
The Boomerang White Paper
A Page as You Like It

Curtis E. Dyreson, Anthony M. Sloane

Abstract
Boomerang is a dynamic HTML page reconfiguration system. A user accesses Boomerang via the Com
mon Gateway Interface. The user supplies a page name and a template, Boomerang fetches the 
requested page and uses the template to reconfigure it. The template is a sequence of string manipula
tion rules. The rules are written in a simple regular expression-based pattern matching language. Boo
merang also parses HTML variables in forms and query strings and makes those variables available in 
the template. By taking advantage of Boomerang’s dynamic page reconfiguration features, users can 
easily add navigational links, suppress images, redefine HTML tags, and reshape a page as desired. 
Since Boomerang is reached through the Common Gateway Interface and understands HTML vari
ables, Boomerang can also be used as a general form-handling script. Several examples are given to 
show the utility of Boomerang. Boomerang is compatible with existing browsers and servers and does 
not compromise their security. Keywords: HTML, document reconfiguration, structural regular 
expressions, parameterized documents, CGI

Introduction
Hypertext document authors control how infor
mation on the World Wide Web is structured and 
presented. The authors write the raw text, 
include the appropriate HTML (HyperText 
Markup Language) tags, and insert all the links to 
other Web documents. In many cases, users are 
satisfied with the presentation because authors 
work hard to present that information in the best 
possible manner. But in some cases, there is a 
large gap between how the author has presented 
the information and how the user wants to view 
it.

An example is the lack of “return to point-of- 
entry" links in documents [2], Suppose that the 
Web page authors at ACME On-line Shopping 
want to build an Internet mall. The mall will con
sist of a number of stores, each selling various 
items. It is reasonable to assume that each store 
is a unique hypertext document that is designed, 
developed, and maintained independently. Typi
cally a store will be a sequence of forms that per
mit users to view items for sale, select items to 
purchase, enter payment information for those 

items, etc. The mall itself will have a single “wel
come” page. The welcome page is a list of store 
categories (e.g., shoe stores, clothing stores, etc.) 
so that the user can quickly find stores selling 
products that the user needs. Within a mall a 
shopper can enter a store under several different 
categories. For example, a sporting goods store 
could be listed under athletic equipment as well 
as shoes and clothing. Leaving the store should 
return the shopper to the list of stores in a cate
gory. That is, if the customer entered from shoes, 
the customer should return to the list of shoe 
stores. But since stores are independently written 
and maintained, one cannot assume that they will 
have “exit” buttons or links. Furthermore, even if 
an exit button is included in each store since a 
store may be entered from many different loca
tions (e.g., a sporting goods store may sell shoes, 
clothing, and athletic equipment and can be 
entered from all three places), it is impossible to 
anticipate in advance to where the shopper 
should be returned.

In other situations, a user may simply prefer a 
presentation different than what is provided by 
the document author. A common example is the

World Wide Web Journal 667

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3592626.3592680&domain=pdf&date_stamp=1995-12-11


(over)use of images. Eye-popping colorful 
images are important for capturing the imagina
tion of first-time document visitors, but in subse
quent visits images tend to be of diminishing 
importance. In fact, they are often a source of 
irritation since images are large and slow browser

(Some browsers, such as ' ang. Finally, security issues, related work, andresponse times.
Netscape, allow document navigation before 
images are fully retrieved, thus mitigating the 
problem of waiting for image retrieval.) Some 
authors maintain text-only and picture-only ver
sions of documents, in part, to address this issue. 
(And in part to allow access by nonimage-sup- 
porting browsers such as Lynx.)

In both of these examples, supporting the 
desired functionality depends on the user’s ability 
to dynamically reconfigure a document. An alter
native to requiring document authors to maintain 
multiple versions of documents is to allow users 
to dynamically configure pages so that they can 
specify whether or not to include images [51. In 
the absence of exit buttons, users should be 
allowed to enhance the document by adding 
such buttons.

This paper describes a system called Boomerang 
that supports dynamic reconfiguration of HTML 
documents. Boomerang allows users to control 
how information is presented. The two examples 
given above are only a tiny fraction of the power 
of reconfiguration. Users can (temporarily) add 
navigational buttons to pages, suppress images, 
combine information from multiple pages, rede
fine tags, and redesign poorly presented pages. 
But reconfiguration also helps document authors. 
It aids document reusability, allows individual 
users to be tracked, and creates a new class of 
hypertext documents, which we call parameter
ized documents.

