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STREAMING GENERALIZED CANONICAL POLYADIC TENSOR
DECOMPOSITIONS*

ERIC PHIPPS!, NICK JOHNSON', AND TAMARA G. KOLDA#

Abstract. In this paper, we develop a method which we call OnlineGCP for computing the
Generalized Canonical Polyadic (GCP) tensor decomposition of streaming data. GCP differs from
traditional canonical polyadic (CP) tensor decompositions as it allows for arbitrary objective func-
tions which the CP model attempts to minimize. This approach can provide better fits and more
interpretable models when the observed tensor data is strongly non-Gaussian. In the streaming
case, tensor data is gradually observed over time and the algorithm must incrementally update a
GCP factorization with limited access to prior data. In this work, we extend the GCP formalism
to the streaming context by deriving a GCP optimization problem to be solved as new tensor data
is observed, formulate a tunable history term to balance reconstruction of recently observed data
with data observed in the past, develop a scalable solution strategy based on segregated solves using
stochastic gradient descent methods, describe a software implementation that provides performance
and portability to contemporary CPU and GPU architectures and integrates with Matlab for en-
hanced useability, and demonstrate the utility and performance of the approach and software on
several synthetic and real tensor data sets.
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1. Introduction. We consider the problem of computing a generalized canonical
polyadic (GCP) tensor decomposition [10, 15] in the situation where data is streaming.
Generally speaking, the streaming paradigm assumes algorithms must update with a
limited amount of data and limited passes on that data. The data may be streaming
because the volume of data is too large to fit in memory all at once; however, the
more general case is that the data is streaming because it is temporal and so arrives
incrementally. For example, consider a tensor that captures crime statistics in the city
of Chicago so that entry (i, j, k) is the number of crimes of type i, in neighborhood 7,
at hour k. In the streaming scenario, we receive a new 3-way tensor of crime statistics
every day, and we need to incorporate that information into the model.

The arrival of new data can be thought of in two different ways. We could view
the Chicago Crime data as a 3-way tensor (type X neighborhood x hour) with new
observations each day that can be considered a statistical sample. Alternatively, we
can have an explicit time mode. For Chicago crime, the tensor is then a 4-way tensor
(type x neighborhood x hour x day) with a new hyperslice appended daily. In this
latter case, the fourth mode corresponding to the day is growing and referred to as
the temporal mode. The GCP tensor decomposition computes a factor matriz for
each mode, so in the Chicago example we have a crime-type factor matrix for mode
one, a neighborhood factor matrix for mode two, and an hour factor matrix for mode
three, whether we think of it as a 3-way or 4-way tensor. In the 4-way interpretation,
we additionally have a day factor matrix for mode four, and a new row is added to
that factor matrix with each new day of data. In the 3-way interpretation, we can
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think instead of adjusting the weights of the factors each day. Ultimately, these two
viewpoints are not very different since the new row in the temporal factor matrix in
the 4-way interpretation is roughly equivalent to the updated weights in the 3-way
interpretation.

A more interesting assumption is whether or not the underlying generative pro-
cesses are changing with time. There is always some balancing of new information
and old. If these processes are unchanging, then we may expect that our estimates
of the non-temporal factor matrices will converge after a suitable number of obser-
vations. Such a formulation assumes data observed comes from some consistent, but
unknown distribution. This aligns better with incremental algorithms that progres-
sively converge to a single value, and the ordering of observations aligns with sampling
assumptions. In this situation, it is often useful to give a heavy weight to older infor-
mation, slowing the amount of change allowed as more observations accumulate. In
fact, in these cases, the order that the information arrives is irrelevant.

In most cases of interest, however, the generative processes are changing as well,
and we are interested in understanding these shifts. This is sometimes referred to as
concept drift, where it is assumed the distributions of observed data are evolving in
time [8]. Algorithms must be designed to adapt with drifting data, and the ordering
of observations is critically important to track the evolution of the data distribution.
In this case, we need to balance between adapting to changing generative processes
without confusing them for statistical fluctuations.

