
o

Introducing CandleWeb and A
(awe), Bringing Animation

Power to the World Wide Web
Kjell 0ystein Arisland, Svein Johansen, Gunnar Ronning

Abstract
The World Wide Web has limited interactive capabilities, and does not support animated graphics well.
To allow real-time interaction and animated graphics that are both pedagogically and commercially
motivating, we must extend the Web. A new tool called CandleWeb is presented. CandleWeb works
together with standard HTML browsers, and uses the hypertext transport protocol (HTTP). The tool has
been implemented for XI1, and interprets a language called A (awe) which combines a simple C-like
syntax with standardized graphics objects to provide a programming environment in which presenta­
tions including animation can be produced efficiently. An authoring tool called A (awe) Composer
allows programmers to save considerable time in implementing animated presentations, compared to
text-based programming, using graphics libraries. The CandleWeb client for Xll VTObeta and the A
(awe) language are openly available on the Internet at the site http://www.oslonett.no/~candle/. Key­
words: Advertising, animation, awe, authoring, browser, C, CandleWeb, client, commercial, com­
poser, education, graphics, HTML, HTTP, interactive, interpretation, language, programming, real­
time, tool. World Wide Web, A

Introduction
The World Wide Web is arguably the most useful
thing that has happened to the Internet since
TCP/IP. However, whenever something new and
powerful comes along, there is a desire to make
it even better and use it for more than it was
intended for. This paper, which is our attempt to
expand the power of the Web, discusses interac­
tivity and animated graphics in a new tool called
CandleWeb.

Educational Use of the Web
For many years now, the computer has been her­
alded as a tool that would some day pervade
schools and homes and would become both
helper and teacher. For an overview of literature
in the field of computer applications to educa­
tion, see [8]. Tools and courseware have been
developed to take pedagogical advantage of
often very limited hardware, and sometimes
powerful hardware has been used for teaching

using limited pedagogy. Mostly, however, the
hardware, its powers and its availability has been
the limiting factor. Today, with multimedia work­
stations and wide-area networking, the hardware
is becoming less and less of a problem, and the
era of the computer teacher is about to begin. A
naturally useful tool for teaching is the Internet,
and more specifically the World Wide Web [2]. It
is embraced as such at universities and other
educational institutions across the globe.

However, during more than three decades of
experience experimenting with computers and
learning, many techniqes have been developed
that speed up the process of using the Web effi­
ciently for teaching. Therefore, those who wish
to unleash the power of the Web on their stu­
dents can do so without relying on trial and
error.

As an example, in spite of many attempts, “elec­
tronic textbooks” have never been conclusively
shown to be generally superior to a normal

World Wide Web Journal 411

http://www.oslonett.no/%7Ecandle/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3592626.3592659&domain=pdf&date_stamp=1995-12-11

printed textbook as a tool for teaching. The so-
called “Hawthorne effect” [51 may lead experi­
menters to believe that electronizing textbooks
has intrinsic value, when in reality the process
only yields a novelty effect.

Even hypermedia organization of documents
may not be more than a passing fancy that does
not add any real value in a teaching situation. In
any case, hypermedia may or may not add value
to instructional material, depending on how it is
used [51.

However, there are at least two features of the
Web and of computers in general that can
improve on the learning environment when used
well. These include:

• User/computer interactivity

• Moving graphics (animation)

These features will be discussed in greater detail
below.

Commercial Advertising
on the Web
The World Wide Web is also useful for commer­
cial purposes, and the advertising industry is
gradually becoming aware of its powers of influ­
ence and explosive growth. It is interesting to
note how teaching and advertising have very
much in common. Both fields require capturing
the attention of the learner or potential customer
(the user), increasing the user’s interest in the
subject at hand, and finally motivating the user to
act either to buy something or to invest time in
continued learning. For a thorough introduction
to most of the aspects of advertising relevant to
Web designers, see [31. Because of the similari­
ties, both educational and advertising use of the
Web require basically the same types of mecha­
nisms to be present in the Web. The two features
that we concentrate on in this paper, interactivity
and animation, are certainly just as important to
commercial advertising as they are to educational
use of the Web.

