structure
defined by the DTD and is therefore consistently
and correctly marked up.

After documents are in a consistent structurally-
oriented markup, they can be translated into
other formats on demand. For example, they can
be transformed into files for loading into a rela
tional database system, or they can be selectively

indexed for building a text retrieval system, as
well as be formatted for viewing. Several general
translation tools are available, but most force
users to use a predefined DTD (which may be
difficult or impossible to do) or do not offer suffi
cient options to meet users’ translation needs. For
instance, while there is now an international
standard for SGML mathematical markup, ISO
12083 Mathematics DTD [7], there are no systems
that produce formatted documents from the com
plete standard.

At OCLC, we receive tagged text, including ISO
12083 mathematical markup, that must be trans
lated to other formats to support OCLC’s Elec
tronic Journals Online (EJO) service [8]. This ser
vice provides online access to full-text scientific
journals, so it must be able to handle all sorts of
mathematics and other kinds of equations, such
as those found in Chemistry or Physics literature.
Guidon, OCLC’s proprietary document viewer
and retrieval interface, receives records from the
database engine that have been translated to
TeX’s “DVI” format [91. Guidon renders these
records to produce the screen image, and, if
desired, typeset-quality paper output.

To provide access to the EJO service via non-pro-
prietary WWW browsers, these same source doc
uments are also translated into HTML. One of the
major difficulties in translating tagged text to
HTML is that neither HTML version 1.0 nor 2.0
support the markup of mathematics. While HTML
3.0 has mathematical markup in it, it is not yet
stable as a standard, and only one vendor’s
WWW browser currently handles it. To overcome
this obstacle, we translate the mathematical
markup to TeX which can then be rendered into
GIF images. These GIF images are then used in
the HTML versions of the documents. So for both
Guidon and the WWW browsers we are required
to translate mathematical markup to TeX. To han
dle these translation requirements, as well as oth
ers, we added translation capabilities to our
Grammar-Builder Engine (GB-Engine) software.

The GB-Engine is a library of C++ objects that
has been developed to support the SGML Docu-

324 Fourth International World Wide Web Conference Proceedings

ment Grammar Builder project [10], This project
is an ongoing research effort at OCLC studying
the manipulation of tagged text. The GB-Engine
can be used to automatically create reduced
structural representations of tagged text (DTDs),
translate tagged text, combine DTDs, automate
database creation, and automate interface
design—all from sample tagged text.

While the GB-Engine is embedded in a number
of systems, Fred is the most popular. Fred is the
GB-Engine embedded into the Tcl/Tk [11] envi
ronment. Tcl is a complete string-based inter
preted programming language with variables,
strings, lists, functions, etc.; Tk is an X-based
graphical user interface toolkit. As a result, Fred
is a complete interpreter/shell that has access to
the GB-Engine objects and can be used easily to
build X interfaces. We have also embedded the
GB-engine into Perl [12] and Scheme [131, and
ported the GB-Engine to Microsoft’s NT operating
system, so that it can be embedded into environ
ments such as Microsoft’s OLE.

One of our major observations is that the proper
translation of tagged text is often context depen
dent. A system may have to determine where a
particular tagged structure occurs within the
structure of all the tagged text to know what to
do with it. For example, one might have some
text delimited by author tags. In the context of a
title page the text would be handled one way,
but in the context of a bibliography entry it
would be handled in another.

In the remainder of this paper, we present
requirements for mathematical markup transla
tion, a discussion of the basic GB-Engine transla
tion tool capabilities, an explanation about how
those capabilities are used to include mathemati
cal markup in HTML documents, and some trans
lation examples.Mathematical MarkupTranslation Requirements
In this section, we present the requirements for
translating mathematical markup. Specifically, we
look at the requirements for translating ISO
12083 to TeX, since this motivated the addition of
translation capabilities to GB-Engine. While this
would appear to be ISO 12083 or TeX-specific,
we have found that these same requirements
exist for many other kinds of translations. Thus,
the reader need not be familiar with ISO 12083 or
TeX to appreciate these general translation
requirements. We merely use these requirements
to make our discussion concrete.

The same can be said about translating mathe
matical markup. Some of the ISO 12083 struc
tures have direct mappings to TeX control
sequences. For instance, the tag bold maps
directly to the TeX sequence bf. However, other
ISO 12083 structures require that structure of the
mathematical markup be examined in order to
choose the appropriate TeX control sequence or
combination of control sequences to produce
correct formatting. There are three common con
textual possibilities needed in the translation:
ancestor, descendant, and sibling.

