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Abstract

This work presents a comprehensive performance
analysis and optimization of a multiscale agent-based
cellular simulation. The optimizations applied are
guided by detailed performance analysis and include
memory management, load balance, and a locality-
aware parallelization. The outcome of this paper is
not only the speedup of 2.4x achieved by the opti-
mized version with respect to the original PhysiCell
code, but also the lessons learned and best practices
when developing parallel HPC codes to obtain effi-
cient and highly performant applications, especially
in the computational biology field.

1 Introduction

Multiscale modelling has emerged as one of the most
effective approaches for simulating physical systems
that comprise different time and spatial scales. For
this purpose, the interplay between the different lev-
els is carefully modelled, thus determining how par-
ticular events at a specific level affect events from
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other scales. In computational biology, multiscale
modelling has been useful for modelling parts of
tissues, including physical barriers (such as blood
vessels) and different types of cells that communi-
cate both by direct contact and through the produc-
tion and consumption of different chemical molecules
across the extracellular space [1].

One of the most popular multiscale modelling
frameworks is agent-based modelling (ABM) that de-
fines a set of rules that govern the behaviour of each
individual element (or agent) in the simulation [2].
ABM explicitly defines the interactions among agents
and with the environment, and these interactions can
produce emergent properties that reproduce the well-
known properties that characterize the real system
being modelled [3, 4]. In addition, ABMs have also
been embedded with other models to simulate a cell’s
signalling pathways, for instance using Boolean mod-
elling [5, 6], adding another scale to the multiscale
framework.

ABMs’ setup have allowed them to be widely used
to model cancer growth and drug treatments and
its flexiblity has allowed researchers to model bigger,
more complex problems that have increased compu-
tational requirements. Indeed, to be able to simulate
real-sized tumours with complex micro-environment,
there is a need for ABMs models that scale well in
computing clusters [7]. In spite of some efforts, most
ABM tools were designed for desktop computers and
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have a considerable room for improvement if used in
computing clusters [8, 9, 10]. Thus, if we aim at scal-
ing these ABMs efficiently in computing clusters, we
first need to diagnose the code and analyze its per-
formance.
Detailed performance analysis is a necessary pro-

cess in the optimization cycle. Timing and profiling
are common approaches used to determine perfor-
mance; however, they do not provide enough informa-
tion and are far from revealing insights into the real
bottlenecks, pitfalls and sources of inefficiency [11].
On the other hand, detailed performance analysis
based on execution traces [12] can unveil inefficien-
cies coming from different sources: the parallel code,
the hardware, or the system software (f.i., parallel
programming models, parallel libraries) [13].
In this work, we follow a performance analysis

methodology based on a set of efficiency metrics.
These metrics indicate the primary source of effi-
ciency loss. Based on this, the analyst can study
in detail the execution to point out the main issue
and offer suggestions to overcome it. Once the bot-
tlenecks have been identified, we provide the corre-
sponding optimizations and evaluate them [14].
The performance issues analyzed and optimized in-

clude memory management, load balance, and data
locality. These optimizations lead us to a 2.4x
speedup with respect to the original version of the
code when using a full node of Marenostrum4 (48
cores). However, the outcome of this work goes be-
yond the achieved speedup, as it has allowed us to
identify common patterns that lead to performance
degradation in highly parallel codes. We present the
conclusions of our study as a set of best practices
that will help scientists and code developers achieve
efficient codes.

2 Related Work

ABM have been quite ubiquitous in computational
biology [15] and there are many tools available to sim-
ulate cells using center-based models (or overlapping
spheres) and with a surrounding environment simu-
lated explicitly. For a comprehensive review, refer to
the work by [1].

PhysiCell [4] is an open-source, flexible and lattice-
free agent-based tool for the multiscale simulation of
multicellular systems that stands out for lightweight,
very efficient and self-contained framework. In ad-
dition, researchers can build add-ons for PhysiCell,
such as PhysiBoSS [16, 5], that allows the embed-
ding of Boolean models as gene regulatory networks
into each agent. PhysiCell has been widely used in
computational biology to study cancer growth and
how immunogenicity enables tumour cells at the out-
skirts to escape immune attack [17], to discover how
dynamic regimes can counter the tumour cells’ re-
sistance to tumour necrosis factor (TNF) [16] or to
optimize these dynamic drug treatments [18, 19].

