
w Low Level Security in Java

Frank Yellin

Abstract
The Java(tm) language allows Java-compatible Web browsers to download code fragments dynamically
and then execute those code fragments locally. However, users must be wary of executing any code that
comes from untrusted sources or that passes through an insecure network. This paper presents the
details of the lowest-levels of the Java security mechanism. Before any downloaded code is executed, it
is scanned and verified to ensure that it conforms to the specifications of the virtual machine. Key­
words: WWW, Java, Hotjava, security, remote executionIntroduction to the JavaLanguage
The Java(tm) language [1, 2] is a simple, object-
oriented, portable, robust language developed at
Sun Microsystems.

The language was created for developing pro­
grams in a heterogenous network-wide environ­
ment. Because one of the initial goals of the lan­
guage was to employ it in embedded systems
with a minimum amount of memory, the Java
language is designed to be small and to use a
small amount of hardware resources.

The Java compiler generates class files, which
have an architecturally neutral, binary intermedi­
ate format. Embedded in the class file are byte­
codes, which are implementations for each of the
class’s methods, written in the instruction set of a
virtual machine. The class-file format has no
dependencies on byte-ordering, pointer size, or
underlying operating system.

The bytecodes are executed by means of a runt­
ime system, or emulator for the virtual machine’s
instruction set. The same bytecodes can be run
on any platform.Security
Since Java language compiled code is designed
to be transported in binary format across net­
works, security is extremely important. No one

wants to bring across any piece of code if there is
a possibility that executing the code could do
any of the following:

• Damage hardware, software, or information
on the host machine

• Pass unauthorized information to anyone

• Cause the host machine to become unusable
through resource depletion

Because the Java bytecode is run on the host
machine, there are special security concerns.
Users who download Java class files from
remote, possibly insecure (or hostile) sites must
be satisfied that the downloaded code cannot
subvert the Java bytecode interpreter to perform
impermissible operations.

The lowest levels of the Java interpreter imple­
ment security in several ways as described in the
following sections.

Security Through Being Published
The complete source code for both the Java
interpreter and the Java compiler are available for
inspection. We do not expect users to take our
word for it that Java language is secure. Security
audits of the Java source are currently being per­
formed.

World Wide Web Journal 369

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3592626.3592656&domain=pdf&date_stamp=1995-12-11

Security Through Being Well-
defined
The Java language is strict in its definition of the
language:

• All primitive types in the language are guar­
anteed to be a specific size.

• All operations are defined to be performed
in a specified order.

Two correct Java compilers will never give differ­
ent results for execution of a program. This abil­
ity differs greatly from that of C and C++, in
which the sizes of the primitive types are
machine- and compiler-dependent, and the order
of execution is undefined except in certain spe­
cific cases.

Security Through Lack of Pointer
Arithmetic
The Java language does not have pointer arith­
metic, so Java programmers cannot forget a
pointer to memory. All references to methods
and instance variables in the class file are via
symbolic names. The user cannot create code
that has magic offsets in it that just happen to
point to the “right place.” Users cannot create
code that bash’s system variables or that accesses
private information.

Security Through Garbage
Collection
Garbage collection [31 makes Java program.s both
more secure and more robust. Two common
bugs in C/C++ programs are:

• Failing to free memory once it is no longer
needed

• Accidentally freeing the same piece of mem­
ory twice

Failing to free memory that is no longer accessi­
ble can cause a program to use increasing
amounts of memory. Accidentally freeing the
same piece of memory often causes subtle mem­
ory corruption bugs that are difficult to locate.

The Java language eliminates the need for pro­
grammers to be concerned with these issues.

Security Through Strict Compile-
Time Checking
The Java compiler performs extensive, stringent,
compile-time checking so that as many errors as
possible can be detected by the compiler. The
Java language is strongly typed; unlike C/C++,
the type system has no loopholes:

• Objects cannot be cast to a subclass without
an explicit runtime check.

• All references to methods and variables are
checked to make sure that the objects are of
the appropriate type. In addition, the com­
piler checks that “security barriers” (e.g., ref­
erencing a private variable or method
from another class) are not violated.