Text justification is a good example of the use of
ancestor information. The justification of a frac
tion in the ISO 12083 mathematical standard can
be specified in the fraction start tag as an
attribute. In TeX, horizontal fill is generally used
to manually justify text by placing space before
or after the element to be justified. To translate
the ISO 12083 fraction, horizontal fill must be
generated in the TeX numerator or denominator
sub-structures. To do this, the translation pro
gram must look “up” at the enclosing fraction
structure for the value of its alignment attribute to
know where to properly insert the horizontal fill.
In some instances, the program may need to look
even farther “up” into the enclosing mathematical
markup to get the proper alignment, as it may be
specified in a variety of places. (See the text justi
fication example below for an example.)

Similarly, translation of the radical structure uses
descendant information. TeX has two control
sequences for radicals: one generates a simple
square root and the other generates a general
root with an explicit radix. To determine which

World Wide Web Journal 325

control sequence to use, one must count the
number (there are only two possible) of immedi
ate sub-structures of the ISO 12083 radical struc
ture. If there is one sub-structure, indicating that
there is no radix, the simple square root control
sequence is selected. If there are two, the general
root sequence is selected. (See the radical exam
ple below for an example.)

The generation of TeX array cell separators
requires that sibling knowledge be used. In ISO
12083, every array cell is marked with a start tag
and, usually, the cell is completely delimited by
an end tag. TeX, on the other hand, marks only
the separation of cells. This means that the trans
lation program must be able to determine
whether or not a cell is last in a list of cells (i.e.,
the cell has no right siblings). If it is the last, the
translation program does not generate a separa
tor. (See the array separator example below for
an example.)

Translation in all of the previous situations
involved simple substitutions or insertions of text.
Some translations are more complex in that they
require the placement of text in locations other
than those where the tags occur. An example of
this is the placement of superscripts and sub
scripts before an element. The ISO 12083 mathe
matical standard specifies that all of the super
scripts and subscripts for an element follow the
element. For example, an N with a leading super
script i and a trailing superscript j is encoded as:
<subform>N</subform><sup loc= pre>i</
sup>^j. The assignment of the value
pre to the attribute loc specifies that the super
script i is to appear before the subform N. TeX
encodes this whole structure as ‘$AiNAj$’, so the
Ai that corresponds to ‘ⁱ’
must be moved in front of the target subform, N,
when the text is translated. (See the leading
superscript example below for an example.)

One problematic requirement is with regard to
the translation of arrays. The ISO 12083 DTD
allows arrays to be marked up as a sequence of
columns as well as a sequence of rows. TeX only
allows them to be specified as rows. This means

that the translation process must convert column
order to row order, and at the same time pre
serve any justification information. Another prob
lematic ISO 12083 structure is overlapping under
lines and overlines. In ISO 12083 these are
specified by reference mark tags that have an id
attribute. These reference tags can be used by the
underline and overline structures to determine
where to start or finish. There is no correspond
ing TeX structure that directly encodes this.The GB-Engine Translation Process
To meet these and related translation require
ments at OCLC, we added translation capabilities
to the GB-Engine. The GB-Engine translation
capabilities provide a means for manipulation of
tagged documents by translating, replacing, mov
ing, or removing tags and their corresponding
sub-structures. To accomplish this, GB-Engine
translation requires three things:

• Tagged text to translate

• Translation script describing the desired
transformation

• Optional entity translation table

We explain each of these parts in the following
subsections. Examples will be presented in the
Examples section below.

Tagged Text
The GB-Engine first processes the tagged text to
construct a representation of its underlying struc
ture. This is done by searching for start and end
tags using traditional SGML syntax. These tags
are matched to build a tree called a tag structure
(or document structure'). Once this structure is
built, the translation capability can use it to deter
mine the proper way to translate tags based on
their context.

326 Fourth International World Wide Web Conference Proceedings

Translation Script
The GB-Engine translation is an interpreted pro
cess where the translation script is the user-sup-
plied program of desired transformations. Every
translation script is made up of translation state
ments. Each translation statement is composed of
two parts, a condition and a block of actions-.

if (condition) { actions }
Translation conditions can be combined using
the standard Boolean operators and can be
parenthesized for grouping and readability. The
conditions can test a tag in a variety of different
ways, including whether it is a start or end tag,
the presence or non-presence of attributes, the
value of attributes, contextual location, as well as
many of these same tests on ancestor, descen
dant, and sibling tags.

