
The Millicent Protocol eor
Inexpensive Electronic Commerce

Steve Glassman, Mark Manasse, Martin Abadi, Paul Gauthier,
Patrick Sobalvarro

Abstract
Millicent is a lightweight and secure protocol for electronic commerce over the Internet. It is designed to
support purchases costing less than a cent. It is based on decentralized validation of electronic cash at
the vendor’s server without any additional communication, expensive encryption, or offline processing.
The key innovations of Millicent are its use of brokers and of scrip. Brokers take care of account man
agement, billing, connection maintenance, and establishing accounts with vendors. Scrip is digital
cash that is only valid for a specific vendor. The vendor locally validates the scrip to prevent customer
fraud, such as double spending. Keywords: Electronic commerce, electronic cash, scrip, broker,
authenticationElectronic Commerce Background
There are a number of existing and proposed
protocols for electronic commerce, such as those
from DigiCash [2], Open Market [14], CyberCash
[1], First Virtual [31, and NetBill [12]. They are all
appropriate for medium to large transactions, $5
or $10 and up, because the costs per transaction
are typically several cents plus a percentage.
When these costs are applied to inexpensive
transactions, 50 cents and less, the transaction
costs become a significant or even dominant
component of the total purchase price, thereby
effectively creating a minimum price for goods
and services purchased using one of these proto
cols.

not likely to open a ten-dollar account with an
unknown publisher may be willing to spend a
few cents to buy an interesting-looking article.

In this section, we look at four existing options
for Internet commerce: accounts, aggregation,
credit cards, and digital cash, and discuss why
they are not appropriate for inexpensive elec-
tronic commerce. In the next section, we
describe our model for reducing costs and mak
ing lightweight electronic commerce feasible.

Accounts
The simplest model for electronic commerce
is for customers to establish accounts with
vendors. When a customer wants to perform
a transaction with the vendor, the customer
identifies himself (securely) and the vendor
adds the cost of the transaction to the cus-

Forcing online charges to be above some thresh
old reduces the options for service providers.
Online services providing newspapers, maga
zines, reference works, and stock prices all have
individual items that could be inexpensive if sold
separately. The ability to purchase inexpensive
individual items would make these services more
attractive to casual users on the Internet. In addi
tion, secure low-priced transactions support
grass-roots electronic publishing. A user who is

tomer’s account. Vendors maintain the
account information and bill the customers
periodically.

With accounts, transaction costs and prices
can be fairly low, but there is a fair amount
of overhead. An account may need to be
established ahead of time and maintained
over an extended period. This makes sense
only when assuming a relatively long-stand
ing relationship between a customer and a

World Wide Web Journal 603

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3592626.3592675&domain=pdf&date_stamp=1995-12-11

vendor. There is often a minimum monthly
charge associated with each account. The
customer has separate accounts for each
vendor, and the vendor needs to maintain
accounts for every customer. All this over
head discourages casual users from making
spur-of-the-moment purchases.

aren’t needed when purchasing inexpensive
items.

zlggnogahow
Aggregation amortizes billing charges over a
sequence of less expensive transactions by
accumulating transactions at the vendor until
they exceed some threshold. Aggregation is
another form of accounts and shares some
of the problems of accounts. Although
account setup is somewhat simplified, the
vendor still has the problem of maintaining
the accounts, accumulating enough transac
tions for a reasonable sized charge, and
keeping transaction records for dispute reso
lution. Also, the customer must deal with
separate charges from each vendor, mini
mum account charges, and the difficulty of
contesting fraudulent charges.

Finally, customers may be unwilling to pro
vide a credit card number to a vendor they
don’t know well. Although the credit card
company insures the customer against any
loss, there is still the inconvenience of clear
ing up any problems.

Digital cash
Digital cash is normally issued by a central
trusted entity (like a bank). The integrity of
digital cash is guaranteed by the digital sig
nature of the issuer, so that counterfeiting
digital cash is extremely hard. However, it is
trivial to duplicate the bit pattern of the digi
tal cash to produce and spend identical (and
equally authentic) cash.

Credit cards
Another simple model for electronic com
merce is to use a credit card to pay for the
purchase. Customers have credit cards; ven
dors register with credit card companies;
customers give their credit card number to
vendors; vendors contact their credit card
companies for payment; the credit card com
panies handle the accounting and billing.

In an online digital cash scheme, when a
vendor receives digital cash, he must contact
the issuer to see if it is valid and not already
spent. This extra communication makes the
central site a bottleneck and adds cost to the
transaction.

There are established methods (like

In an offline scheme (like one proposed by
DigiCash [2]), the vendor authenticates the
digital cash during the transaction and then
later transmits it to the issuer to check for
double spending. This scheme adds compu
tational costs to the vendor for authenticat
ing the digital cash, and adds messages and
encryption to the protocol for pinpointing
the source of the double spending.

Netscape’s SSL [131 based on RSA’s public
key encryption [16]) for ensuring secure
transmission of the client’s credit card num
ber to the vendor.