• Integers cannot be converted into objects.
Objects cannot be converted into integers.

The compiler also strictly ensures that a program
does not access the value of an uninitialized local
variable.

Class-File Verification
Even though the compiler performs thorough
type checking, there is still the possibility of
attack via the use of a “hostile” compiler. Appli­
cations such as the Hotjava(tm) browser [4] do
not download source code which they then com­
pile; these applications download already-com­
piled class files. The Hotjava browser has no way
of determining whether the bytecodes were pro­
duced by a trustworthy Java compiler or by an
adversary attempting to exploit the interpreter.

An additional problem with compile-time check­
ing is version skew. A user may have successfully
compiled a class, say PurchaseStockOptions
to be a subclass of Tradingclass. But the def­
inition of Tradingclass might have changed
since the time the class was compiled: methods
might have disappeared or changed arguments;
variables might have changed types or changed

370 Fourth International World Wide Web Conference Proceedings

from dynamic (per object) to static (per class).
The visibility of a method or variable may have
changed from public to private.

All class files brought in from “the outside” are
subjected to a verifier. This verifier ensures that
the class file has the correct format. The byte­
codes are verified using a simple theorem prover
which establishes a set of “structural constraints”
on the bytecodes.

The bytecode verifier also enhances the perfor­
mance of the interpreter. Runtime checks that
would otherwise have to be performed for each
interpreted instruction can be eliminated. Instead,
the interpreter can assume that these checks have
already been performed. Though each individual
check may be inexpensive, several machine
instructions for the execution of each bytecode
instruction are eliminated.

For example, the interpreter already knows that
the code will adhere to the following constraints:

• There are no stack overflows or underflows.

• All register accesses and stores are valid.

• The parameters to all bytecode instructions
are correct.

• There is no illegal data conversion.

The verifier is independent of the Java compiler.
Although it will certify all code generated by the
current compiler, it should also certify code that
the current compiler couldn’t possibly generate.
Any set of bytecodes that satisfy the structural cri­
teria will be certified by the verifier.

The verifier is extremely conservative. It will
refuse to certify some class files that a more
sophisticated theorem prover might certify.

Other languages can be compiled into the class
format. The bytecode verifier, by not being spe­
cifically tied to the Java language, allows users to
import code from outside their firewall with con­
fidence.

The Class-File Format
Each Java class file is downloaded across the net­
work as a separate entity. The class file is simply
a stream of 8-bit bytes. All 16- and 32-bit quanti­
ties are formed by reading in two or four 8-bit
bytes, respectively, and joining them together in
big-endian format.

The Basic Format
The following information is a brief sketch of the
class-file format. Complete details can be found
in [51.

A class file contains:

• A magic constant

• Major and minor version information

• The “constant pool”

• Information about this class (name, super­
class, etc.)

• Information about each of the fields and
methods in this class

• Debugging information

The constant pool is a heterogenous array of
data. Each entry in the constant pool can be one
of the following:

• A Unicode [6] string

• A class or interface name

• A reference to a field or method

• A numeric value

• A constant String value

No other part of the class file makes specific ref­
erences to strings, classes, fields, or methods. All
such references are through indices into the con­
stant pool.

For each field and method in the class, the bytes
in the class file indicate the field’s or method’s
name and its type. The type of a field or method
is indicated by a string called its signature. Fields
may have an additional attribute giving the field’s

World Wide Web Journal 371

initial value. Methods may have an additional
attribute giving the code for performing that
method.

Methods may, in fact, have multiple code
attributes. The attribute CODE indicates bytecode
to be run through the interpreter. Methods might
also have attributes such as SPARC-CODE or
386-CODE which are machine-code implementa­
tions of the method. The Hotjava browser will
ignore the machine-code implementation of any
method from an untrustworthy source, because it
cannot verify that machine code is structurally
sound.

The current implementation of the Hotjava
browser believes that any class file that comes
from the network is untrustworthy. The browser
will only run machine code that has been loaded
from local class files. However, the class format
can allow authors to digitally sign class files.
Future browsers may be more tmsting of signed
machine code coming from trusted sources.

