L)

Check for
updates.

THE BOOMERANG WHITE PAPER
A PAGE AS YOU LIKE IT

Curtis E. Dyreson, Anthony M. Sloane

Abstract
Boomerang is a dynamic HTML page reconfiguration system. A user accesses Boomerang via the Com-
mon Gateway Interface. The user supplies a page name and a template, Boomerang fetches the
requested page and uses the template to reconfigure it. The template is a sequence of string manipula-
tion rules. The rules are written in a simple regular expression-based pattern matching language. Boo-
merang also parses HIML variables in forms and query strings and makes those variables available in
the template. By taking advantage of Boomerang’s dynamic page reconfiguration features, users can
easily add navigational links, suppress images, redefine HIML tags, and reshape a page as desired.
Since Boomerang is reached through the Common Gateway Interface and understands HIML vari-
ables, Boomerang can also be used as a general form-bandling script. Several examples are given to
show the utility of Boomerang. Boomerang is compatible with existing browsers and servers and does
not compromise their security. Keywords: HTML, document reconfiguration, structural regular

expressions, parameterized documents, CGI

Introduction

Hypertext document authors control how infor-
mation on the World Wide Web is structured and
presented. The authors write the raw text,
include the appropriate HTML (HyperText
Markup Language) tags, and insert all the links to
other Web documents. In many cases, users are
satisfied with the presentation because authors
work hard to present that information in the best
possible manner. But in some cases, there is a
large gap between how the author has presented
the information and how the user wants to view
it.

An example is the lack of “return to point-of-
entry” links in documents [2]. Suppose that the
Web page authors at ACME On-line Shopping
want to build an Internet mall. The mall will con-
sist of a number of stores, each selling various
items. It is reasonable to assume that each store
is a unique hypertext document that is designed,
developed, and maintained independently. Typi-
cally a store will be a sequence of forms that per-
mit users to view items for sale, select items to
purchase, enter payment information for those

World Wide Web Journal

items, etc. The mall itself will have a single “wel-
come” page. The welcome page is a list of store
categories (e.g., shoe stores, clothing stores, etc.)
so that the user can quickly find stores selling
products that the user needs. Within a mall a
shopper can enter a store under several different
categories. For example, a sporting goods store
could be listed under athletic equipment as well
as shoes and clothing. Leaving the store should
return the shopper to the list of stores in a cate-
gory. That is, if the customer entered from shoes,
the customer should return to the list of shoe
stores. But since stores are independently written
and maintained, one cannot assume that they will
have “exit” buttons or links. Furthermore, even if
an exit button is included in each store since a
store may be entered from many different loca-
tions (e.g., a sporting goods store may sell shoes,
clothing, and athletic equipment and can be
entered from all three places), it is impossible to
anticipate in advance to where the shopper
should be returned.

In other situations, a user may simply prefer a
presentation different than what is provided by
the document author. A common example is the

667

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3592626.3592680&domain=pdf&date_stamp=1995-12-11

(over)use of images. Eye-popping colorful
images are important for capturing the imagina-
tion of first-time document visitors, but in subse-
quent visits images tend to be of diminishing
importance. In fact, they are often a source of
irritation since images are large and slow browser
response times. (Some browsers, such as
Netscape, allow document navigation before
images are fully retrieved, thus mitigating the
problem of waiting for image retrieval.) Some
authors maintain text-only and picture-only ver-
sions of documents, in part, to address this issue.
(And in part to allow access by nonimage-sup-

porting browsers such as Lynx.)

In both of these examples, supporting the
desired functionality depends on the user’s ability
to dynamically reconfigure a document. An alter-
native to requiring document authors to maintain
multiple versions of documents is to allow users
to dynamically configure pages so that they can
specify whether or not to include images [5]. In
the absence of exit buttons, users should be
allowed to enhance the document by adding
such buttons.

This paper describes a system called Boomerang
that supports dynamic reconfiguration of HTML
documents. Boomerang allows users to control
how information is presented. The two examples
given above are only a tiny fraction of the power
of reconfiguration. Users can (temporarily) add
navigational buttons to pages, suppress images,
combine information from multiple pages, rede-
fine tags, and redesign poorly presented pages.
But reconfiguration also helps document authors.
It aids document reusability, allows individual
users to be tracked, and creates a new class of
hypertext documents, which we call parameter-
ized documents.

This paper is organized as follows: The next sec-
tion gives an overview of Boomerang and
broadly discusses how Boomerang can reconfig-
ure a page. That discussion is followed by a
description of Boomerang’s architecture. The
heart of the architecture is a reconfiguration
engine that can parse and rearrange a page. The

668

engine is controlled by the user through a recon-
figuration language, which is defined in the sec-
tion “Boomerang Templates.” The language bor-
rows heavily from the sam editor [3]. Several
examples are given in the section “Boomerang
Examples” to demonstrate the utility of Boomer-

"ang. Finally, security issues, related work, and
future work are presented.

