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Abstract
The Java(tm) language allows Java-compatible Web browsers to download code fragments dynamically 
and then execute those code fragments locally. However, users must be wary of executing any code that 
comes from untrusted sources or that passes through an insecure network. This paper presents the 
details of the lowest-levels of the Java security mechanism. Before any downloaded code is executed, it 
is scanned and verified to ensure that it conforms to the specifications of the virtual machine. Key­
words: WWW, Java, Hotjava, security, remote executionIntroduction to the JavaLanguage
The Java(tm) language [1, 2] is a simple, object- 
oriented, portable, robust language developed at 
Sun Microsystems.

The language was created for developing pro­
grams in a heterogenous network-wide environ­
ment. Because one of the initial goals of the lan­
guage was to employ it in embedded systems 
with a minimum amount of memory, the Java 
language is designed to be small and to use a 
small amount of hardware resources.

The Java compiler generates class files, which 
have an architecturally neutral, binary intermedi­
ate format. Embedded in the class file are byte­
codes, which are implementations for each of the 
class’s methods, written in the instruction set of a 
virtual machine. The class-file format has no 
dependencies on byte-ordering, pointer size, or 
underlying operating system.

The bytecodes are executed by means of a runt­
ime system, or emulator for the virtual machine’s 
instruction set. The same bytecodes can be run 
on any platform.Security
Since Java language compiled code is designed 
to be transported in binary format across net­
works, security is extremely important. No one 

wants to bring across any piece of code if there is 
a possibility that executing the code could do 
any of the following:

• Damage hardware, software, or information 
on the host machine

• Pass unauthorized information to anyone

• Cause the host machine to become unusable 
through resource depletion

Because the Java bytecode is run on the host 
machine, there are special security concerns. 
Users who download Java class files from 
remote, possibly insecure (or hostile) sites must 
be satisfied that the downloaded code cannot 
subvert the Java bytecode interpreter to perform 
impermissible operations.

The lowest levels of the Java interpreter imple­
ment security in several ways as described in the 
following sections.

Security Through Being Published
The complete source code for both the Java 
interpreter and the Java compiler are available for 
inspection. We do not expect users to take our 
word for it that Java language is secure. Security 
audits of the Java source are currently being per­
formed.
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Security Through Being Well- 
defined
The Java language is strict in its definition of the 
language:

• All primitive types in the language are guar­
anteed to be a specific size.

• All operations are defined to be performed 
in a specified order.

Two correct Java compilers will never give differ­
ent results for execution of a program. This abil­
ity differs greatly from that of C and C++, in 
which the sizes of the primitive types are
machine- and compiler-dependent, and the order 
of execution is undefined except in certain spe­
cific cases.

Security Through Lack of Pointer 
Arithmetic
The Java language does not have pointer arith­
metic, so Java programmers cannot forget a 
pointer to memory. All references to methods 
and instance variables in the class file are via 
symbolic names. The user cannot create code 
that has magic offsets in it that just happen to 
point to the “right place.” Users cannot create 
code that bash’s system variables or that accesses 
private information.

Security Through Garbage 
Collection
Garbage collection [31 makes Java program.s both 
more secure and more robust. Two common 
bugs in C/C++ programs are:

• Failing to free memory once it is no longer 
needed

• Accidentally freeing the same piece of mem­
ory twice

Failing to free memory that is no longer accessi­
ble can cause a program to use increasing 
amounts of memory. Accidentally freeing the 
same piece of memory often causes subtle mem­
ory corruption bugs that are difficult to locate.

The Java language eliminates the need for pro­
grammers to be concerned with these issues.

Security Through Strict Compile- 
Time Checking
The Java compiler performs extensive, stringent, 
compile-time checking so that as many errors as 
possible can be detected by the compiler. The 
Java language is strongly typed; unlike C/C++, 
the type system has no loopholes:

• Objects cannot be cast to a subclass without 
an explicit runtime check.

• All references to methods and variables are 
checked to make sure that the objects are of 
the appropriate type. In addition, the com­
piler checks that “security barriers” (e.g., ref­
erencing a private variable or method 
from another class) are not violated.

• Integers cannot be converted into objects. 
Objects cannot be converted into integers.

The compiler also strictly ensures that a program 
does not access the value of an uninitialized local 
variable.