This paper is organized as follows: The next sec
tion gives an overview of Boomerang and 
broadly discusses how Boomerang can reconfig
ure a page. That discussion is followed by a 
description of Boomerang’s architecture. The 
heart of the architecture is a reconfiguration 
engine that can parse and rearrange a page. The 

engine is controlled by the user through a recon
figuration language, which is defined in the sec
tion “Boomerang Templates.” The language bor
rows heavily from the sam editor [31. Several 
examples are given in the section “Boomerang 
Examples” to demonstrate the utility of Boomer

future work are presented.

Overview
In a typical browsing session, a user navigates 
from page to page. New pages are fetched 
through explicit user actions, e.g., a user activates 
a link, a submit button, or makes a “hotlist” jump.

Figure 1 shows the typical pattern of browser 
behavior. A user requests a page from a server, 
and the server returns the requested page.

Boomerang is an “intermediary” or “wrapper” 
script that sits between the browser and the 
server. When using Boomerang, a user has the 
same basic browsing behavior. However, when 
fetching new pages Boomerang serves as an 
intermediary agent between the user and a 
desired page as shown in Figure 2. Instead of 
directly requesting a new page, the user activates 
a link that starts Boomerang and instructs it to 
fetch the desired page. The user also tells Boo
merang how to reconfigure the page. Boomerang 
“intercepts” the page fetch request, fetches the 
requested page, and reconfigures it according to 
user specification.

Architecture
Boomerang was initially designed to aid the con
struction and maintenance of a forms document. 
A forms document is a special kind of HTML doc
ument. Like an HTML document, a forms docu
ment contains a number of related pages. Each 
page is raw text interspersed with HTML tags. 
Unlike a standard HTML document, the pages in 
a forms document can also have one or more 
forms. A form consists of a number of data-entry

668 Fourth International World Wide Web Conference Proceedings



widgets that are manipulated by the user and 
then submitted to a form-handling script.

A form has a number of variables. There is one 
variable for each data-entry widget in the form, 
plus any number of “hidden" variables. Hidden 
variables are added by the form’s author to com
municate values to the script (e.g., to pass state 
information through a sequence of forms). When 
a form is submitted, the variables are formatted 
as a list of name/value pairs and passed as a 
string to the script.

A user may also invoke a script via a hypertext 
link. In such situations, input to the script is 
passed in a “query string.” The query string also 
consists of name/value pairs.

As described in the Overview, Boomerang is an 
“intermediary” agent which sits between the user 
and the server. Boomerang is a script. A browser 
invokes Boomerang when a user activates the 
appropriate hypertext link or submit button. The 
browser passes to Boomerang (either via a query 
string or hidden variables) a URL and a comma- 
separated list of page templates. The URL is either 
the name of a page to fetch or a script to exe
cute. A page template specifies how to reconfig
ure the page. The user may give either the name 
of a file containing the template or might pass the 
template itself. The page is successively reconfig
ured by each template in the list. Examples are 
given in the “Boomerang Examples” section.

Boomerang has three basic components: an 
Input Variable Handler, a Page Fetcher, and a 
Reconfiguration Engine. The components are 
shown in Figure 3. Each component is discussed 
below.

The Input Variable Handler parses the input to 
Boomerang. It strips off the URL and template 
and passes those values to the Page Fetcher, 
along with any input variables or query string 
(since the page to be fetched might be produced 
by a script). The Input Variable Handler also 
maps all HTML variables in the input to Boomer
ang variables. (Boomerang variables are

The Page Fetcher fetches the desired page(s). If a 
page to fetch is produced by a script. Boomerang 
passes the appropriate input to the script, exe
cutes the script, and collects the output. Other
wise, Boomerang simply reads the page. As 
regards fetching pages, the Page Fetcher dupli
cates some server functionality, since servers usu
ally fetch pages. This duplication could be 
avoided by tightly integrating the server with 
Boomerang, but such integration would require 
substantial server modification.

