L)

Check for

updates.

CLASSIFYING INTERNET OBJECTS

F. Luis Neves, José N. Oliveira

Abstract

Navigation across the Internet may be an arduous task. Although bookmark and bistory mechanisms,
available in browsers like Netscape and Mosaic, are a help, there is an absence of a classification
scheme for the enormous amount of information available through billions of URLs. This paper presents
a new approach for this problem based on the reuse methodology developed in the SOUR project. Inter-
net links are seen as reusable objects, stored and maintained in a generalize/specialize structure based
on a comparison-metrics algorithm. On the implementation side, SOUR is extended by making use of
Netscape’s OLE and Automation DDE interprocess communication mechanisms; these allow third party
applications to remotely control the Netscape navigator client.

Introduction

Navigation across the Internet consists of jump-
ing across a set of links interactively chosen by
the user during a session with an Internet
browser. This is arduous because of the absence
of an effective classification scheme for the enor-
mous amount of information available through
billions of interlinked URLs. Altogether, this huge
world-wide “information system” has the struc-
ture of an untyped semantic network [5]. The
basic idea put forward in this paper is to use the
SOUR software system as an Internet navigation
assistant. SOUR is a system for comparing, classi-
fying and retrieving information about large soft-
ware systems. Figure 1 depicts the overall struc-
ture of the system [16, 15, 14, 18, 17, 19].

The unit of information in SOUR is the so-called
Abstract Object (AO), a notion which combines
the enumerative and faceted classification
schemes [10, 11, 12] as an extension of the popu-
lar attributive view of objects in the context of a
hierarchical network
model.

semantic information

A crucial decision to make is how to map Inter-
net nodes onto the SOUR information model. A

" URL refers to the format used by World Wide

Web (WWW) [21] documents to locate files on
other servers. A URL gives the type of resource
being accessed (e.g., gopher, WAIS), the address

World Wide Web Journal

of the server and the path of the file. The format
is:

scheme://bost.domain/:portl/path/filename
where scheme is one of:

file: a file on your local system, or a file on an
anonymous ftp server

bttp: a resource on a World Wide Web server;
gopher. a resource on a Gopher server

WALIS: a resource on a WAIS server

news: a Usenet newsgroup

telnet: a connection to a telnet-based service

The above information scheme can be turned
into a SOUR class scheme in a way that will be
described in this paper. But a summary of the
overall SOUR information model will be pre-
sented beforehand.

Introducing AOs

Information in the SOUR software system [19] is
generically recorded in the form of so-called
Abstract Objects (AOs) which are independent of
their physical support (e.g., text file, POSTSCRIPT
file) or location (e.g., pathname).

Abstract objects (AOs) are catalogued in the sys-
tem’s abstract archive according to an adopted
standard of classification called conceptualiza-
tion, which is factored in two layers:

7 b |

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3592626.3592684&domain=pdf&date_stamp=1995-12-11

' "fuh,t:tidnor.acﬁon ,

1
9
3

4

 medium or data structure

Figure 1: SOUR Overall Architecture

Mapping URLs to AOs

The URL addressing format allows a user to spec-
ify any object in the Internet, along with suffi-
cient information to retrieve it. The WWW server
is responsible for mapping a supplied URL into
an object or responding with an error message
[4). As a result, every Internet transaction is
divided in two distinct phases: an identification
phase, where the server validates the URL specifi-
cation, and a retrieval phase, where the server
delivers the corresponding data to the client.

If these two phases are successfully executed it is
possible to access both the (now valid) URL and
the data. Data access has a particular importance
in the present study each time the URL identifies
an HTML text file. In such cases, an analysis
reveals that some parts of the text may be used
for conceptualizing the URL.

The following sections will explain in detail how
these two entities—the URL and the data which it
identifies—provide the information that will be
attached to an AO.

AO Identification

Assuming the previously (brief) description of an
Abstract Object, it is possible to map the URL
information scheme described earlier onto a
SOUR object as shown below:

AO Name:
scheme://bost.domain(:portl/path/filename

AO Address:
/path/filename

World Wide Web Journal

Functmnality “

 Environment

AO Type:
filename extension (if any)

AO Class:
scheme + filename extension (if any)

As expected, a URL alone provides the minimal
information needed for a successful conceptual-
ization [17]. However, if the URL is an HTML text
file, then some extra information may be added
according to its contents, otherwise no more
information will be attached (3ee the following
sections for more information).