Chaste [3] is an open-source, general-purpose sim-
ulation package for modelling soft tissues and dis-
crete cell populations. This tool allows using different
modelling frameworks on a given problem, enabling
users to select the most appropriate one for their re-
search and to better understand the limitations of
each one of them. Chaste can also be expanded, for
instance, to simulate gene regulatory networks [6] and
has been used for different projects, such as intestinal
[20] or colonic crypt [21] studies.

FLAME [10] is an open-source, generic framework
for agent-based modelling by using finite-state au-
tomata with memory. This tool has been adapted
to be used with distributed GPUs using the OpenCL
standard [22]. Examples of uses of FLAME range
from immunogenic studies [23] to epidermis mod-
elling [24].

Timothy [25, 26] is an open-source tool able to per-
form large simulations in cancer projects and models
with nuclear-cytoplasmic oscillations of NF-κB [27].
BioDynaMo [28] is an open-source simulation tool

able to offload computation to hardware accelerators
and load balance agents and their environment. Its
extensible and modular desgin allows it to be used in
very different fields such as neurite growth, tumour
growth and epidemiology.

Biocellion [29] is a flexible agent-based simulation
framework that has been used to model a wide range
of multicellular biological models, such as a bacterial
system in soil aggregates and cell sorting simulations.
Biocellion is freely available for academic use and its
single-node version is open source.
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Even though a comprehensive, community-driven
benchmark of tools is an endeavour still to be ad-
dressed in the field, most of these tools compare their
characteristics with the rest of the tools in descrip-
tive tables. For instance, Chaste shows this in Table
1 [3] and PhysiCell has a similar table in its Supple-
mentary material [4]. Some tools go a step beyond
and present their technical performance under differ-
ent biological setups, such as FLAME [10], or com-
puter architectures, such as Timothy [9]. In spite of
these efforts, a detailed performance analysis aimed
at guiding the optimization of any of these tools, as
we present in this work, has not been addressed yet.

3 Background

3.1 Computer cluster setup

MareNostrum4 is a supercomputer based on Intel
Xeon Platinum processors from the Skylake genera-
tion. It is a Lenovo system composed of SD530 Com-
pute Racks, an Intel Omni-Path high performance
network interconnect and running SuSE Linux Enter-
prise Server as operating system. Its current Linpack
Rmax Performance is 6.2272 Petaflops.
The general-purpose block that we used for present

work consists of 48 racks housing 3456 nodes with
a grand total of 165,888 processor cores and 390
Terabytes of main memory. Compute nodes are
equipped with

• 2 sockets Intel Xeon Platinum 8160 CPU with
24 cores each @ 2.10GHz for a total of 48 cores
per node

• L1d 32K; L1i cache 32K; L2 cache 1024K; L3
cache 33792K

• 96 GB of main memory 1.880 GB/core, 12x 8GB
2667Mhz DIMM (216 nodes high memory, 10368
cores with 7.928 GB/core)

• 100 Gbit/s Intel Omni-Path HFI Silicon 100 Se-
ries PCI-E adapter

• 10 Gbit Ethernet

The processors support well-known vectorization
instructions such as SSE, AVX up to AVX–512.

3.2 PhysiCell

PhysiCell [4] is an open-source multiscale multicel-
lular simulation framework written in C++ with
minimal dependencies. It was developed as an
agent-based modeller where the agents are cells with
properties like secretion/uptake values for different
substrates, mechanical properties, growth rates, who
interact with the tissue environment and with the
other cells. For this project, we are using PhysiCell
version 1.6.0 and its source code is available at:
https://github.com/MathCancer/PhysiCell/releases/tag/1.6.0.

PhysiCell is parallelized using OpenMP [30] as a
shared memory parallelization model. Recent works
also have ported its diffusion solver to MPI (Message
passing interface) [31] to allow scaling to several com-
pute nodes [8]. However, the complete refactoring of
PhysiCell to MPI has not been completed and thus,
in this work, we focus on analyzing and optimizing
the OpenMP version of PhysiCell.

We use GCC 8.1 and OpenMPI 3.1.1 running atop
the SUSE Linux Enterprise Server 12 SP2 OS to
simulate the heterogeneity sample project in a 3D
setup that starts with over 3900 cells in a simulation
box of 1500 µm per side and a total simulated time
of 1440 minutes for the identification of regions to be
optimized, and 12 days for final optimization impact
validation.