Much research has been done in the case of the canonical polyadic (CP), also
known as CANDECOMP /PARAFAC, decomposition. In this work, we extend exist-
ing methods to GCP, which differs from CP in that GCP allows for arbitrary objective
functions. In particular, our contributions are as follows:

e As there is no single streaming problem formulation in the literature, we
provide a concise overview of the streaming literation emphasizing the various
assumptions made in different works (section 3);

e We extend the GCP formalism to the streaming context by deriving a GCP
optimization problem to be solved as each tensor slice is observed enabling CP
factorization of tensors using arbitrary objective functions (subsection 4.1);

e This formulation incorporates a tunable history term into the optimization
problem to balance reconstruction of recently observed data with data ob-
served in the past;

e We develop a solution strategy for the GCP streaming problem based on
segregated solves of the temporal weights and factor matrices using stochastic
gradient descent solution methods (subsections 4.2 and 4.4);

e We provide a highly performant software implementation of the algorithm in
our GenTen software package through an extensible Matlab class hierarchy
leveraging low-level math kernels implemented on top of the Kokkos frame-
work providing scalable thread parallelism and portability to contemporary
CPU and GPU architectures (section 5);

e We demonstrate the utility and performance of the approach on a variety
of synthetic and realistic data sets using several GCP objective functions
(section 6).

2. Background and Notation. In this work, we assume the reader to be gen-
erally familiar with tensors and tensor decomposition methods. For a thorough over-
view, we refer the reader to Kolda and Bader [14]. Following standard practice, we
denote tensors by bold calligraphic letters (e.g., X), matrices by bold capital let-



STREAMING GCP TENSOR DECOMPOSITIONS 3

ters (A), vectors by bold lowercase letters (a) and scalars by lowercase letters (a).
We use multi-index notation to indicate tensor elements, i.e., x; = z;,..,, denotes
the entry i = (i1,...,49) € Z={1,..., 1} ®---®{1,...,I4} of the d-way tensor
X € RIvxxla,

2.1. Canonical Polyadic (CP) Tensor Decompositions. For a given d-way
tensor X € Rf1**1a the Canonical Polyadic (CP) decomposition, also known as the
CANDACOMP/PARAFAC decomposition, attempts to find a good approximating
low-rank model tensor M of the form

R
(2.1) fX:zM:Zsj a(jl)oa(f)o---oa(jd)
j=1

. . k) . .
where s; is a scalar weight, a(j ) is a column vector of size I, k, © represents the tensor

outer product, and R is the approximate rank. The column vectors for each mode k
are often collected into a matrix A = [a(lk) a(l?} of size I, x R called a factor
matrix. Given a weight vector s = [s1 --- sg]7 and factor matrices { AV, ... A},
we refer to the resulting low-rank model M as a Kruskal tensor (or K-tensor for
short) and use the short-hand notation M = [s; AV, ... AD] [1]. For traditional
CP decompositions, M is computed by solving a nonlinear least-squares problem

(2.2) min 16 —M|Z st M=[s; AV, ... AD]

where || X — M]3 = >, .7(x; — m;)?, with Z defined as above, denotes the tensor
Frobenius (sum-of-squares) norm. Note that in (2.2), the minimization is with respect
to both the weights s and factor matrices {A(l), . ,A(d) }. Many approaches have
been developed for efficiently solving (2.2) that are scalable to large, sparse tensors.
However, a very common, successful approach that is also relevant to the streaming
problem is alternating least-squares (ALS) which is an iterative method, that for each
iteration, cycles over modes k = 1,...,d, holds all of the modes other than mode &
fixed, and solves the resulting linear least squares problem for AP,

2.2. Generalized CP Decompositions. As described in [11], the CP prob-
lem (2.2) is equivalent to a maximum likelihood estimation procedure where the en-
tries z; of the tensor of X are i.i.d. Gaussian with with mean m; and some variance o2
which is constant across the tensor, i.e., x; = N (m;, o). Such a statistical assumption
may not be appropriate for many types of data (e.g., count or binary), motivating
the development of the Generalized Canonical Polyadic (GCP) method [11]. In this
method, it is assumed the tensor entries follow some known, parameterized probabil-
ity distribution xz; ~ p(x;|n;) determining the likelihood of each entry x;, where »;
is the (unknown) parameter of the distribution. In this case, the CP model is com-
puted to maximize the likelihood p(x;|n;) of the tensor entry observation x; through
an invertible link function ¢(n;) = m; connecting the CP model parameter m; to the
distributional parameter n;. This results in the more general optimization problem

. _ SN — s AL (d)
(2.3) min F(3, M) ;f(xz,mL) st M=[s;AY, ... A9

where as before Z = {1,..., 1} ® --- ® {1,...,I;} is the set of all tensor multi-
indices (including both zeros and nonzeros). Here f(z,m) = —logp(z|[=1(m)) is the
negative log-likelihood and is called the loss function. For example, one may have
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flx,m) = m — xlogm with ¢(n) = n for a tensor containing count data, assuming
a Poisson distribution, or f(xz,m) = log(m + 1) — xzlogm with £(n) = n/(1 — n) for
a binary tensor assuming a Bernoulli distribution.! See [11] for a detailed derivation
of these loss functions for different statistical distributions. In the Gaussian case,
f(x,m) = (z —m)?, so (2.2) becomes a special case. It is important to note that in
the general case however, the CP model no longer approximates the tensor itself, but
rather the natural parameter of the distribution underlying the assumed statistical
model of the tensor data, which will be crucial for the streaming method described
later.

