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Abstract. The segmentation of atrial scan images is of great signif-
icance for the three-dimensional reconstruction of the atrium and the
surgical positioning. Most of the existing segmentation networks adopt
a 2D structure and only take original images as input, ignoring the con-
text information of 3D images and the role of prior information. In this
paper, we propose an atrium segmentation network LGSANet with loca-
tion guidance and siamese adjustment, which takes adjacent three slices
of images as input and adopts an end-to-end approach to achieve coarse-
to-fine atrial segmentation. The location guidance(LG) block uses the
prior information of the localization map to guide the encoding features
of the fine segmentation stage, and the siamese adjustment(SA) block
uses the context information to adjust the segmentation edges. On the
atrium datasets of ACDC and ASC, sufficient experiments prove that
our method can adapt to many classic 2D segmentation networks, so
that it can obtain significant performance improvements.

Keywords: Medical image segmentation,Location guidance,Siamese ad-
justment,UNet,SwinUNet

1 Introduction

Medical image segmentation of atrial region is of great significance for 3D re-
construction, pathological analysis, and surgical positioning based on atrium
segmentation results. Before deep learning was widely used, many methods
[14,11,6,4,10] based on traditional image processing were derived for segmenta-
tion. However, due to the noise in medical image imaging and the shape variabil-
ity of organs in different cases, it is difficult for traditional methods to segment
robustly and produce satisfactory results.

According to the understanding of the difficulty in atrium segmentation
shown in Figure 1, we can find that the atrium images of MRI imaging have
blurred boundaries (myocardium in the ACDC dataset [3]) and large fluctuations
in the boundary shape (left atrium in ASC dataset [23]). Therefore, how to use
context information to assist in localization is a key point. After deep learning has
been widely used, many networks with superior performance have emerged for
medical image segmentation, such as: UNet [19], UNet++ [26], TransUNet [7],
etc. From the perspective of contextual information utilization, most networks
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2 Xie et al.

segment based on 2D slices, ignoring the contextual information in 3D images;
while for 3D networks [17,25], larger computing resources and larger datasets
are often required, which is very difficult to achieve, so that it is difficult to use
in some restricted scenarios.

blurred 
boundaries

LabelsImages

ACDC

ASC

large fluctuations 
in the boundary 
shape

Fig. 1. Diffiulty in segmenting atrial images.

From the perspective of physicians manually segmenting medical images, we
often use vision for localization first, and then focus on the localization area
for detailed segmentation. Some methods use a multi-stage method to obtain
human like location and adjustment through tailoring between different stages.
However, this method is not end-to-end, which brings difficulty in training and
deployment; some methods simply use multiple networks to connect in series
to achieve an end-to-end from coarse to fine segmentation, however, it does not
take full advantage of coarse localization information.

Inspired by the above problems, we design an atrium segmentation network
based on localization guidance and siamese adjustment: location guidance and
siamese adjustment Network(LGSANet).

Contributions:

1. A two-stage end-to-end method is proposed, using location guidance(LG)
block to utilize the coarse localization information and use it in the fine-tuning
stage;

2. We adopt a siamese three-layer network structure for the segmentation
of three-layer continuous slices, and use siamese adjustment(SA) block between
the decoder layers to utilize context information, and fine-tune the segmentation
edges through the continuity between slices;
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3. The location guidance and siamese adjustment design can be fully applied
to most existing excellent 2D networks to improve their performance,such as
UNet and SwinUNet. Sufficient experiments have demonstrated the robustness
and universality of our method.

2 Related Work

2.1 Classic segmentation network

The medical image segmentation methods can be mainly divided into the meth-
ods based on convolutional neural network [19,26,16,18,8,12] and the methods
based on transformer [7,5,25,13,22]. Among the methods based on convolutional
neural network, UNet [19] in 2015 established the design direction of medical
image segmentation network with the structure of classic encoder and decoder,
and proved the effectiveness of skip connection; then UNet++ [26], UNet3+
[16] explored different design of skip connection respectively to achieve a bet-
ter interaction between encoder and decoder. While AttUNet [18] introduces
attention mechanism to the fusion of encoding and decoding features, ResUNet
[8] introduces residual design in convolution module, optimizING the design of
UNet architecture from different directions. With the in-depth study of trans-
formers [21], the first medical segmentation network TransUNet [7] that intro-
duced transformers appeared, using the transformer architecture to realize the
interaction of global information in deep semantic features. Then SwinUNet [5],
first medical segmentation network using pure transformers, proved the powerful
representation capabilities of transformer.