Bytecodes and Virtual Machine
The CODE attribute supplies information for exe­
cuting the method in the machine language of a
virtual machine. The information for each
method includes:

• The maximum stack space needed by the
method

• The maximum number of registers used by
the method

• The actual code for executing the method;
these bytecodes are for the Java virtual
machine

• A table of exception handlers. Each entry in
the table gives a start and end offset into the
bytecodes, an exception type, and the offset
of a handler for the exception. The entry
indicates that if an exception of the indicated
type occurs within the code indicated by the
starting and ending offset, a handler for the
exception will be found at the given handler
offset.

The Java virtual machine defines six primitive
types:

• 32-bit integer (integers)

• 64-Iit integers (longs or Zowg integers)

• 32-bit floating-point numbers (single floaty

• 64-bit floating-point numbers (double floaty

• pointers to objects and arrays (handled

• pointers to the virtual machine code (return
addresses)

The Java virtual machine also defines several
array types: integers, longs, single floats, double
floats, handles, booleans, bytes (8-bit integers),
shorts (16-bit integers), and Unicode characters.
Arrays of handles have an additional type field
indicating the class of object the array can hold.

Each method activation has a separate expres­
sion-evaluation stack and set of local registers.
Each register and each stack location must be
able to hold an integer, a single float, a handle,
or a return address. Longs and double floats must
fit into two consecutive stack locations or two
consecutive registers. The virtual-machine
instructions (opcodes) will address longs and
double floats in registers using the index of the
lower-numbered register.

Objects on the stack and in registers are not (nec­
essarily) tagged. The virtual-machine instruction
set provides opcodes to operate on different
primitive data types. For example, ineg, fneg,
Ineg, and dneg each negate the top item on the
stack, but they assume that the top item on the
stack is an integer, a single float, a long, or a
double float, respectively.

The bytecode instructions can be divided into
several categories:

• Pushing constants onto the stack

• Accessing and modifying the value of a reg­
ister

• Accessing arrays

372 Fourth International World Wide Web Conference Proceedings

• Stack manipulation (e.g., swap, dup, pop)

• Arithmetic, logical, and conversion instruc­
tions

• Control transfer

• Function return

• Manipulating object fields

• Method invocation

• Object creation

• Type casting

Each bytecode consists of a one-byte opcode,
followed by zero or more bytes of additional
operand information. With the exception of two
“table lookup" instructions, all instructions are a
fixed length, based on the opcode.

The Verification Process
The Verifier operates in four passes.

Pass I

The first pass is the simplest. It occurs when the
class is first read into the interpreter.

This pass ensures that the class file has the format
of a class file. The first several bytes must contain
the right magic number. All recognized attributes
need to be the proper length. The class file must
not be truncated or have extra bytes at the end.
The constant pool must not contain any unrecog­
nized information.

Pass 2

In the second pass, the verifier delves a little bit
more deeply into the class file format. It performs
all verification that can be performed without
looking at the bytecodes. The errors detected by
Pass 2 include:

• Ensuring that final classes are not sub­
classed, and that final methods are not
overridden

• Checking that every class (except Object)
must have a superclass

• Ensuring that the constant pool satisfies cer­
tain constraints; e.g., class references in the
constant pool must contain a field that
points to a unicode string reference in the
constant pool

• Checking that all field references and
method references in the constant pool must
have legal names, legal classes, and a legal
type signature

Note that when looking at field and method ref­
erences, this pass does not actually check to
make sure that the given field or method really
exists in the given class; nor does it check that
the type signatures given refer to real classes.
Rather, the signature must simply “look like” a
legal signature. Further checking is delayed until
passes 3 and 4.

Pass 3

This is the most complex pass of the class verifi­
cation. The bytecodes of each method are veri­
fied. Data-flow analysis [7] is performed on each
method. The verifier ensures that at any given
point in the program, no matter what code path
is taken to reach that point:

• The stack is always the same size and con­
tains the same types of objects.

• No register is accessed unless it is known to
contain a value of the appropriate type.

• Methods are called with the appropriate
arguments.