Unfortunately, credit card transactions are
(relatively) expensive since every purchase
involves communication to a centralized
credit card transaction service. In addition,
credit card companies offer various features
like individual item accounting, insurance,
and fraud protection that add to the cost and

Millicent
Our goal for Millicent is to allow for transactions
that are inexpensive yet secure. We achieve this
by using accounts based on scrip and brokers to
sell scrip.

A piece of scrip represents an account the cus
tomer has established with a vendor. At any
given time, a vendor has outstanding scrip (open
accounts) with the recently active customers. The
balance of the account is kept as the value of the

604 Fourth International World Wide Web Conference Proceedings

scrip. When the customer makes a purchase with
scrip, the cost of the purchase is deducted from
the scrip’s value and new scrip (with the new
value/account balance) is returned as change.
When the customer has completed a series of
transactions, he can “cash in” the remaining value
of the scrip (close the account).

• Accounting costs are reduced by using bro
kers to handle accounts and billing. The cus
tomer establishes an account with a broker;
the broker establishes its own accounts with
the vendors. Using brokers allows us to split
a customer-vendor account into two

Brokers serve as accounting intermediaries
between customers and vendors. Customers
enter into long-term relationships with brokers,
in much the same way as they would enter into
an agreement with a bank, credit card company,
or Internet service provider. Brokers buy and sell
vendor scrip as a service to customers and ven
dors. Broker scrip serves as a common currency
for customers to use when buying vendor scrip,
and for vendors to give as a refund for unspent
scrip.

accounts: one between the customer and
broker, and another between the broker and
the vendor. This reduces the total number of
accounts. Instead of many separate accounts
for every customer-vendor combination,
each customer has only one account with a
broker (or, at most, a couple of brokers);
and each vendor has long-standing accounts
with just a few brokers.

Millicent reduces the overhead of accounts in a
number of ways:

• Communication costs are reduced by verify
ing the scrip locally at the vendor’s site;
there are almost no Millicent-specific com
munication costs during a normal transac
tion. There is also no need for a centralized
server or an expensive transaction-process
ing protocol.

In most account-based schemes, the vendor
maintains the account balance. In Millicent,
the customer maintains the account bal
ance—it is encoded in the scrip held by the
customer. There is no risk for the vendor
because a digital signature prevents the cus
tomer from modifying the scrip’s value.
Since the scrip contains the account balance
and a proof of correctness for that value, the
vendor does not need to look up the cus
tomer’s balance, saving disk activity.

In a centralized scheme, the central site is a
bottleneck; the provider must have sufficient
computing power to handle the peak trans
action rate. In Millicent, there is no central
server; there can be many brokers, a broker
is only involved in a fraction of the transac
tions between a customer and a vendor, and
the transactions involving a broker are light
weight.

• The minimum monthly charges are not as
much of a problem because they are amor
tized over more activity. The single cus
tomer-broker account supports transactions
with all vendors, and so it is likely to have
enough activity to cover a minimum charge.
By prepaying the broker, even the monthly
accumulation of charges can be avoided.

• Cryptographic costs are reduced to keep
them in line with the scale of transactions;
we don’t need strong or expensive crypto
graphic schemes because the value of the
scrip is relatively low. We need only make
the cost of breaking the protocol greater
than the value of the scrip itself.

Millicent is best suited for a series of inexpensive,
casual transactions. We will rely on other proto
cols for initial account establishment between
brokers and customers, and brokers and vendors.
Other higher-value protocols are also used for
the funds transfers that occur when accounts are
periodically settled.

World Wide Web Journal 605

Security and Trust
The security model for Millicent is based on the
assumption that scrip is used for small amounts.
People and businesses treat coins differently than
they treat bills, and treat small bills differently
than large bills. In Millicent, we imagine people
treating scrip as they would treat change in their
pocket.

Since people don’t need a receipt when buying
candy from a vending machine, they don’t need
a receipt when buying an item using scrip. If they
don’t get what they paid for, they complain and
get a refund. If they lose a coin every now and
then, they aren’t too upset.

We expect users to have a few dollars of scrip at
a time. We don’t expect them to have hundreds,
or even tens, of dollars of scrip. As a result, scrip
is not worth stealing unless you can steal lots of
it; and if you steal lots, you will get caught.

Trust Model
Millicent assumes asymmetric trust relationships
among the three entities—customers, brokers,
and vendors. Brokers are assumed to be the most
trustworthy, then vendors, and, finally, custom
ers. The only time customers need to be trusted
is when they complain about service problems.

We believe that brokers will tend to be large,
well-known, and reputable financial institutions
(like Visa, MasterCard, and banks) or major Inter
net or online service providers (like CompuServe,
NETCOM, or AOL). We expect there to be many
vendors covering a full spectrum of size and
trustworthiness, as in the real world. Finally,
there will be large numbers of customers who
are a,s trustworthy as people are in general.

Three factors make broker fraud unprofitable.
First, customer and vendor software can indepen
dently check the scrip and maintain account bal
ances, so any fraud by the broker can be
detected. Second, customers do not hold much
scrip at any one time, so a broker would have to
commit many fraudulent transactions to make

much of a gain, and this makes them likelier to
be caught. Finally, the reputation of a broker is
important for attracting customers and a broker
would quickly lose its reputation if customers,
have troubles with the broker. The repeat busi
ness of active customers is more valuable to a
broker than the scrip that it could steal.