2.2 Coarse-to-fine segmentation

The coarse-to-fine methods can be divided into mainly multi-stage methods [1]
and end-to-end series connection methods [9,15]. The former cuts the results of
the first stage, and then performs the optimization in the second stage. This
method is cumbersome ,complex and cannot provide an end-to-end solution;
while the series connection method, like SMCSRNet [9], does not fully consider
the positioning information in the coarse positioning stage, the simple connection
may not lead to a good result.

2.3 Network using context information

MEPDNet [20] uses a multi-encdoer and fusion decoder structure to utilize the
context information, but it is directly fused in the decoder part which may lead to
loss of context information; in addition,LSTM [2] is introduced to model the se-
quence relationship between the outputs of different slices, but too long-distance
context information may increase the complexity of the model and the diffi-
culty of training and deployment; ConResNet [24] adopts a multi-task method,
in which task 1 predicts the segmentation result, task 2 predicts the residual
between slices.However,this method also requires great computing resources and
large memory.
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3 Methods

We characterize the 3D medical image as M ∈ RC×H×W , take adjacent consec-
utive three-slice image as input, and describe it as X = [S1, S2, S3] ∈ R3×H×W .
Each slice is sent to the LGSA network in parallel, and the output Y = [M1,M2,M3] ∈
R3×H×W is obtained. The overall expression is shown in Formula 1:

Y = LGSA(X; θ) (1)

Among them, we will select the output M2 of the center slice as the final output.

3.1 Overall structrue
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Fig. 2. Overall Structure of LGSANet.

As shown in the Figure 2, we input consecutive three-layer 2D slices into
three siamese single layer networks, each one is responsible for the segmentation
of one-layer slice. The three single layer networks share parameters with each
other to constrain the consistency of encoding and decoding. From the perspec-
tive of a single layer network, each one is divided into a coarse location and a fine
segmentation stage. Between the two stages, location guidance(LG) blocks are
used for fusion of multi-scale coarse location information and encoder features
of fine segmentation stage, so that the model focuses on the located area in the
fine segmentation stage. From the perspective of different slices, context infor-
mation can be exchanged between different slices in the decoding stage. After
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each layer of decoding, an additional cross-slice siamese adjustment(SA) block
will be performed so that the decoding features of the middle-layer can fully
obtain context information, so as to use the continuity of the upper and lower
slices for edge adjustment. The overall process of LGSANet can be expressed as
Formula 2:

Sh,c
e,i = CLh

encoder

(
Sh−1,c
e,i

)
, i = 1, 2, 3;h = 1, 2 . . . N

Sh−1,c
d,i = CLh

decoder

(
Sh,c
a,i

)
, i = 1, 2, 3;h = 1, 2 . . . N

Sh,c
a,i = CLh

SA

(
Sh,c
d,1 , S

h,c
d,2 , S

h,c
d,3

)
, i = 2;h = 1, 2 . . . N

Sh,f
e,i = FSh

encoder

(
Sh−1,f
l,i

)
, i = 1, 2, 3;h = 1, 2 . . . N

Sh,f
l,i = FSh

LG

(
Sh,f
e,i , L

h
i

)
, i = 1, 2, 3;h = 1, 2 . . . N

Sh−1,f
d,i = FSh

decoder

(
Sh,f
a,i

)
, i = 1, 2, 3;h = 1, 2 . . . N

Sh,f
a,i = FGh

SA

(
Sh,f
d,i−1, S

h,f
d,i , S

h,f
d,i+1

)
, i = 2;h = 1, 2 . . . N

(2)

where CLh
encoder , CLh

decoder , CLh
SA, FGh

encoder , FGh
LG, FGh

decoder , FGh
SA repre-

sents different model components in LGSANet; CL and FS represent the coarse
location and fine segmentation stages respectively; the superscript h represents
the h-th layer in the encoders or decoders, with a total of N layers, that is, N-1
times of downsampling are performed while N is 5 in UNet and 4 in SwinUNet.
The subscripts encoder and decoder represent the encoder and decoder in this
stage, while SA and LG represent the SA block and LG block in this stage.
Sh,c
e,i , S

h,c
d,i , S

h,f
e,i , S

h,f
d,i , S

h,c
a,i , S

h,f
a,i represent the feature maps of different stages ap-

pearing in LGSANet; The superscript c or f indicates that the feature belongs
to the coarse location or fine segmentation stage; the subscripts e, f , a, and l
indicate that they are the feature maps after the encoder, decoder, SA block,
and LG block respectively; the subscript i indicates that it belongs to the feature
map generated by the i-th slice.Lh

i represents the multi-scale localization map
generated in the coarse localization stage, the superscript h represents the h-th
layer, and the subscript i represents the feature map generated by the i-th slice.