User/Computer Interactivity
in the Web
Interactivity is a basic teaching tool that the com­
puter naturally possesses. In comparison, the use
of printed material offers very limited interactiv­
ity. Interactivity may take many forms depending
on the time factor. For day-to-day interactivity,
using the Web as a message center for general
distributed communication is clearly useful. In a
teaching environment, more short-term interactiv­
ity (real-time interactivity) may be even more
useful. It is a basic tenet of pedagogy that the
effect of learner action as opposed to just hearing
or seeing is quite strong relative to human ability
to retain and recall information. Therefore, an
increased degree of interactivity in the Web
would be beneficial from an educational as well
as a commercial advertising point of view.

Such real-time interactivity is the basis of all
action-type computer games, and thus clearly has
appeal to the masses. Given the fact that children
today spend more and more time playing com­
puter games and less time watching television,
one could conjecture that the real-time interactiv­
ity of the computer has even more appeal to the
masses than the traditional story telling that is the
basis of more conventional media like television
and movies. This conjecture certainly remains to
be proven, and only time can tell. However, at
the moment, such interactivity is undoubtedly
quite attractive to a large percentage of all poten­
tial Web users.

Unfortunately, the Web is somewhat limited in its
support of short-term or real-time interactivity.
This limitation is due to the fact that wide-area
networking generally means overly long delays
for real-time interactivity.

Still, many have had the desire to use the Web
for applications that basically demand real-time
interactivity, and have tried to implement differ­
ent types of games. The Web’s lack of support
for such interactivity has so far limited most such
attempts to just that, attempts. In order not to

412 Fourth International World Wide Web Conference Proceedings

offend anyone, we offer no references, but there
are many examples to be found on the Web.

One method of real-time interactivity found in
the Web is that of forms. Forms offer real-time
interactivity because the process of filling in the
form is supported by the browser itself and the
HTML document only provides code for specify­
ing what the form should look like to the user,
and what types of fields should be included in
the form. The latter can be viewed as a specifica­
tion of how the browser should allow the user to
interact with the form. In this view the browser
performs active interpretation of the HTML speci­
fication, as opposed to just presenting static
information. Forms thus differ functionally from
most of the rest of HTML.

Another HTML feature of real-time interactivity is
that of maps. In maps, areas within a bit-mapped
image can be specified as anchors, and a script in
the server can interpret which URL to activate
whenever the user presses a button at certain
pointer (mouse) coordinates. The only real-time
interactivity involved here, however, occurs in
determining the mouse coordinates before they
are transmitted over the WAN via HTTP. Since
this local interactivity demands HTTP communi­
cation for each click of the mouse, the only gain
in interactivity is in allowing mouse input relative
to a graphic area, and not in the speed of the
interactivity.

Relative to interactivity, SUN Microsystems’ Hot
Java 191 needs to be mentioned. The Java lan­
guage, when used to implement Web browsers,
has an advantage over most traditional languages
in that it can be compiled to a code that is hard­
ware independent and can be interpreted on dif­
ferent hardware platforms. This makes it possible
to extend HTML in various directions to provide,
among other things, stronger interactivity.

In conclusion, it is obvious that the need for and
desire for real-time interactivity in the Web is
considerable, but so far, good solutions have not
been plentiful.

Moving Graphics (Animation)
in the Web
Animation is one of the most powerful motiva­
tion tools available today both for pedagogical
and commercial applications. Several generations
of people in the industrial world have been
raised on cartoons from Disney and Hollywood,
and the so-called MTV generation literally
demands fast-paced animated material; they sim­
ply may not notice commercial presentations that
do not communicate in the same exaggerated
way as Hollywood cartoons.

Video games and computer games are another
reason why many people expect more from the
Web in terms of animated graphics than what it is
capable of delivering today. There is a world of
difference in the liveliness of the graphics in the
game Doom, compared to that of Mosaic or
Netscape, and one may ask why. One answer is
certainly the limited bandwidth on the net, but
this is not the whole truth. Lack of standards both
in hardware and operating systems is probably
just as important.