The challenge in the GCP method is solving (2.3) for general loss functions
f which loses the least-squares structure, making ALS-type approaches impossible.
In [11], the authors instead pursue gradient-based optimization approaches and derive
the corresponding gradient formulas:

OF .
(24) m = Y(k:)Zk dlag(s), k = 17 e 7d7
oF
2. — =77
(2.5) 5 y
where Y € R *1a i5 a gradient tensor defined by
0

Here Y(;) denotes the mode-k matricization/unfolding of Y, y = vec(Y) is the vector-
ization of Y,

(2.7) Zp=AD 0. o AP o AFD oo AD k=1, d,
(2.8) Z=AYo A Do . oAD,

and © denotes the Khatri-Rao product. Thus the factor matrix gradients (2.4) are
given by the Matricized Tensor Times Khatri-Rao Product (MTTKRP) involving
the gradient tensor Y. Note that Y is in general dense, even if X is sparse, making
traditional gradient-based methods impractical for large, sparse X. Instead, the au-
thors in [15] leverage stochastic gradient descent (SGD) in this case, using randomly
sampled gradients of the form

OF ~ .
(2.9) A ~ Y Zi diag(s), k=1,....,d,
oF
2.10 — =77y
(2.10) s y

where Y is a sparse, randomly sampled approximation of Y. In the sequel, we will
leverage these formulas for developing the streaming GCP algorithm for sparse tensors,
employing the sparse, stratified sampling methodology of [15].

3. Related Work. We review the work in the domain of streaming or online
CP tensor decomposition. There is no single well-defined problem in this context,
so we try to explain the different formulations and assumptions. We make a few
assumptions throughout.

n practice, logm is replaced by log(m + €) where € is a small constant to allow m = 0. Also,
depending on the choice of loss function, the minimization problem (2.3) may include additional
constraints such as m; > 0.
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Updates are processed in discrete batches indexed by time ¢t = 1,2, ....
At each time ¢, a d-way tensor is observed, possibly incomplete.
Dimensions are fixed throughout all time, unless otherwise stated.

The CP rank is known and fixed, unless otherwise stated.

3.1. Problem setup for two-way temporal slices. In the case that d = 2,
we receive a matrix X, € R’/ for each time t = 1,2,....

If the temporal mode is finite so that ¢t = 1,...,T, we can consider that X is the
I x J x T tensor formed by stacking all time slices. For a given rank R, the standard
goal is to find factor matrices A € RI’*% B € R/*% and S € RT”*® that minimize

R

T
E : 2 § :
(CL‘Z‘jt — mijt) s.t. mijt = aigbjeste.

J
=1t=1 {=1

min
AB,S
i=1j
There are a few different streaming and online formulations of this problem.

In one formulation, the challenge is that we can only see one (or a few) temporal
slices X; at any given time. This may be due to memory constraints. However, we
assume that the factor matrices A and B are fixed for all time.

In other versions, the factor matrices A and B can change over time. Then the
problem becomes more interesting. Let s; € R denote row ¢ (transposed) of S, i.e.,

(3.1) S=s1 - ST}T.

Then, at time step ¢, the goal is to find s; € R, A € RI*F B € R/*¥ that minimize

I J
Alggt X — M| = Z Z(xiﬁ — mijt)2 s.t. M; = Adiag(s;)BT

i=1 j=1

If we only fit X;, however, the problem is not well defined, i.e., it does not produce
essentially unique minimizers A and B. Instead, at time ¢, it is common to include
some historical information in the objective function, the exact details of which depend
on the formulation.

It can be argued that a truly streaming problem is not finite, so ¢t =1,2,.... In
that case, we cannot save all the historical information. Additionally, such problems
are generally more interesting if the factor matrices change slowly in time; otherwise,
we can assume that the factor matrices would be learned within finite time and the
only thing changing at each time step are the weights s;.

3.2. Problem setup for higher-order temporal slices. If d > 2, the updates
are tensors. For each time ¢t = 1,2, ..., we receive a tensor X, € RItxT2xxla At
time ¢, the goal is to find factor matrices AP ¢ RIXE for | = 1,...,d and weights
s; € R that minimize

32) (i o I =7 =D i —mi)? st M= s A, A,
© e i€

generally with some methodology for incorporating historical information. Here we
use the shorthand z;; = X (i1, ...,1q) and my = My (i1, ..., iq).