3.3 Methodology

The work presented here follows the methodology de-
fined in the Performance and Optimization Center of
Excellence (POP CoE). This implies that a detailed
performance analysis guides the optimizations. The
performance analysis process starts by defining the
focus of analysis (FoA), the region of interest that
will be analyzed. Then, at the FoA, we apply the
POP efficiency metrics [32]. The POP efficiency met-
rics are a set of performance metrics that identify to
which extent different factors affect the performance.
They are mutually exclusive, hierarchical, and multi-
plicative.
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Figure 1: Hierarchy of POP Efficiency metrics.

In Figure 1 we can see the hierarchy of POP met-
rics. We can find a complete definition and how each
metric is computed in the work of Garcia-Gasulla et
al. [33]. Below we give a short overview of the mean-
ing of each metric when analyzing an OpenMP code.
There are two kinds of efficiency metrics, efficien-
cies, and scalability; efficiencies are calculated based
on the current execution, while scalabilities are com-
puted based on a base case assuming an ideal compu-
tation scaling is expected. In the latter, for the base
case, we presume scalability of 100% and can work
for strong and weak scaling.

• Parallel efficiency: This is the efficiency loss due
to the overheads inherent to the parallelization.

– Load Balance: This is the efficiency loss
due to an uneven distribution of workload
among threads.

– Communication efficiency: This is the ef-
ficiency loss due to the non-instantaneous
nature of synchronization between threads.

• Computation scalability is the efficiency lost in
pure computation time relative to a base case.
It is divided into three fundamental factors: in-
structions, IPC (Instructions per Cycle), and fre-
quency.

– Instruction scalability: is the scalability of
the number of instructions executed during
the compute time with respect to the base
case.

– IPC scalability: is the scalability of the IPC
achieved during the compute time with re-
spect to the base case.

– Frequency scalability: is the scalability of
the frequency during the compute time
with respect to the base case.

A low value in one of these metrics will show the
analyst what inefficiencies must be studied in detail
to understand where and why they happen. We do
this analysis based on execution traces obtained with
Extrae [12] and analyze them using Paraver [34, 35].
Once we have determined the main scalability issues
or bottlenecks for that version, we discuss some rec-
ommendations with the developers. If agreed, the
corresponding optimization is implemented and eval-
uated. After this, the performance analysis process
can start over.

4 Analysis and Optimization of
Concurrent Memory Alloca-
tions

4.1 Focus of Analysis and Efficiency
Metrics

Following the methodology, the first step is to de-
termine the Focus of Analysis (FoA), in Figure 2 we
can see a trace of three iterations of an execution of
PhysiCell with 24 OpenMP threads. Each row rep-
resents one of the OpenMP threads and the X axis is
the execution time. The different colors correspond
to the different parallel functions.

Figure 2: Focus of Analysis: Trace showing parallel
functions for three iterations of PhysiCell.

The application presents an iterative pattern, for
that reason we select the FoA as one of the iterations.
However, we still consider in our analysis the dynamic
nature of the problem, because the number of cells
can increase or decrease as the simulation advances.
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Next step is to compute the efficiency metrics de-
fined by the POP efficiency model. In table 1 we show
the efficiency metrics for the FoA of PhysiCell. Each
column corresponds to one execution with a different
number of OpenMP threads, the different rows are
the different efficiency metrics.

Table 1: Efficiency metrics for original FoA of Physi-
Cell.

We observe that the main problem limiting scal-
ability is the drop of frequency, it decreases as the
number of threads used increase. With 48 threads
reaches a 14% of the frequency measured with 2
threads.

With a detailed analysis we try to determine where
and why this decrease in the frequency happens. Fig-
ure 3 shows traces visualizing the value of cycles/µs
(frequency) for 8, 16, and 24 threads executions. The
top row corresponds to 8 threads; the middle row cor-
responds to 16 threads; the bottom row corresponds
to 24 threads. On the left, visualization of frequency
for each computation burst with a color gradient that
goes from green for low values to blue for high val-
ues. On the right, the same traces showing parallel
functions help relate regions on the left to their cor-
responding parallel function.

While we see the nominal frequency of MN4 in the
trace of 8 threads, the traces for 16 and 24 threads
clearly show a drop of the cycles/µs value in the up-
date velocity region.

The study of the traces leads to some observations:
1)The frequency drop is localized in one computation
region; 2) The value of the frequency decreases as
the number of resources increases; 3) The decrease
of frequency significantly impacts the duration of the

Figure 3: Traces comparing frequency values for ex-
ecutions with 8, 16, and 24 threads.

region, clearly being the bottleneck that prevents the
code from scaling.