Class-File Verification
Even though the compiler performs thorough 
type checking, there is still the possibility of 
attack via the use of a “hostile” compiler. Appli­
cations such as the Hotjava(tm) browser [4] do 
not download source code which they then com­
pile; these applications download already-com­
piled class files. The Hotjava browser has no way 
of determining whether the bytecodes were pro­
duced by a trustworthy Java compiler or by an 
adversary attempting to exploit the interpreter.

An additional problem with compile-time check­
ing is version skew. A user may have successfully 
compiled a class, say PurchaseStockOptions 
to be a subclass of Tradingclass. But the def­
inition of Tradingclass might have changed 
since the time the class was compiled: methods 
might have disappeared or changed arguments; 
variables might have changed types or changed
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from dynamic (per object) to static (per class). 
The visibility of a method or variable may have 
changed from public to private.

All class files brought in from “the outside” are 
subjected to a verifier. This verifier ensures that 
the class file has the correct format. The byte­
codes are verified using a simple theorem prover 
which establishes a set of “structural constraints” 
on the bytecodes.

The bytecode verifier also enhances the perfor­
mance of the interpreter. Runtime checks that 
would otherwise have to be performed for each 
interpreted instruction can be eliminated. Instead, 
the interpreter can assume that these checks have 
already been performed. Though each individual 
check may be inexpensive, several machine 
instructions for the execution of each bytecode 
instruction are eliminated.

For example, the interpreter already knows that 
the code will adhere to the following constraints:

• There are no stack overflows or underflows.

• All register accesses and stores are valid.

• The parameters to all bytecode instructions 
are correct.

• There is no illegal data conversion.

The verifier is independent of the Java compiler. 
Although it will certify all code generated by the 
current compiler, it should also certify code that 
the current compiler couldn’t possibly generate. 
Any set of bytecodes that satisfy the structural cri­
teria will be certified by the verifier.

The verifier is extremely conservative. It will 
refuse to certify some class files that a more 
sophisticated theorem prover might certify.

Other languages can be compiled into the class 
format. The bytecode verifier, by not being spe­
cifically tied to the Java language, allows users to 
import code from outside their firewall with con­
fidence.

The Class-File Format
Each Java class file is downloaded across the net­
work as a separate entity. The class file is simply 
a stream of 8-bit bytes. All 16- and 32-bit quanti­
ties are formed by reading in two or four 8-bit 
bytes, respectively, and joining them together in 
big-endian format.

The Basic Format
The following information is a brief sketch of the 
class-file format. Complete details can be found 
in [51.

A class file contains:

• A magic constant

• Major and minor version information

• The “constant pool”

• Information about this class (name, super­
class, etc.)

• Information about each of the fields and 
methods in this class

• Debugging information

The constant pool is a heterogenous array of 
data. Each entry in the constant pool can be one 
of the following:

• A Unicode [6] string

• A class or interface name

• A reference to a field or method

• A numeric value

• A constant String value

No other part of the class file makes specific ref­
erences to strings, classes, fields, or methods. All 
such references are through indices into the con­
stant pool.

For each field and method in the class, the bytes 
in the class file indicate the field’s or method’s 
name and its type. The type of a field or method 
is indicated by a string called its signature. Fields 
may have an additional attribute giving the field’s
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initial value. Methods may have an additional 
attribute giving the code for performing that 
method.

Methods may, in fact, have multiple code 
attributes. The attribute CODE indicates bytecode 
to be run through the interpreter. Methods might 
also have attributes such as SPARC-CODE or 
386-CODE which are machine-code implementa­
tions of the method. The Hotjava browser will 
ignore the machine-code implementation of any 
method from an untrustworthy source, because it 
cannot verify that machine code is structurally 
sound.

The current implementation of the Hotjava 
browser believes that any class file that comes 
from the network is untrustworthy. The browser 
will only run machine code that has been loaded 
from local class files. However, the class format 
can allow authors to digitally sign class files. 
Future browsers may be more tmsting of signed 
machine code coming from trusted sources.

Bytecodes and Virtual Machine
The CODE attribute supplies information for exe­
cuting the method in the machine language of a 
virtual machine. The information for each 
method includes:

• The maximum stack space needed by the 
method

• The maximum number of registers used by 
the method

• The actual code for executing the method; 
these bytecodes are for the Java virtual 
machine

• A table of exception handlers. Each entry in 
the table gives a start and end offset into the 
bytecodes, an exception type, and the offset 
of a handler for the exception. The entry 
indicates that if an exception of the indicated 
type occurs within the code indicated by the 
starting and ending offset, a handler for the 
exception will be found at the given handler 
offset.