Vendor fraud consists of not providing goods for
valid scrip. If this happens, customers will com
plain to their broker, and brokers will drop ven
dors who cause too many complaints. This acts
as an effective policing mechanism, because ven
dors need a broker to easily conduct business in
Millicent.

As a result, the Millicent protocol is skewed to
prevent customer fraud (forgery and double
spending) while providing indirect detection of
broker and vendor fraud.

Security
The security of Millicent transactions comes from
several aspects.

All transactions are protected
Every Millicent transaction requires that the
customer knows the secret associated with
the scrip. The protocol never sends the
secret in the clear, so there is no risk due to
eavesdropping. No piece of scrip can be
reused, so a replay attack will fail. Each
request is signed with the secret, so there is
no way to intercept scrip and use the scrip
to make a different request.

Inexpensive transactions limit the value of fraud
Inexpensive transactions can rely on inex
pensive security: it’s not worth using expen
sive computer resources to steal inexpensive
scrip. In addition, it would take many illegal
uses of scrip to acquire much money, and
that raises the probability of getting caught.

Fraud is detectable and eventually traceable
Fraud is detected when the customer doesn’t
obtain the desired goods from the vendor, or
when the balance returned to the customer

606 Fourth International World Wide Web Conference Proceedings

doesn’t match the balance due. If the cus
tomer is cheating, then the vendor’s only
loss is the cost of detecting the bad scrip and
denying service. If the vendor is cheating,
the customer will report a problem to the
broker. When a broker notices a pattern of
complaints from many customers against a
vendor, it can pinpoint the fraud and cut off
all dealings with the vendor. If a broker is
cheating, the vendor will notice bad scrip
coming from many customers, all originating
from a single broker. The vendor can then
publicize its complaint in an appropriate
venue.

Scrip
The main properties of scrip are:

• It has value at a specific vendor.

• It can be spent only once.

Scrip Structure
There are three secrets involved in producing,
validating, and spending scrip. The customer is
sent one secret, the custoiner_secret, to
prove ownership of the scrip. The vendor uses
one secret, the master_customer_secret, to
derive the customer_secret from customer
information in the scrip. The third secret, the
master_scrip_secret, is used by the vendor
to prevent tampering and counterfeiting.

The secrets are all used in a way that shows
knowledge of the secret without revealing the
secret. To attest to a message, the secret is
appended to the message, and the result is
hashed to produce a signature. The message
(without the secret) and the signature prove—
due to the one-way nature of the hash function—
knowledge of the secret, because the correct sig
nature can only be derived if you know the
secret.

• It is tamper resistant and hard to counterfeit. Scrip has the following fields (Figure 1):

• It can be spent only by its rightful owner. • Vendor identifies the vendor for the scrip.

• It can be efficiently produced and validated. • Value gives the value of the scrip.

The next sections give more detail about scrip
and its use, but the basic techniques to achieve
these properties are outlined here;

• The text of the scrip gives its value and iden
tifies the vendor.

• The scrip has a serial number to prevent
double spending.

• There is a digital signature to prevent tam
pering and counterfeiting.

• ID# is the unique identifier of the scrip.
Some portion of it is used to select the
master_scrip_secret used for the cer
tificate.

• Cust_ID# is used to produce the customer
secret. A portion of Cust_ID# is used to
select the master_custonier_secret
which is also used in producing the cus
tomer secret.

• Expires is the expiration time for the scrip.
• The customer signs each use of scrip with a

secret that is associated with the scrip.

• The signatures can be efficiently created and
checked using a fast one-way hash function
(like MDS [151 or SHA [11]).

• Props are extra data describing customer
properties (age, state of residence, etc.) to
the vendor.

• Certificate is the signature of the scrip.

Validation and Expiration
Scrip is validated in two steps. First (Figure 2),
the certificate is recomputed and checked against

World Wide Web Journal 607

Vendor

Customer requests broker scrip
at start of day

Customer Broker
Broker returns initial broker scrip

and associated secret

Figure 1: The certificate of a piece of scrip is generated by hashing the body of the scrip with a secret.
The secret is selected using a portion of the scrip’s ID#

the certificate sent with the scrip. If the scrip has
been tampered with, then the two certificates will
not match. Second, there is a unique identifier
(ID#) included in the scrip body and the vendor
can check for double spending by seeing if it has
recorded that identifier as already spent. Generat
ing and validating scrip each require a little text
manipulation and one hash operation. Unless the
secret is known, scrip cannot be counterfeited or
altered.

The vendor records the unique identifier of every
piece of scrip that is spent, so that it cannot be
fraudulently respent. To save the vendor from
maintaining this record forever, each piece of
scrip is given an expiration time. Once the scrip
expires, the vendor no longer has to worry about

its being respent and can erase its record of the
scrip.