AO Class

A specific class hierarchy must be created in
order to accommodate the host.domain informa-
tion which can be used to classify the AO at
coarse level. The top of this hierarchy is a class
named URL which must have (at least) the fol-
lowing attributes:

Domain_0
Domain_1
Domain_2

(www, gopher, fip, s700)
(ncsa, telepac, inescn,di)
(uiuc, inesc, uminho)
()

Domain_n (com, pt, org, edu)
While the URL's subclasses
scheme values and filename extensions, if for a
given URL the value scheme + filename extension
is not the name of an existent (predefined) class,
then only the scheme value is used. The follow-

reflect possible

ing class hierarchy illustrates this idea and speci-
fies some possible subclasses for the HTTP class.

URL
FILE

713

HTTP HTTPHTML Html documents
HTTPTXT Text documents
HTTPPS Postscript documents
HTTPDOC Word documents
HTTPTEX TeX documents
HTTPGIF Gif images
HTTPZIP Zipped files

GOPHER

WAIS

NEWS

TELNET

Of course, other attributes may be added to the
classes retlecting the specific information of their
objects.

AO Facets

Faceted classification as proposed in this paper
combines several text-scheme management tools
such as full text indexing and retrieval, free-text
scan, document clustering, unique word, and
vector-space [3]. These approaches are discussed
below.

The full text approach first generates a list of
strings associated with a document. Then, at
retrieval time, a string match will be tried
between each string in the index and a string in
the available thesaurus. This strategy is combined
with the wunique-word and the wvector-space
approaches in order to give more retrieval power
to the strings that occur more often in the text.

Document clustering attempts to mimic the
human thought process by grouping together
documents with related ideas, concepts, and ter-
minology [8]. This notion is managed by SOUR’s
COMPARATOR & MODIFIER subsystem [14] as
described later in this paper (see the section enti-
tled “AO Comparison”).

Together, all these notions provide a default facet
classification that will be tried by SOUR’s Attempt
Automatic Conceptualization (AAC) mechanism
[17]. The AAC is applied to the HTML source text
of the URL currently being accessed if, of course,

714

the URL identifies an HTML file. The quality of
the available CTS/LTS pair is of crucial impor-
tance to obtain good results in faceted classifica-
tion.

For the relevant information to be extracted from
the HTML source text, we choose the words that
are included in the following HTML structures [0]:

e Title. Words between the elements <TITLE>
and </TITLE>

e Headings. Words between the elements
<Hy)> and </Hy> where y is a number
between 1 and 6 specifying the level of the
heading

Since we are interested in the classification of
documents by their contents, these must be
reflected in the lexical terms available in the LTS.
If, for example, we have a special interest in doc-
uments talking about the WWW, then the LTS
shall have terms like Internet, Information, Web,
Hypertext, Virtual, Browser, CERN, HTML, and so
on. This specialization of lexical terms, which can
improve both the conceptualization and the
query mechanism, is supported by SOUR’s capa-
bility of working with several CTS/LTS reposito-
ries.

CTS provides the capability to cope with features
of human reasoning such as classifying by anal-
ogy and terminological vagueness [10][16][15]. In
particular, lexical terms can be connected by
conceptual distances interrelating terms (words)
according to their contextual meanings. These
distances may be regarded as degrees of mem-
bership of arcs in a fuzzy graph.

Figure 2 shows a possible set of conceptual rela-
tions among the terms described above.

The fuzzy logic technique associated with this
information structure provides a method to
reduce the so-called precision/recall trade-off.
This is one of the methods that has had some
success in decreasing the chances of missing
important information [3].

Fourth International World Wide Web Conference Proceedings

Figure 2: Example of conceptual relations

The 6-tuples of predefined terms presented ear-
lier (see the previous section entitled “About the
Conceptualization Standard”) were designed by
Prieto-Diaz for the specific task of software classi-
fication. How to extend or adapt them to generic
information as accessed through the Internet is
an open problem.

The pre-inserted values for each one of these fac-
ets will serve as guidelines for document classifi-
cation. Possible matches among those values and
the words extracted from the HTML text reflect
part of the so-called AAC mechanism. The others
will be described in the sections below.

AO Links

In this section, we show how the overall seman-
tic network structure of the Internet matches with
the internal AO-structure of SOUR.

The HTML source text of the URL currently being
accessed can also be used to extract AO link
information. Each hyperlink to an external file
will be identified as an inlink of the AO that
abstracts the current URL. Possible references
include:

e Hyperlink references
— e.g., ...

References of this kind will create links iden-
tified by the “Part Of” label.

World Wide Web Journal

o Image references
- e.g., ...

References of this kind will create links iden-
tified by the “Image Of” label.

e Embedded references
- e.g.,, <EMBED SRC = “URL"™>

References of this kind will create links iden-
tified by the “Embedded In” label.