3.2 Siamese feature encoding and decoding

In the experiment, we mainly use UNet and SwinUNet as backbone. In the en-
coding process, UNet uses 5 layers of convolution modules as the basic units
and performs 16 times downsampling, while SwinUNet uses 4 layers of swin
transformer modules as the basic units, and completes 32 times downsampling
through patch embedding and patch merging. In the decoding process , UNet
uses a 4-layer convolution modules as the basic units and performs 16 times up-
sampling, while SwinUNet uses a 3-layer swin transformer modules as the basic
units, and completes 32 times upsampling through patch expansion. For three-
layer inputs, the encoder and decoder share parameters with each other. When
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performing siamese adjustment, SwinUNet needs to reshape features from vector
form to feature map form. The main reasons why we use UNet and SwinUNet
as backbones are: these two networks represent the most basic way of applying
CNN and transformer in medical image segmentation, which composed of two
different basic components; using them as backbones can effectively verify the
performance robustness of our method in both cases.

3.3 Location guidance block

The location guidance block mainly uses the location information in stage 1
to guide the coding of the encoder features in stage 2 after multi-scale scaling.
Through the introduction of prior information in localization map, the encoder
features can be strengthened so that the model can pay more attention to the
localization area. Its schematic diagram and formula are shown in Formula 3,4
and Figure 3:

𝐿𝑖
ℎ

[max pool, avg pool]

𝑐𝑜𝑛𝑣 1 × 1

sigmoid

element-wise multiplication

concatSpatial Attention Map
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Max pool 
Avg pool 𝑐𝑜𝑛𝑣 1 × 1 𝑐𝑜𝑛𝑣 1 × 1

𝑐𝑜𝑛𝑣 1 × 1

Residual Path

𝐿𝑖
ℎ

𝑆𝑒,𝑖
ℎ,𝑓

𝑆𝑙,𝑖
ℎ,𝑓

connect

LG Block

LG

LG

LG

connect

sigmoid

up-sampling

down-sampling

LG LG block

concat+conv

Single Slice Structure

conv

Fig. 3. Location guidance block.

SAmap = conv1×1(concat(mp
(
Sh,f
e,i

)
, ap

(
Sh,f
e,i

)
, conv1×1(L

h
i ))) (3)

Sh,f
l,i = Sh,f

e,i × softmax (SAmap) + Sh,f
e,i (4)

where, mp and ap represent maxpooling and avgpooling respectively, and
SAmap represents the spatial attention map.
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3.4 Siamese adjustment block

The siamese adjustment block mainly uses the context information of adjacent
layers to adjust the output results of the intermediate layers. The input three-
layer features are adjacently subtracted to obtain the edge differences, and adja-
cently multiplied to enlarge the overlapping areas. The edge differences are fused
to obtain the edge feature and the overlapping areas are fused to obtain the cen-
tral feature. Finally, the edge feature and central feature are fused together as
output. The center branch uses the coincidence of the context to strengthen the
center positioning of the middle layer, and the edge branch uses the edge con-
tinuity constraint of the context to fine-tune the edge of the middle layer. Its
schematic diagram and formula are shown in Formula 5,6,7 and Figure 4:

concat

conv+bn+relu

connect

central branch

edge branch

CBR

CBR

CBR

CBR

element-wise 
addition

element-wise 
subtraction

𝑆𝑑,𝑖−1
ℎ−1,𝑠𝑡𝑎𝑔𝑒

𝑆𝑑,𝑖
ℎ−1,𝑠𝑡𝑎𝑔𝑒

𝑆𝑑,𝑖+1
ℎ−1,𝑠𝑡𝑎𝑔𝑒

𝑆𝑎,𝑖
ℎ,𝑠𝑡𝑎𝑔𝑒

Fig. 4. Siamese adjustment block.