Overview

In a typical browsing session, a user navigates
from page to page. New pages are fetched
through explicit user actions, e.g., a user activates
a link, a submit button, or makes a “hotlist” jump.

Figure 1 shows the typical pattern of browser
behavior. A user requests a page from a server,
and the server returns the requested page.

Boomerang is an “intermediary” or “wrapper”
script that sits between the browser and the
server. When using Boomerang, a user has the
same basic browsing behavior. However, when
fetching new pages Boomerang serves as an
intermediary agent between the user and a
desired page as shown in Figure 2. Instead of
directly requesting a new page, the user activates
a link that starts Boomerang and instructs it to
fetch the desired page. The user also tells Boo-
merang how to reconfigure the page. Boomerang
“intercepts” the page fetch request, fetches the
requested page, and reconfigures it according to
user specification.

Architecture

Boomerang was initially designed to aid the con-
struction and maintenance of a forms document.
A forms document is a special kind of HTML doc-
ument. Like an HTML document, a forms docu-
ment contains a number of related pages. Each
page is raw text interspersed with HTML tags.
Unlike a standard HTML document, the pages in
a forms document can also have one or more
Jforms. A form consists of a number of data-entry

Fourth International World Wide Web Conference Proceedings

Table 1: Boomerang Editing Commands?

a/text/ Append text after dot

c/text/ Change dot to text

d Delete dot

g/regexp/ cmd If dot contains a match with regexp, execute {em cmd/} on dot
i/text/ Insert text before dot

m address
s/regexp/ text/
t address
v/regexp/ cmd
x/regexp/ cmd
v/ regexp/ cmd

< prog args...

> prog args...

| prog args...

Move text in dot to after address

Substitute text for each match of regexp in dot

Copy text in dot to after address

If dot does not contain a match with regexp, execute cmd on dot
Execute cmd with dot set to each match of regexp in dot

Execute cmd with dot set to the strings between adjacent matches of regexp
in dot

Replace dot with the standard output of the UNIX program prog run with
the given arguments

Send dot to the standard input of prog
Replace dot with the standard output of prog when given dot as standard

input

! prog args

Run prog, ignoring any output

! Text can be arbitrary text possibly including newlines; regexp stands for a standard UNIX regular expression

respectively (see the section called “Security” for
a discussion of safe external scripts).

The s command performs a text substitution on
dot, allowing the usual Unix regular expression
notations.

Most of the power of sam (and hence Boomer-
ang) derives from the x, y, g and v commands.
An x command looks through dot for matches
with its regular expression argument. The com-
mand argument is repeatedly executed with dot
set to each of the matches. For example, the
expression

meanings x/WWW/ c/World Wide Web/

returns a list of strings the same as that bound to
the variable meanings except that all occur-
rences of “WWW” have been changed to “World
Wide Web.” In contrast, the expression

$meanings x/WWW/ c/World Wide Web/

returns a list of “World Wide Webs,” one for each
“WWW” in the value bound to meanings. More
usefully, the expression

World Wide Web Journal

meanings x/%/ i//

turns the list of dictionary definitions into a list of
HTML list items (* is a regular expression that
matches the beginning of dot).

The y command is similar to x except that it exe-
cutes the command argument on the strings
between the matches. For example, the following
rule deletes all text in the current page that is not
an HTML tag.

y/<[*>1+>/ 4

(The regular expression [*>]+ matches any
nonempty sequence of characters that does not
contain a >.)

Similarly, the g and v constructs are conditional
constructs. A g (v) command executes its com-
mand argument on dot if it matches (does not
match) the regular expression. For example, the
following expression adds boldface tags to every
definition containing the word “WWW,” not just
to every word “WWW.”

meanings g/WWW/ s/.*//

671

Table 2:

e Dot
n Line n
/regexp/ First following match of regexp

-/regexp/ First previous match of regexp

Boomerang Addresses: in the + and - Forms, a Defaults to . and b Defaults to 1

a+b Address b from the right end of a
a--b Address b from the left end of a

ab Left end of a to the right end of b
a:b Like a, b but sets dot after evaluating

(In an s command, & stands for the text matched
by the regular expression.)

The definition of dot can be altered using
addpresses as supported by sam (summarized in
Table 2 based on Table II of [3]). The most useful
form of address is one that is relative to dot. For
example, the address / regexp/ finds the next
match with regexp after dot. Similarly, —/ regexp/
finds the first previous match before dot.
(Addresses of this kind can be usefully used in
conjunction with x commands.) If regexp is
replaced by a number then these forms count by
lines in the indicated direction. An address of the
form a,b means from the beginning of the text
denoted by a to the end of the text denoted by 4.