Hyperlink, Image, and Embedded references
become inlinks after the following procedures:

1. The references are mapped onto SOUR AOs
following the way described earlier in this
article.

2. The resulting AOs are conceptualized into
the SOUR system.

3. The references are identified as links under
the current conceptualization.

As an example, consider the access to the follow-
ing address:

bttp.//www.di.uminbo.pt/cnw3.btml

You can extract the following AO information
directly from the URL:

AO Name: bttp.//www.di.uminbo.pt/cnw3.btml
AO Address: /cnw3.html
AO Type: HIML

715

http://www.di.uminho.pt/cnw3.html
http://www.di.uminho.pt/cnw3.html

http://s700.uminho.pt/braga
http://s700.uminho.pt/home-page-pt.html
http://s7OO.uminhopt/braga.html
http://s700.uminho.pt/homepage-
http://WWW.di.uminho.pt/
http://s700.uminho.pt/braga
http://s700.uminho.pt/homepage-pt.html%253ePortugal%253c/A
http://s700.uminho.pt/braga.html
http://www.di.uminho.pt/
http://s700.uminho.pt/homepage-pt.html
http://www.di.uminho.pt/cnw3

SOURWWW - [RM — Resuit Manager]

Figure 3:

AO links

AO Members

The source text of the URL currently being
accessed can also be used to extract AO member
information. Each hyperlink to a local file will be
identified as a member of the AO that maps the
current URL. Possible references include:

e Hyperlink references
— ...

e [mage references
— ...

e Embedded references
— <EMBED SRC = "FILE">

All these references will create member links
identified by the label “Member Of.” In the run-
ning example above, references 1 and 2 from the
previous section,

World Wide Web Journal

o

e <IMG ALIGN=MIDDLE SRC="/IMI/imi2-ing-
interlace.gif">

e <A HREF="http://www.di.uminho.pt/
english-um.html">

will producé the following AOs:

AO Name:
bttp://www.di.uminbo. pt/IMI/imi2-ing-inter-
lace.gif

AO Address:
/IMI/imi2-ing-interlace.gif

AO Type: GIF

AO Class: HTTPGIF

Domain2: uminho

Domain3: pt

and:

717

http://www.dijjrrrriiio.pt%255e5l!%255e-OTUto
http://www.di.uminho.pt/
http://www.di.uminho.pt/IMI/imi2-ing-inter-lace.gif

AO Name:
http://www.di.uminho.pt/english-um.btml

AO Address:
/english-um.html

AO Type: HTML

AO Class: HITPHTML
Domain0: www
Domainl: di
Domain2: uminho
Domain3: pt

Finally, these two AOs will produce the member
links:

o htip.//www.di.uminbo. pt/IMI/imi2-ing-inter-
lace.gif :

o http://www.di.uminbo.pt/english-um.html

which will become part of the conceptualization
profile of the current URL. Figure 4 shows the
RM’s Zoom In graphical functionality [19] operat-
ing on URL http.//www.di.uminbo.pt/cnw3.html.

The Query Mechanism

The Intelligent Query System is the SOUR sub-
system intended for consulting SOUR’s informa-
tion [18]. It supports an assisted query mecha-
nism for retrieving information based on standard
attributes and “fuzzy” query templates. While the

SOURWWW - [RM — Result Manager]

Figure 4: AO members

718 Fourth International World Wide Web Conference Proceedings

http://www.di.uminho.pt/engUsh-um.html
http://www.di.uminho.pt/IMI/imi2-ing-inter-
http://www.di.uminho.pt/english-um.html
http://www.di.uminho.pt/cnw3.html

http://s700.uminho.pt/homepage-pt.html0

Figure 6: Activating Netscape browser

Whenever interacting with these APIs, SOUR will
regard its object repository as if it is stored in a
dynamically “extended file system” across the
Internet. For that, SOUR and NETSCAPE will
cooperate based on the client/server technology
supported by the DDE implementation of
NETSCAPE version 1.IN [2]. In this way, SOUR
will manipulate NETSCAPE to execute and/or
extract the information of a given URL.

The first step is to gain access to Netscape’'s OLE
Automation object (the Netscape.Network.1
Automation Object, to be more specific [1]).
Using this object, SOUR will be able to access
network data through the same mechanisms
NETSCAPE uses. However, NETSCAPE’s OLE
AUTOMATION does not provide the functional-
ity necessary to manipulate the NETSCAPE NAVI-
GATOR user interface. This is possible only by
using the DDE protocol, which will make SOUR
act simultaneously like a NETSCAPE client and

720

server, as illustrated in Figure 5. While acting as a
NETSCAPE client, SOUR uses NETSCAPE to dis-
play the URLs that have been conceptualized.
When it is working as a NETSCAPE server, SOUR
is notified every time the loading of a URL
occurs. After the notification, the URL is mapped
to a SOUR AO (see the section entitled “Mapping
URLs to AOs” while the HTML source text is
saved for further analysis (see the descriptions
earlier in this paper). After all these steps, the AO
information is finally described in the Conceptu-
alization Batch Language format [17] and saved
into a text file. Whenever SOUR becomes the
active application, it will verify and load all the
files created by this process.