Customers are responsible for renewing or cash
ing in scrip before it expires. The old scrip is sub
mitted to the vendor, who returns new scrip with
a later expiration time (and a new serial number).
Vendors may choose to charge a small fee for
this service, discouraging users from obtaining
more scrip than they will need in the near future.

Properties
Scrip also has fields for storing properties, which
are inserted by the vendor or broker when the
scrip is produced. The exact property fields and
their values will depend on an agreement
between the brokers and vendors. The brokers

Figure 2:

608

Vendor

Customer
Customer requests vendor scrip

paying with broker scrip

Broker
*-

The received scrip is validated by regenerating the certificate and comparing it to the
transmitted one. If they are identical, the scrip is valid

Fourth International World Wide Web Conference Proceedings

will get the information from customers when
they create their account and enforce some set of
rules when selling vendor scrip. Vendors, of
course, are free to include whatever properties
they desire in scrip they produce themselves.

Information such as the state of residence, or age
of the consumer assists the vendor in making
sales decisions. Adult material could only be
bought if the scrip shows the customer is old
enough. State sales tax charges can depend on a
property included in the scrip.

Millicent Protocols
Scrip is the basis of a family of Millicent proto
cols. We will describe three of them and com
pare their simplicity, secrecy, and security. (A
detailed description of the protocols is in the
appendix.)

The first, “scrip in the clear,” is the simplest and
most efficient protocol. It is the basis for the
other two protocols, but it may not be useful in
practice because it is too insecure. The second,
“private and secure,” is secure and offers good
privacy, but it is more expensive. The third,
“secure without encryption,” is also secure, but
trades privacy for greater efficiency.

Scrip in the dear
In the simplest possible Millicent protocol, the
customer just sends an unspent piece of scrip in
the clear (i.e., not encrypted or protected in any
way) along with each request to the vendor. The
vendor returns the desired result along with a
new piece of scrip (also in the clear) as change.

This protocol offers almost no security; an eaves
dropping third party can intercept the scrip being
returned as change and use it himself. When the
rightful owner later attempted to spend the scrip,
the vendor would have a record of its being pre
viously spent, and would refuse the request.

Private and Secure
To add security and privacy to the Millicent pro
tocol, we establish a shared secret between the
two parties and then use the secret to set up a
secure communications channel using an effi
cient, symmetric encryption method (such as DES
110], RC4 [17], or IDEA [6]).

In Millicent, scrip can be used to establish this
shared key. When a customer buys an initial
piece of scrip for a vendor, a secret is generated
based on the customer identifier, and returned
securely with the scrip (Figure 3). This requires
either that the transaction be performed using
some secure non-Millicent protocol, or that the
scrip be purchased using a secure Millicent trans
action.

The vendor does not directly record the secret
associated with the piece of scrip. Instead, the
customer identifier (Cust_ID#) field of the scrip
allows rapid recalculation of the secret. The cus
tomer identifier must be unique whenever scrip
is transmitted to a new customer, but it need not
have any connection to the identity of the cus
tomer.

When the vendor receives the request, he derives
the customer secret from the customer identifier
in the scrip, derives the message key from the
customer secret, and uses the message key to
decrypt the request. The change scrip can be
returned in the clear, while the response and any
new secrets are returned to the customer
encrypted by the message key.

In this protocol the request and the response are
kept totally private; unless an eavesdropper
knows the customer secret, he can’t decrypt the
messages. In addition, an eavesdropper can’t
steal the scrip because it can’t be spent without
knowing the customer secret.

Secure without Encryption
The previous section describes how the secret
shared by the customer and vendor can be
exploited to achieve security and privacy. But a

World Wide Web Journal 609

Vendor

Broker
requests vendor

scrip from vendor

Vendor returns
vendor scrip and
. associated secret

Customer
..I, .11

Broker
J

Figure 3: The customer secret is generated by hashing the customer identifier with a secret. The secret
is seiected using a portion of the customer identifier.

full-blown encrypted channel may be overkill for
some Millicent applications. In this, our third
variant of the protocol, we give up the privacy of
the request and response to eliminate the use of
encryption.

As in the previous protocol, the customer
securely gets an initial piece of scrip and cus
tomer secret. To make a purchase, the customer
sends the request, scrip, and a “signature" of the
request to the vendor. The signature is produced
in the same way that the certificate of the scrip is
produced. The scrip and request are concate
nated with the customer secret. The customer
runs an efficient cryptographic one-way hash
function over this string and sends the resulting
hash as the signature.

When the vendor receives the request, he derives
the customer secret from the scrip and regener
ates the signature for the request. If the scrip or
request have been tampered with in any way. the
signature will not match (Figure 4).

The vendor now handles the request and returns
a fresh piece of scrip as change. The change
scrip shares the same customer identifier as the
scrip submitted with the request, so that the orig
inal customer secret can be used to spend the
change. There is no need to encrypt any of the
response; an eavesdropper can’t steal the scrip
because the signature of the request can’t be
made without knowing the customer secret. The
vendor may sign the response with the customer
secret in order to prove authenticity to the cus
tomer.