4.2 Characterizing the cause of the
frequency decrease

To determine the cause of the decrease of frequency
when increasing the number of threads, we discard
some of the common causes. It can not be preemption
(another process using the CPU where the thread is
running) because it is localized in a code region and a
preemption would be seen along the whole execution.
Checking the memory consumption we also discard
that the code is swapping data to disk because it
would have exhausted the node memory.

Considering that the frequency decrease appears
as we increase the number of threads running in the
node, we can assume that the cause is related to a
shared resource inside the node that is being stressed.

Analyzing the region of code suffering from the fre-
quency drop and knowing that it should be related
to a shared resource, we determine that the perfor-
mance drop is related to the high number of small
memory allocations and deallocations executed.

PhysiCell uses the overloading operator feature
of C++ to redefine operations on variables of type
vector<double>. Listing 1 shows an example of
overloading the operator that computes an addition
between two vectors.

1 std::vector <double > operator +( const std::

vector <double >& v1 , const std::vector <

double >& v2 )

2 {

5



3 std::vector <double > v = v1;

4 for( unsigned int i=0; i < v1.size() ; i++

)

5 { v[i] += v2[i]; }

6 return v;

7 }

Listing 1: Overloading implementation of the
operator + in PhysiCell

1 std::vector <double > corner_point =

2 0.5*( my_voxel_center+other_voxel_center);

Listing 2: Extract of function
is neighbor voxel(...), creation of corner point
variable using overloaded operators.

In Listing 2 we show a code where the overloaded
operators are used. In a single line of code a variable
of type vector<double> is created, and it is assigned
the result of the product of a scalar by the addition
of two vectors.
If we analyze in detail the code in Listing 1, we

can see that for every invocation of the overloaded
operator + a memory allocation is done in line 3 and
the corresponding deallocation in line 6. This means
that the single line of code of Listing 2 causes three
allocations.
As we said, our problem works in a 3D environ-

ment, and vectors of three positions are used to place
elements in the 3D space. Therefore, a very high
number of operations are performed on small vectors.

4.3 Conclusions of the analysis

Our study indicates that a high number of concurrent
memory allocations and releases in the code are re-
sponsible for the lack of scalability of the code. These
memory allocations are produced by the overloaded
operators that operate on small vectors. To over-
come this bottleneck, we recommend the developers
implement one of the following optimizations:

1. Use standard library operators to manage vector
positions instead of the overloaded ones;

2. Reimplement the overloading of operators for
vector<double>, so no extra memory is allo-
cated to perform them.

3. Use an alternative library for dynamic memory
management that manages concurrency better.

The solutions preferred for an optimized version
of PhysiCell are 1 or 2. These solutions, however,
require a major refactor of the code. To prove the
benefits of optimizing PhysiCell and encourage the
developers to implement it, in the following section
we apply solution number 3 and evaluate the results.

4.4 Optimization

The library chosen for the proof of concept is je-
malloc a ”general purpose malloc(3) implementation
that emphasizes fragmentation avoidance and scal-
able concurrency support” [36]. This library is a good
candidate for the proof of concept, as it promises to
handle concurrency better and is easy to integrate
with PhysiCell, as a preloaded library. Using jemal-
loc with PhysiCell does not require recompilation or
code changes.

The execution of PhysiCell with Jemalloc requires
adding the path of the library to the LD PRELOAD en-
vironment variable before executing the program.

To evaluate the optimized version we execute the
same use case preloading the jemalloc library. Fig-
ure 4 compares execution traces of the FoA of both
versions (top trace original execution, bottom trace
execution with jemalloc). The Focus of Analysis per-
forms 30% faster than the original one in the case of
24 threads. The update velocity region (big burst in
dark red) reduces its execution time drastically. The
solver region (pink bursts) also shows a reduction of
the execution time, which indicates that the prob-
lem of the memory allocations actually impacted the
whole code.

Scalability is also improved, as expected. The plot
in Figure 5 shows the strong scalability for original
and Jemalloc versions. In the X axis we can see the
number of threads of the execution from 1 to 48; in
the Y axis we can see the speedup with respect to the
1-thread execution of each series. The version with
jemalloc shows speedups closer to the ideal one.