3.3. Earliest work. To the best of our knowledge, the earliest work in this area
is Nion and Sidiropoulos [19]. They consider the case where each observation is a
two-way matrix, as in subsection 3.1. The rank and sizes are fixed across time, and
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the factors are assumed to be slowly varying, though there are no experiments with
factors that varied in time in that work. Their primary focus was on demonstrating
an alternative method for fitting CP decompositions that traded a small amount of
accuracy for increased speed. Their general formulation of the problem is as follows.
At time t, solve
t

(3.3) min Zet "Xy, —My|2 s.t. My, = ATdiag(s,)B for all h e {1,...,t}.

A, ’St
The parameter 6 € (0,1) downweights older hyperslices. The weights s, are fixed
for all h < t; however, the A and B matrices are updated at each time step. This
means that the A and B should still somewhat fit the older data. The summation
over time incorporates historical information. We omit the details of the method
since it is relatively complicated and has been subsequently bested by other methods.
Technically, this method requires all historical information. However, because 87" is
exponentially decreasing, older information can effectively be discarded after a small
number of time steps.

3.4. Online SGD. Mardani, Mateos, and Giannakis [17] consider both matrix
and 3-way tensor streaming; we discuss only the tensor streaming part of their work.
In contrast to (3.3), Mardani et al. [17] account for missing data, add regularization,
and have an entirely different computational approach.

To account for missing data, define the matrix

o 1 if entry (7, 7) is known at time ¢,
Wt (Zaj) = .
0 otherwise.
Additionally, Mardani et al. add regularization with parameter A. At time ¢, the
formulation is

(3.4)  min Z9t W (X = M)+ A(JAE + IBIIE) + Allsel3

A'B ,s,
s.t. Mj, = ATdiag(s,)B for all h € {1,...,t}.

As with (3.3), the parameter § € (0,1) downweights older hyperslices. For writing
efficiency, we pulled the term for time ¢ into the summation, but the weights s; are
fixed for all h < t. The asterisk (%) denotes elementwise multiplication, and the
effect is that only observed entries are included in the summation. The definition of
\; is somewhat unclear in the paper. At one point, it seems to propose that A\, =
A/ Zz 1 6t~" to ensure a degree of consistent weighting as compared to the regular
3-way problem in the finite case, but the pseudo-code seems to indicate in the code
that either \; = A/t or \; = )\/(t S, 0°~"). In the experiments, the regularization
parameter is set according to a standard in matrix completion: A = v/2IJwo where
7 is the proportion of sampled data at each time step and o is the noise level.
Problem (3.4) is solved iteratively with two basic steps at each iteration. First,
s¢ is solved for via a closed form expression holding A and B fixed. Second, the
method takes one step of gradient descent (GD) for updating A and B. They call
this stochastic gradient descent (SGD) because there only partial data at each step.
There are some implicit assumptions that are not clearly stated in the paper.
There is no proof that the stochastic gradient is correct in expectation. To do so re-
quires some assumptions about how the data is sampled and also appropriate weight-
ing. The experiments (on cardiac dynamic MRI and Internet traffic) are constructed
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so that it all works correctly enough — the data is sampled uniformly and the same
number of samples are taken at each time step.

3.5. CP-Stream. CP-Stream [24] is similar to OnlineSGD [17]. The primary
difference is that it avoids saving the older data and instead uses an approximation.

It also works for d > 2. At time step t, CP-Stream executes two phases. Let AW
denote the old factor matrices, i.e., from time ¢t — 1. The first phase computes s; with
all the old factor matrices by solving

(3.5) min ||, — M2 + Ase]? s, M, = [s; AV, ..., AY].
St

The second phases computes { A(l), .. ,A(d) }, estimating the observations from prior
time steps via Xj, ~ My, = [sn; A(l), cey A(d)]]:

t—1
: 2 t—h || N/ 2
(3.6) , min 1% — M|+ ; 6" |V, — M|

s.t. My = [[sth(l),...,A(d)ﬂ forallh =1,...,t.

3.6. Other works.

OnlineCP. The OnlineCP method [29] works for arbitrary d-way tensors and
solves exactly the standard least squares subproblems, regularizing by taking only a
single step of ALS. The innovation is the clever reuse of expensive calculations when
folding in each time slice. It effectively assumes that the factor matrices are fixed.

OLSTEC. The Online Low-Rank Subspace Tracking by Tensor CP Decomposi-
tion (OLSTEC) method [12] is similar to one of the methods proposed in [19], but
it can handle missing data and is the first paper to consider changes in the factor
matrices in its experimental results. The experiment results show that they do better
in this regime than OnlineSGD [17].