Figure 4:

610

Vendor

Customer
Broker returns vendor scrip,

associated secret and
"change" broker scrip

Broker

The request is validated by regenerating the request signature and comparing to the
transmitted signature. If they match, the request is valid.

Fourth International World Wide Web Conference Proceedings

Thus, with only a few hashes. Millicent provides
a lightweight and secure protocol.

Brokers
Brokers maintain the accounts of customers and
vendors, and they handle all real-money transac
tions. The customer establishes an account with a
broker by using some other method (like a credit
card or a higher-security electronic commerce
system) to buy some broker scrip. The customer
then uses the broker scrip to buy vendor scrip.

The vendor and the broker have a long-term
business relationship. The broker sells vendor
scrip to customers and pays the vendor. There
can be different business models for the way the
broker gets vendor scrip, for example, pay in
advance, consignment sale, or licensed produc
tion. In all models, the broker can make a profit
selling scrip because he pays the vendor (at a
discount) for scrip in bulk and sells individual
pieces to customers.

When a customer wants to make a purchase, the
customer contacts the broker to obtain the neces
sary vendor scrip. The customer uses his broker
scrip to pay for the vendor scrip using the Milli
cent protocol. The broker returns the new ven
dor scrip along with change in broker scrip.

We will examine three ways in which the broker
gets the vendor scrip. The “scrip warehouse”
model assumes a casual relationship between the
broker and vendor. The “licensed scrip producer”
model assumes a substantial and long-lasting
relationship between the broker and vendor. The
'multiple broker” model assumes a relationship
between brokers, but requires no relationship
between the vendor and broker.

Scrip Warehouse
When the broker is acting as a scrip warehouse,
the broker buys multiple pieces of scrip from a
vendor. The broker stores the scrip and sells the
pieces one at a time to customers (Figure 6-8).

This model assumes no special relationship
between the vendor and broker. It works best
when the broker’s customers have a light to mod
erate demand for that vendor’s scrip. The broker
uses the Millicent protocol to buy the scrip from
the vendor in the same way a customer would.
Selling scrip in large blocks is more efficient for
the vendor since the communication and finan
cial transaction costs are amortized over all the
pieces of scrip. We presume that the vendor
offers some sort of volume discount to encourage
brokers to buy large blocks of scrip. The broker
makes a profit when it resells the scrip to cus
tomers at full price. The vendor depends on the
broker to ensure any customer properties
encoded in the scrip.

Licensed Scrip Production
If a broker’s customers buy a lot of scrip for a
specific vendor, it may be desirable for a vendor
to “license” the broker to produce vendor scrip.
This means that the broker generates scrip that
the vendor can validate and accept. The vendor
sells the broker the right to generate scrip using a
given master_scrip_secret, series of scrip
ID#’s, master_customer_secret, and series
of customer identifiers. The vendor can validate
the licensed scrip because the master_scrip_
secret is known from the series of the scrip
ID# and the master_customer_secret is
known from the series of the customer identifier.

Brokers produce the scrip and collect money
from customers; vendors record the total value of
scrip originating from a particular broker. When
all the scrip produced under a particular contract
has expired, brokers and vendors can settle up.
The broker presumably takes some commission
for producing the scrip.

A license covers a specific series (unique range
of identifiers—ID#’s) of scrip for a given period
of time, and the secrets shared between the bro
ker and vendor only apply to that series. A ven
dor can issue licenses to different brokers by giv
ing out different series and secrets to each one.

World Wide Web Journal 611

Of course, a vendor can produce its own scrip
using its own private series and secrets.

Licensing scrip production is more efficient for
the vendor and broker than the scrip warehouse
model. There is less communication because the
license is smaller to transmit than a few pieces of
scrip. The vendor does less computation since it
does not have to generate the scrip itself. The
broker does not have to store large blocks of
scrip, since it can generate the scrip on demand.
Additionally, it allows the broker to encode spe
cific user properties into each piece of scrip it
generates.

Multiple Brokers
In an environment where there are multiple bro
kers, a customer of one broker may want to
make a purchase from a vendor associated with
another broker. If the vendor only wants to have
an account with its own broker (perhaps to sim
plify accounting), the customer will have to go
through the vendor’s broker to buy vendor scrip.

The entire transaction will go like this:

• The customer asks his broker for vendor
scrip.

• The customer’s broker tries to set up an
account with the vendor.

• The vendor telLs the customer’s broker his
broker’s name.

• The customer’s broker buys broker scrip
from the vendor’s broker.

• The customer’s broker returns the vendor’s
broker’s scrip to the customer.

• The customer buys vendor scrip from the
vendor’s broker.

• The customer uses the vendor scrip at the
vendor.

The idea of licensed scrip production can be
extended so that brokers can generate broker
scrip for other brokers.

Customer, Broker, and Vendor Interactions
The following diagrams (Figures 5-10) present
the steps for a complete Millicent session (includ
ing the broker buying scrip from the vendor).
The initial step (Figure 5) happens only once per
session. The second step (Figure 6) happens
each time the customer has no stored scrip for a
vendor. Step three (Figure 7) happens only if the
broker must contact the vendor to buy the scrip.
It is not needed for licensed scrip production.
The fourth step (Figure 8) shows the broker
returning the vendor scrip to the customer. The
fifth step (Figure 9) shows the customer using the
scrip to make a purchase from the vendor.