Sedge = CBR(S
h,stage
d,1 − Sh,stage

d,2 , Sh,stage
d,2 − Sh,stage

d,3 ) (5)

Scentral = CBR(S
h,stage
d,1 × Sh,stage

d,2 , Sh,stage
d,2 × Sh,stage

d,3 ) (6)

Sh,f
a,i = CBR(Scentral, Sedge) (7)

where, stage represents the coarse location or fine segmentation stage, and
CBR represents the combination of conv3×3, batch normalization, and Relu
activation function.
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3.5 Serial supervision and siamese supervision

In the design of the loss function, we use a combination of serial supervision and
siamese supervision. While jointly supervising the coarse location and fine seg-
mentation stages, the outputs of the three slices are all under siamese supervision
to achieve the best optimization result. We use the output of the intermediate
slices as the final output (except for the first and last layers) because it enjoys
the most contextual information. The formula of the overall loss function can be
expressed as formula 5,6,7:

Lall = βLcoarse + (1− β)Lfine (8)

Lcoarse = αls1coarse + (1− 2α)ls2coarse + αls3coarse (9)

Lfine = αls1f ine + (1− 2α)ls2f ine + αls3f ine (10)

lsistage
=

∑
k∈Si

(
−1

2
yklogŷk + 1− 2× yk × ŷk

yk+ŷk

)
, stage = coarse, fine (11)

Where k represents any point in slice i, and yk, ŷk represent the groundtruth
and prediction result respectively. α=0.33, β=0.5. This is because the quality of
location and fine segmentation results, as well as the output results of different
layers, affect each other. In order to ensure the final output of the midlle layer as
good as possible, the location information needs to be accurate enough, and the
adjacent layer outputs that provide fused interaction information also need to be
reliable enough, so their weights are equally distributed. This will also be verified
in the subsequent ablation experiments. The supervision of a single output is
composed of dice loss and bce loss. The weight distribution of dice loss is higher
than that of bce loss, because dice loss is more suitable for the segmentation
of small targets, which can better overcome the imbalance of foreground and
background.

3.6 Structure comparison with different baselines

Figure 5 shows the comparison with baselines.In the design of network ar-
chitecture, we mainly focus on the utilization of contextual information and
coarse localization information. Therefore, from a coarse-to-fine point of view,
the baseline we mainly refer to is SMCSRNet, which uses UNet with simple
concatenation to complete end-to-end multi-stage segmentation. The difference
is that we introduce a location guidance block in the middle of the two stages
in order to make the fine-stage encoder pay more attention to the localization
area. From the perspective of context information utilization, the baselines we
mainly refer to are 3-slice UNet and MEPDNet. The 3-slice UNet uses continu-
ous three-layer slices stacking as input,which is sent to a common encoder and
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decoder. MEPDNet uses three independent encoders extracting the features of
the three-layer slices, and then performs fusion decoding. The difference is that
we use siamese encoder and decoder to ensure the consistency and independence
of encoding and decoding, and perform siamese adjustment between decoders to
achieve information exchange at the same time. Subsequent experiments demon-
strate that our design idea has gains in both aspects.

encoder

encoder

encoder

decoder

decoder

decoder

encoder

encoder

encoder

decoderencoder decoder

3 slice UNet

MEPDNet SANet(ours)

coarse
segmentor

fine
segmentor

simple 
concatenation

SMCSRNet

coarse
segmentor

fine
segmentor

LGNet(ours)

location
guidance

Coarse-to-fine structure 

Contextual information utilization

Fig. 5. Structure comparison with baselines.

4 Experimental results

4.1 Datasets

Our framework mainly uses the ACDC dataset [3](2017 Automated cardiac di-
agnosis challenge) and ASC dataset [23] (the 2018 atrial segmentation challenge)
for experiments.

ACDC:The ACDC dataset contains 100 three-dimensional cardic MRI im-
ages to be segmented, each of which includes three types of manual annotations :
left ventricle (LV), right ventricle (RV) and myocardium (MYO). Each case con-
sists of a series of short-axis slices and the slice thickness is of 5 to 8 mm. The
short-axis in-plane spatial resolution goes from 0.83 to 1.75 mm2/pixel.There
are totally 951 slices included into experiments.