MAST. Multi-aspect Streaming Tensor (MAST) [25] is notable because it allows
for the non-temporal modes to grow in time. (It considers both CP and Tucker.)

SamBaTen. Sampling-Based Incremental Tensor Decomposition (SamBaTen) [9]
samples multiple subtensors, factors those independently, and then merges the results.
It depends heavily on the results being essentially unique and consistent across the
subtensors, which necessarily assumes that the factors are not changing in time. The
temporal aspect is not clear since the entire tensor (across all time) seems to be saved.

SeekAndDestroy. SeekAndDestory [20] handles concept drift by allowing the ad-
dition of new factors as time progresses. It is not specifically a streaming algorithm
because it is not updating the factorization so much as augmenting it. It receives data
in batches, computes the CP decomposition from scratch, and then it merges this with
the information from prior batches. We do not consider this to be a streaming method
because the existing decomposition is not updated directly. Instead, SeekAndDestroy
finds those factors that are overlapping and then identifies and older factors that do
not appear in the new batch as well as any new factors in the new batch. For rank
determination on each batch, it uses a heuristic called AutoTen. This method de-
pends heavily on each new batch having sufficient information to compute a full and
essentially unique decomposition as this is the only way to ensure that overlap with
past factors can be identified.

The ENSIGN software [16] implements a method similar to SeekAndDestroy. In
addition to CP-ALS, they include CP-APR and CP-ALS-NN.
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Bayesian Methods. Probabilistic Stream Tensors (POST) [5] and Variational
Bayesian Inference (VBI) [28] are two papers that propose priors for the tensor model.
POST considers models for both continuous and binary data. VBI models each time
step as a CP model plus sparse noise (8;) and Gaussian noise (&;):

xt = [[St;A(l), ce ,A(d)]] +St + 8157

AP (i, §) ~ N(0,\5)
se(J) ~N(0, ) Aj ~ InvGamma(ay, 5))
8i(i1, 02, ... ia) ~ N(0,Viyiniy) Viria-ia ~ InvGamma(o,, )
Eilir,io, ... iq) ~N(0,7) 7 ~ InvGamma(a,, 8;)

The prior on the \’s encourages low-rank, and prior on the +’s allows for sparse
outliers. The method is amenable to missing data as well. Both methods are very
slow to compute and are not scalable.

4. Streaming GCP. We now consider GCP factorization in the streaming con-
text. We first motivate and describe the minimization problem for the streaming GCP
problem, then describe the solution strategy, and then conclude with a summary of
the solution algorithm which we call OnlineGCP.

4.1. Streaming GCP problem formulation. We are primarily interested in
the infinite streaming problem where at each time step t, a new d-dimensional tensor
X, € RIvXxla is observed. We assume the dimensions I, ..., I; of each tensor do
not change. Since both the non-streaming GCP and OnlineSGD solution algorithms
rely on gradient descent, our approach for streaming GCP is inspired by OnlineSGD.

For simplicity, we begin with the problem for a single temporal slice, X;, and add
on history in the discussion that follows. For just time slice ¢, we pose the optimization
problem for given rank R as

d

. A 1
min Y f(ziemi) + 5 Y A G+ lsdl3
(4.1) toer k=1

st My =[s; AV, AD] AW AD g >,

As above, we use the shorthand z;; = X (i1, ...,1q) and my = My(i1,. .., 44), AW ¢
RI=XE for k = 1,...,d are the factor matrices, and s, € R is the weight for time t. We
incorporate the option for a lower bound [ on the factor matrix/weight entries (with
the understanding that | = 0 for nonnegativity constraints and | = —oco for problems
where there is no lower bound). As in OnlineSGD, we include regularization terms
for the factor matrices A*) and weights s; with multipliers A and pu, respectively, to
encourage low-rank [3]. We do not explicitly include the dependency of the factor
matrices on t since they are, ideally, less sensitive to time.

In general, we want to incorporate historical information to keep the factor ma-
trices from changing too much at each time step. There are many ways such historical
information could be included, and several of these have been used in the previous
work discussed in subsection 3.6. One possible approach is to add historical regulariza-
tion to (4.1) via the second term in the following where we define the historical model



STREAMING GCP TENSOR DECOMPOSITIONS 9

to be the old weight with the current factor matrices, i.e., M, = [sp; AY 7A(”l)}]:

d
. A I
Hy\lz%,n Zf(xitamit) + Z thf(l'ihamih) + 2 ; HA(k)”% + §||St|\§

(4.2) ez heM, i€l
st My =[s; A . AD] AV AD g, >

Here, H; C {1,...,t — 1}. The terms z;, = Xp(i1,...,4q) and m;, = My (iq,...,iq)
index the “historical” tensors. The weights wy control the importance of historical
terms.

