L)

Check for

updates.

CONSTELLATION

A WEB-BASED DESIGN FRAMEWORK FOR
DEVELOPING NETWORK APPLICATIONS

Nino Vidovic, Dalibor F. Vrsalovic

Abstract
Constellation is a Web-based design framework for developing distributed applications which allows a
single user or group of users to concurrently access and manipulate different aspects of a distributed
application from a simple Mosaic-like front-end tool. Users can edit and build programs and docu-
ments, manage source code, debug and instrument running distributed programs, read manual pages
and other documents, browse through source code and much, much more from a simple yet powerful
Jfront-end tool. Constellation is designed to work in a beterogeneous networked environment. It works
with different host types and different OS environments, and supports different communication proto-
cols. It is designed to work with hybrid client/server applications that consist of new as well as legacy
code. Constellation is easily extensible to support new protocols, hosts, servers, services and back-end
tools. Keywords: Distributed applications, client/server applications, design framework, distributed

debugging, group debugging, development environment

Introduction

In response to societal demand, computer net-
works have been proliferating rapidly in recent
years. Such networks include local area networks
(LANS) and wide area networks (WANS) com-
prising a number of computers that may commu-
nicate with one another. Apart from sending
messages, this communication between net-
worked computers allows programs to be run on
more than one computer in a network. For exam-
ple, an airline reservation service may present a
user interface on a client computer while data
input to the interface is transmitted to a server
computer where a reservation database is
accessed. This type of program execution,
known as distributed programming, may be
much more complicated than the above example
but is nonetheless extremely common and effi-
cient.

Distributed programs, however, are often written,
developed and tested on different computers
with different tools which are tightly bound to
the particular machine upon which they operate

World Wide Web Journal

and are integrated around language, computing
platform, or type of application.

This problem is illustrated in Figure 1.

In the above example, the graphic user-interface
portion may be developed on the client cam-
puter with a set of program tools for the Visual
C++ programming language for PC Windows and
a different set of tools for a graphic user-interface
(GUD builder. Similarly, the reservation database
may be developed on the server with a set of
program tools from the C++ Workshop program-
ming language running under Unix. In Figure 1,
those development environments are denoted as
DE1, DE2 and DE3. Furthermore, a program ini-
tially developed with a tool set can frequently be
redeveloped under a later version of the same
tool set, and possibly from a different manufac-
turer.

Thus, distributed programs present substantial
difficulties to programmers since they must learn
to operate the tool set that was used to develop
each distributed program segment. These tool
sets are usually quite detailed and require days,
weeks, and even months to master. Furthermore,

483

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3592626.3592666&domain=pdf&date_stamp=1995-12-11

\

NAVIGATOR [e o o | NAVIGATOR

PROCD 1 HTTPD ; PROGD]
® o o | ServerProcess f Server Process Server Process f® © ©

Figure 3:

code management, and source-code browsing
and editing. The server processes PROCD,
HTTPD, and PROGD communicate with gateway
processes (tools) T1, T2, T3, T4, T5, T6, T7, T8,
and T9 that perform a desired function on any of
a multitude of program segments that may be
distributed across a network of computers. As
will be described more fully below, the navigat-
ing tool comprises a browser, editor, and interac-
tive shell and allows users to perform a variety of
functions on distributed program segments. For
example, the server process HTTPD may com-
prise a document server that communicates with
file, man2btml and mail gateway processes T4,
TS and T6 to perform browsing functions. Simi-
larly, the server process PROCD may comprise a
process server that communicates with dbx, PC-
debug, and gdb gateway processes T1, T2 and T3
to perform debugging functions. The architecture
illustrated in Figure 3 may be easily extended to
include many other server processes and gate-
way processes as indicated by the dashed lines.
Furthermore, Constellation framework allows two
navigators to simultaneously access the same
server process, gateway tool, and file, Also, two
Navigators can communicate with each other in a
networked environment.

486

Architecture of the Constellation design framework

As will be described more fully below, each of
the server processes PROCD, HTTPD and
PROGD illustrated in Figure 3 may reside on a
plurality of physical machines. The architecture
of the Constellation framework provides for the
integration of a variety of tools, including debug-
ging, document-and source-code browsing and
editing, source-code management, and program
development and building. The implementation
of these tools according to the architecture of the
Constellation framework will be described in the
following sections of this paper. The architecture
of the Constellation framework as illustrated in
Figure 3 may be applied to many other types of
tools, including user-defined tools.

Navigating front-end tool

The Navigator is a browser and at the same time
an editor and an interactive shell. Browser capa-
bilities are similar to those of Web browsers such
as Mosaic or HotJava. As an editor, the Navigator
has basic text-editing functionality of point and
click editors, such as Textedit with command
bindings for Emacs and Vi. Editor’s capabilities
are augmented to support hyper-text (i.e., HTML)
program annotations. Interactive shell capability
allows users direct interactions with browser’s
interpreter engines as well as with interactive

Fourth International World Wide Web Conference Proceedings

Data Type Policy Modules

(pre-loaded) (dynamically loadable)
K eo e
Data Type Data Type
Interpreter | ! Loader
Protocol Protocol
Interpreter | : Loader
p e ‘
k LN]

(pre-loaded)

(dynamically loadable)

Protocol Policy Modules

Figure 4:

programs with which the Navigator has estab-
lished links (e.g., gateway debug engines such as
dbx).