In Figure 6 we show the speedup of the jemalloc
execution with respect to the original one. We see
a speedup of 1.36x (reduction of runtime by 27%)
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Figure 4: Execution trace of FoA comparing
original and Jemalloc version. Top trace cor-
responds to original execution, bottom trace corre-
sponds to execution with jemalloc. Colors indicate
parallel function.
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Figure 6: Speedup of jemalloc version respect origi-
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These results indicate that the optimization re-
solves the problem limiting scalability and that the
factor limiting the scalability is the concurrency of
frequent memory allocations.

5 Analysis and Optimization of
Load Imbalance

5.1 Detection of the problem

We now start a new iteration of the performance anal-
ysis and optimization loop. We obtain the efficiency
metrics of the same execution using the jemalloc li-
brary (table 2). The first thing we observe in this
table is that we no longer see the frequency issue
that appeared in the previous table. In this case, we
see that the lowest efficiency value is the load balance
metric.

To provide suggestions on how to solve the load
balance issue, first, we need to know its source. To
do this, we analyze the trace of the FoA of the new ex-
ecution in detail. In Figure 7 we show the parallel re-
gions of one iteration of PhysiCell. We detected three
different regions with load imbalance and identified
them with color squares in the image. Orange square
(left) shows that first threads always take longer to
complete. It corresponds to the microenvironment
solver function. Yellow square (middle) shows that
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Table 2: Efficiency metrics for FoA of PhysiCell with
Jemalloc.

first threads always take longer to complete. It cor-
responds to the compute gradients function. Blue
square (right) marks that the last threads show a
longer execution time. It corresponds to the cell’s
update velocity function.

Figure 7: Paraver trace from PhysiCell with jemalloc
execution, with regions of imbalance marked. Visu-
alization is parallel functions. Own elaboration.

When load imbalance occurs, it can have two ex-
planations: either some threads have more work to do
(i.e., they execute more instructions), or they com-
pute the same work slower (i.e., at a lower IPC).
To understand in which case we are looking at, we
measure the number of instructions executed by each
thread in each parallel region and the IPC obtained.
We show these in the traces depicted in Figure 8. The
bottom trace shows a color gradient for the number
of instructions, where green means lower and blue
means higher. We can observe that for regions yel-
low and orange the first three threads execute more
instructions than the other threads.

In the top trace of Figure 8 we show the IPC also

Figure 8: Paraver traces showing IPC (top) and num-
ber of instructions (bottom) per thread.

in a gradient code color. We observe that while the
yellow and orange square regions show the same IPC
for all threads, at the blue square region the trace
shows a clear difference in the IPC of the threads that
take longer to execute. The IPC is lower, meaning
that the same number of instructions needs more time
to be executed compared to another thread.

Based on this we can conclude that for the regions
orange and yellow, the source of the load imbalance
is the computational load. On the other side, for the
blue region the source of load imbalance is the IPC.

5.2 Study of the load imbalance due
to workload

When using parallel for pragmas to parallelize
OpenMP code and deal with load imbalances, the
common approach is to use a different loop scheduler
that helps balance the workload among the threads.

1 # pragma omp parallel for

2 for(unsigned int k=0; k<M.z_coord.size(); k

++)

3 {

4 for(unsigned int j=0; j<M.y_coord.size()

; j++)

5 {

6 ...

7 \\Some work

8



8 ...

9 }

10 }

Listing 3: Parallelization of microenvironment solver

But once we identified the parallel loop displaying
the load imbalance, we see that it has the structure
shown in Listing 3. This code snippet shows that the
solver process is parallelized on the outermost loop of
the domain traversal. Knowing that our specific use
case contains a domain of 75× 75× 75 voxels. There
are only 75 chunks of workload to distribute among
at most 48 threads.

Our conclusion is that the load imbalance cause is
the work’s granularity being too coarse. This behav-
ior happens both for the solver phase and the com-
pute gradients function, as the parallelization strat-
egy is the same.

Our suggestion is to implement a finer paralleliza-
tion to better distribute workload between threads
and avoid load imbalance, independently of the num-
ber of cores that the machine has.

5.3 Optimization of the load imbal-
ance due to workload

Looking at the original code, we see that we can
still parallelize inside the loop. There is a nested
loop right after the outer loop that iterates through
another domain axis. Our implementation con-
sists of collapsing the two outer loops, in order
to increase the workload from M.z coord.size()

to M.z coord.size() * M.y coord.size(). With
this, we aim to reduce the grain size, and a higher
number of finer chunks will be distributed, achieving
a more balanced workload.

