
Constellation
A Web-Based Design Framework eor
Developing Network Applications

Nino Vidovic, Dalibor F. Vrsalovic

Abstract
Constellation is a Web-based design framework for developing distributed applications which allows a
single user or group of users to concurrently access and manipulate different aspects of a distributed
application from a simple Mosaic-like front-end tool. Users can edit and build programs and docu
ments, manage source code, debug and instrument running distributed programs, read manual pages
and other documents, browse through source code and much, much more from a simple yet powerful
front-end tool. Constellation is designed to work in a heterogeneous networked environment. It works
with different host types and different OS environments, and supports different communication proto
cols. It is designed to work with hybrid client/server applications that consist of new as well as legacy
code. Constellation is easily extensible to support new protocols, hosts, servers, services and back-end
tools. Keywords: Distributed applications, client/server applications, design framework, distributed
debugging, group debugging, development environment

Introduction
In response to societal demand, computer net
works have been proliferating rapidly in recent
years. Such networks include local area networks
(LANS) and wide area networks (WANS) com
prising a number of computers that may commu
nicate with one another. Apart from sending
messages, this communication between net
worked computers allows programs to be run on
more than one computer in a network. For exam
ple, an airline reservation service may present a
user interface on a client computer while data
input to the interface is transmitted to a server
computer where a reservation database is
accessed. This type of program execution,
known as distributed programming, may be
much more complicated than the above example
but is nonetheless extremely common and effi
cient.

Distributed programs, however, are often written,
developed and tested on different computers
with different tools which are tightly bound to
the particular machine upon which they operate

and are integrated around language, computing
platform, or type of application.

This problem is illustrated in Figure 1.

In the above example, the graphic user-interface
portion may be developed on the client com
puter with a set of program tools for the Visual
C++ programming language for PC Windows and
a different set of tools for a graphic user-interface
(GUI.) builder. Similarly, the reservation database
may be developed on the server with a set of
program tools from the C++ Workshop program
ming language running under Unix. In Figure 1,
those development environments are denoted as
DEI, DE2 and DE3. Furthermore, a program ini
tially developed with a tool set can frequently be
redeveloped under a later version of the same
tool set, and possibly from a different manufac
turer.

Thus, distributed programs present substantial
difficulties to programmers since they must learn
to operate the tool set that was used to develop
each distributed program segment. These tool
sets are usually quite detailed and require days,
weeks, and even months to master. Furthermore,

World Wide Web Journal 483

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3592626.3592666&domain=pdf&date_stamp=1995-12-11

DE1, DE2, DES - development environments

O - tool

Dp - distributed application

£5, - client process

- server process

DES

DP
<SP. .SP.

SP

Figure 1: Designing network appiications using traditionai programming environments

to edit, view, or debug the distributed program
currently requires performing these functions
under one tool set for a particular program seg
ment, exiting the tool set, locating the tool set for
a different program segment, which may be on a
different computer, and entering that tool set.
This type of operation is extremely time consum
ing, especially where a program has a large num
ber of segments, each developed with a different
tool set.

By employing a particular protocol, the World
Wide Web has met the challenge of allowing
users, through a single front-end tool, to browse
documents that reside on a large number of dif
ferent platforms. The World Wide Web, however,
which has been in existence for a number of
years, does not provide for any other types of
functions apart from browsing and the previously
described problems presented by distributed pro
grams remain.

So, there is a need for a system that provides the
capability to develop distributed programs that
operate on different computers, operating sys-
terns, and communication protocols, while
requiring only one set of tools. Furthermore,
there is a need for a system that allows such inte
gration for programs that have already been par
tially developed or completely developed under
a variety of tool environments and that require

modification. More broadly, there is a need for a
system that allows a single front-end tool to per
form operations on a plurality of files that reside
on different platforms without requiring a user to
separately access each separate platform-specific
piece on that platform.

The Constellation framework answers these and
many other needs.Constellation
The Constellation framework provides methods
and mechanisms for a front-end navigating tool
(the “Navigator") that may access and manipulate
files distributed across different platforms. Figure
2 depicts Constellation framework as a cone with
the Navigator at the top and a distributed pro
gram in its base. The front-end navigating tool
communicates with a multitude of server pro
cesses, resident on networked servers, to perform
all types of file manipulations such as debugging
and editing. The server processes communicate
with gateway processes (resident on the same
machine as the calling server process) that per
form the desired function on any of a multitude
of program segments that may be distributed
across a network of computers.