The architecture of the Navigator is shown in Fig-
ure 4.

The Navigator consists of the following basic
components: Web/Internet engine, Browser, Edi-
tor, Interactive shell, Interpreters (e.g., Tcl or
Java), Data-Types Processing Engine, Protocol-
Processing Engine and GUIL The Web/Internet
engine provides access to the Internet and Web.
Browser provides basic Web client functionality.
Editor allows pages in the Navigator to be edited.
Interactive shell capability allows Navigator to
hold interactive sessions. The Interpreters are
mechanisms which allow dynamic extension of
Web protocols and data types, as well as Naviga-
tors GUI. Data-Type Processing Engine allows

World Wide Web Journal

An architecture of the Navigator front-end tool

dynamic retrieval of policy modules (e.g., Tcl or
Java programs) to process unknown data types.
Protocol-Processing Engine allows the Navigator
to process unknown protocol requests by
dynamically loading protocol policy modules
(e.g., Tcl or Java protocol driver programs).

The GUI module creates a control panel for the
Navigator and maps the contents of users’
searches into a graphic domain. The novel fea-
ture of the Navigator is its capability to dynami-
cally reconfigure its control panel based on the
type of the request and the domain in which
browsing is performed. For example, when the
user makes a request to debug a program, a
debug server that services browsing requests in
process domain will be contacted, and the appro-
priate protocol policy module in Navigator will
be downloaded (if not already present) and acti-
vated. In a debugging example, this processing

487

would result in a debugging menu being created
and then attached to the Navigator’s command
panel. The debugging menu would stay attached
for the duration of the debugging session. Upon
completion of the debugging session, the debug-
ging menu would be automatically removed from
the Navigator’s control panel.

The Navigator can operate in a stateless or state-
full mode. Stateless mode is used in events such
as directory browsing or information retrieval.
Statefull mode is used during distributed debug-
ging sessions. The statefull sessions are character-
ized by long-live connections into a browsing
domain. The Navigator keeps track of all long-
live connections for all active statefull sessions.
The long-live connection represents a bi-direc-
tional communication channel into a browsing
domain. The user can post a request to the server
which is servicing given domain. Also, the server
can generate events and send them back to the
Navigator.

No limits exist on a number of the concurrent
long-live connections. The Navigator allows all
long-live connections to be active at the same
time. Policy modules are responsible for coordi-
nating events received from domain servers.

Constellation’s service layer

The Constellation service layer consists of a col-
lection of domain servers and gateway tools.
Gateway tools are either interface, to service pro-
viders (e.g., database access) or service provid-
ers. The following list is a sample of domain serv-
ers and related gateway tools:

e Document Servers and Service Gateways
e http, file, ftp...

o man2hbtml, sccs2btmli, names2html

e Process Servers and Service Gateways

¢ Debugging (Dynamic Services) server

e dbx, PC-debug, gdb, RTP, etc.

e Program Servers and Service Gateways

488

e Program (Static services) server
e cscope, ct+class

e Teleconferencing Server and Service Gate-
ways

e showme conference manager

e Audio, video, white board

Debugging

Figure 5 is a block diagram showing how the
architecture of the Constellation framework com-
municates to service a debugging request.

First, the Navigator issues a request according to
the Universal Resource Locator (URL) protocol.
Thus, a request is of the form: <server_type://
<machine/<request, where server type is a proto-
col such as, for example, HTTP or process,
machine is the actual server address, and request
is the program or file that is requested. The
appropriate server process PROCD resident on a
host 1 is then contacted by the Navigator and
provided with the name of the file of a running
client process, file A. The server process PROCD
in turn selects the appropriate gateway tool PC-
debug to perform the desired function.

The gateway tool PC-debug attaches to the target
program (application’s client process), which is
subsequently debugged. If the target program
calls a program (application’s server process) on
a different machine, the Constellation framework
provides a variety of mechanisms, transparent to
the user, for allowing debugging to continue on
the called program. In Figure 5, the gateway tool
PC-debug provides the server process PROCD
with the address of the called program, file B.
The server process PROCD notifies the Navigator,
which then automatically assembles a URL
request to a server process PROCD on the differ-
ent host. The request is sent and the server pro-
cess PROCD selects the appropriate gateway pro-
cess dbx which then attaches to the target
program (application’s server process), file B. If
file B returns to file A, then control is again

Fourth International World Wide Web Conference Proceedings

HOST 3

NAVIGATOR
’ read file A request olicy module read file B request .
s (client/server debug) e ~
debug client return to client

(call to server ~ debug serven
v
HTTPD PROCD PROCD [giro
Server Process Server Process Server Process
3 s ; “return to s
request - e e aen server e return to client
GATEWAY
PROGESS PC-DEBUG
FILE A’ (exec.) FILE B (exec.)
FILEA™ | APPLICATION @l [appLicATION
Sgélége _ Client Process T Server Process
HOST 1 —— HOST 2

Figure 5:

passed to the navigator which calls file A as
before except that the gateway process PC-debug
has maintained the appropriate address of the
instruction after the call instruction to file B.
Debugging then continues on file A. In this man-
ner, programs that are debugged by two different
tools, for example dbx and PC-debug, may be
debugged through a single front-end Navigator.