The last step (Figure 10) shows a typical Millicent
transaction. The customer already has vendor
scrip and uses it to make a purchase. There are
no extra messages or interactions with the bro
ker.Status
We have produced an initial implementation of
Millicent [91 consisting of a set of libraries, and a
vendor and broker written using the libraries for
Millicent transactions across a network using
TCP/IP. Our measurements show that the Milli
cent protocol is efficient enough for sub-cent
purchases. Our untuned vendor implementation
can validate about 1000 Millicent requests per
second (on a Digital AlphaStation 400 4/233)
and, of that, most of the time goes into the TCP
connection handling.

Using zero-cost transactions, Millicent scrip can
be used as a distributed capability. Using this
aspect of scrip, our first application of Millicent is
in a Kerberos-like [5] authentication suite for our
network firewall services. We have modified a
SOCKs [7] based TCP relay, rlogin daemon, FTP
daemon, and rlogin, telnet, and FTP clients to use
Millicent scrip to convey authentication informa
tion. A user does one cryptokey (cryptographic
challenge/response) authentication to get scrip

612 Fourth International World Wide Web Conference Proceedings

Vendor

Customers buy
services with

vendor scrip
Vendor returns

result and “change”

Customer Broker

Figure 5: The client makes a secure connection to the broker to get some broker scrip

Vendor

Figure 6:

Figure 7:

Customers use
“change” for their

next

Customer Broker

If the client doesn't already have scrip for a particular vendor, he contacts the broker to buy
some using his broker scrip

Master customer secret 2
Master customer secret 3
Master customer secret 4

I Vendor I Value | ID# | Cust ID# | Expires | Props |

__ ’
I Cust ID# 11 Master customer secret 31

Customer
Secret

Hash

If the broker doesn’t already have scrip for that vendor, he buys some from the vendor

Hash i Request Signature |

e I

L

T
Compare

ir t
I Request 11 Scrip 11 Customer Secret 11 Request Signature |

Figure 8: The broker returns vendor scrip and change (in broker scrip) to the client

World Wide Web Journal 613

Master scrip secret 4
Master scrip secret 5
Master scrip secret 6

_______ ________I I_________ ________________ _______ I
 I Vendor I Value | ID# | Cust ID# | Expires [Props Master scrip secret 5 |

L J

_ |Certificate[- Hash

Customer

Figure 9: The customer uses the vendor scrip to make a purchase from the vendor. The vendor returns
change (in vendor scrip) to the client

Master scrip secret 4
Master scrip secret 5
Master scrip secret 6

r 1
-►I Vendor I Value | ID# [Cust ID# | Expires | PropT"]! Master scrip secret 5 |

L J

»I Certificate

Customer
Compare

|Certificate| <— Hash

Figure 10: The customer continues using the change to make more purchases

from an authentication broker. Then, for the rest
of the day, the user can use the authentication
scrip to buy scrip for particular firewall services.

We are also working on Millicent-based World
Wide Web (WWW) services. We have developed
a local pseudo-proxy that intercepts all requests
from the client’s WWW browser and modifies the
HTTP header to add scrip as necessary. The
WWW server checks the HTTP request for suffi
cient scrip to buy the page and returns the page
with change in the HTTP response. The pseudo
proxy extracts the change before forwarding the
response to the browser. When Millicent

becomes popular, the functionality of the
pseudo-proxy can be integrated in with the
browser.Future and Applications
The range of potential applications for Millicent
is quite broad. With current technology, Millicent
is appropriate for transactions from a few dollars
to as little as one-tenth of a cent. The upper
bound comes from the trust model for brokers
and the availability of alternative protocols
appropriate for transactions above a few dollars.

614 Fourth International World Wide Web Conference Proceedings

while the lower bound comes from a conserva
tive estimate based on the computational costs of
a broker. This price range covers most print and
information services that will be available in an
online format—magazines, newspapers, encyclo
pedias, indices, newsletters, and databases.

MacKie-Mason and Varian [8] argue that as the
Internet develops there will be increasing pres
sure for usage-based charges. Current free Inter
net services like email, file transfers, the Internet
telephone, and teleconferencing will have to be
paid for. At the lowest level, they estimate that
the cost of transmitting one packet on the Inter
net backbone is one six-hundredth of a cent. We
don’t believe that Millicent is quite efficient
enough for such packet-level charges; for these
there are proposals like the noncryptographic
Digital Silk Road [4]. We do believe that Millicent
can be used for per-connection charges for these
services.