Debugging is one example of a function that may
involve distributed files. To service a debugging

484 Fourth International World Wide Web Conference Proceedings

N - Navigating tool

SE - Server Infrastructure

- server process

SG - Service Gateway Infrastructure SE
s

- Gateway tool

DP - Distibuted application

- client process
- server process SG

N

s
s

DP

.CT. .GT, .GT.

.GT.

fST,

Figure 2: Cone model of a distributed programming environment

request, the navigator issues a request according
to the URL protocol. Thus, a request is of the
form: <server_rype://<machine/<request, where
server type is a protocol such as, for example,
HTTP or process, machine is the actual server
address, and request is the program or file that is
requested. The appropriate machine and server
process is then contacted by the navigator and
provided with the name of the file, file A. The
server process in turn selects the appropriate
gateway process to perform the desired function.
The gateway process attaches to the desired pro
gram, which is subsequently debugged. If the
program calls a program on a different machine,
the Constellation framework provides a variety of
mechanisms, transparent to the user, for allowing
debugging to continue on the called program. In
a preferred embodiment, the gateway process
provides the server process with the address of
the called program, file B. The server process
notifies the navigator which then automatically
assembles a request to the server process on the
different host. The request is sent and the server
process selects the appropriate gateway process,
which then attaches to the target program, file B.
If file B returns to file A, then control is again

passed to the navigator which calls file A as
before except that the gateway process has main
tained the appropriate address of the instruction
after the call instruction to file B. Debugging then
continues on file A.

Browsing, editing, and any other function
requests are similarly serviced through the front
end navigator. A URL link contacts an appropri
ate server process resident on a target machine
and the server process in turn selects the proper
gateway process, which performs the desired
function on the target file. The target file may
include hypertext links to other files, and func
tions can easily be performed on these files by
clicking on the file names and then indicating a
desired function. In this manner, users can effi
ciently access and manipulate distributed files
through a single front-end tool.

System Architecture
Figure 3 is an overview of the architecture of the
Constellation framework. The architecture com
prises a front-end navigating tool (Navigator) that
communicates with a multitude of server pro
cesses (PROCD, HTTPD and PROGD) to perform
different functions such as debugging, source-

World Wide Web Journal 485

NAVIGATOR NAVIGATOR

PROCD
Server Process

HHPD
Server Process

PROGD
Server Process

T9

Figure 3: Architecture of the Constellation design framework

code management, and source-code browsing
and editing. The server processes PROCD,
HTTPD, and PROGD communicate with gateway
processes (tools) Tl, T2, T3, T4, T5, T6, T7, T8,
and T9 that perform a desired function on any of
a multitude of program segments that may be
distributed across a network of computers. As
will be described more fully below, the navigat
ing tool comprises a browser, editor, and interac
tive shell and allows users to perform a variety of
functions on distributed program segments. For
example, the server process HTTPD may com
prise a document server that communicates with
file, man2html and mail gateway processes T4,
T5 and T6 to perform browsing functions. Simi
larly, the server process PROCD may comprise a
process server that communicates with dbx, PC-
debug, and gdb gateway processes Tl, T2 and T3
to perform debugging functions. The architecture
illustrated in Figure 3 may be easily extended to
include many other server processes and gate
way processes as indicated by the dashed lines.
Furthermore, Constellation framework allows two
navigators to simultaneously access the same
server process, gateway tool, and file. Also, two
Navigators can communicate with each other in a
networked environment.

As will be described more fully below, each of
the server processes PROCD, HTTPD and
PROGD illustrated in Figure 3 may reside on a
plurality of physical machines. The architecture
of the Constellation framework provides for the
integration of a variety of tools, including debug
ging, document-and source-code browsing and
editing, source-code management, and program
development and building. The implementation
of these tools according to the architecture of the
Constellation framework will be described in the
following sections of this paper. The architecture
of the Constellation framework as illustrated in
Figure 3 may be applied to many other types of
tools, including user-defined tools.