• Fields are modified with values of the appro­
priate type.

• All opcodes have appropriate type argu­
ments on the stack and in the registers.

For further information on this pass, see the sec­
tion “Bytecode Verifier.”

World Wide Web Journal 373

Pass 4

For efficiency reasons, certain tests that could be
performed in Pass 3 are delayed until the code is
actually run. Pass 3 of the verifier avoids loading
class files unless it must do so.

For example, if a method contains a call to
another method that returns an object of type
foobarType, and that object is then immedi­
ately assigned to a field of the same type, the ver­
ifier doesn’t bother to check if the type f oobar-
Type exists. However, if it is assigned to a field
of the type anotherType, the definitions of
both foobarType and anotherType must be
loaded in to assure that foobarType is a sub­
class of anotherType.

The first time an instruction that references a
class is executed, the verifier does the following;

• Loads in the definition of the class if it has
not already been loaded

• Verifies that the currently executing class is
allowed to reference the given class

The first time an instruction calls a method, or
accesses or modifies a field, the verifier does the
following:

• Ensures that the method or field exists in the
given class

• Checks that the method or field has the indi­
cated signature

• Checks that the currently executing method
has access to the given method or field

This pass of the verifier does not have to check
the type of the object on the stack. That check
has already been done by Pass 3-

After the verification has been performed, the
instruction in the bytecode stream is replaced
with an alternative form of the instruction. For
example, the opcode new is replaced with new_
quick. This alternative instruction indicates that
the verification needed by this instruction has
taken place, and need not be performed again. It

is illegal for these _quick instructions to appear
in Pass 3.

Bytecode Verifier
As indicated above. Pass 3 of the verifier, the
bytecode verifier, is the most complex pass of the
class verification.

First, the bytes that make up the virtual instruc­
tions are broken up into a sequence of instruc­
tions, and the offset of the start of each instruc­
tion is kept in a bit table. The verifier then goes
through the bytes a second time and parses the
instructions. During this pass each instruction is
converted into a structure. The arguments, if any,
to each instruction are checked to make sure
they are reasonable:

• All control-flow instructions go to the start of
an instruction. Branches into the middle of
an instruction are clearly not allowed. Simi­
larly, branches to before the beginning of
the code or to after the end of the code are
not allowed.

• All register references are to a legal register.
Code cannot access or modify any register
greater than the number of registers that the
method indicated it uses.

• All references to the constant pool must be
to an entry of the appropriate type. For
example, the opcode Idcl can only be
used for integers, floats, or String’s. The
opcode getf ield must reference a field.

• The code does not end in the middle of an
instruction.

• For each exception handler, the starting and
ending point must point to the beginning of
an instruction. The offset of the exception
handler must be a valid instruction. The
starting point must be before the ending
point.

For each instruction, the verifier keeps track of
the contents of the stack and the contents of the
registers prior to the execution of that instruction.

374 Fourth International World Wide Web Conference Proceedings

For the stack, it needs to know the length of the
stack and the type of each element on the stack.
For each register, it needs to know either the
type of the contents of that register or that the
register contains an illegal value. The bytecode
verifier does not need to distinguish between the
various normal integer types (e.g., byte, short,
char) when determining the value types on the
stack.

(Some extra information is kept about each
instruction in a finally clause. This informa­
tion is discussed further in the section “Try/
Finally.”)

Next, a data-flow analyzer is initialized. For the
first instruction, the lower-numbered registers
contain the types indicated by the method’s type
signature; the stack is empty. All other registers
contain an illegal value. For all other instructions,
indicate that this instruction has not yet been vis­
ited; there is yet no information on its stack or
registers.

Finally, the data-flow analyzer is run. For each
instruction, there is a “changed” bit indicating
whether this instruction needs to be looked at.
Initially, the “changed” bit is set only for the first
instruction. The data-flow analyzer executes the
following loop;

1. Find a virtual machine instruction whose
‘changed” bit is set. If no instruction remains
whose changed bit is set, the method has
successfully been verified. Turn off that
changed bit.