Translation actions can be nested and include
sub-blocks of conditions and actions. Condition.s
are commonly enclosed in parentheses O’s and
action blocks are commonly enclosed in braces
Il’s. Actions enable the translation to perform a
wide variety of transformations ranging from sim
ple textual substitution to reconfiguring the struc
ture of a document. A more detailed description
of the translation script syntax can be found in
[14].

Given a well-tagged document structure and a
translation script, the GB-Engine applies the com
plete translation script to each tag in the docu
ment structure in succession by performing a
depth-first traversal of the document structure.
(This tag traversal corresponds to the natural
reading order of the document.) That is, each tag
is checked against each statement condition in
the translation script. If a statement condition
evaluates to TRUE for a tag, the corresponding
actions are applied to that tag. Thus, multiple
translation statements may be applied to a single
tag and a single translation statement may be
applied to multiple tags.

The translation process has no effect on tags that
have no conditions that evaluate to TRUE for

them in the translation script. They are simply
passed through into the output of the translation.
Accordingly, a null translation script will repro
duce the original document—the only difference
being that some non-tagged white space will be
removed. (Many people add white space like car
riage returns, tabs, and spaces to tagged docu
ments to make them easier to read. In most
cases, this white space is not part of the docu
ment structure because it is not tagged. Since the
translation process allows for text movement, we
do not attempt to retain non-tagged white space
in the translated text. For that matter, we have no
way of knowing where the non-tagged white
space should go and arbitrary insertion of such
non-tagged white space may produce invalid
translation results.)

Entity Translation Table
The entity translation table is used after the trans
lation script has been applied to all of the tagged
text. The table contains simple mappings of
SGML entity references to arbitrary text strings.
The standard syntax for an SGML entity reference
is an ampersand followed by a sequence of
alphanumeric characters, followed by a semi
colon For example, the entity representing
the capital Greek delta, “&Dgr;”, is replaced by
the TeX delta, “\Delta”. In the radical example
below the use of the entity translation table is
shown. Entities can be handled in this way
because they are designed to be a representation
of special characters that are not contained in a
standard character set.

Putting the Mathematics in HTML
Given the understanding of how the GB-Engine
translation works, we can now describe how the
ISO 12083 mathematical markup is included in
HTML documents (also see [15]). First, the docu
ment i.s processed to build the tree-structured
representation. The structured representation is
then used to extract and save the mathematical
markup, which is delimited by formula tags for
inline mathematics, or by dformula or dformgrp

World Wide Web Journal 327

tags for display mathematics. These separate
pieces are each passed through a Fred translation
script for mathematical markup, resulting in a
TeX translation for each piece. The TeX is then
used to generate a DVT file, and the DVT file is
rendered into a GIF image. Finally, a pointer to
the GIF image is placed in the HTML document.
When the document is loaded by a WWW
browser, the image is brought along with it and
displayed in the appropriate place.Examples
Having presented the general GB-Engine transla
tion process, we can now show how the GB-
Engine handles the translation problems pre
sented in the requirements section above. The
sample tagged text, translation script, and result
ant translation all appear immediately before the
discussion of each example. Note that the line
numbers in the examples are included for refer
ence only and are not part of the actual syntax.

Example 1 shows how the GB-Engine can use
ancestor information to generate proper text justi
fication.

Example 1 shows how multiple conditions are
met and applied to a tag during translation. The
condition Start_Tag on line 1 of the script
matches the fraction tag on line 1 of the sample
text because the tag has the traditional SGML
syntax for a start tag. In this case, the fraction
start tag also has an attribute value assignment of
“left” to “align". This assignment is not used in
the translation of this tag, but is important later.
The action “Literal” simply puts whatever is in its
parentheses into the developing translation. If
whitespace is desired, then the output must be
enclosed in quotes. In this case, nothing is put
into the translation, so the fraction start tag is
“consumed.” This will also be true for the frac
tion end tag as well. This is done by line 2 of the
script.