The fetched pages, HTML input variables, and 
page templates are passed (as Boomerang vari
ables) to the Reconfiguration Engine. The Recon
figuration Engine is the heart of Boomerang. It 
dynamically reconfigures the pages as directed 
by the page template producing a final page, 
which is displayed by the browser.Boomerang Templates
The Boomerang Reconfiguration Engine uses 
page templates to describe how a page should be 
reconfigured. A template has two parts: a pro
logue and a body. The prologue specifies rules 
that are used to instantiate Boomerang variables. 
The body is essentially raw text with embedded 
HTML tags just like a regular page, so it can be 
readily produced by HTML authors. In addition, 
the body can contain variable references that are 
expanded by Boomerang using the results of 
executing the prologue rules.

The rest of this section describes the form of pro
logue rules and the semantics of variable substi
tution in bodies. More detailed examples are 
given in the following section.

Variables
Boomerang supports a single flat name space for 
variable bindings. The values bound to variables 
are (possibly empty) lists of strings. For example, 
a variable meanings might denote the possible 
definitions of the word “boomerang” with the fol
lowing list of three strings;

described in the next section.) Australian thin curved hardwood missile

World Wide Web Journal 669



Recoil on originator
A WWW page reconfiguration tool
(Separate strings are shown on separate lines.)

Inputs to the reconfiguration process are sup
plied via predefined Boomerang variables.

• Original page contents. The complete con
tents of the original page is bound to the 
variable page, while the header and body 
of the page are bound to head and body, 
respectively.

• Input variables. Each input variable (i.e., 
data-entry variable or hidden variable in a 
form) is passed as the value of a Boomerang 
variable with the same name. Since an input 
variable can have only a single value, the 
corresponding Boomerang variables initially 
denote a singleton list. Note that Boomerang 
is always invoked with a url and a tem
plate variable. The former identifies the 
page to fetch and the latter the reconfigura
tion desired.

• Input variable names. The Boomerang vari
able args is bound to a list of name/value 
pairs of the input variables (i.e., the HTML 
variables in a form).

Rules
The prologue of a Boomerang template is a list of 
rules. Instantiation of the template consists of 
evaluating the rules in the order given. The result 
is a set of bindings to Boomerang variables that 
are used to substitute variable references in the 
body of the template.

The general form of a Boomerang rule is:

set var exp

and has the effect of evaluating the expression 
exp and binding the result to the variable var. 
Since it is common to simply process the original 
page, a rule of the form:

exp

has the same meaning as:

set page exp

Expressions
The operation of Boomerang expressions is 
based on the editing model of the sam editor[3]. 
The main difference is that Boomerang allows 
any text stored in a variable to be edited and the 
result to be bound to a variable, whereas sam 
commands operate on file buffers.

Boomerang expressions have the following gen
eral form: 

source cmd

Each Boomerang/sam command operates on a 
region of text called dot. Commands can operate 
on the contents of dot and update its value (i.e., 
the region to which it refers). In Boomerang, the 
form of the source for an expression determines 
how dot is set initially for that expression and the 
form of the result of the expression. There are 
two forms of sources:

• var. Dot is successively set to each string in 
the list of strings bound to var and the com
mand is run on each of them. The result of 
the expression is the list of strings consisting 
of the result of each of the command appli
cations.

• $ var. Dot is set to the single string formed 
by concatenating the strings in the list bound 
to var and the command is applied to it. The 
result of the expression is a list containing as 
elements the final value(s) of dot when the 
command finishes.

The value of the source variable is not modified 
by the evaluation of either type of expression, 
but it can be altered by naming the same variable 
as the target of an enclosing rule.

Table 1 (based on Table I in [31) lists the Boomer
ang editing commands. The a, c, d, and i com
mands simply append to, change, delete, or 
insert after dot, respectively. The <, >, and | 
commands allow dot to be set by, passed to, or 
both passed to and set by a “safe” external script.

670 Fourth International World Wide Web Conference Proceedings



Table 1:
a/text/ 

c!text! 

d

Boomerang Editing Commands^

g/regexp! cmd 

1!text!

m address

s!regexp !text!

t address 

V/regexp/ 

x!regexp! 

y!regexp!

cmd

cmd

cmd

< prog args...

> prog 

I prog-

args...

args...