Constellation Framework supports groupware
functions such as group debugging sessions and
teleconferencing. Figure 6 is a block diagram
showing how the architecture of the Constella-
tion framework communicates to service a group
debugging request.

First, the Navigator on host 1 issues a request
according to the Universal Resource Locator
(URL) protocol. Thus, a request is of the form:

World Wide Web Journal

Communication sequence when servicing a debugging request

process://<machine/pid=7lt;pid_number, where
machine is the actual server address and pid
number is the process-identification number of a
running program. The appropriate server process
PROCD resident on a hostl is then contacted by
the Navigator and provided with the pid of a run-
ning server process. The server process PROCD
in turn selects the appropriate gateway tool dbx
to perform the desired function. The gateway
tool dbx attaches to the target program which is
subsequently debugged.

Request to clone The Navigator is then sent to
host 1. After cloning navigator on host 2 is con-
nected to the server process PROCD on host 1, a
joint debugging session of the application server
program is established. Furthermore, during the
cloning process, navigator on host 1 issued a talk

489

NAVIGATOR

AUDIO

NAVIGATOR

AUDIO

GATEWAY
i debug .

server

SHOWMED
Server Process ¢

GATEWAY

SHOWMED |
Server Process |

. HOST2

APPLICATION |
Server Process |

Figure 6:

request to showmed conference manager. After
the manager accepts talk request, audio gateway
tools are launched on both hosts enabling navi-
gators to concurrently have voice communica-
tions and group debugging session.

File browsing and editing

Figure 7 illustrates one possible block diagram
for browsing and editing files, which may com-
prise source code or any other type of document.
A user can browse and edit documents in an infi-
nite number of ways and Figure 7 illustrates one
possible browsing and editing session to illustrate
the operation of a preferred embodiment of the
Constellation framework. To read a file, file A,
the Navigator issues a request according to the
URL protocol, as previously described. The
HTTPD process on the appropriate
machine is provided with the request, and the

server

490

Concurrent debugging session with teleconferencing

appropriate gateway tool is contacted to retrieve
the file. The file, file A, is then provided to the
navigator for viewing and editing. Unlike World
Wide Web browsing tools, the Constellation
framework provides the ability to edit files and
replace an old file with an edited file. Thus, the
navigator allows the user to edit the file and the
navigator then formulates the appropriate URL,
indicating the file, file B, when the user desires to
save the edited file. The appropriate server pro-
cess and gateway process are contacted and the
edited file is stored.

In addition to browsing, editing, and saving files,
the Constellation framework dynamically gener-
ates information concerning the content of
retrieved files. For example, a user may desire to
analyze a program according to its data struc-
tures, function calls and other characteristics. To
perform such an operation on a file, the naviga-

Fourth International World Wide Web Conference Proceedings

HOST 3

NAVIGATOR

write file request

read file A request

\.

file

read file C request

~

file

y

HTTPD
Server Process

GATEWAY
PROCESS

FILEC

HOST 1

Server Process

file C request

PROCD
Server Process

file request|
GATEWAY GATEWAY
PROCESS PROCESS
FILEC’
FILEB

HOST 2

Figure 7:

tor issues a request according to the URL proto-
col, as previously described. An appropriate
server process PROGD on the target machine is
provided with the request and an appropriate
gateway tool (e.g., cscope) analyzes the file and
provides the results of the analysis to the naviga-
tor.

Summary

The Constellation framework provides methods
and mechanisms for a front-end navigating tool
that may access and manipulate files distributed
across different physical machines and platforms.
The front-end navigating tool communicates with
a multitude of server processes, resident on net-
worked servers, to perform all types of file
manipulations such as debugging, source-code
management, and editing. The server processes
communicate with gateway processes (resident

World Wide Web Journal

Editing and source-code browsing functions of the Constellation framework

on the same machine as the calling-server pro-
cess) that perform the desired function on any of
a multitude of program segments that may dis-
tributed across a network of computers.

The Constellation framework supports many
functions, such as debugging, source-code man-
agement, source-code browsing, multi-platform
builds, editing, and document browsing. The
Constellation framework prototype has been
developed mostly in Tcl7.4/Tk4.0 with approxi-
mately one full-time and one part-time engineer
in a 6-month period. It works on Solaris and Win-

dows NT platforms. m

Acknowledgments

Thanks to John Ousterhout for early release of
Tcl7.4/Tk4.0. Thanks to the DOE debugger team,
Jon Masamitsu and Andrew Davidson, for bear-
ing with me while installing DOE and integrating

491

w3.org