The Java virtual machine defines six primitive 
types:

• 32-bit integer (integers)

• 64-Iit integers (longs or Zowg integers)

• 32-bit floating-point numbers (single floaty

• 64-bit floating-point numbers (double floaty

• pointers to objects and arrays (handled

• pointers to the virtual machine code (return 
addresses)

The Java virtual machine also defines several 
array types: integers, longs, single floats, double 
floats, handles, booleans, bytes (8-bit integers), 
shorts (16-bit integers), and Unicode characters. 
Arrays of handles have an additional type field 
indicating the class of object the array can hold.

Each method activation has a separate expres­
sion-evaluation stack and set of local registers. 
Each register and each stack location must be 
able to hold an integer, a single float, a handle, 
or a return address. Longs and double floats must 
fit into two consecutive stack locations or two 
consecutive registers. The virtual-machine
instructions (opcodes) will address longs and 
double floats in registers using the index of the 
lower-numbered register.

Objects on the stack and in registers are not (nec­
essarily) tagged. The virtual-machine instruction 
set provides opcodes to operate on different 
primitive data types. For example, ineg, fneg, 
Ineg, and dneg each negate the top item on the 
stack, but they assume that the top item on the 
stack is an integer, a single float, a long, or a 
double float, respectively.

The bytecode instructions can be divided into 
several categories:

• Pushing constants onto the stack

• Accessing and modifying the value of a reg­
ister

• Accessing arrays
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• Stack manipulation (e.g., swap, dup, pop)

• Arithmetic, logical, and conversion instruc­
tions

• Control transfer

• Function return

• Manipulating object fields

• Method invocation

• Object creation

• Type casting

Each bytecode consists of a one-byte opcode, 
followed by zero or more bytes of additional 
operand information. With the exception of two 
“table lookup" instructions, all instructions are a 
fixed length, based on the opcode.

The Verification Process
The Verifier operates in four passes.

Pass I

The first pass is the simplest. It occurs when the 
class is first read into the interpreter.

This pass ensures that the class file has the format 
of a class file. The first several bytes must contain 
the right magic number. All recognized attributes 
need to be the proper length. The class file must 
not be truncated or have extra bytes at the end. 
The constant pool must not contain any unrecog­
nized information.

Pass 2

In the second pass, the verifier delves a little bit 
more deeply into the class file format. It performs 
all verification that can be performed without 
looking at the bytecodes. The errors detected by 
Pass 2 include:

• Ensuring that final classes are not sub­
classed, and that final methods are not 
overridden

• Checking that every class (except Object) 
must have a superclass

• Ensuring that the constant pool satisfies cer­
tain constraints; e.g., class references in the 
constant pool must contain a field that 
points to a unicode string reference in the 
constant pool

• Checking that all field references and 
method references in the constant pool must 
have legal names, legal classes, and a legal 
type signature

Note that when looking at field and method ref­
erences, this pass does not actually check to 
make sure that the given field or method really 
exists in the given class; nor does it check that 
the type signatures given refer to real classes. 
Rather, the signature must simply “look like” a 
legal signature. Further checking is delayed until 
passes 3 and 4.

Pass 3

This is the most complex pass of the class verifi­
cation. The bytecodes of each method are veri­
fied. Data-flow analysis [7] is performed on each 
method. The verifier ensures that at any given 
point in the program, no matter what code path 
is taken to reach that point:

• The stack is always the same size and con­
tains the same types of objects.

• No register is accessed unless it is known to 
contain a value of the appropriate type.

• Methods are called with the appropriate 
arguments.

• Fields are modified with values of the appro­
priate type.

• All opcodes have appropriate type argu­
ments on the stack and in the registers.

For further information on this pass, see the sec­
tion “Bytecode Verifier.”
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Pass 4

For efficiency reasons, certain tests that could be 
performed in Pass 3 are delayed until the code is 
actually run. Pass 3 of the verifier avoids loading 
class files unless it must do so.

For example, if a method contains a call to 
another method that returns an object of type 
foobarType, and that object is then immedi­
ately assigned to a field of the same type, the ver­
ifier doesn’t bother to check if the type f oobar- 
Type exists. However, if it is assigned to a field 
of the type anotherType, the definitions of 
both foobarType and anotherType must be 
loaded in to assure that foobarType is a sub­
class of anotherType.