The time index t could be infinite, so we limit ourselves to a history window of
fixed size such that |H;| = min{¢—1,H } for some fixed constant H. Moreover,
we impose H; C Hy—1 U{t—1} so that no older information is ever added to the
history. This means that we can discard all older information except what’s in the
history. There are many ways in which the history window and weighting could be
chosen. In our work, we use reservoir sampling [27] which works as follows. For
t<H+1weset Hy ={1,...,t —1}. Then for t > H + 1, We set H; = H;_1 with
probability 1 — H/(t — 1); otherwise, we set H; to be H;_; where we have ejected one
existing element and replaced it with ¢ — 1. This ensures that H; is a uniform random
sample of {1,...,t—1}. We use exponential weighting of the form w; = wf'~"
where 0 < § < 1 and w is a multiplier allowing the entire history term to be scaled
by a constant.

The approach outlined so far stores at most H temporal slices, which could require
significant memory storage if a large window size H is desired. Following the approach
of CP-Stream (see subsection 3.5), we would like to reduce storage costs further in the
case where the factor matrices are assumed to change slowly in time by approximating

these slices using the factor matrices A(l), . 7A(d) from the previous time step. It

is tempting to replace z;, in (4.2) with 7m;, where M, = [[sh;A(l), .. .,A(d)]] is the
CP model derived from the prior factor matrices and the historical weights, and
min = My(i1, . ..,iq). However, this is not a valid approximation in general because,
as described in subsection 2.2, the CP model generated in the GCP method does
not directly approximate the data tensor, but instead the parameter of the assumed
probability distribution (in fact, the support of z;;, may not even coincide with myy,
e.g., for a binary tensor, z;;, € {0,1} whereas m;, € (0,00)). Instead, we propose
adding a historical regularization term that penalizes changes in the CP model using
the Frobenius norm:

d
. 1 - A I
min 3 flaiemie) + 5 Y wnl Mo = Ml + 557 AP+ Fllsi3
* ez k=1

(43) heH,
st My =[s; AV . AD] AL AD g >
We reiterate that in (4.3), the optimization is over the factor matrices A, ... A@

and temporal weights s; for each time step ¢, with 1_&(1), e ,A(d) and sy, for h € H;
held fixed.?

2We note that a third possible approach is to directly penalize changes in the factor matrices by
replacing the history regularization term in (4.3) with a term of the form Z::l Wy, ||A(k) — AR II%.
However such an approach requires careful tuning of the regularization parameters Wy since it does
not incorporate the historical weights sy,.
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4.2. Streaming GCP solution strategy. We now describe the proposed so-
lution strategy for (4.3), which we call OnlineGCP. Assume (4.3) has been solved for

h =1,2,...,t — 1 resulting in the current approximations A(l), . ,A(d), S¢_1, with
sp for h € H;_1 already known from prior iterations. First choose the new history
window H; C H:—1 U{t}. Given the new tensor slice X;, define

(4.4) F(X, A, . AD g) =

d
1 — A I
S Flama) + 5 S0 wnll Vo~ MoE+ 5 S AN 3+ L a3
k=1

€T heH:

to be the streaming GCP objective function. We then solve (4.3) using a two-step
minimization procedure inspired by OnlineSGD. In particular, we first solve (4.3) for

s; with A% = — A% held fixed, namely
(4.5) min F(X;, M¢) = ;f zismie) + Slsil3 st s>l

The history term and factor matrix regularization terms are dropped because they
have no dependence on s;. To solve (4.5), we use the SGD solver described in sub-
section 2.2 for the static GCP problem, modified to only solve for s; with the factor
matrices fixed. Leveraging (2.5), the gradient for this subproblem is

oF

(4.6) o

- Z Yt +>\Sta

where as before Y= vec(Y;) and Y, € RI1>*1a i5 the gradient tensor for slice X;
defined by y;: = f (m,t, m;). As in the static case, this tensor is sampled each SGD
iteration resultmg in each stochastic gradient.

Once s; is computed, the factor matrices A®) are computed by applying a fixed
number of SGD iterations to (4.4), holding s; fixed. Using (2.4), the corresponding
gradients can be shown to be

oF

oAl — Pk Zi ding(se) + AAM +

(4.7
Z wp, (A(k) diag(sp)Z} Zy, diag(sy,) — AW diabg(sh)ZZZ;€ diag(sh)>
heEH,

for k=1,...,d, where

(4.8) Zy =AY 0.0 AFD o AFD oL o AW,
(4.9) Z,=A0. 0 A" oA Vo ... 0A".