! prog args

Append text after dot
Change dot to text

Delete dot
If dot contains a match with regexp, execute lem cmd/1 on dot
Insert text before dot
Move text in dot to after address

Substitute text for each match of regexp in dot
Copy text in dot to after address

If dot does not contain a match with regexp, execute cmd on dot
Execute cmd with dot set to each match of regexp in dot
Execute cmd with dot set to the strings between adjacent matches of regexp 
in dot
Replace dot with the standard output of the UNIX program prog run with 
the given arguments
Send dot to the standard input of prog

Replace dot with the standard output of prog when given dot as standard 
input
Run prog, ignoring any output

Text can be arbitrary text possibly including newlines; regexp stands for a standard UNIX regular expression

respectively (see the section called “Security” for 
a discussion of safe external scripts).

The s command performs a text substitution on 
dot, allowing the usual Unix regular expression 
notations.

Most of the power of sam (and hence Boomer
ang) derives from the x, y, g and v commands. 
An X command looks through dot for matches 
with its regular expression argument. The com
mand argument is repeatedly executed with dot 
set to each of the matches. For example, the 
expression

meanings x/WWW/ c/World Wide Web/
returns a list of strings the same as that bound to 
the variable meanings except that all occur
rences of “WWW” have been changed to “World 
Wide Web.” In contrast, the expression

$meanings x/WWW/ c/World Wide Web/
returns a list of “World Wide Webs,” one for each 
“WWW” in the value bound to meanings. More 
usefully, the expression

meanings x/''/ i/<LI>/

turns the list of dictionary definitions into a list of
HTML list items ( is a regular expression that
matches the beginning of dot).

The Y command is similar to x except that it exe
cutes the command argument on the strings 
between the matches. For example, the following 
rule deletes all text in the current page that is not 
an HTML tag.
y/< [-'>]+>/ d

(The regular expression [^>]+ matches any 
nonempty sequence of characters that does not 
contain a >.)

Similarly, the g and v constructs are conditional 
constructs. A g (v) command executes its com
mand argument on dot if it matches (does not 
match) the regular expression. For example, the 
following expression adds boldface tags to every 
definition containing the word “WWW,” not just 
to every word “WWW.”

meanings g/WWW/ s/.*/<B></B>/

World Wide Web Journal 671



Table 2: Boomerang Addresses: in the + and - Forms, a Defaults to . and b Defaults to 1

n
/regexp/
-/regexp/

Dot
Line n
First following match of regexp
First previous match of regexp 

(In an s command, & stands for the text matched 
by the regular expression.)

The definition of dot can be altered using 
addresses as supported by sam (summarized in 
Table 2 based on Table II of [3])- The most useful 
form of address is one that is relative to dot. For 
example, the address / regexp! finds the next 
match with regexp after dot. Similarly, -! regexp! 
finds the first previous match before dot. 
(Addresses of this kind can be usefully used in 
conjunction with x commands.) If regexp is 
replaced by a number then these forms count by 
lines in the indicated direction. An address of the 
form a,b means from the beginning of the text 
denoted by a to the end of the text denoted by b.

Addresses enable complex editing tasks to be 
expressed concisely. For example, the following 
rule deletes the last item from each unnumbered 
list in the current page by finding the end of each 
list, searching backwards for the last item and 
deleting from there to the beginning of the line 
containing the end of the list.

x/<\/UL>/ -/<Ll>/,-l d
The m and t commands allow addresses to be 
used as targets for the text in dot to allow arbi
trary text rearranging. For example, the following 
command copies all form submit buttons to the 
top of the form.

x/<INPUT TYPE="SUBMIT"/ .,/>/ t 0/
<FORM>/

Template Bodies
Once all of the template rules have been exe
cuted, Boomerang instantiates the template body 
to produce the reconfigured page. The body can 
contain arbitrary text and will normally include 
HTML tags for markup. To enable variable values 
to be included in the final page, the body can

a+b 

a—b 

a,b 

a;b

Address b from the right end of a 
Address b from the left end of a 
Left end of a to the right end of b 
Like a, b but sets dot after evaluating

also include text of the form $var, where var is a 
Boomerang variable name. During instantiation. 
Boomerang replaces variable references with the 
concatenation of the strings bound to the vari
able. For example, below we show a body that 
might be used to produce a page for inclusion in 
an online dictionary.