The first time an instruction that references a 
class is executed, the verifier does the following;

• Loads in the definition of the class if it has 
not already been loaded

• Verifies that the currently executing class is 
allowed to reference the given class

The first time an instruction calls a method, or 
accesses or modifies a field, the verifier does the 
following:

• Ensures that the method or field exists in the 
given class

• Checks that the method or field has the indi­
cated signature

• Checks that the currently executing method 
has access to the given method or field

This pass of the verifier does not have to check 
the type of the object on the stack. That check 
has already been done by Pass 3-

After the verification has been performed, the 
instruction in the bytecode stream is replaced 
with an alternative form of the instruction. For 
example, the opcode new is replaced with new_ 
quick. This alternative instruction indicates that 
the verification needed by this instruction has 
taken place, and need not be performed again. It 

is illegal for these _quick instructions to appear 
in Pass 3.

Bytecode Verifier
As indicated above. Pass 3 of the verifier, the 
bytecode verifier, is the most complex pass of the 
class verification.

First, the bytes that make up the virtual instruc­
tions are broken up into a sequence of instruc­
tions, and the offset of the start of each instruc­
tion is kept in a bit table. The verifier then goes 
through the bytes a second time and parses the 
instructions. During this pass each instruction is 
converted into a structure. The arguments, if any, 
to each instruction are checked to make sure 
they are reasonable:

• All control-flow instructions go to the start of 
an instruction. Branches into the middle of 
an instruction are clearly not allowed. Simi­
larly, branches to before the beginning of 
the code or to after the end of the code are 
not allowed.

• All register references are to a legal register. 
Code cannot access or modify any register 
greater than the number of registers that the 
method indicated it uses.

• All references to the constant pool must be 
to an entry of the appropriate type. For 
example, the opcode Idcl can only be 
used for integers, floats, or String’s. The 
opcode getf ield must reference a field.

• The code does not end in the middle of an 
instruction.

• For each exception handler, the starting and 
ending point must point to the beginning of 
an instruction. The offset of the exception 
handler must be a valid instruction. The 
starting point must be before the ending 
point.

For each instruction, the verifier keeps track of 
the contents of the stack and the contents of the 
registers prior to the execution of that instruction.
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For the stack, it needs to know the length of the 
stack and the type of each element on the stack. 
For each register, it needs to know either the 
type of the contents of that register or that the 
register contains an illegal value. The bytecode 
verifier does not need to distinguish between the 
various normal integer types (e.g., byte, short, 
char) when determining the value types on the 
stack.

(Some extra information is kept about each 
instruction in a finally clause. This informa­
tion is discussed further in the section “Try/ 
Finally.”)

Next, a data-flow analyzer is initialized. For the 
first instruction, the lower-numbered registers 
contain the types indicated by the method’s type 
signature; the stack is empty. All other registers 
contain an illegal value. For all other instructions, 
indicate that this instruction has not yet been vis­
ited; there is yet no information on its stack or 
registers.

Finally, the data-flow analyzer is run. For each 
instruction, there is a “changed” bit indicating 
whether this instruction needs to be looked at. 
Initially, the “changed” bit is set only for the first 
instruction. The data-flow analyzer executes the 
following loop;

1. Find a virtual machine instruction whose
‘changed” bit is set. If no instruction remains
whose changed bit is set, the method has 
successfully been verified. Turn off that 
changed bit.

2. Emulate the effect of this instruction on the 
stack and registers:
- If the instruction uses values from the 

stack, ensure that there are sufficient ele­
ments on the stack and that the top ele­
ments) of the stack are of the appropri­
ate type. Otherwise, fail.

- If the instruction uses a register, ensure 
that the specified register contains a value 
of the appropriate type. Otherwise, fail.

- If the instruction pushes values onto the 
stack, add the indicated types to the top

of the stack. Ensure that there is sufficient 
room on the stack for the new element(s). 

- If the instruction modifies a register, indi­
cate that the register now contains the 
new type.

3. Determine the virtual-machine instructions 
that can follow this one. Successor instruc­
tions can be one of the following:
- The next instruction, if the current instruc- 

tion isn’t an unconditional goto, a
return, or a throw. Fail if we can “fall 
off’ the last instruction.

- The target of a conditional or uncondi­
tional branch.

- All exception handlers for this instruction.

4. Merge the state of the stack and registers at 
the end of the current instruction into each 
of the successor instructions. In the excep­
tion-handler case (2c), change the stack so 
that it contains a single object of the excep­
tion type indicated by the exception handler 
information.
- If this is the first time the successor 

instruction has been visited, indicate that 
the stack and registers values calculated 
in Step 2 and Step 3 are the state of the 
stack and registers prior to executing the 
successor instruction; set the “changed’ 
bit for the successor instruction.