4.3. Sampling for streaming stochastic GCP approximations. Since each
Y. is in general dense, we must compute sampled approximations (denoted by Y;) for
each SGD iteration. In principle, any sampling method can be used, but in this work
we employ the stratified sampling approach of [15] where for each time step ¢, the
set of sampled coordinates Z; for computing gt, is partitioned into two disjoint sets
consisting of indices corresponding to nonzeros and zeros in X;. As in [15], we assume
these sets are formed by sampling uniformly, with replacement, p and ¢ times from
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Table 4.1: OnlineGCP input arguments and algorithmic parameters.

Argument Description

{Xiti=1,2,... Streamed tensor slices

{A(k)} Initial guess for k =1, ..., d factor matrices

H Initial history window (may be empty)

H Maximum size of history window

w, 0 Exponential weighting parameters for history window

A, 1 Factor matrix/temporal weight regularization parameter

f GCP loss function

v, q Number of stratified nonzero/zero samples for estimating F
P, q Number of stratified nonzero/zero samples for estimating Y
ADAMWGHT | Instance of the ADAM class for the temporal weights solver
ApaMFAC Instance of the ADAM class for factor matrix solver

toly, toly Tolerances for weights/factor matrix solvers

K, Kf Maximum number of epochs for weights/factor matrix solvers
Tws Tf Number of iterations per epoch for weights/factor matrix solvers

the sets of nonzeros and zeros, respectively (zeros are sampled by searching the tensor
after each candidate is computed to verify the candidate is not a nonzero, and this
continues until ¢ samples have been generated). For each i € Z, let p;; be the number
of times 7 is selected as a nonzero and §;; the nun}ber of times it is selected as a zero.
Then the entries of the sampled gradient tensor Y, are given by

. - L ow— 0
(4.10) Yit = (pitzjt + Qitqm) %(xmmit)

where 7, = nnz(X;) is the number of nonzeros in X; and w = HZ:l I, is the total
number of elements of X; (which is independent of ¢). Since E[p;:] = p/m: and
E[git] = q/(w — n), it is easy to see that E[g;:] = y;+. The history and regularization
terms in (4.7) could also be sampled, but since their true values can be computed
efficiently, there is no reason to do so and their true gradient contributions are included
in each stochastic gradient.

Similar sampling calculations are required for efficiently approximating the ob-
jective function F in (4.4), however as in [15] there are a few changes. First, we use
a much larger number of samples when approximating F' to ensure accuracy. Second,
we use the same set of samples across all epochs within the temporal and factor ma-
trix solvers for consistent estimations of convergence (but compute a different set of
samples for the temporal and factor matrix solvers, and also for each slice X;). As
before, we sample uniformly with replacement p’ and ¢’ times from the sets of indices
corresponding to nonzeros and zeros, respectively. As in the gradient, the true value
of the history and regularization objective terms can be efficiently computed, so the
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Algorithm 4.1 Streaming GCP algorithm OnlineGCP.

1: function ONLINEGCP({X,; }1—12.., {A®}, 2, {sn} nen)

2 ApamFac.INiT({AR)}) > Initialize factor matrix ADAM step object
3 i+ 0 > Factor matrix update iteration index
4 fort=1,2,... do

5: for k=1,...,ddo

6 A® AW

7 end for

8 s; + WGHTGCPSGD (X, {AM}, 1)

9: {A®)}, i  FacGepSeD (X, {AM} s, (AN}, 2, {sn bnens t, 1)
10 if |H| < H then > Update history window
11: H+— HU{t}

12: else > Reservoir sampling to compute H;11
13: j + random element of {1,...,t}

14: if j < H then

15: replace j** element of H with ¢

16: end if

17: end if

18: for k=1,...,ddo

19: AY Ak
20: end for
21: end for

22: return {A®}
23: end function

sampled approximation F' to F is given by
(4.11) F(X,, AV, .. AD s)) =
_ W= _
S (% ™) Fawma) + 3w~ M

€T, p q heH

d
A %
Ty Z IAM[3 + §||St|\§7
k=1

with similar definitions of p;, and ¢},. It is straightforward to see that E[F]| = F.

4.4. Online GCP algorithm. The high level streaming OnlineGCP algorithm
is summarized in Algorithm 4.1. Descriptions of the various input arguments and
algorithmic parameters are summarized in Table 4.1. In additional to the streamed
tensor slices {X;}, the algorithm takes on input an initial guess for the factor matrices
{A(k)} for k = 1,...,d. In our work and the results shown in section 6, these are
computed via a relevant CP factorization (using, e.g., static CP-ALS, CP-APR, or
GCP methods) on an initial set of tensor slices, which we call a warm-start. We also
specify an initial history window H to include the warm start, but this is not required.
Here {sp }nen is the temporal mode values corresponding to the time steps contained
within the history window. The algorithm uses the ADAM SGD update strategy [13]
shown in Algorithm 4.2 in both the temporal weights and factor matrix GCP solvers.
In the latter case, the ADAM first and second moment factor matrices are tracked
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Algorithm 4.2 ADAM SGD Step Method.