ASC:The ASC dataset contains 152 three dimensional MRI images for left
atrium (LA) and each of which includes one type of annotation: left atrium(LA).The
image resolution is 0.625 × 0.625 × 1.25 mm3. There are totally 13552 slices
included into experiments.
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4.2 Evaluation metrics

We use the 95% Hausdorff Distance (HD95)(mm) , Dice score (DSC)(%), F1
score(%) to characterize the performance of the segmentation. The formula of
DSC and F1 are shown in Formula 12,13,14,15:

F1 = 2× Precision×Recall

Precision+Recall
(12)

Recall =
TP

TP + FN
(13)

Precision =
TP

TP + FP
(14)

DSC = 2× |X ∩ Y |
|X|+ |Y |

(15)

where X denotes the segmentation result of the method, and Y denotes the
ground truth.TP denotes true negative result, FP denotes false positive result
and FN denotes false negative result.

4.3 Implementation details

The training, validation and testing processes are all conducted on two RTX3090
cards.The approach is implemented by Python3.7 with Pytorch. the batch size is
set to 24. An Adam optimizer is used in training process, with a learning rate of
5e-4,momentum of o.9 and weight decay of 1e-4. In the experiment,we train on
ACDC for 100 epochs and 50 epochs on ASC, while the early stopping is set to be
20 epochs on ACDC and 10 epochs on ASC. Before conducting the experiments,
we uniformly scale each slice to a size of 224×224. The training set, validation
set, and testing set are divided according to the ratio of 7:1:2. SwinUNet and
its variants are initialized with pre-trained weights, and the rest of the models
are initialized with Gaussian randomization. In order to ensure the reliability of
the experimental results, we repeated the experiments for each category 5 times
and obtained the average of the experimental results. We perform maximum
and minimum normalization on the both datasets in preprocessing, which can
be described by Formula 16:

I(x, y) =
I(x, y)− Imin

Imax − Imin
(16)

where I(x, y) denotes the grayscale of point (x,y), Imax and Imin denote the
maximum value and minimum value of an image.

In order to compare the difference between the output of the central layer of
LGSANet and other methods, and to maintain the consistency of the comparison
range, we let the head and tail slices of each 3D data not be included in the
testing range; It is worth mentioning that our LGSANet can actually output
the segmentation results of the first and last layers(this will be shown in our
experimental results).
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4.4 Comparison with the state-of-the-art method

We select CNN-based segmentation networks: UNet, UNet++, DenseUNet, Re-
sUNet and transformer-based segmentation networks: SwinUNet, TransUNet for
basic comparison. Besides, we also choose MEPDNet, SMCSRNet and 3-slice
UNet as baselines from the aspects of contextual information ultilization and
coarse-to-fine segmentation. UNet and SwinUNet are adopted as the two differ-
ent backbones of our proposed LGSANet respectively. The experimental results
are shown in Table 1,2,3:

Table 1. Experiment results on ACDC dataset.

Methods
RV Myo LV

DSC HD95 F1 DSC HD95 F1 DSC HD95 F1

One
slice
input

One
stage

ResUNet[8] 88.45 1.39 87.18 83.41 1.37 83.63 91.37 1.00 91.66
SwinUNet[5] 90.64 1.29 90.80 83.82 1.10 84.09 94.58 0.67 94.68

UNet[19] 91.23 1.24 91.40 84.56 1.09 84.77 94.21 0.46 94.35
UNet++[26] 91.58 1.16 91.69 84.22 1.14 84.56 94.48 0.44 94.59

DenseUNet[12] 92.53 1.06 92.94 84.89 1.08 84.96 94.50 0.39 94.84
TransUNet[7] 92.28 1.10 92.59 84.50 1.11 84.92 95.39 0.17 95.68

Two
stage

SMCSRNet[9] 91.99 1.14 92.12 84.75 1.08 84.99 95.14 0.20 95.46
LG-SwinUNet 92.01 1.12 92.23 84.89 1.08 85.12 95.12 0.21 95.34

LG-UNet 92.48 1.09 92.53 85.47 1.05 85.59 95.54 0.32 95.60

Three
slice
input

One
stage

3-slice UNet 90.35 1.40 90.46 80.89 1.66 81.21 93.77 0.82 93.95
MEPDNet[20] 91.53 1.22 91.52 82.95 1.23 83.26 94.31 0.50 93.29
SA-SwinUNet 92.52 1.05 92.84 84.78 1.12 84.95 95.27 0.19 95.46