Example 1: Text Justification

SAMPLE TAGGED TEXT:
1
2
3
4

<fraction align=left>
<num>l</num>
<den>ax + b</den>

</fraction>

TRANSLATION SCRIPT:
1
2

if Start_Tag (fraction)
if End_Tag (fraction)

I LiteraK) 1
I LiteraK))

3
4

if Start_Tag (num)
if Start_Tag (num) && Match_Parent (align,right)

1 LiteraK I) 1
I Literal ("\hfill ") }

5
6

if
if

End_Tag (num) && Match_Parent (align,left)
End_Tag (num)

{ Literal (" \hfill")
{ Literal OXover")

I
I

7
8

if Start_Tag (den)
if Start_Tag (den) && Match_Parent (align,right)

{ Literal ({) }
I Literal ("\hfill ") }

9
10

if
if

End_Tag (den) && Match_Parent (align,left)
End_Tag (den)

I Literal (" \hfill") }
I Literal (}) I

TRANSLATION OUTPUT;
{1 \hfill}\over tax + b \hfill}

328 Fourth International World Wide Web Conference Proceedings

When the script is applied to the num start tag,
the Start_Tag condition on line 3 of the script
evaluates to true, and so the action “Literal” gen
erates an opening brace to enclose the numera
tor. Line 4 succeeds on the Start_Tag condition,
but fails on the “Match_Parent” condition. This
condition checks attribute/value pair assignments
for a node’s immediate ancestor. In this case,
num’s immediate ancestor is fraction, and has
the value left and not right for its align attribute.

The next tag processed is the num end tag. This
tag matches the conditions on both lines 5 and 6.
End_Tag is true if a tag has the standard syntax
of an SGML end tag. The result is that on line 5
the horizontal fill is generated and then, on line
6, the enclosing brace along with the TeX “over”
control sequence is generated. The den start and
end tags on line 3 of the sample tagged text are
processed in the same way by line 7 through 10
of the script.

While the condition Match_Parent restricts the
context search to a tag’s immediate ancestor,
there are a variety of other conditions for looking

both up and down beyond the immediate con
text to find occurrences of specific tags,
attributes, and attribute values.

Example 2 shows how a translation script can
use descendant information. .

In the ISO 12083 Mathematics DTD the radical
can have only one or two sub-structures, since
the radix structure is optional and the radicand
is required. If it has none or more than two, the
markup is not valid. This constraint is encoded in
the use of the “Child_Count” condition.

The first tag processed by this script is the radi
cal start tag. Line 1 of the script checks to see if it
is a start tag (true), and if it has only one immedi
ate substructure (false). This line generates noth
ing since the whole condition part failed. Line 2
also checks to see If it is a start tag, and if the tag
has two immediate substructures, which it does.
The result of this line is that a TeX “\root” com
mand is generated. The rest of the script is
straight forward, processing the radix and radi-

Example 2: Radical Example

SAMPLE TAGGED TEXT:
1
2
3
4

<radical>
<radix>3</radlx>
<radicand>&Dgr;</radicand>

</radical>

TRANSLATION SCRIPT:
1
2
3

4
5

6
7

if
if
if

Start_Tag
Start_Tag
End_Tag

(radical) &&
(radical) &&
(radical)

Child_Count
Child_Count

(1)
(2)

{ Literal (\sqrt) }
(Literal (\root)
Literal

if
if

Start_Tag
End_Tag

(radix)
(radix)

Literal
Literal CIXof") }

if
if

Start_Tag
End_Tag

(radicand)
(radicand)

Literal
Literal

I

I
{

I
I

()

(I

I
I

) I

(I)
(I)

I
I

ENTITY TRANSLATION TABLE:
‘Dgr” “\ Delta ”

TRANSLATION OUTPUT:
\rootl3t\of 1\Delta)

World Wide Web Journal 329

Example 3: Array Separator

SAMPLE TAGGED TEXT:
1
2
3
4
5
6
7
8

<array>
<arrayrow>

<arraycel> A </arraycel> <arraycel> B </arraycel>
</arrayrow>
<arrayrow>

<arraycel> C </arraycel> <arraycel> D </arraycel>
</arrayrow>

</array>

TRANSLATION SCRIPT;
1
2

if Start_Tag (array) { Literal ("\matrix{ •) }
if End_Tag (array) { Literal (}) }

3
4

if Start_Tag (arrayrow) I Literal () I
if End_Tag (arrayrow) { Literal (" \cr ’) }

5
6
7

if Start_Tag (arraycel)
if
if

End_Tag (arraycel) && Right_Peer
End_Tag (arraycel) && !Right_Peer

I Literal ()
I Literal ("
{ Literal ()

}
& ")

}
I

TRANSLATION OUTPUT:
\matrix{ A & B \cr C & D \cr }

cand tags. This example also demonstrates entity
sub-stitution.