The two types of graphics supported in the Web
are basically bitmap images, either in GIF or
JPEG format, and video clips in MPEG format.
The process of using methods for storing images
is quite wasteful in terms of storage space and
bandwidth requirements. Both JPEG and MPEG
are certainly state of the art in compression
schemes for digitized natural images, however,
reproducing natural images is not necessarily the
best way to deliver educational or commercial
messages.

Much thriftier methods, such as vector graphics
and palette animation, are well known in the
world of computing and are the basis for much
of the mentioned games industry. When small
bitmap images are moved around against vector
graphics or textured backgrounds, quite powerful
animation can be produced over relatively low
bandwidth channels.

In conclusion, good reasons exist for enhancing
the Web with more visually stimulating anima-

World Wide Web Journal 413

tions, and the means for doing so exist as well.
There are two obvious questions that arise: Why
does the Web not support animation already, and
how can it be added?

There may not be a conclusive answer to the first
question. However, HTML has its basis in docu­
ment publishing, and this is most probably the
reason. Information structuring as defined by
markup is a far cry from animation, and adding
so-called media types to a hypermedia document
as one adds icing on a cake does not change the
cake into steak. To make things difficult, anima­
tion is basically pixel and coordinate oriented,
while HTML and SGML are strongly text string
oriented.

The second question, concerning how animation
can be added, is addressed in nearly half of the
remaining sections, and one approach will be
explained in some detail.

Authoring Systems, Muitimedia,
and the Web
In the field of Computer Assisted Learning, devel­
oping educational software has for several years
been an industry in its own right. While educa­
tional software is produced for the masses by
large companies, a large segment of this industry
is comprised of corporations with in-house
development of educational software for their
own purposes. A consulting segment also exists
in this field. Common to both segments is that
they do, to some extent, use authoring tools for
producing their software, and such authoring
tools exist in many variations. Examples of tools
holding large market shares are TenCore, Author-
Ware, and MacroMedia Director.

Common to most authoring systems are imple­
mentors that produce educational software more
efficiently than when general programming lan­
guages are used. Some tools also specialize in
supporting simulation in various forms, including
application-specific.

For the World Wide Web, authoring has been
limited mostly to general text-based formatting

such as that in Microsoft’s Word for Windows,
and conversions of such texts to HTML. This type
of authoring is quite primitive compared to the
capabilities of multimedia authoring tools like
Director; however, the Web does not support the
kind of primitives needed to apply such tools
today.

o
CandleWeb and A (awe)
CandleWeb and A were designed to increase the
functionality of the Web with respect to real-time
interactivity and animated graphics. This increase
was achieved by:

1. Designing a language (called A, pronounced
“awe,” an acronym for “another web exten­
sion”) with dynamic vector graphics objects
and code suited for interpretation

2. Designing and implementing a client appli­
cation, called CandleWeb, for downloading
a program using HTTP and then interpreting
this program locally on the user’s host com­
puter

3. Designing and implementing a composer
tool, called A Composer, for efficiently
implementing animation-based presentations
using the new language

The Basic Architecture
Figure 1 illustrates the basic architecture of Can­
dleWeb and A (awe).

The CandleWeb client application is capable of
interpreting .awe files; therefore ASCII-files with
the extension .awe are downloaded using HTTP
and your favorite Web browser. When they arrive
at your host computer, an application client
called CandleWeb is fired up and fed with the .
awe file. CandleWeb interprets the .awe file inter­
actively on your host computer, showing
dynamic graphics locally and letting the user
interact with the interpreted program through
input-objects.

414 Fourth International World Wide Web Conference Proceedings

file.awe

Server-side Client-side

CandleWeb

Local
; Filesystem

0 READ file.awe

0 READ foo.gil 0 GET too. gif

0 SEND f00. gif

HTTP
Server

O SHOWfile.awe
HTML Browser

0 SEND file.awe file.awe

0 GET file.awe

Figure 1: Architecture of CandleWeb and A (awe)

The A Language
The following is just a short introduction to the A
language. A more detailed description is found in
[7], and the language specification is found at [4].

‘A” is the last letter of the Norwegian alphabet. It
is an A with a small ring placed right above it,
and it is pronounced like the English word “awe.
” Thi.s single letter was chosen for the language
name in keeping with the “C” tradition.