Navigating front-end tool

The Navigator is a browser and at the same time
an editor and an interactive shell. Browser capa
bilities are similar to those of Web browsers such
as Mosaic or Hotjava. As an editor, the Navigator
has basic text-editing functionality of point and
click editors, such as Textedit with command
bindings for Emacs and Vi. Editor’s capabilities
are augmented to support hyper-text (i.e., HTML)
program annotations. Interactive shell capability
allows users direct interactions with browser’s
interpreter engines as well as with interactive

486 Fourth International World Wide Web Conference Proceedings

GUI
Dynamic

GUI
Extensions

Data Type Policy Modules

(pre-loaded) (dynamically loadable)

Data Type
Interpreter

Data Type
Loader

a> c/>
3
o

P

LU
09
x;
C/9 ex Protocol

Interpreter
Protocol
Loader

(pre-loaded) (dynamically loadable)

Protocol Policy Modules
Web/lnternet Engine

Figure 4: An architecture of the Navigator front-end tooi

programs with which the Navigator has estab
lished links (e.g., gateway debug engines such as
dbx).

The architecture of the Navigator is shown in Fig
ure 4.

The Navigator consists of the following basic
components: Web/Intemet engine, Browser, Edi
tor, Interactive shell. Interpreters (e.g., Tcl or
Java), Data-Types Processing Engine, Protocol-
Processing Engine and GUI. The Web/lnternet
engine provides access to the Internet and Web.
Browser provides basic Web client functionality.
Editor allows pages in the Navigator to be edited.
Interactive shell capability allows Navigator to
hold interactive sessions. The Interpreters are
mechanisms which allow dynamic extension of
Web protocols and data types, as well as Naviga
tors GUI. Data-Type Processing Engine allows

dynamic retrieval of policy modules (e.g., Tcl or
Java programs) to process unknown data types.
Protocol-Processing Engine allows the Navigator
to process unknown protocol requests by
dynamically loading protocol policy modules
(e.g., Tcl or Java protocol driver programs).

The GUI module creates a control panel for the
Navigator and maps the contents of users’
searches into a graphic domain. The novel fea
ture of the Navigator is its capability to dynami
cally reconfigure its control panel based on the
type of the request and the domain in which
browsing is performed. For example, when the
user makes a request to debug a program, a
debug server that services browsing requests in
process domain will be contacted, and the appro
priate protocol policy module in Navigator will
be downloaded (if not already present) and acti
vated. In a debugging example, this processing

World Wide Web Journal 487

would result in a debugging menu being created
and then attached to the Navigator’s command
panel. The debugging menu would stay attached
for the duration of the debugging session. Upon
completion of the debugging session, the debug
ging menu would be automatically removed from
the Navigator’s control panel.

The Navigator can operate in a stateless or state
full mode. Stateless mode is used in events such
as directory browsing or information retrieval.
Statefull mode is used during distributed debug
ging sessions. The statefull sessions are character
ized by long-live connections into a browsing
domain. The Navigator keeps track of all long-
live connections for all active statefull sessions.
The long-live connection represent.s a bi-direc
tional communication channel into a browsing
domain. The user can post a request to the server
which is servicing given domain. Also, the server
can generate events and send them back to the
Navigator.

No limits exist on a number of the concurrent
long-live connections. The Navigator allows all
long-live connections to be active at the same
time. Policy modules are responsible for coordi
nating events received from domain servers.

Constellation’s service layer

The Constellation service layer consists of a col
lection of domain servers and gateway tools.
Gateway tools are either interface, to service pro
viders (e.g., database access) or service provid
ers. The following list is a sample of domain serv
ers and related gateway tools:

• Document Servers and Service Gateways

• http, file, ftp...

• man2html, sccs2html, names2html

• Process Servers and Service Gateways

• Debugging (Dynamic Services) server

• dbx, PC-debug, gdb, RTP, etc.

• Program Servers and Service Gateways

• Program (Static services) server

• cscope, c++class

• Teleconferencing Server and Service Gate
ways

• showme conference manager

• Audio, video, white board

Debugging

Figure 5 is a block diagram showing how the
architecture of the Constellation framework com
municates to service a debugging request.