Once satisfactorily conceptualized, each URL will
be classified in the system’s repository as a con-
ventional SOUR object. After that, it will be possi-
ble to use the SOUR software system both for
access to its standard functionality (available in

Fourth International World Wide Web Conference Proceedings

the release R of the system [19]) or to launch a
“batch” NETSCAPE navigation session, which is
available through a specially developed capabil-
ity of SOUR's RM (Result Manager) subsystem.
RM is a generic SOUR service-tool for graphically
displaying, consulting, and executing AO’s
related information which, in the present context,
also becomes also a graphical environment for
browsing the Internet linked structure (see Fig-
ures 3 and 4).

Figure 6 shows the result of activating the
NETSCAPE NAVIGATOR to display a selected
AO. This operation loads the correspondent URL
(using the OLE AUTOMATION mechanism) into
the current NETSCAPE window.

Conclusion and Future Work

This paper presents some modifications and
extensions to the current SOUR prototype (run-
ning on Windows [19]) in order to make it a use-
ful tool for the classification, storage,
retrieval of Internet information.

and

The key aspects of the SOUR information model
reflect the way in which documents are regarded
today: no longer as mere files, but rather as
books of pointers to objects of several kinds [13].
On the one hand, SOUR can provide some
important organizational mechanisms and, conse-
quently, make Internet navigation simpler. On
the other hand, as access to the information
becomes easier and more powerful, SOUR can
act like a personal tool for getting the informa-
tion directly from the Web and, at the same time,
storing and arranging it into a more human-based
organization model in the personal workstation.

Among the topics discussed in the paper, proba-
bly the most complex is designing a general clas-
sification framework for arbitrary documents.
However, the approach adopted by SOUR con-
cerning software reuse in particular [11][12], as
well as recent studies on fuzzy object-comparison
[10] offer good perspectives for the future.

World Wide Web Journal

Future work includes the prospect of “globaliz-
ing” the adopted classification strategy. This
means scaling up the approach from personal to
world-wide classifiers. Some similarity between
AOs and Universal Resource Citations (URCs) [22]
suggests that the SOUR AO profile-based para-
digm can be scaled up to a world-wide, Internet
resource-based, “yellow-page”-like service of bib-
liographic metadata about WWW documents.
Naturally, URCs would have to be extended with
fuzzy attributes. Before that can happen, how-
ever, performance feasibility will have to be stud-
ied. m

Acknowledgments

The authors wish to thank all the colleagues in
the SOUR consortium (INESC, SYSTENA, SSS,
and OIS RICERCA) who contributed to the many
discussions along the project’s lifetime. On the
implementation side, comments by Garret Arch
Blythe and Steve Caine are gratefully acknowl-
edged.

References

1. Garret Arch Blythe. OLE Automation in Netscape.
Technical report, Netscape Communications Cor-
poration, March 1995.
http.//bome.netscape.com/newsref/std/oleapi.html

2. Garret Arch Blythe’s Implementation. Technical
report, Netscape Communications Corporation,
March 1995.
bttp://bome.netscape.com/newsref/std/ddeapi.html

3. Earlene Busch. Managing Infoglut: Search and
Retrieval. In Dennis Allen, editor, BYTE. McGraw-
Hill, 1992.

4. Bob Friesenhahn. Build Your Own WWW Server.
In Raphael Needleman, editor, BY7TE. McGraw-
Hill, 1995.

5. Mark Handley and Jon Crowcroft. The World
Wide Web—Beneath the Surf. Technical report,
UCL Press, 1994.
bttp://www.cs.ucl.ac.uk/staff/jon/book/book.btml

6. A Beginner's Guide to HTML. Technical report,
Nacional Center for Supercomputing Applications.
bttp.//www.ncsa.uiuc.edu/demoweb/btml-primer.
html

721

http://home.netscape.com/newsref/std/oleapi.html
http://home.netscape.com/newsref/std/ddeapi.html
http://urww.cs
http://urww.ncsa.uiuc.edu/demoweb/html-primer

http://home
http://uww.w3.org/
http://www.w3.org/hypertext/WWW/Addressing/