SA-UNet 92.94 1.00 93.11 86.65 1.00 86.84 95.53 0.17 95.70
Two
stage

LGSA-SwinUNet 92.92 1.02 93.05 85.51 1.05 85.08 95.73 0.11 95.90
LGSA-UNet 93.21 0.83 93.36 86.88 1.00 87.01 96.58 0.08 96.62

As shown in Table 1 and Table 2, LGSAUNet achieved the best segmenta-
tion results in both ACDC and ASC datasets, and performed the best in DSC,
HD95, and F1 indicators. It can be seen that the segmentation effect has been
significantly improved by using LGSANet structure. On the three targets of RV,
Myo, and LV in ACDC, LGSAUNet obtained 1.98%, 2.32%, and 2.37% dice per-
formance improvement compared with UNet respectively. On the ASC dataset,
LGSAUNet obtained 1.32% performance improvement compared to UNet. As
a variant of LGSANet, LGSA-Swinunet has also improved significantly, with
2.28%, 1.69%, 1.15% on ACDC, and 2.64% on ASC. It can be seen that the
design structure of LGSANet has good applicability to the architecture of both
CNN and transformer.

For the models that simply using one slice as input and adopt two stage
optimization, LGNet that using location guidance achieve better improvements
compared with the SMCSRNet that using simply UNet concatenation.For the
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Table 2. Experiment results on ASC dataset.

Methods DSC HD95 F1

One
slice
input

One
stage

Resunet[8] 82.00 2.52 83.01
Swinunet[5] 87.53 1.70 88.17
Unet[19] 90.53 1.26 90.79
Unet++[26] 90.49 1.28 90.74
DenseUNet[12] 89.92 1.32 90.42
TransUNet[7] 90.00 1.31 90.37

Two
stage

SMCSRNet[9] 90.60 1.22 90.75
LG-SwinUNet 89.12 1.52 89.45
LG-UNet 90.81 1.21 90.97

Three
slice
input

One
stage

3-slice UNet 90.12 1.32 90.34
MEPDNet[20] 90.18 1.21 90.66
SA-SwinUNet 89.82 1.36 89.98
SA-UNet 91.57 1.09 91.74

Two
stage

LGSA-Swinunet 90.17 1.30 90.51
LGSA-unet 91.85 1.02 92.06

models that using three slices as input but simply using one stage optimza-
tion,SANet that using siamese adjustment also performs better than 3-slice UNet
and MEPDNet.

Table 3. The dice(%) of different output in LGSANet.

Datasets
Coarse location Fine segmentation
1 2 3 1 2 3

ACDC RV 91.34 92.89 90.72 91.71 93.21 91.34
Myo 86.23 86.60 84.55 86.62 86.88 84.89
LV 95.75 96.19 95.03 96.08 96.58 95.48

ASC 90.89 91.47 90.77 91.31 91.85 91.26

From the results in Table 3, it can be seen that the output results of the
middle layer slices are better than the adjacent layers.The output results of the
fine segmentation stage are better than the results of the coarse location stage
as well. It illustrates that the idea of optimizing the central layer from coarse to
fine with the help of context information actually works. Besides,for the output
of the adjacent layers in fine segmentation, although it is a little worse than the
center layer, is still better than the output of its 2D basic network, so it can
also be benefit for the segmentation of the first and last slices.The mean and
fluctuation range of the experimental results are shown in Figure 6.
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Fig. 6. The box and whisker plot on ACDC(LV,Myo,RV) and ASC(LA) dataset.

Table 4. Ablation on different modules used in LGSANet.

Methods
ACDC ASC

DSC HD95 F1 DSC HD95 F1

UNet 90.00 0.93 90.17 90.53 1.26 90.79
UNet+LG 91.16 0.82 91.24 90.81 1.21 90.97
UNet+SA 91.70 0.72 91.88 91.57 1.09 91.74

UNet+LG+SA 92.22 0.64 92.33 91.85 1.02 92.06

4.5 Ablation Analysis of Our Method

From the results in Table 4, it can be seen that the use of LG block and SA
block can gradually improve the performance of the segmentation network. As
shown in Figure 6, it can be seen that the single-head output results can obtain
better benefits than the multi-head output.In multi-head mode, it is probably
unreasonable to use the edge information to correct the edge layer features.But
the middle layer in the single-head mode can obtain balanced context informa-
tion, so the effect is relatively better.As shown in Table 5, the increase in the
number of SI blocks enables both the deep and shallow contextual information
to be acquired and adjusted during the decoding process, which also shows that
the SA block and skip connection in the 2d network play a similar role. As shown
in Table 7, the combination of serial supervision and siamese supervision en-
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Table 5. Ablation on different design of SA block.