Example 3 shows how a script can determine if a
tag is the last in a sequence.

The sample tagged text encodes a simple 2x2
array. Lines 1 and 2 of the script handle the array
start and end tags and generate respectively the
TeX matrix control sequence, and an enclosing
brace for it. Lines 3 and 4 handle the arrayrow
tags. In this case the start tag is consumed and
the end tag is translated to a row terminator. Line

5 consumes the arraycel start tag. Lines 6 and 7
check the arraycel end tag to see if it does or
does not have a right peer in the document struc
ture. If it does, a TeX array cell separator is put
into the translation; if not, the tag is consumed.

The three previous examples have all shown
translation occuring right where the tag occurs in
the document text. Example 4 shows that, in
some cases, proper translation requires text to be
inserted in a place other than where the tag actu
ally occurs.

Example 4: Leading Superscript

SAMPLE TAGGED TEXT:
1 <subform> N </subform>
2 ⁱ
3 ^j

TRANSLATION SCRIPT:
1
2

if Start_Tag (subform)
if End_Tag (subform)

{ Literal ({)
I Literal (})

I
}

3 if Start_Tag (sup) I Literal (''{) I

330 Fourth International World Wide Web Conference Proceedings

Example 4: Leading Superscript (Continued)

4
5
6

if Start_Tag (sup) && Match (loc.post)
if Start_Tag (sup) && Match (loc,pre)
if End_Tag (sup)

{ Literal ())
{ Move_Relative_Left }
{ Literal (}) }

TRANSLATION OUTPUT;
A(i)(N 1A(j 1

Example 4 is the solution to the leading super
script problem presented in the requirements
section above. Text “movement” actions do not
alter the input text and its underlying structure.
As translation is performed, an output structure is
constructed that may be freely restructured by
the translation script.

The subform start and end tags are handled by
lines 1 and 2, and generate the enclosing braces.
Next, the first sup start tag is translated by line 3,
which generates a TeX superscript command and
a brace to enclose any items that will be super
scripted. Lines 4 and 5 check the value of the loc
attribute. Since loc has the value pre, the transla
tion of the superscript structure is moved to the
left of the immediately preceding sibling tagged
structure; the subform structure. The sup end tag
is translated by line 6 of the script, and a closing
brace is generated. Line 3 of the text is processed
in the same manner except that it is not moved,
since it has no loc attribute.

In summary, we have shown some specific
examples of how the GB-Engine translation tool
capability meets the requirements imposed by
the task of translating ISO 12083 mathematical
markup to TeX. These examples by no means
show all the capabilities of the translation tool.
There are nearly 40 conditions [18] to examine
various properties of the tags and tree structure
and nearly 70 processes to format and alter the
structure of the output. In addition, function call
backs provide access to the outer programming
environment enabling arbitrarily complex trans
formations. Translation to other formats is possi
ble by simply using different scripts.

Conclusion
In this paper, we have described how the GB-
Engine translation capability provides a means
whereby richly tagged documents can be trans
formed into other arbitrary formats. As a result,
SGML is made more attractive as the underlying
representation for archival document storage.
This allows publishers who target the WWW as a
delivery medium to take advantage of develop
ments in HTML without having to constantly
revise their document archives. GB-Engine trans
lation also shows how some of the capabilities of
advanced style sheet languages such as those
suggested by Sperberg-McQueen [16] can be
implemented.

It is interesting to note that this paper was itself
written as tagged text using GB-Engine via Fred
to simultaneously translate the single tagged
source to ASCII, HTML, and TeX (PostScript).
GB-Engine translation services are freely avail
able via a WWW Fred server [6]. ■

References
1. T. Berners-Lee and D. Connolly, Hypertext

Markup Language—2.0, 1995. Accessible at http://
ivww.w3.org/hypertext/WWW/MarklIp/html-spec/
html-spec_toc.html

2. Adobe Systems Incorporated, PostScript Language
Reference Manual, Addison-Wesley Publishing
Company, Reading, MA, 1985.