2. Emulate the effect of this instruction on the
stack and registers:
- If the instruction uses values from the

stack, ensure that there are sufficient ele­
ments on the stack and that the top ele­
ments) of the stack are of the appropri­
ate type. Otherwise, fail.

- If the instruction uses a register, ensure
that the specified register contains a value
of the appropriate type. Otherwise, fail.

- If the instruction pushes values onto the
stack, add the indicated types to the top

of the stack. Ensure that there is sufficient
room on the stack for the new element(s).

- If the instruction modifies a register, indi­
cate that the register now contains the
new type.

3. Determine the virtual-machine instructions
that can follow this one. Successor instruc­
tions can be one of the following:
- The next instruction, if the current instruc-

tion isn’t an unconditional goto, a
return, or a throw. Fail if we can “fall
off’ the last instruction.

- The target of a conditional or uncondi­
tional branch.

- All exception handlers for this instruction.

4. Merge the state of the stack and registers at
the end of the current instruction into each
of the successor instructions. In the excep­
tion-handler case (2c), change the stack so
that it contains a single object of the excep­
tion type indicated by the exception handler
information.
- If this is the first time the successor

instruction has been visited, indicate that
the stack and registers values calculated
in Step 2 and Step 3 are the state of the
stack and registers prior to executing the
successor instruction; set the “changed’
bit for the successor instruction.

- If the instruction has been seen before,
merge the stack and register values calcu­
lated in Step 2 and Step 3 into the values
already there; set the “change” bit if there
is any modification.

5. Go to Step 1.

To merge two stacks, the number of elements in
each stack must be identical. A failure is indi­
cated if this criteria isn’t met. The stacks must be
identical, except that differently typed handles
may appear at corresponding places on the two
stacks. In this case, the merged stack contains the
common ancestor of the two handle types.

To merge two register states, compare each regis­
ter. If the two types aren’t identical, then unless

World Wide Web Journal 375

both contain handles, indicate that the register
contains an unknown (and unusable) value. For
differing handle types, the merged state contains
the common ancestor of the two types.

If the data-flow analyzer runs on the method
without reporting any failures, then the method
has been successfully verified by Pass 3 of the
class-file verifier.

Constructors and Newly Created
Objects
Creating a usable object in the Java interpreter is
a multi-step process. The bytecodes produced for
the Java code:

new myClass(i, j, k);

are roughly the following:

Certain instructions and data types complicate
the data-flow analyzer. We now examine each of
these.

Long Integers and Doubles
Long integers and double floats each take two
consecutive words on the stack and in the regis­
ters.

new <myClass>
uninitialized space

allocate

dup # duplicate
object on the stack

<push argTjjnents>
invokenonvirtual myClass.<init>

initialize
#

This code leaves the newly created and initial­
ized object on top of the stack.

Whenever a long or double is moved into a regis­
ter, the following register is marked as containing
the second half of a long or double. This special
value indicates that all references to the long or
double must be through the lower numbered
register.

Whenever any value is moved to a register, the
preceding register is examined to see if it con­
tains the first word of a long or a double. If so,
that preceding register is changed to indicate that
it now contains an unknown value. Since half of
the long or double has been eradicated, the other
half can no longer be used.

Dealing with 64-bit quantities on the stack is sim­
pler. The verifier treats them as single units on
the stack. For example, the verification code for
the dadd opcode (add two double floats) checks
that the top two items on the stack are both dou­
ble floats. When calculating stack length, longs
and double floats on the stack have length two.

Stack manipulation opcodes must treat doubles
and longs as atomic units. For example, the veri­
fier reports a failure if the top element of the
stack is a double float and it encounters the
opcodes pop or dup. The opcodes pop2 or
dup2 must be used instead.

The myClass initialization method sees the new
uninitialized object as its this argument in regis­
ter 0. It must either call an alternative myClass
initialization method or call the initialization
method of a superclass on the this object
before it is allowed to do anything else with
this.