OpenMP specification provides the collapse

clause, allowing to parallelize multiple nested loops
without introducing nested parallelism. Our imple-
mentation applies this clause to the parallel regions
affected by the load imbalance.

In Figure 9 we compare the previous version with
our optimized version using the collapse clause. In
the top trace we see one iteration of the original ver-
sion with the jemalloc library, and in the bottom

Figure 9: Trace comparison between original + je-
malloc (top) and original + jemalloc + collapse (bot-
tom).

trace we see the same iteration using the jemalloc li-
brary and with the collapse clause. We can see how
the microenvironment solver (pink) and the compute
gradients function (green) are better balanced and
therefore also faster to compute in the new version.

5.4 Study and optimization of the
load imbalance due to IPC

The region affected by the load imbalance due to IPC
corresponds to the update velocity parallel function.
This code consists of a loop over all the cells to up-
date its velocity based on their neighbouring cells.
The parallelization strategy consists of a parallel

loop distributing the computation of the total cells
between the threads. There is no reason to think that
the computation of the velocity of one cell is differ-
ent from another. We need to find out why some cells
negatively impact IPC when computing its velocity.

In Figure 10 we show the IPC at the update ve-
locity region and we compare the same region at two
different moments of the simulation. These traces
show a gradient for the value of IPC, for green mean-
ing low values, and blue meaning high values. Yellow
and orange represent lower out of range and upper
out of range, respectively. The top trace, that corre-
sponds to one of the first iterations, shows only the
first and last thread with a lower IPC than the others.
In contrast, the bottom trace, that corresponds to
an iteration of an advanced simulation point, shows
more threads with a lower IPC, starting from the last
one and going backward.
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Another important observation is that the threads
that are not affected by the significant drop of IPC
still show a slight decrease in their IPC in the trace
corresponding to the advanced point of the simula-
tion.

Figure 10: Execution traces, IPC visualization,
zoomed-in update velocity region. The top trace cor-
responds to the first iterations, bottom trace corre-
sponds to an advanced point of the simulation.

To sum up:

1. The number of threads that show a worse IPC
increases as the simulation advances. This effect
spreads from the last thread and to the others
backward.

2. The other threads also show a slight decrease in
IPC as the simulation advances.

Figure 11: Representation of cell’s position in the
vector of cells and in a mesh slice at the initial sim-
ulation point.

Analyzing the data structures and the code we see
that cells are stored in a vector, where the new cre-
ated cells are appended at the end. This is repre-
sented in Figure 11 where the new created cell C is

neighbour of the cells A and B and is stored at the
end of the vector. With the current parallelization
that divides the vector of cells with a static schedule
among the different threads, the runtime assigns to
the last threads the cells created due to cell division
during the simulation. As more cells divide, the pro-
portional part of the vector that contains new cells
grow, and this is why the number of threads that
compute these cells increases. These cells are more
costly to compute because of their position in mem-
ory. Finally, the threads that do not have new cells
are still affected because they need to access informa-
tion from the new cells, as they are neighbors of the
original ones.

For each new cell, PhysiCell adds a pointer to its
data structure to the end of the vector of cells. Al-
though these pointers are contiguous in the vector
and the cells they point to are computed by the same
thread, they are physically distributed throughout
the 3-D mesh. Therefore the physical neighbors are
not contiguous in memory. This behavior makes ac-
cessing the neighbors of a cell to compute its velocity
very costly, as the program can exploit neither the
spatial nor the temporal locality, producing a high
number of cache misses.

At this point we conclude that the objective of the
optimization is not to solve the load imbalance in
the compute velocity function. This in fact would be
achievable by using a dynamic schedule in the par-
allel loop over the cells. Instead, the challenge is to
achieve a good IPC for all the threads during all the
execution.

We know that in an initial state, all cells contiguous
in the vector of cells are also neighboring in the 3-D
mesh. New cells resulting from division get added to
the end of the vector. In Figure 11 when the program
computes the velocity of cell A reads data from cell
B because they are neighbors. When it computes the
velocity of cell B it already has the data needed of cell
A in cache, because it was computed right before.