A was specified as a language in the Algol tradi­
tion [11], with a subset of the C programming lan­
guage syntax [6] as the base, to avoid creating a
whole new language. Many of the basic C lan­
guage constructs are included in A, with the
notable exception of pointers and structures.
These were left out mainly to simplify the
demands put on the CandleWeb client which has
the job of interpreting programs written in A in a
secure manner.

In addition to the traditional features of program­
ming included in A by means of the C language,

A also includes so-called dynamic graphics
objects. These are basically vector graphics
objects like lines, boxes, and polygons, but may
also be specialized objects like GIF or JPEG bit­
maps, text objects, dynamic windows or input
objects.

As an example, consider a line object. A line has
start and end point coordinates, thickness, color
and rendering. For all of these parameters, a
fixed value may be specified, or the parameter
may be given as the name of a variable, or as an
expression involving a variable. In the latter
cases, the object is said to be tied or bound to the
variable, and the variable is said to influence the
object. For all the graphics objects, any parameter
may be tied to a variable. When the C code is
interpreted, the interpreter keeps track of all
objects with parameters bound to variables.
Whenever a statement in the code changes a
variable, all objects influenced by that variable
are also changed. The interpreter executes the
changes, and the programmer does not have to

World Wide Web Journal 415

Figure 2: Two line object examples

worry about them. Whenever the programmer
wants the current changes to become visible on
the screen, the statement “output;” is inserted in
the code.

Line object examples are shown in Figure 2. In
Figure 2a, the line is shown with variable
xstart=0, and in Figure 2b, the same line is shown
after variable xstart has changed to xstart=100.

Line object, xstart=0 Line object,
xstart=100

Figure 2a Figure 2b
More specialized objects like bitmaps in GIF or
JPEG format may also have the same dynamic
parameters. The image itself is fixed, but the
coordinates may be bound to variables, thus
making it possible to move the bitmaps around
in the display window.

Two other types of objects deserve special men­
tion. The first is the window object. These are not
conventional windows with frames and back­
grounds, in fact they are invisible to the user. The
windows behave like normal windows in that
they can contain other objects such as lines,
boxes, bitmaps, and texts, and can perform a
normal clipping function. However, as men­
tioned, the windows themselves are invisible,
and serve mainly to group other objects. When
the window coordinates are changed, the con­

tained objects are moved around on the screen;
when a window’s on/off variable is turned off,
the entire contents of the window disappears.
These features make windows very useful for
producing animation in various forms.

As an example, consider a set of images, each of
which is contained in its own window. Every
window has its coordinate parameters bound to
the same variables; thus moving them all requires
a change to the two variables for x- and y-coordi-
nates. By turning the windows on and off, one
may easily switch between the various images to
produce cell-based animation.

The second object that must be mentioned is the
input object. Practically all user input is handled
uniformly through the input objects. The input
objects may also be bound to variables, but in
this case, the tables are turned. Instead of the
variables changing the graphics, the input objects
change the variables. The objects themselves are
invisible, and are made of virtual rectangles of
the screen that react to mouse clicks, keyboard
input, or a combination of the two. Whenever
some input object is activated, the object’s action
may directly influence one or more variables. As
with graphics output, it is practical to control the
exact point in time at which input is allowed to
change variables via “input;” statement.

416 Fourth International World Wide Web Conference Proceedings

When input objects are used to change variables
that influence graphics objects, the user may do
so without any code other than the “input;” and
“output;” statements.

The CandleWeb Client
As illustrated in Figure 1, the CandleWeb client
receives a file with extension .awe from the Web
browser and interprets this file in its own win­
dow on the screen. The .awe file may contain
references to GIFs, JPEGs or other .awe files, and
the CandleWeb client will fetch these using HTTP
whenever necessary.

Since the Web browser doesn’t tell the Can­
dleWeb client the source of the .awe file, that file
must contain a reference to its place of origin so
the CandleWeb client can find any other files that
have local references. This referencing is done
using a function in the A subroutine library called
setAnchorO.