In normal instance methods (what C++ calls vir­
tual methods), the verifier indicates that register
0 initially contains an object of “the current class";
for constructor methods, register 0 instead con­
tains a special type indicating an uninitialized
object. After an appropriate initialization method
is called (from the current class or the current
superclass) on this object, all occurrences of this
special type on the stack and in the registers are
replaced by the current class type. The verifier
prevents code from using the new object before
it has been initialized and from initializing the
object twice.

Similarly, a special type is created and pushed on
the stack as the result of the opcode new. The
special type indicates the instruction in which the
object was created and the type of the uninitial­
ized object created. When an initialization
method is called on that object, all occurrences of
the special type are replaced by the appropriate
type.

3/6 Fourth International World Wide Web Conference Proceedings

The instruction number needs to be stored as
part of the special type since there may be multi­
ple instances of a non-yet-initialized type in exist­
ence on the stack at one type. For example, the
code created for the following:

new Inputstream(new Handle(),new
InputStream ("foo"))

may have two uninitialized
active at once.

Inputstream’s

Code may not have an uninitialized object on the
stack or in a register during a backwards branch,
or in a register in code protected by an exception
handler or a finally. Otherwise, a devious piece
of code could fool the verifier into thinking it had
initialized an object when it had, in fact, initial­
ized an object created in a previous pass through
the loop.

Exception Handlers
Code produced from the current Java compiler
always has properly nested exception handlers:

• The range of instructions protected by two
different exception handlers will always
either be completely disjoint or one will be a
subrange of the other. There will never be a
partial overlap.

• The handler for an exception will never be
inside the code that is being protected.

• The only entry to an exception handler is
through an exception. It is impossible to fall
through or “goto” the exception handler.

These restrictions are not enforced by the verifier
since they do not pose any threat to the integrity
of the virtual-machine interpreter. As long as
every nonexceptional path to the exception han­
dler causes there to be a single object on the
stack, and as long as all other criteria of the veri­
fier are met, the verifier will pass the code.

Try/Finally
The Java language includes a feature called
finally, which is like the similarly named fea­

ture of Modula-3 18] or unwind-protect in
Common Lisp [91. Given the following code:

try {
startFaucet();
waterLawn();

} finally I
stopFaucet();

}
The Java language guarantees that the faucet is
turned off, even if an exception occurs while
starting the faucet or watering the lawn. The
code inside the brackets after the try is called
the protected code. The code inside the brackets
after the finally is the cleanup code. The
cleanup code is guaranteed to be executed, even
if the protected code does a “return” out of the
function, or contains a break or continue to
outside the try/ finally, or gets an exception.

To implement this construct, the Java compiler
uses the exception handling facilities, together
with two special instructions, jsr (jump to sub­
routine) and ret (return from subroutine). The
cleanup code is compiled as a subroutine. When
it is called, the top object on the stack will be the
return address; this return address is saved in a
register. At the end of the cleanup code, it per­
forms a ret to return to whatever code called
the cleanup.

To implement try/finally, a special excep­
tion handler is set up around the protected code
which catches all exceptions. This exception han­
dler:

1.

2.

3.

Saves the exception in a register.

Executes a j sr to the cleanup code.

Upon return from the exception,
throw's the exception.

re-

If the protected code has a return, it performs
the following code:

1. Saves the return value (if any) in a register.

2. Executes a j sr to the cleanup code.

3. Upon return from the exception, returns the
value saved in the register.

World Wide Web Journal 377

Breaks or continues inside the protected code
that go to outside the protected code execute a
jsr to the cleanup code before performing their
goto. Likewise, at the end of the protected code
is a jsr to the cleanup code.

The cleanup code presents a special problem to
the verifier. Usually, if a particular instruction can
be reached via multiple paths and a particular
register contains incompatible values through
those multiple paths, then the register becomes
unusable. However, a particular piece of cleanup
code might be called from several different
places:

• The call from the exception handler will
have a certain register containing an excep­
tion.

• The call to implement “return” will have
some register containing the return value.

• The call from the bottom of the protected
code may have trash in that same register.

The cleanup code may pass verification, but after
updating all the successors of the ret instruc­
tion, the verifier will note that the register that the
exception handler expects to hold an exception
or that the return code expects to hold a return
value now contains trash.