<TITLE>Definition of $word</TITLE>
<BODY>
$word has the following meanings:<BR>
<P>
<UL>
$meanings
</UL>
</B0DY>Boomerang Examples
In this section we give several examples of tem
plates to demonstrate the power and utility of 
Boomerang. Each example addresses a standard 
reconfiguration problem faced by a typical user 
or author.

Suppress Images
This template finds all <IMG. . . > tags in a page 
and replaces them with the string “Image 
Replaced..” (The lines starting with %% are com
ments.)

%% Prologue Suppress 
x/<IMGI''>] *> c/Image Replaced/ 
%% Body 
$page

Return to Point of Entry
The template given below adds a return to point 
of entry link to the bottom of a page. We assume 
that the link URL is passed to Boomerang in the 
returnlink variable (in a query string or as a 
hidden variable).

672 Fourth International World Wide Web Conference Proceedings



%% Prologue Return
%% Body
<HEAD>
$head
</HEAD>

x/<A HREF="http:\/\/[^\/]+\// a/cgi- 
bin\/
Boomerang?template=$template&url=/

%% Do the same for forms. Find the

<BODY>
$body
<P>
<A HREF="$returnlink"> Return to Point 

of Entry </A>
</BODY>

%% 
%%
%%

action, skip the server, insert 
the call to Boomerang and hidden 
variables for the template and url

x/<FORM . ACTION="http:\/\/(*\/]+\// a/
cgi-bin\/Boomerang"> \

<INPUT TYPE="hidden"
VALUE="$template">\

NAME="template"

Access Counter

<INPUT TYPE="hidden" 
%% Body 
$page

NAME="url" VALUE="/

Access counters are popular page enhancements. 
An access counter is a count of the number of 
visitors to a page. In this example, we assume 
that the access counter is maintained by the 
script access_count, which updates and 
returns the count for a given URL. In this exam
ple, the URL is passed to access_count on the 
command line; alternatively, it could have been 
passed in standard input.

Track an Individual
Authors are sometimes interested in tracking indi
viduals to determine browsing patterns for a set 
of pages. Individuals can be tracked by reconfig
uring a page to place a unique identifier on each 
link and keeping Boomerang in control. When 
the individual moves to a new page, Boomerang 
is called instead and Boomerang calls the appro
priate script to update the browsing database.

%% Prologue Counter
set count < aocess_oount $url
%% Body
<HEAD>
$head
</HEAD>

%% Prologue Track
%% Check to see if id exists, if not.
%% then generate a new one
set id id g/^$/ < generate_unique_id
%% Update browser database to indicate
%% where the individual is now

<BODY>
This page has been visited $count times.
<p>
$body
</BODY>

! update_browser_db $id $url
%% Transform the links out of the
%%
%%

page to return control to Boomerang 
with tracking enabled

x/<A HREF="http:\/\/[''\/]+\// a/cgi-bin

Keep Boomerang in Control %%
Boomerang?template=Track&url=/ 
and do the same for forms.

This template reconfigures a page so that all links 
out of the page return control to Boomerang. We 
assume that the template variable specifies the 
template(s) to be executed on subsequent pages. 
The URL location and replacement in this exam
ple have been simplified to assume absolute 
links only.

x/<FORM .* ACTION="http:\//[^\/]+\// a/ 
cgi-bin\/Boomerang”> \

<INPUT TYPE="hidden"
VALUE="Track">

NAME="template"

<INPUT TYPE="hidden" NAME="url V;kLUE="!
%% Find each link and add the id to the
%% end of the query string
x/<A HREF="[^"]*/ a/&id=$id/
%% Do the same for forms, but add it as

%% Prologue Control
%% Find each link and make it a
%% Boomerang call with the link
%% passed in the

%% 
%%

a hidden variable just before 
the end of the form

%% url parameter

x/<\/FORM>/ i/<INPUT TYPE="hidden"
NAME="id" VALUE="$id">/

%% Body
$page

World Wide Web Journal 673



Template Composition
Boomerang actions can be combined by specify
ing multiple templates. The templates are applied 
one at a time from the beginning to the ending of 
the list. The following link combines most of the 
previous reconfigurations; that is, it suppresses 
images, adds a return to point of entry link, dis
plays an access counter: We give the link below.