The fact that the Web browser did not include a
way for the CandleWeb application to find the
source of the .awe file is regarded as a deficiency
in the current Web application protocols; hope­
fully, this will be remedied in the future.

As the CandleWeb client is a standalone applica­
tion started from the Web browser, it is not much
influenced by which Web browser is used. Simi­
larly, it isn’t influenced by developments in
HTML, since it does not use HTML.

When unknown application programs are down­
loaded, using HTTP, from anywhere in the
world, and are to be interpreted on one’s own
host computer, strict security measures should be
taken by the interpreter. One must trust that the
interpreter will not allow any malicious program
to make changes to the file system. The Can­
dleWeb application does currently not allow any
file writes at all. Additionally, there are no func­
tions for exporting information from the host
computer; however, functions for importing
information using HTTP exist.

The A (awe) Composer Tool
The direct link between variables and graphics
objects in the A language is a very simple, yet
very powerful construct which greatly reduces
the amount of program code necessary to pro­
duce graphics applications. Typically, applica­
tions stay below a few hundred lines of code,
and on the average only about a third of the
code is program code, while the remaining two
thirds consist of declarations of graphic objects.

When the predecessor to CandleWeb and A, the
Candle 1.0 system, was developed for MS-DOS in
1988-90, many recognized quite early that imple­
mentation efficiency could be increased consider­
ably by implementing drawing tools for direct
manipulation of graphics and automatic genera­
tion of the graphic objects code. Therefore, an
authoring tool called Chandler was implemented.
The authoring tool went through two generations
of relatively different implementations and both
implementations were used in several projects of
developing educational software for apprentices
in heavy industry in Norway [1].

One of the many observations noted was that
implementing graphics-oriented educational soft­
ware was three to five times more efficient with
the authoring tool as opposed to specifying the
graphics by text input. This is hardly unexpected,
and quite well established in industries that rely
heavily on educational software. Authoring tools
like TenCore, AuthorWare, Director, and many
others allow programmers, and to some extent
nonprogrammers, to produce educational soft­
ware far more efficiently than with general pro­
gramming languages.

As a result of the success of the Chandler author­
ing tool, an A Composer for XI1 is currently
being implemented as well. This tool allows
direct graphic drawing and manipulation of the
graphic objects, the window objects and the
input objects in the A language. The tool also
provides specific support for accessing and
manipulating the special relationship between
variables in the program code and the graphic

World Wide Web Journal 417

objects. The A Composer tool is further described
in the paper [10].

A Simple Example
For a simple example of what A code looks like,
the short file logoflash .awe is listed below. Note

how relatively simple this program is. If possible,
compare its simplicity to the magnetic effect it
can have on a user at an XI1 workstation using
CandleWeb. The file can be found at http://www.
oslonett.no/~candle/demos/logoflash.awe a-long
with several other demonstration programs.

Example 1: logoflash.awe

int main ()
{ II Simple program demonstrating the power of CandleWeb and (awe)

// Variable declaration
int X, y;

/! Background color
box points = ((0, 0), (800, 600)), fill 1, color = 0x4444FF;

II Window containing image
window points = ((x,y), (x+130,y+150)), sb=0;
image points=((0, 0), (0, 0)), sb
endwindow;

0, image = "candle.gif";

// Header text
textobj points=((20, 30)),
outtext="Computers and Learning AS' logo shown at randomly chosen points.",
color=0xFFFFFF, level = 1;

II Setting window size to 800 pixels horizontal and 600 vertical
resizeWindow (800, 600);

II Setting anchor location so the CandleWeb client will find image file
setAnchor("http://www.ifi.uio.no/~candlweb/demos/logoflash.awe");

while (1) {

/! Draw random point
X = random(4 , 660);
y = random(50 , 460);

II Draw screen
output;

// Loop delay
wait(50) ;
I
}

418 Fourth International World Wide Web Conference Proceedings

http://www.ifi.uio.no/%7Ecandlweb/demos/logoflash.awe

o
why CandleWeb and A?
A basic assumption of this paper is that support
for real-time interactivity and animation is
needed in the Web, and that it will be used a lot
when made available. The big question concerns
how these capabilities will be provided. This
paper presents a full-fledged proposal, including
implementations.