Methods
ACDC

DSC HD95 F1

Multi-head 91.90 0.68 91.99
Central-head 92.22 0.64 92.33

SA

SA

SA

𝑆𝑑,𝑖−1
ℎ−1,𝑠𝑡𝑎𝑔𝑒

𝑆𝑑,𝑖
ℎ−1,𝑠𝑡𝑎𝑔𝑒

𝑆𝑑,𝑖+1
ℎ−1,𝑠𝑡𝑎𝑔𝑒

𝑆𝑎,𝑖−1
ℎ,𝑠𝑡𝑎𝑔𝑒

𝑆𝑎,𝑖
ℎ,𝑠𝑡𝑎𝑔𝑒

𝑆𝑎,𝑖+1
ℎ,𝑠𝑡𝑎𝑔𝑒

SA

𝑆𝑑,𝑖−1
ℎ−1,𝑠𝑡𝑎𝑔𝑒

𝑆𝑑,𝑖
ℎ−1,𝑠𝑡𝑎𝑔𝑒

𝑆𝑑,𝑖+1
ℎ−1,𝑠𝑡𝑎𝑔𝑒

𝑆𝑎,𝑖−1
ℎ,𝑠𝑡𝑎𝑔𝑒

𝑆𝑎,𝑖
ℎ,𝑠𝑡𝑎𝑔𝑒

𝑆𝑎,𝑖+1
ℎ,𝑠𝑡𝑎𝑔𝑒

Multi-head type SA block Central type SA Block

Fig. 7. Multi-head type and central type SA block.
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ables LGSANet to gradually obtain better performance under the structure of
LGSANet.

Table 6. Ablation on the number of SA block. The number of SA block veries from 1
to 5 in LGSA-UNet.

Number of
SA block

ACDC
DSC HD95 F1

1 91.27 0.78 91.54
3 91.92 0.68 92.05
5 92.22 0.64 92.33

Table 7. Ablation on loss function. OS repesents that only ouput of central slice in fine
segmentation stage is supervised; SiS means serial supervision and Sis means siamese
supervision.

Supervision
type

ACDC
DSC HD95 F1

OS 90.57 0.88 90.84
SeS 90.89 0.79 91.21
SiS 91.84 0.70 91.97

SeS+SiS 92.22 0.64 92.33

5 Visualization

It can be seen from the visualization results that our approach LGSA-UNet reach
the best proformance.In the two datasets, our method can accurately segment
the target, making the segmentation result smoother and more accurate. In
ACDC dataset, the discontinuity of the segmentation edge is greatly reduced.
ASC is a dataset with rich target morphological changes, our method can also
better fit the boundaries of the target. Compared with its 2D backbone model,
LGSANet can achieve great performance improvement in segmentation task.

6 Conclusion and future work

In this paper, we propose an atrium segmentation network based on location
guidance and siamese adjustment, which takes consecutive three-layer slices as
inputs.It uses location information in stage 1 to guide encoding features in stage
2, and conducts siamese interactions among the three-layer slices to take ad-
vantage of contextual information. We use a combination of serial supervision
and siamese supervision to obtain the best optimization effect of this network.
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Image GroundTruth LGSA-S LGSA-U SwinUNet UNet

Fig. 8. Visualization of segmentation results using different methods in ACDC dataset.
LGSA-S repesents LGSA-SwinUNet and LGSA-U repesents LGSA-UNet.

Experiments show that our method is suitable for classic 2D networks such as
UNet, SwinUNet to achieve a significant performance improvement. In future
work, we will further attempt to introduce edge detectors into segmentation
tasks to improve the performance of segmentation.
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Image GroundTruth LGSA-S LGSA-U SwinUNet UNet

Fig. 9. Visualization of segmentation results using different methods in ASC
dataset.LGSA-S repesents LGSA-SwinUNet and LGSA-U repesents LGSA-UNet.
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