1X}Y
Is the result of encrypting X witli a crypto
graphic function, such as DES, under the key
Y

A->B: X
Means that A sends X to B

Before giving the protocol, we describe its fields.
First, we list some of the ingredients of scrip;
scrip includes the name of the vendor, some
properties of the customer, a value, and an expi
ration time:

vendor_id:
A unique identifier (or name) for the vendor

props:
Any data describing customer properties
(possibly including a name)

value:
The value of the scripConclusion exp:
The expiration time for the scrip

We see growing opportunities for inexpensive
Internet services. These services need an appro
priate electronic commerce protocol. We believe
that the Millicent protocol is a good candidate to
be that protocol. ■Appendix
The following is a more precise description of
the Millicent protocol for customer and vendor.
The interaction between customer and broker
relies on the same protocol, as explained in the
main body of the paper.

We use the following notations:

X, Y, Z
Represents the string encoding the tuple X,
Y, Z

H(X)
Is the result of hashing X with a crypto
graphic hash function, such as MD5

The customer and the vendor generate a request
and a reply. Both of these are arbitrary strings.

request:
The request from the customer

reply:
The reply from the vendor. (We assume that,
by its format, reply is distinguishable from
request.)

In addition, the protocol relies on various secrets,
and on corresponding identifiers for those
secrets:

master_scrip_secret:
A secret used for certifying scrip. The
master_scrip_secret is known only to
the vendor (when the vendor produces his
own scrip) or only to the vendor and to the
broker (when the broker may produce
scrip).

id_series#:
An identifier for master_scrip_secret.

World Wide Web Journal 615

The vendor can map id_series# to
inaster_scrip_secret.

ity of scrip_body for the customer associ
ated with cust_id#.

id_sequence#:
A unique identifier, such as a sequence
number. The vendor accepts id_
secjuence# for at most one transaction in
conjunction with id_series#.

scrip = scrip_body, cert
The vendor or the broker gives scrip to
the customer; the customer presents it to the
vendor along with a request.

id# = id_series#, id_seciuence#

master_custonier_secret:
A secret used for producing customer
secrets. The master_custonier_secret
is known only to the vendor and to the bro
ker.

cust_id_series#:
An identifier for master_customer_
secret. The vendor can map cust_id_
series# to master_customer_secret.

cust_id_sequence#:
A unique identifier, such as a sequence
number. Together with cust_id_
series#, it identifies the customer.

For change returned from a transaction, the ven
dor issues new scrip, with a new certificate. The
new quantities may differ from the previous ones
in all their components except for cust_id#
and vendor_id. If the broker initially knows
master_scrip_secret and this quantity
remains the same, then the broker is in principle
capable of producing change instead of the ven
dor. This may not be desirable, since it implies
unnecessary trust from the vendor to the broker;
hence, when the vendor makes change, it is sen
sible for the vendor to use a new master_
scrip_secret not known to the broker. In any
case, the vendor should pick a new value for
id# as a protection against replays. We write
scrip' for the new scrip.

cust_id# cust_id_series#, cust_
id_seguence#

• In the clear (insecure)
customer -> vendor: scrip, request
vendor -> customer: scrip', reply

customer_secret H(cust_id#,
master_customer_secret)
A secret that the vendor or the broker sends
to the customer. The customer gets this
quantity along with cust_id# (but not
master_customer_secret); the customer can
map vendor_id and cust_id* to customer_
secret. Both the vendor and the broker can
generate customer_secret from cust_id# and
master_customer_secret. No one else knows
customer_secret.

Scrip is generated by combining all of the fields
listed above, as follows:

id_material = vendor_id, id#, cust_id#
cert_material = props, value, exp
scrip_body = id_material, cert_material

• Authentic and private
customer -> vendor: vendor_id, cust_

id#, {scrip, request) customer_
secret

vendor -> customer: vendor_id, cust_
id#, {scrip', cert,
reply)customer_secret

Most of the communication is under
customer_secret for authenticity and
privacy. It is possible to encrypt less, with a
gain in efficiency. For example, some parts
of scrip' are not sensitive and could be
sent in the clear.

The response includes cert in order to
allow the customer to check that the

cert H(scrip_bodY, master_scrip_
secret)
This is a certificate that proves the authentic-

616 Fourth International World Wide Web Conference Proceedings

response received is in fact a response to the
request.

Both messages include vendor_id and
cust_id# in the clear in order to allow the
recipient to generate customer_secret.

• Authentic but not private
customer->vendor: scrip, request,

H(scrip, request, customer_
secret)

vendor->customer: scrip', reply,
H(scrip', cert, reply, customer_
secret)

All messages are sent in the clear, but they are
protected by the signatures (based
customer_secret).

on

No encryption is used and only five hashes are
necessary at the server to handle a request. The
hashes are: (1) for checking the old scrip, (2) for
regenerating customer_secret, (3) for check
ing the customer’s signature, (4) for generating
the new scrip, and (5) for signing the response.

The response includes cert in order to allow
the customer to check that the response received
is in fact a response to the request.

Both messages include vendor_id and cust_
id# in the clear (in scrip and scrip') so the
recipient can generate customer_secret.