The next question, then, is the following: Is this
proposal good enough to become a standard in
any way? Or phrased differently: Will it be used?

We cannot answer this question now, but we can
present some of the reasons for the choices made
in designing CandleWeb and A.

Standards
Even though CandleWeb and A seem to repre­
sent some fairly new and unusual thinking rela­
tive to the Web, designers stuck to defacto stan­
dards, changing as little as possible with
something known to work well.

The A language itself is such an example. It is
based on the C programming language, borrow­
ing most of its constructs from C. For a more
detailed introduction to A see 17] and [4]. The rea­
son for choosing C is that it is one of the best
known programming languages today, and a
very efficient and uncluttered one. Because the
object of designing A was not to produce a new
programming language, but rather to specify a
language for a specific purpose, designers used a
subset of a well known language and enhanced
this subset with the necessary extensions. An
added bonus is that a great number of program­
mers are already familiar with most of the new
language, and need only learn which parts of C
are not supported and what the extensions are.

The CandleWeb communications architecture is
quite simple, and basically uses HTTP. In addi­
tion, A code may include links to other A files
through function calls to links.

Since HTML is basically a markup language, and
is not a pixel-oriented graphics language, design­
ers decided that if HTML was to remain reason­
ably small and uncluttered, they should design a
separate and fully graphics-oriented environment
rather than extend HTML in a direction that
would contradict some of its original intensions.
The authors’ opinion is that part of HTML’s
power will be lost if one tries to make it all things
to all people. Therefore the CandleWeb/A graph­
ics environment is a pixel-oriented drawing can­
vas in a CandleWeb window, separate from the
user’s HTML browser. An added bonus from this
choice is that CandleWeb does not have to com­
pete with HTML browsers, and vice versa.

Interpretation and Security
Since A is an interpreted language, it is a hard­
ware- and OS-independent programming envi­
ronment. This feature is very advantageous for
producers of educational software. The demand
for such software is much greater than what can
be produced in a few years: the fact that much of
what is produced quickly becomes technically
obsolete because of changing hardware poses a
problem. An interpreted language can survive
several generations of hardware and many ver­
sions of the language itself. Currently a few sys­
tem dependencies exist, noticeably regarding
fonts, but the goal is maximum system indepen­
dence.

Interpretation does present security problems.
When code is downloaded and run on a local
host, the hosts security relies to a great extent on
the interpreter. The A language has been kept
very simple in order to make it easier to keep the
interpreter safe. The omission of pointers and
structures is one example; not allowing local file
access is another.

Speed
■Vector graphics can be extremely compact in
terms of code needed to produce quite complex
pictures. The graphics objects in the A language

World Wide Web Journal 419

are based on a combination of vector graphics
and bitmaps. This combination increases the
speed of following .awe links in two ways:

1. The code to be downloaded is very compact

2. The downloaded code utilizes hardware that
is often optimized for vector graphics opera­
tions, such as line drawing, polygon fills,
and the like.

Authoring
CandleWeb and A are designed to take advan­
tage of the A Composer tool, which in turn is the
result of several years of work in the field of
graphics-oriented software authoring. It is time
for Web designers to start using more of the
results from related disciplines such as Human
Computer Interaction and Computer Assisted
Learning. Some of these results are quite general
and need not be reinvented or rediscovered.Current State and Future Plans
The CandleWeb client for Xll, Vl.OBeta has
been released. A complete VI.0 will be released
when the feedback on the beta release justifies
it.

A Composer for Xll is currently being imple­
mented.

A CandleWeb client for Windows is planned for
implementation and the work will be starting
early in August 1995.

A Composer for Windows is planned for imple­
mentation starting in 1995.

Both the CandleWeb client for XI1 and the A lan­
guage specification have been released for pub­
lic, academic, private, and commercial use (the
latter only in unmodified form) at no charge. For
details, see the license at http://wufw.oslonett.no/
-candle/license.html.

Source code for CandleWeb client for Xll is
available at no charge for academic use (research
and education).