Verifying code that contains finally’s can be
somewhat complicated. Fortunately, most code
doe.s not have finally’s. The basic idea is the
following;

• Each instruction keeps track of the smallest
number of j sr targets needed to reach that
instruction. For most code, this field will be
empty. For instructions inside cleanup code,
the field will be of length one. For multiply-
nested cleanup code (extremely rare!), it
may be longer than one.

• For each instruction and each jsr needed
to reach that instruction, a bit vector is main­
tained of all registers accessed or modified
since the execution of the j sr instruction.

• When executing the ret from a subroutine,
there must be only one possible subroutine
target from which the instruction can be
returning. Two different targets of j sr
instructions cannot “merge” themselves into
a single ret instruction.

• When performing the data-flow analysis on
a ret instruction, modify the directions
given above. Since the verifier knows the
target of the jsr from which the instruction
must be returning, it can find all the j sr’s to
the target, and merge the state of the stack
and registers at the time of the ret instruc­
tion into the stack and registers of the
instructions following the jsr using a spe­
cial set of values for the registers:

• If the bit vector (constructed above) indi­
cates that the subroutine has accessed or
modified, a register uses the type of the reg­
ister at the time of the ret.

• For other registers, use the type of the regis­
ter at the time of the preceding jsr instruc­
tion.

Conclusion
The Java language has generated much excite­
ment with its ability to allow programmers to cre­
ate and compile code that can be executed on
multiple platforms. The Hotjava browser, in par­
ticular, has shown that portable code can bring
interactivity to the World Wide Web.

However, before users will consent to bring over
executable code from untrustworthy sources (i.e.
most of the network!), they want assurances that
the code cannot damage them. The byte-code
verifier is the lowest level of a many-tiered strat­
egy [10]. ■

Acknowledgments
Thanks to James Gosling, Arthur van Hoff, Bill
Joy, Tim Lindholm, Chuck McManis, Mark Show­
alter, and Richard Tuck for comments and sug-

378 Fourth International World Wide Web Conference Proceedings

gestions. Special thanks to Mark Scott Johnson
for encouraging me to write this paper.

References
1. The Java Language Overview. Available via http://

java.sun.com/1.0alpha3/doc/overview/java/index.
html

2. James Gosling and Henry McGilton. The Java Lan­
guage Overview: A White Paper. Sun Microsystems
Technical Report, May 1995. Available via http://
java.sun.com/whitePaper/javawhitepaper_l.html

3. Donald E Knuth. The Art of Computer Program­
ming, Volume 1: Fundamental Algorithms. Addi­
son-Wesley, 1969.

4. The Hotjava Overview. Available via http://java.
sun.eom/l.0alpha3/doc/overview/hotjava/mdex.
html

5. The Java Virtual Machine Specification. Available
via http://java.sun.eom/l.0alpha3/doc/vmspec/
vmspec_l.html

6. The Unicode Consortium. The Unicode Standard:
Worldwide Character Encoding. Addison-Wesley,
1992. Available via http://unicode.org/

7. Alfred V. Aho, Ravi Sethi,, and Jeffrey D Ullman.
Compilers: Principles, Techniques, and Tools. Add­
ison-Wesley, 1988.

8. Samuel P. Harbison. Modula-3. Prentice-Hall, Inc.
1992.

9. Guy L. Steele Jr. Common Lisp: The Language,
Second Edition. Digital Press, 1990. Available via
http://wtvw.cs.cmu.edu/Web/Groups/Al/html/cltl/
cltl2.html

10. Hotjava(tm): The Security Story. Available via
http://java.sun.eom/l.0alpha3/doc/security/secu-
rity.htmlAbout the Author

Frank Yellin
Sun Microsystems
Java Products Group
fy9eng.sun.com

Generated with CERN WebMaker

World Wide Web Journal 379

http://java
http://java.sun.eom/l.0alpha3/doc/vmspec/
http://unicode.org/
http://wtvw.cs.cmu.edu/Web/Groups/Al/html/cltl/
http://java.sun.eom/l.0alpha3/doc/security/secu-rity.html
fy9eng.sun.com