However, now let us jump to a more advanced sim-
ulation state, where many new cells have been added
to the simulation. We see in Figure 12 two steps of
the computation, performed by the same thread, each
corresponding to the computation of a different cell.
At in the cell marked with the arrow is computed,
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Figure 12: Representation of cell’s position in the
vector of cells and in a mesh slice at an advanced
simulation point.

accessing data from all its neighboring cells, painted
in a lighter red. This data is stored in the cache. The
same thread computes the next cell in the vector at
the next iteration in+1, marked with the arrow. This
cell now has neighbors that are entirely different from
the previous cell. Therefore, accessing their data in-
stead of accessing the data already cached produces
cache misses and is more costly.
Our suggestion to improve the IPC in the whole ex-

ecution would be to store the cells in memory close to
the cells they neighbour in the 3D environment, but
this is not a trivial task and requires a considerable
refactoring of the code.
For this reason we try to address the problem from

the parallelization point of view.

1 # pragma omp parallel for schedule ( dynamic

, GS )

2 for (int voxelID =0; voxelID <agent.size();

voxelID ++)

3 {

4 //Check if voxel is empty

5 if(agent[voxelID ].size() >0)

6 {

7 // Compute voxel ’s cells

8 }

9 }

Listing 4: Parallelization of update velocities based
on voxels

As we already have a data structure that represents
the 3D space, the voxels, we propose to parallelize
the workload using voxels instead of the vector of
cells. Then cells will be grouped and computed by
voxels, ensuring that neighboring cells are computed
contiguously by the same thread. This parallelization
strategy allows the threads to exploit the temporal
locality of the cell’s data, producing more cache hits
and faster accesses.

In Listing 4 we show the parallelization proposed
based in the voxels and we study the impact of the
grain size (GS) in the performance. In Figure 13 we
show the traces obtained with different grain sizes
compared with the original code. We can see that the
new implementation has a worse performance than
the original one. This is due to the computation of
empty voxels at the beginning (pink squares) and at
the end. Also, when using bigger grain sizes the im-
pact of the empty voxels is lower but in this case the
load imbalance at the end is what limits the perfor-
mance.

Figure 13: Trace comparison of a voxels based paral-
lelization in update velocity function

In order to solve this issue we implement a new
version that includes a list of non-empty voxels. This
list of not empty voxels is updated during one of the
solver processes, which already iterates through the
3-D mesh. In Figure 14 we show the trace obtained
with this version we observe a small gain when us-
ing 24 OpenMP threads with respect to the previous

11



version. However, due to the code added to compute
the list of non-empty voxels the gain is not relevant
in the overall execution.

Figure 14: Trace comparison of non-empty voxels
based parallelization in update velocity function.

This last optimization has not achieved relevant
speedups in smaller experiments, but does present
advantages when the simulations are longer and more
cells appear. We have learned some lessons: 1) Vox-
els (and, consequently, cells) should be computed in
the same order as found in the physical mesh. 2)
A coarser grain exploits the temporal locality much
better; 3) The computation of empty voxels when
working through agent-based processes is useless and
adds overhead, thus, should be avoided.

5.5 Evaluation of load balance opti-
mizations

In Figure 15 we show the scalability of the different
versions that we have shown in this work. In the y
axis is shown the speedup with respect to the execu-
tion with one thread of the same version. In the x axis
is shown the number of OpenMP threads used. Each
speedup point is computed from 5 executions with
different initial random seeds. Statistical variability
of the measurements is below 5%, so we decided not
to include error bars.

We can see that for the versions including the
collapse clause, the “stairs” that are shown in the
original and jemalloc versions disappear. With the
finer granularity parallelization, the efficiency is not
tied to the number of resources used. The version
that shows the best scalability includes the jemal-
loc and collapse optimizations, this version achieves
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Figure 15: Scalability obtained by different versions
up to 48 threads.

a speedup of 37x with 48 OpenMP threads and 21x
with 24 threads.

Figure 16: Speedup of optimizations wrt. original
code for different thread configurations. Simulation
of 12 days.

Finally we simulate 12 days to reproduce a classi-
cal experiment of organoid growth[37] to evaluate our
optimizations in a production run. In Figure 16 we
show the speedup of each version with respect to the
original one. In the y axis is shown the speedup, in
the x axis is shown the number of OpenMP threads
used. Each data point is the mean of 5 speedups
and error bars are shown. We can see how the op-
timized versions outperform the original code in all
the cases. With more threads used, the more rele-
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vant the optimization is, achieving a speedup of 2.4x
when using 48 threads combining the Jemalloc, Col-
lapse and Parallel voxels optimizations and compared
to the original version running with the same number
of resources.