First, the Navigator issues a request according to
the Universal Resource Locator (URL) protocol.
Thus, a request is of the form: <server_type://
<machine/<request, where server type is a proto
col such as, for example, HTTP or process,
machine is the actual server address, and request
is the program or file that is requested. The
appropriate server process PROCD resident on a
host 1 is then contacted by the Navigator and
provided with the name of the file of a running
client process, file A. The server process PROCD
in turn selects the appropriate gateway tool PC-
debug to perform the desired function.

The gateway tool PC-debug attaches to the target
program (application’s client process), which is
subsequently debugged. If the target program
calls a program (application’s server process) on
a different machine, the Constellation framework
provides a variety of mechanisms, transparent to
the user, for allowing debugging to continue on
the called program. In Figure 5, the gateway tool
PC-debug provides the server process PROCD
with the address of the called program, file B.
The server process PROCD notifies the Navigator,
which then automatically assembles a URL
request to a server process PROCD on the differ
ent host. The request is sent and the server pro
cess PROCD selects the appropriate gateway pro
cess dbx which then attaches to the target
program (application’s server process), file B. If
file B returns to file A, then control is again

488 Fourth International World Wide Web Conference Proceedings

NAVIGATOR
HOSTS

read file A request

file

policy module
(client/server debug)

read file B request

file

debug client [return to client

call to server debug server

HTTPD
Sen/er Process

PROCD
Server Process

PROCD
Server Process

to HTTPD

file A
request

file
debug client return to

server
debug
server return to client

GATEWAY
PROCESS

PC-DEBUG

FILE A’ (exec.) FILE B (exec.)

HOST1

FILE A’
source
code

APPLICATION
Client Process

call

return

APPLICATION
Server Process

•WOBSBBBBWBWOBBBW
HOSTS

Figure 5; Communication sequence when servicing a debugging request

passed to the navigator which calls file A as
before except that the gateway process PC-debug
has maintained the appropriate address of the
instruction after the call instruction to file B.
Debugging then continues on file A. In this man
ner, programs that are debugged by two different
tools, for example dbx and PC-debug, may be
debugged through a single front-end Navigator.

Constellation Framework supports groupware
functions such as group debugging sessions and
teleconferencing. Figure 6 is a block diagram
showing how the architecture of the Constella
tion framework communicates to service a group
debugging request.

First, the Navigator on host 1 issues a request
according to the Universal Resource Locator
(URL) protocol. Thus, a request is of the form:

process://<machine/pid=7lt;pid_number, where
machine is the actual server address and pid
number is the process-identification number of a
running program. The appropriate server process
PROCD resident on a hostl is then contacted by
the Navigator and provided with the pid of a run
ning server process. The server process PROCD
in turn selects the appropriate gateway tool dbx
to perform the desired function. The gateway
tool dbx attaches to the target program which i.s
subsequently debugged.

Request to clone The Navigator is then sent to
host 1. After cloning navigator on host 2 is con
nected to the server process PROCD on host 1, a
joint debugging session of the application server
program is established. Furthermore, during the
cloning process, navigator on host 1 issued a talk

World Wide Web Journal 489

NAVIGATOR

debug
server

talk

AUDIO
GATEWAY

SHOWMED
Server Process

NAVIGATOR

talk

debug
server

HOST 2

PROCD
Server Process

DBX

APPLICATION
Server Process

HOST1

Figure 6: Concurrent debugging session with teleconferencing

request to showmed conference manager. After
the manager accepts talk request, audio gateway
tools are launched on both hosts enabling navi
gators to concurrently have voice communica
tions and group debugging session.

File browsing and editing

Figure 7 illustrates one possible block diagram
for browsing and editing files, which may com
prise source code or any other type of document.
A user can browse and edit documents in an infi
nite number of ways and Figure 7 illustrates one
possible browsing and editing session to illustrate
the operation of a preferred embodiment of the
Constellation framework. To read a file, file A,
the Navigator issues a request according to the
URL protocol, as previously described. The
HTTPD server process on the appropriate
machine is provided with the request, and the

appropriate gateway tool is contacted to retrieve
the file. The file, file A, is then provided to the
navigator for viewing and editing. Unlike World
Wide Web browsing tools, the Constellation
framework provides the ability to edit files and
replace an old file with an edited file. Thus, the
navigator allows the user to edit the file and the
navigator then formulates the appropriate URL,
indicating the file, file B, when the user desires to
save the edited file. The appropriate server pro
cess and gateway process are contacted and the
edited file is stored.