- If the instruction has been seen before, 
merge the stack and register values calcu­
lated in Step 2 and Step 3 into the values 
already there; set the “change” bit if there 
is any modification.

5. Go to Step 1.

To merge two stacks, the number of elements in 
each stack must be identical. A failure is indi­
cated if this criteria isn’t met. The stacks must be 
identical, except that differently typed handles 
may appear at corresponding places on the two 
stacks. In this case, the merged stack contains the 
common ancestor of the two handle types.

To merge two register states, compare each regis­
ter. If the two types aren’t identical, then unless
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both contain handles, indicate that the register 
contains an unknown (and unusable) value. For 
differing handle types, the merged state contains 
the common ancestor of the two types.

If the data-flow analyzer runs on the method 
without reporting any failures, then the method 
has been successfully verified by Pass 3 of the 
class-file verifier.

Constructors and Newly Created 
Objects
Creating a usable object in the Java interpreter is 
a multi-step process. The bytecodes produced for 
the Java code:

new myClass(i, j, k);

are roughly the following:

Certain instructions and data types complicate 
the data-flow analyzer. We now examine each of 
these.

Long Integers and Doubles
Long integers and double floats each take two 
consecutive words on the stack and in the regis­
ters.

new &#60;myClass> 
uninitialized space

# allocate

dup # duplicate
object on the stack

&#60;push argTjjnents>
invokenonvirtual myClass.&#60;init> 

initialize
#

This code leaves the newly created and initial­
ized object on top of the stack.

Whenever a long or double is moved into a regis­
ter, the following register is marked as containing 
the second half of a long or double. This special 
value indicates that all references to the long or 
double must be through the lower numbered 
register.

Whenever any value is moved to a register, the 
preceding register is examined to see if it con­
tains the first word of a long or a double. If so, 
that preceding register is changed to indicate that 
it now contains an unknown value. Since half of 
the long or double has been eradicated, the other 
half can no longer be used.

Dealing with 64-bit quantities on the stack is sim­
pler. The verifier treats them as single units on 
the stack. For example, the verification code for 
the dadd opcode (add two double floats) checks 
that the top two items on the stack are both dou­
ble floats. When calculating stack length, longs 
and double floats on the stack have length two.

Stack manipulation opcodes must treat doubles 
and longs as atomic units. For example, the veri­
fier reports a failure if the top element of the 
stack is a double float and it encounters the 
opcodes pop or dup. The opcodes pop2 or 
dup2 must be used instead.

The myClass initialization method sees the new 
uninitialized object as its this argument in regis­
ter 0. It must either call an alternative myClass 
initialization method or call the initialization 
method of a superclass on the this object 
before it is allowed to do anything else with 
this.

In normal instance methods (what C++ calls vir­
tual methods), the verifier indicates that register 
0 initially contains an object of “the current class"; 
for constructor methods, register 0 instead con­
tains a special type indicating an uninitialized 
object. After an appropriate initialization method 
is called (from the current class or the current 
superclass) on this object, all occurrences of this 
special type on the stack and in the registers are 
replaced by the current class type. The verifier 
prevents code from using the new object before 
it has been initialized and from initializing the 
object twice.

Similarly, a special type is created and pushed on 
the stack as the result of the opcode new. The 
special type indicates the instruction in which the 
object was created and the type of the uninitial­
ized object created. When an initialization
method is called on that object, all occurrences of 
the special type are replaced by the appropriate 
type.
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The instruction number needs to be stored as 
part of the special type since there may be multi­
ple instances of a non-yet-initialized type in exist­
ence on the stack at one type. For example, the 
code created for the following:

new Inputstream(new Handle(),new
InputStream ("foo")) 

may have two uninitialized 
active at once.

Inputstream’s

Code may not have an uninitialized object on the 
stack or in a register during a backwards branch, 
or in a register in code protected by an exception 
handler or a finally. Otherwise, a devious piece 
of code could fool the verifier into thinking it had 
initialized an object when it had, in fact, initial­
ized an object created in a previous pass through 
the loop.

Exception Handlers
Code produced from the current Java compiler 
always has properly nested exception handlers:

• The range of instructions protected by two 
different exception handlers will always 
either be completely disjoint or one will be a 
subrange of the other. There will never be a 
partial overlap.

• The handler for an exception will never be 
inside the code that is being protected.

• The only entry to an exception handler is 
through an exception. It is impossible to fall 
through or “goto” the exception handler.