References
1. CyberCash Inc., URL: http://www.cybercash.com/
2. DigiCash Inc., bttp://www.digicash.com/

3. First Virtual Holdings Inc., URL: http://wuiw.fv.
com/

4. Norman Hardy and Eric Dean Tribble, The Digital
Silk Road, ftp://ftp.netcom.com/pub/jo/joule/DSR/
DSRl.txt.gz or http://web.gmu.edu:80/bcox/Bion-
omics/Extropians/HardyTribbleSilkRoad.html

5. J. Kohl and C. Neuman, The Kerberos Network
Authentication Service (V5), IETF RFC 1510,
gopher://ds2. intemic. net/00/rfc/rfcl510. txt

6. Xuejia Lai, On the Design and Security of Block
Ciphers, Institute for Signal and Information Pro
cessing, ETH-Zentrum, Zurich, Switzerland, 1992.

7. M. Leech, M. Ganis, Y. Lee, et al., SOCKS Protocol
Version 5, draft-ietf-aft-socks-protocol-v5-04.txt.

http://src.doc.ic.ac.uk/computing/intemet/inter-
net-drafts/draft-ietf-aft-socks-protocol-v5-O4.txt.Z

8. Jeffrey K. MacKie-Mason, and Hal R. Varian. Some
FAQs about usage based pricing. University of
Michigan, September 1994, ftp://gopher.econ.lsa.
umich.edu/pub/Papers useFAQs.html

9. Mark S. Manasse, A Method for Low Priced Elec
tronic Commerce, Patent pending, http://ivivw.
research.digital.com/SRC/personal/Mark_Manasse/
uncommon/ucom.html

10. National Institute for Standards and Technology
(NIST), Data Encryption Standard CDES), Federal
Information Processing Standards Publication 46-
2, December 1993, http://www.ncsl.nist.gov/fips/
fips46-2.txt

11. National Institute for Standards and Technology
(NIST), Secure Hash Standard, FIPS PUB 180-1:
Secure Hash Standard, April 1995, http://csrc.ncsl.
nist.gov/fips/fipl80-l .txt

12. NetBill, Carnegie Mellon University, http://ivww.
ini.cmu.edu/netbill/

13. Netscape Inc., SSL Protocol, http://home.netscape.
com/newsref/std/SSL.html

14. Open Market Inc., http://www.openmarket.com/
15. R. Rivest, The MDS Message-Digest Algorithm, IETF

RPC 1321, gopher://ds2. intemic. net/OO/rfc/
rfci32i.txt

16. RSA Inc., PKCSrrl: RSA Encryption Standard,
http://www. rsa. com/pub/pkcs/ps/pkcs-1 .ps

17. RSA Inc., RSA’s Frequently Asked Questions About
Today’s Cryptography, http://utww.rsa.com/rsal-
abs/faq/faq_misc.htmlrrmisc.6About the Authors

Martin Abadi
[http://www.research.digital.com/people/Martin_
Abadi/bio.html]
Systems Research Center, Digital Equipment Cor
poration
ma@pa.dec.com

Paul Gauthier
[hUp://www.cs.berkeley.edu/~paiithierA
University of California Berkeley
gauthier@cs. berkeley.edu
Paul Gauthier is a Ph.D. student at the University
of Califoria, Berkeley. He was a summer intern at
SRC in Summer, 1995.

World Wide Web Journal 617

http://www.cybercash.com/
bttp://www.digicash.com/
http://wuiw.fv
ftp://ftp.netcom.com/pub/jo/joule/DSR/
http://web.gmu.edu:80/bcox/Bion-omics/Extropians/HardyTribbleSilkRoad.html
gopher://ds2
http://src.doc.ic.ac.uk/computing/intemet/inter-net-drafts/draft-ietf-aft-socks-protocol-v5-O4.txt.Z
ftp://gopher.econ.lsa
umich.edu/pub/Papers
http://ivivw
research.digital.com/SRC/personal/Mark_Manasse/
http://www.ncsl.nist.gov/fips/
http://csrc.ncsl
nist.gov/fips/fipl80-l
http://ivww
ini.cmu.edu/netbill/
http://home.netscape
http://www.openmarket.com/
gopher://ds2
http://utww.rsa.com/rsal-abs/faq/faq_misc.htmlrrmisc.6
http://www.research.digital.com/people/Martin_
mailto:ma@pa.dec.com
hUp://www.cs.berkeley.edu/%7EpaiithierA
berkeley.edu

Steve Glassman
[http://WWW. resea rch .digital. com/people/Steve_
Glassman/bio.html}
Systems Research Center, Digital Equipment Cor
poration
steveg@pa. dec.com

Mark S. Manasse
[http://www.research.digital.com/people/Mark_
Manasse/bio.html]

Systems Research Center, Digital Equipment Cor
poration
msm@pa.dec.com

Patrick Sobalvarro
[http://www.psg.lcs.mit.edu:80/~pgsA
Massachusetts Institute of Technology
pgs@lcs.mit.edu
Patrick Sobalvarro is a Ph.D. student at the Mas
sachusetts Institute of Technology. He was a
summer intern at SRC in Summer, 1995.

618 Fourth International World Wide Web Conference Proceedings

dec.com
http://www.research.digital.com/people/Mark_
mailto:msm@pa.dec.com
http://www.psg.lcs.mit.edu:80/%7EpgsA
mailto:pgs@lcs.mit.edu