In addition to browsing, editing, and saving files,
the Constellation framework dynamically gener
ates information concerning the content of
retrieved files. For example, a user may desire to
analyze a program according to its data struc
tures, function calls and other characteristics. To
perform such an operation on a file, the naviga-

490 Fourth International World Wide Web Conference Proceedings

HOSTS
NAVIGATOR

read file A request
, write file request

file read file C request file

file A

Figure 7: Editing and source-code browsing functions of the Constellation framework

tor issues a request according to the URL proto
col, as previously described. An appropriate
server process PROGD on the target machine is
provided with the request and an appropriate
gateway tool (e.g., cscope) analyzes the file and
provides the results of the analysis to the naviga
tor.

Summary
The Constellation framework provides methods
and mechanisms for a front-end navigating tool
that may access and manipulate files distributed
across different physical machines and platforms.
The front-end navigating tool communicates with
a multitude of server processes, resident on net
worked servers, to perform all types of file
manipulations such as debugging, source-code
management, and editing. The server processes
communicate with gateway processes (resident

on the same machine as the calling-server pro
cess) that perform the desired function on any of
a multitude of program segments that may dis
tributed across a network of computers.

The Constellation framework supports many
functions, such as debugging, source-code man
agement, source-code browsing, multi-platform
builds, editing, and document browsing. The
Constellation framework prototype has been
developed mostly in Tcl7.4/Tk4.0 with approxi
mately one full-time and one part-time engineer
in a 6-month period. It works on Solaris and Win
dows NT platforms. ■

Acknowledgments
Thanks to John Ousterhout for early release of
Tcl7.4/Tk4.0. Thanks to the DOE debugger team,
Jon Masamitsu and Andrew Davidson, for bear
ing with me while installing DOE and integrating

World Wide Web Journal 491

DOE debugging support. Thanks to DevPro’s
Ivan Soleimanipour for volunteering to extend
dbx’s API with yet another call and Achut Reddy
for sharing his experience and code for program
browsing. Special thanks go to Steven Li for port
ing Constellation to the Windows environment.

References
1. “The World Wide Web, a global information initia

tive,’’ hup://u/ww. w3.org

2. Ousterhout, J.K., Tcl and the Tk Toolkit, Addison-
Wesley, 1994.

*About the Authors
Nino Vidovic
AT&T—Business Communication Services
Dr. Vidovic recently joined AT&T as Advanced
Network Clients Technology Director in the BCS
Operations group. His responsibilities include
architecture development and implementation of
next-generation network client systems. Prior to
joining AT&T, Dr. Vidovic served as the Senior
Staff Engineer in Advance Techology Group, Sun
Microsystems, Inc. While at Sun Microsystems, he
was responsible for identification of new technol

Ogies for development of network-enabled appli
cations. He holds a doctorate in computer sci
ence from the University of Zagreb, Croatia, and
an M.S. in computer engineering from Carnegie
Mellon.

Dalibor F. Vrsalovic
AT&T—Business Communication Services
Dr. Vrsalovic recently joined AT&T as Advanced
Technology Vice President in the BCS Operations
group. His responsibilities include providing
leadership to the architectural development effort
for host platforms to be used in the next genera
tion of network-based services as well as estab
lishing AT&T’s long-term leadership in global ser
vices and distributed computing. Prior to joining
AT&T, Dr. Vrsalovic served as the Chief Scientist
for Sun Microsystems, Inc. While at Sun Microsys
tems, he was responsible for the architecture
development and implementation of software
products. In addition to R&D, he has held leader
ship roles in bringing new technologies to gen
eral business use and product quality assurance.
He holds a doctorate in computer science and an
M.S. in computer engineering from the University
of Zagreb, Croatia.

* This work was done while authors were working at SunSoft Inc.

492 Fourth International World Wide Web Conference Proceedings

w3.org