3. Donald E. Knuth, The TeXbook, Addison-Wesley
Publishing Company, Reading, MA, 1984.

4. Sun Microsystems, Hotjava Home Page, 1995.
Accessible at http://java.sun.com/

5. Information Processing—Text and Office Sys
tems—Standard Generalized Markup Language
(SGML), International Organization for Standard
ization, Ref. No. ISO 8879:1986, 1986.

World Wide Web Journal 331

ivww.w3.org/hypertext/WWW/MarklIp/html-spec/
http://java.sun.com/

6. Keith Shafer, Fred: The SGML Grammar Builder,
Fred’s WWW home page, 1994. Accessible at
http://ivww.oclc.or^fred/

7. Electronic Manuscript Preparation and Markup,
ANSI/NISO/ISO 12083, 1994.

8. Andrea Keyhani, The Online Journal of Current
Clinical Trials: An Innovation in Electronic Jour
nal Publishing, Database, February 1993, pages
14-23.

9. Donald E. Knuth, TeXWare, Dept, of Computer
Science, Stanford UniversityTechnical Report
STAN-CS-89-1097, 1986.

10. Keith Shafer, SGML Grammar Structure, Annual
Review of OCLC Research July 1992-June 1993,
pages 39-40, 1994.

11. John K. Ousterhout, Tcl and the Tk Toolkit, Addi
son-Wesley Publishing Company, Reading, MA,
1994.

12. Larry Wall and Randal L. Schwartz, Programming
Perl, O’Reilly & Associates, Inc., Sebastopol, CA,
1992.

13. Harold Abelson, Gferald Jay Sussman, and Julie
Abelson, Structure and Interpretation of CompMter
Programs, The MIT Press, Cambridge, MA, 1985.

14. Keith Shafer and Roger Thompson, Introduction
to Translating Tagged Text via the SGML Docu
ment Grammar Builder Engine, 1994. Accessible
at http://www.oclc. org:80/fred/docs/translations/
intro.html

15. Stuart Weibel, Eric Miller, Ralph LeVan, and Jean
Godby, An Architecture for Scholarly Publishing
on the World Wide Web, Proceedings from the Sec
ond International ITWTT Conference: Mosaic and
the Web, 1994. Accessible at http://www.oclc.
org:5046/publications/weibeP'web_p>ub_arch/,
pages 739-748.

16. C.M. Sperberg-McQueen and Robert F. Gold
stein, “HTML to the Max: A Manifesto for adding

SGML Intelligence to the World Wide Web,’’
World Wide Web Fall 1994 Papers. Accessible at
http://wunv.ncsa.uiuc.edu/SDG/IT94/Proceedings/
Autools/sperberg-mcqueen/sperberg.html

17. Diane Vizine-Goetz, Jean Godby, and Mark Ben-
dig, “Spectrum: A Web-Based Tool for Describing
Electronic Resources,” presented at the Third
International World Wide Web Conference.
Darmstadt, Germany, 1995.

18. Keith Shafer, Quick Translation Reference for
Fred, 1994. Accessible at http://www.oclc.orgl
fred/docs/help/quick.html

19. Keith Shafer, Fred Translation Information,
1994. Fred’s WWW translation home page.
Accessible at http://www.oclc.org/fred/docs/trans-
lations/

20, Thomas B. Hickey and Terry Noreault, ’’The
Development of a Graphical User Interface for
The Online Journal of Current Clinical Trials,” The
Public-Access Computer Systems Review, 3(2):4-
12, 1992.

21. Thomas B. Hickey, “Reference Client Software
Design,” Annual Review of OCLC Research July
1992-June 1993, pages 37-39, 1994.About the Authors

Keith Shafer
[h ttp://wtvw. oclc. org:5046/-Shafer A
shafer@oclc.org

Roger Thompson
thompson@oclc.org

OCLC Online Computer Library Center, Inc.
6565 Frantz Road, Dublin, Ohio 43017-3395
FAX: (614) 764-6096

332 Fourth International World Wide Web Conference Proceedings

http://ivww.oclc.or%255efred/
http://www.oclc
http://www.oclc
http://wunv.ncsa.uiuc.edu/SDG/IT94/Proceedings/
http://www.oclc.orgl
http://www.oclc.org/fred/docs/trans-lations/
mailto:shafer@oclc.org
mailto:thompson@oclc.org