These restrictions are not enforced by the verifier 
since they do not pose any threat to the integrity 
of the virtual-machine interpreter. As long as 
every nonexceptional path to the exception han­
dler causes there to be a single object on the 
stack, and as long as all other criteria of the veri­
fier are met, the verifier will pass the code.

Try/Finally
The Java language includes a feature called 
finally, which is like the similarly named fea­

ture of Modula-3 18] or unwind-protect in 
Common Lisp [91. Given the following code:

try {
startFaucet();
waterLawn();

} finally I 
stopFaucet();

}
The Java language guarantees that the faucet is 
turned off, even if an exception occurs while 
starting the faucet or watering the lawn. The 
code inside the brackets after the try is called 
the protected code. The code inside the brackets 
after the finally is the cleanup code. The 
cleanup code is guaranteed to be executed, even 
if the protected code does a “return” out of the 
function, or contains a break or continue to 
outside the try/ finally, or gets an exception.

To implement this construct, the Java compiler 
uses the exception handling facilities, together 
with two special instructions, jsr (jump to sub­
routine) and ret (return from subroutine). The 
cleanup code is compiled as a subroutine. When 
it is called, the top object on the stack will be the 
return address; this return address is saved in a 
register. At the end of the cleanup code, it per­
forms a ret to return to whatever code called 
the cleanup.

To implement try/finally, a special excep­
tion handler is set up around the protected code 
which catches all exceptions. This exception han­
dler:

1.

2.

3.

Saves the exception in a register.

Executes a j sr to the cleanup code.

Upon return from the exception, 
throw's the exception.

re-

If the protected code has a return, it performs 
the following code:

1. Saves the return value (if any) in a register.

2. Executes a j sr to the cleanup code.

3. Upon return from the exception, returns the 
value saved in the register.
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Breaks or continues inside the protected code 
that go to outside the protected code execute a 
jsr to the cleanup code before performing their 
goto. Likewise, at the end of the protected code 
is a jsr to the cleanup code.

The cleanup code presents a special problem to 
the verifier. Usually, if a particular instruction can 
be reached via multiple paths and a particular 
register contains incompatible values through 
those multiple paths, then the register becomes 
unusable. However, a particular piece of cleanup 
code might be called from several different 
places:

• The call from the exception handler will 
have a certain register containing an excep­
tion.

• The call to implement “return” will have 
some register containing the return value.

• The call from the bottom of the protected 
code may have trash in that same register.

The cleanup code may pass verification, but after 
updating all the successors of the ret instruc­
tion, the verifier will note that the register that the 
exception handler expects to hold an exception 
or that the return code expects to hold a return 
value now contains trash.

Verifying code that contains finally’s can be 
somewhat complicated. Fortunately, most code 
doe.s not have finally’s. The basic idea is the 
following;

• Each instruction keeps track of the smallest 
number of j sr targets needed to reach that 
instruction. For most code, this field will be 
empty. For instructions inside cleanup code, 
the field will be of length one. For multiply- 
nested cleanup code (extremely rare!), it 
may be longer than one.

• For each instruction and each jsr needed 
to reach that instruction, a bit vector is main­
tained of all registers accessed or modified 
since the execution of the j sr instruction.

• When executing the ret from a subroutine, 
there must be only one possible subroutine 
target from which the instruction can be 
returning. Two different targets of j sr 
instructions cannot “merge” themselves into 
a single ret instruction.

• When performing the data-flow analysis on 
a ret instruction, modify the directions 
given above. Since the verifier knows the 
target of the jsr from which the instruction 
must be returning, it can find all the j sr’s to 
the target, and merge the state of the stack 
and registers at the time of the ret instruc­
tion into the stack and registers of the 
instructions following the jsr using a spe­
cial set of values for the registers:

• If the bit vector (constructed above) indi­
cates that the subroutine has accessed or 
modified, a register uses the type of the reg­
ister at the time of the ret.

• For other registers, use the type of the regis­
ter at the time of the preceding jsr instruc­
tion.

Conclusion
The Java language has generated much excite­
ment with its ability to allow programmers to cre­
ate and compile code that can be executed on 
multiple platforms. The Hotjava browser, in par­
ticular, has shown that portable code can bring 
interactivity to the World Wide Web.

However, before users will consent to bring over 
executable code from untrustworthy sources (i.e. 
most of the network!), they want assurances that 
the code cannot damage them. The byte-code 
verifier is the lowest level of a many-tiered strat­
egy [10]. ■
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