6 Conclusions and Lessons
Learned

Multiscale simulations represent one of the most com-
putationally intensive fields of computational biology.
In this context, relevant emerging paradigms, such as
personalized medicine, are progressively demanding
more sophisticated models and simulations, incorpo-
rating a large number of parameters to recapitulate
the essential properties of biological systems appro-
priately [7].

In the particular context of tissue modeling with
PhysiCell, this type of expansion will involve the de-
sign of experiments that substantially increase the
number of modeled cells (up to 109), the number
of substrates diffusing through the medium, and the
complexity of molecular pathways to be quantified
within each agent, inevitably leading to an exponen-
tial growth of computation required in each simula-
tion.

These challenging scenarios will not only require
the availability of larger supercomputers, but also to
use them efficiently. Therefore, improving the tools’
performance without compromising their portability
is crucial to use the HPC resources efficiently in those
large-scale simulations.

This work presents three iterations of the perfor-
mance analysis cycle leading to three optimizations.
As our optimizations target quite common patterns
in ABM codes, we share them as best practices to
help developers implement more efficient tools.

Memory allocation and deallocation con-
tention. We show that implementing custom oper-
ators that allocate and deallocate memory can com-
promise performance. If these operators are used very
frequently combined with parallel execution, they
generate contention in the memory allocating sys-
tem. We encourage developers to avoid this practice.

To demonstrate it without a major refactoring of the
code, we show how using a memory managing library
(jemalloc), we achieve a speedup of 1.45X when using
48 concurrent threads.

Load imbalance, coarse granularity. Load im-
balance represents one of the main challenges that
compromise the scalability of a given software. In the
current scenario, we deal with a load imbalance pro-
duced by a coarse granularity of the parallel chunks
of work. In this case, we advise against the common
temptation of adjusting the workload partition to the
given platform or hardware to avoid the loss of porta-
bility (i.e., to partition the work based on the number
of computational resources). Instead, we propose to
decrease the granularity of the parallel workload, for
instance, by adding a collapse clause that allows par-
allelizing nested loops. With this change, combined
with the previous one, we earn a speedup of 2.25x
with respect to the original code.

Load imbalance, heterogeneous IPC. In the
last analysis, we observe a load imbalance problem
produced by the variation in the IPC achieved by the
different threads as the simulation advances. Our fo-
cus, in this case, is not only solving the imbalance but
also improving the memory locality that is producing
the reduction in the IPC. After analyzing several im-
plementations, we conclude that the best approach is
to store cells in memory as close as possible to their
position in the 3D environment, and at the same time
to iterate when computing the cells as they physically
appear in the 3D environment. With our change, we
get to a final speedup of 2.4x of all optimizations
combined compared to original code (Figure 16).

We hope that the best practices presented here help
developers better scale their ABM tools and other
multiscale simulators to high-end computing nodes.
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san Säıdi, C. Tenaud, I. Spisso, and F. Manto-
vani, “A generic performance analysis technique
applied to different cfd methods for hpc,” In-
ternational Journal of Computational Fluid Dy-
namics, vol. 34, no. 7-8, pp. 508–528, 2020.

[34] V. Pillet, J. Labarta, T. Cortes, and S. Girona,
“Paraver: A tool to visualize and analyze paral-
lel code,” in Proceedings of WoTUG-18: trans-
puter and occam developments, vol. 44, no. 1,
1995, pp. 17–31.

[35] Barcelona Supercomputing Center, “Paraver,”
2023, https://tools.bsc.es/paraver.

[36] “jemalloc,” Jemalloc, accessed on 08/01/2022.
[Online]. Available: http://jemalloc.net/

[37] J. P. Freyer and R. M. Sutherland, “Regulation
of growth saturation and development of necro-
sis in EMT6/Ro multicellular spheroids by the
glucose and oxygen supply,” Cancer Research,
vol. 46, no. 7, pp. 3504–3512, Jul. 1986.

16

http://jemalloc.net/

	Introduction
	Related Work
	Background
	Computer cluster setup
	PhysiCell
	Methodology

	Analysis and Optimization of Concurrent Memory Allocations
	Focus of Analysis and Efficiency Metrics
	Characterizing the cause of the frequency decrease
	Conclusions of the analysis
	Optimization

	Analysis and Optimization of Load Imbalance
	Detection of the problem
	Study of the load imbalance due to workload
	Optimization of the load imbalance due to workload
	Study and optimization of the load imbalance due to IPC
	Evaluation of load balance optimizations

	Conclusions and Lessons Learned