<A HREF="http://server/cgi-bin/ 
Boomerang?template=Control, 
Counter,Return,\ Suppress&url=base . 
html&returnlink=home.html">

Page Decompression and 
Decryption
In general, the fetched page does not have to 
even remotely resemble HTML; it could for 
instance be a LaTeX document. In this example, 
we assume that the page is encrypted and then 
compressed, with .Z or .gz compression. The 
decryption key must be passed to Boomerang in 
the key variable. We assume that uncompress 
and gunzip are in the list of safe commands as 
described in the section “Security.”

%% Prologue
set page $url g/.gz/ < gunzip $url | 

decrypt $key
set page $url g/.Z/ < uncompress $url | 

decrypt $key
%% Body
$page

A Parameterized Page
A parameterized page is a page that mentions 
one or more variables. When the page is 
retrieved, the variables are replaced by their val
ues (the values are passed in the query string or 
as HTML variables). Boomerang trivially supports 
parameterized pages. For example, the following 
“Welcome” page is parameterized by the name 
variable.

%% Prologue
%% Body
<HEAD>
<TITLE> Welcome </TITLE>
</HEAD>

<BODY>
Good morning $name
</BODY>

Additional Benefits
The previous examples illustrate some of Boo
merang’s power. Boomerang also eases the bur
den of writing a sequence of WWW forms and 
integrating that sequence with other such 
sequences. One problem faced by forms docu
ment authors is that the HTML is “hidden” in 
scripts. Most often, changes to forms documents 
are to the layout of a page, i.e., to the HTML 
rather than to the processing of a form. Such 
changes are quite simple to make in HTML, but 
become more involved if, as is commonly the 
case in a forms document, the page is dynami
cally generated during execution of a script. Even 
knowledgeable HTML authors cannot make sim
ple changes to the page layout (such as the addi
tion of a link) since they often do not understand 
the scripting language or script. Only authors that 
know HTML, the scripting language, and the 
structure of the script are able to make changes 
to a forms document. Moreover, hiding pages in 
scripts makes it difficult to integrate pages 
designed by WYSIWYG HTML editors.

In contrast. Boomerang favors HTML over a 
scripting language. Boomerang presents a stan
dardized notation for processing WWW forms, so 
it can be used by expert programmers to better 
code and document their scripts. Moreover, by 
using Boomerang to describe the essential HTML 
interaction, commonalities between scripts in a 
variety of languages can be identified, supporting 
script reuse and the mix of form-handlers written 
in disparate languages.

Boomerang also can be used to easily integrate 
output from WYSIWYG editors with scripts.

Security
Security is an important concern on any server. 
In Boomerang, a user can create a template that 
executes scripts on the server. This is a powerful

674 Fourth International World Wide Web Conference Proceedings

http://server/cgi-bin/


tool for users since it allows a limited form of 
CGI-bin programming without actually creating a 
script to reside in CGI-bin. Conceptually, this 
does not create a new security hole since servers 
should already ensure that each CGI-bin script, 
executed independently, is a “safe” script, regard
less of the input it receives. However, since Boo
merang makes it easier for users to execute 
scripts, it potentially permits outsiders to quickly 
probe for “unsafe” scripts. To patch this potential 
security hole. Boomerang can only execute 
scripts that are on a list of safe scripts. The list is 
created and maintained by the server administra
tors.

Related Work
Sato describes a LISP-based system for dynami
cally rewriting HTML [4]. In Sato’s system, the 
author must first write a page (or simple text file, 
with tags of the author’s choosing) and a LISP 
program that converts that file to HTML. When a 
client requests the document the server instead 
returns the LISP program. The LISP program is 
then executed on the client’s machine and con
verts the text file (fetched from the server) into 
HTML. The rewriting is in cooperation with the 
author since the author supplies the LISP pro
gram. In contrast, Boomerang does not depend 
on author cooperation. Users reconfigure docu
ments without involving the author at any stage. 
Boomerang also has a different implementation 
strategy. Sato uses MIME types and the Content 
meta resource in a page header to implement his 
system. Boomerang uses the Common Gateway 
Interface. Consequently, Boomerang has access 
to the variables in a form and supports parame
terized documents. Boomerang shares the view 
espoused by Gleeson and Westaway [1], among 
others, that forms documents are important to the 
future of the WWW. Gleeson and Westaway 
lament the lack of tools to aid the design and 
maintenance of forms documents. Boomerang is 
one such tool. Sato also noted the security risk in 
downloading LISP code from a server to be 
immediately executed on a client’s machine.