Conclusion
We have presented a new tool called CandleWeb
that extends the capabilities of the World Wide
Web on the Internet to include real-time interac­
tivity and full-screen graphics animation. The tool
works with standard HTML browsers, and uses
HTTP. The tool has been implemented for Xll,
and is the successor of a similar tool, Candle, that
has been used very successfully for several years
implementing animations for MS-DOS-based
hardware.

The tool also includes an interpreted language
called A, which combines a simple C-like syntax
with standardized graphics objects to provide a
programming environment in which presenta­
tions including animation can be produced effi­
ciently.

Finally, the tool includes an authoring tool called
A Composer that allows programmers to save
considerable time in implementing animated pre­
sentations, compared to text-based programming,
using graphics libraries.

The CandleWeb client for Xll Vl.Obeta and the
A language are openly available on the Internet
at http://WWW. oslonett. no/~candle/.Acknowledgments
Kjell 0ystein Arisland, Yngvar Berg and Arne
Kinnebergbraten specified the original Candle
architecture and language and implemented MS-
DOS-based clients. Knut Tvedten implemented
most of the Candle composer-tool called Chan­
dler for MS-DOS.

The Federation of Norwegian Process and Manu­
facturing Industries funded several of the early
development projects involving pedagogical soft­
ware from which the Candle architecture and lan­
guage got its start. The following people deserve
special mention for their support: Bjorn Lassen,
Svein Hyggen, Morten Allum, and Per Norbech.

Svein Johansen and Gunnar Ronning have speci­
fied the A language as a successor to the Candle

420 Fourth International World Wide Web Conference Proceedings

http://wufw.oslonett.no/

1.0 Language, and have implemented the current
CandleWeb client Vl.Obeta for XI1.

Tore Engvig, Bjorn Thirud, and Kent Vilhelmsen
are currently implementing the A Composer for
Xll. ■

References
1. Arisland, K.0., “The Good, the Bad, and the

Unusual in Computer Assisted Learning,” Proceed­
ings MULTICOMM’94, Vancouver, Nov 2-3, 1994.

2. Berners-Lee, T.,
WWW/Protocols/]-rrTP/HTTP2 .btml

http://itnvw. wS-or^hypertext/

8. Rubincam, L, “A Taxonomy of Topics in Com­
puter Applications to Education Based Upon Fre­
quently Cited Books, Articles and Reports.” Jour­
nal of Research on Computing in Education, 1987
- Winter, 165-187.

9. http://java.sun.com
10. Vilhelmsen, K., B. Thirud, T. Engvig, and K.0.

Arisland, “A (awe) Composer, graphics authoring
for the animated Web,” Paper in preparation,
1995.

11. Naur P., “Revised Report on the Algorithmic Lan­
guage ALGOL 60.,” Comm. ACM 6, 1963.

3. Faison, E.W.J., Advertising: A Behavioral About the Authors
Approach for Managers. John Wiley & Sons, 1980.

4. Johansen, S., and G. Ronning, “A (awe) specifica­
tion.”, Web document at http://unLrw.ifi.uio.no/
-candleiveb/spec/spec.html, 1995.

5. Hutchings, G.A., W. Hall, J. Briggs, N.V. Ham­
mond, M.R. Kibby, C. McKnight, D. Riley, Author­
ing and Evaluation of Hypermedia for Education.
Computers Educ. Vol 18, No. 1-3, 1992, 171-177.

6. Kernighan, B.W., and D.M. Ritchie, “The C Pro­
gramming Language,” Prentice-Hall, Inc, 1978.

7. Ronning, G., S. Johansen, and K.0. Arisland, “A
(awe), an interpreted animation language for the
Web,” Paper in preparation, 1995.

Kjell 0ystein Arisland
Department of Informatics, University of Oslo
Norway
kjell@ifi.uio.no

Svein Johansen
Department of Informatics, University of Oslo
Norway
sveinj@ifi. uio.no

Gunnar Ronning
Department of informatics, University of Oslo
Norway
gunnarr@ifi.uio.no

World Wide Web Journal 421

http://itnvw
http://java.sun.com
http://unLrw.ifi.uio.no/
mailto:kjell@ifi.uio.no
mailto:gunnarr@ifi.uio.no