Addresses enable complex editing tasks to be
expressed concisely. For example, the following
rule deletes the last item from each unnumbered
list in the current page by finding the end of each
list, searching backwards for the last item and
deleting from there to the beginning of the line
containing the end of the list.

x/<\/UL>/ -//,-1 d

The m and t commands allow addresses to be
used as targets for the text in dot to allow arbi-
trary text rearranging. For example, the following
command copies all form submit buttons to the
top of the form.

x/<INPUT TYPE="SUBMIT"/
<FORM>/

we 2l & 0F

Template Bodies

Once all of the template rules have been exe-
cuted, Boomerang instantiates the template body
to produce the reconfigured page. The body can
contain arbitrary text and will normally include
HTML tags for markup. To enable variable values
to be included in the final page, the body can

672

also include text of the form $var, where varis a
Boomerang variable name. During instantiation,
Boomerang replaces variable references with the
concatenation of the strings bound to the vari-
able. For example, below we show a body that
might be used to produce a page for inclusion in
an online dictionary.

<TITLE>Definition of $word</TITLE>
<BODY>

$word has the following meanings:

<P>

Smeanings

</BODY>

Boomerang Examples

In this section we give several examples of tem-
plates to demonstrate the power and utility of
Boomerang. Each example addresses a standard
reconfiguration problem faced by a typical user
or author.

Suppress Images

This template finds all <IMG. . .> tags in a page
and replaces them with the string “Image
Replaced.” (The lines starting with %% are com-
ments.)

%% Prologue Suppress
x/<IMG[">]*> c/Image Replaced/
%% Body

$page

Return to Point of Entry

The template given below adds a return to point
of entry link to the bottom of a page. We assume
that the link URL is passed to Boomerang in the
returnlink variable (in a query string or as a
hidden variable).

Fourth International World Wide Web Conference Proceedings

Template Composition

Boomerang actions can be combined by specify-
ing multiple templates. The templates are applied
one at a time from the beginning to the ending of
the list. The following link combines most of the
previous reconfigurations; that is, it suppresses
images, adds a return to point of entry link, dis-
plays an access counter: We give the link below.

<A HREF="http://server/cgi-bin/
Boomerang?template=Control,
Counter,Return, \ Suppress&url=base.
html&returnlink=home.html">

Page Decompression and
Decryption

In general, the fetched page does not have to
even remotely resemble HTML; it could for
instance be a LaTeX document. In this example,
we assume that the page is encrypted and then
compressed, with .Z or .gz compression. The
decryption key must be passed to Boomerang in
the key variable. We assume that uncompress
and gunzip are in the list of safe commands as
described in the section “Security.”

%% Prologue

set page $url g/.gz/ < gunzip $url |
decrypt Skey

set page $url g/.Z/ < uncompress $url |
decrypt Skey

%% Body

$page

A Parameterized Page

A parameterized page is a page that mentions
one or more variables. When the page is
retrieved, the variables are replaced by their val-
ues (the values are passed in the query string or
as HTML variables). Boomerang trivially supports
parameterized pages. For example, the following
“Welcome” page is parameterized by the name
variable.

%% Prologue

%% Body

<HEAD>

<TITLE> Welcome </TITLE>
< /HEAD>

674

<BODY>
Good morning $name
</BODY>

Additional Benefits

The previous examples illustrate some of Boo-
merang’s power. Boomerang also eases the bur-
den of writing a sequence of WWW forms and
that sequence with other
sequences. One problem faced by forms docu-
ment authors is that the HTML is “hidden” in
scripts. Most often, changes to forms documents
are to the layout of a page, ie., to the HTML
rather than to the processing of a form. Such
changes are quite simple to make in HTML, but
become more involved if, as is commonly the
case in a forms document, the page is dynami-
cally generated during execution of a script. Even
knowledgeable HTML authors cannot make sim-
ple changes to the page layout (such as the addi-
tion of a link) since they often do not understand
the scripting language or script. Only authors that

integrating such

know HTML, the scripting language, and the
structure of the script are able to make changes
to a forms document. Moreover, hiding pages in
scripts makes it difficult to integrate pages
designed by WYSIWYG HTML editors.

In contrast, Boomerang favors HTML over a
scripting language. Boomerang presents a stan-
dardized notation for processing WWW forms, so
it can be used by expert programmers to better
code and document their scripts. Moreover, by
using Boomerang to describe the essential HTML
interaction, commonalities between scripts in a
variety of languages can be identified, supporting
script reuse and the mix of form-handlers written
in disparate languages.

Boomerang also can be used to easily integrate
output from WYSIWYG editors with scripts.

Security

Security is an important concern on any Server.
In Boomerang, a user can create a template that
executes scripts on the server. This is a powerful

Fourth International World Wide Web Conference Proceedings

http://server/cgi-bin/

http://www.cs.jcu.edu.au/
http://www.cs.jcu.edu.au/%7Ecurtis%257d
mailto:curtis@cs.jcu.edu.au
mailto:tony@cs.jcu.edu.au