Boomerang does not suffer from this security 
problem.

Sperberg-McQueen and Goldstein advocate that 
full SGML intelligence be added to browsers. 
Such intelligence would allow browsers to incor
porate “style files" to interpret SGML tags in a 
document. So, for example, a musician could add 
a “<HALF-NOTE C#>’’ tag to a document. The 
tag’s translation to HTML would be loaded into a 
browser by a style file, and different style files 
might provide different translations. Boomerang 
differs from the SGML solution insofar as the style 
file approach still depends on the author to pro
vide the appropriate tags. Also style files do not 
support parameterized documents or allow docu
ment rearrangement, such as the addition of 
“exit” buttons. In some sense the SGML solution 
is attacking a different problem, that of allowing 
authors to work in a special-purpose notation.

Conclusion
Currently HTML page presentation is a static pro
cess. Once a page is written, the presentation of 
that page is fixed. The presentation may vary 
among browsers (e.g., a page may look different 
on Netscape and Lynx), but a single browser will 
always display a page the same way. Static page 
display limits both users and authors. Boomerang 
makes page presentation a dynamic process.

Boomerang is a Common Gateway Interface 
script that “intercepts” a page fetch request, 
fetches the desired page, and reconfigures it. The 
user supplies a template (or a list of templates) 
that informs Boomerang how to reconfigure a 
page. Each template has a prologue and a body. 
The prologue is a sequence of rules written in a 
regular expression-based pattern matching lan
guage.

The language supports quick matching and 
replacement of patterns in a page. The body of a 
template is raw HTML mixed with Boomerang 
variables. Variables are used to temporarily hold 
the results of rules.

World Wide Web Journal 675



After the rules have been processed the body of 
the template is instantiated by substituting the 
value for each variable.

Boomerang helps users because users can
reshape and enhance pages as desired. User 
reconfiguration demands no special preparations 
by page authors. But Boomerang also helps 
authors. It eliminates a need to support multiple 
versions of pages. Moreover, authors who are 
unable to program scripts can still write dynami
cally generated pages using parameterized pages.

Boomerang is currently being implemented. 
More information and release version-s of Boo
merang are available at http://www.cs.jcu.edu.au/ 
ftjj/puh/research/hcjomerang/'welcame.html. Future 
extensions include support for processing several 
pages simultaneously, transparent document 
migration, and parallel rule execution. ■

References

1. M. Gleeson and T. Westaway. “Beyond Hypertext: 
Using the WWW for Interactive Applications,” in 
AusWeb95—The First Australian World Wide Web 
Conference, Ballina, New South Wales, Australia, 
April 1995.

2. D. Nicol. C. Smeaton, and A. F. Slater, “Footsteps; 
Trail-blazing the Web," in The Third International 
Conference on the World Wide Web, Darmstadt, 
Germany, April 1995.

3. Rob Pike. “The text editor sam,” Software—Prac
tice & Experience, 17(11):813—845, 1987.

4. S. Sato. “Dynamic rewriting of HTML documents," 
in The First International Conference on the World 
Wide Web, Geneva, Switzerland, May 1994. CERN.

5. C. M. Sperberg-McQueen and R. F. Goldstein. 
“HTML to the Max: A Manifesto for Adding SGML 
Inetlligence to the World Wide Web.” in The Third 
International Conference on the World Wide Web, 
Darmstadt. Germany. April 1995.About the Authors

Curtis E. Dyreson
[http://www.cs.jcu.edu.au/~curtis} 
Department of Computer Science 
James Cook University 
curtis@cs.jcu.edu.au

Anthony M. Sloane
[ h ttp://www. cs.jc u.edu.a u/~ to ny ] 
Department of Computer Science 
James Cook University 
tony@cs.jcu.edu.au

676 Fourth International World Wide Web Conference Proceedings

http://www.cs.jcu.edu.au/
http://www.cs.jcu.edu.au/%7Ecurtis%257d
mailto:curtis@cs.jcu.edu.au
mailto:tony@cs.jcu.edu.au