1: class ADAM:
2 properties:
3 a, By, Ba, € > Update parameters
4 u, v > First and second moments
5: U,, V, > First and second moments from previous epoch
6 a, > Solution from previous epoch
7 l > Lower bound
8 end properties
9: function INIT(a)
10 u,V,U,, V,,a, < ZEROS(SIZE(a)) > Initialize to zero with shape of a
11: end function
12: function STEP(a, g, i)
13: u<+ fru+(1-7p1)g > ADAM update for first moment u
14: vV Bov+ (1 — B2)g? > ADAM update for second moment v
15: & ay/1—p5/(1—pBY) > ADAM bias-corrected learning rate
16: a+—a—au/(y/v+e) > ADAM update
17: a + max(a,l) > Lower bound
18: end function
19: function UPDATE(a, passed)
20: if passed then > Set old moments to newest values
21: Uy < u
22: Vo <V
23 a, —a
24: else > Reset moments to saved values
25: u<+ u,
26: V<V,
27: a<— a,
28: Decrease learning rate «
29: end if
30: return a
31: end function

32: end class

across all streamed tensor slices, which are initialized to zero in line 2 of Algorithm 4.1.
Note that in Algorithm 4.2, all algebraic operations (e.g., square, division, square-
root) involving the relevant factor matrices/vectors are taken component-wise. The
bulk of the algorithm begins at line 4 by looping over the streamed tensor slices. For
each slice, the temporal weights s; are computed using a variant of the GCP-SGD
solver algorithm in line 8. Then in line 9, the factor matrices are updated. Finally,
the history window is updated in lines 10-17.

The temporal weights and factor matrix GCP-SGD solver algorithms are sum-
marized in Algorithm 4.3 and Algorithm 4.4, which are in general similar to the cor-
responding algorithm in [15] except modified for solving for just the temporal weights
or factor matrices, respectively. As described above, they uses the stratified sam-
pling approach of [15] for estimating the objective function F', which is summarized
in Algorithm 4.5, and for estimating the gradient summarized in Algorithm 4.6. Note
that since the history window does not affect the gradient for the current temporal
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Algorithm 4.3 GCP-SGD solver for temporal weights s.

1: function WGHTGCPSGD(X,, {AM}, 1)
2: s < zero vector of length R > initialize s
3 ADAMWGHT.INIT(S) > Reset ADAM stepper
4 E + ESTIMATEOBJECTIVE(X,, {A®} s, {},{}, {},£,0,0, 1)
5: 10 > Iteration counter
6 while F > tol,, and at most r,, iterations do
7 Fold — F
8 for 7,, iterations do
9: Y « STRATGRAD(X;, {AM)})s)
10: g« ZTy+ Xs > GCP gradient for temporal weights s
11: s < ADAMWGHT.STEP(s, g, %) > Apply ADAM step
12: ti+1
13: end for
14: F « EsTIMATEOBJECTIVE(X;, {A® Y s, {}, {}, {},£,0,0, 1)
15: if F > Fold then
16: S < ADAM.UPDATE(S, FALSE)
17: F — Fold
18: 141 — Ty
19: else
20: s < ADAMWGHT.UPDATE(S, TRUE)
21: end if
22: end while
23: return s

24: end function

weights, it is not included in the objective function and gradient calculations in the
temporal solver.

5. Software Implementation. Our software implementation of Algorithms 4.1
to 4.6 is written in a hybrid of Matlab and C++ code leveraging the Matlab Ten-
sor Toolbox [1, 2] and the C++ GenTen package for performance portable tensor
decompositions [22; 21]. Most of the code is written in object oriented fashion for
Matlab leveraging the Tensor Toolbox for representing sparse tensors and K-tensors.
In particular, Algorithm 4.1 is implemented in Matlab as a function that takes as an
argument all of the tensor slices to be analyzed, looping over them as in the for-loop
starting at line 4. The contents of the for-loop are then implemented through a sep-
arate Matlab class that computes the new temporal weights and updates the factor
matrices for each tensor slice. The purpose of this design was to allow the contents
of the loop to be executed in a true streaming context where not all tensor slices are
available beforehand. The temporal weights SGD solver (Algorithm 4.3) and factor
matrix solver (Algorithm 4.4) are encapsulated in a unified class hierarchy imple-
menting the general GCP-SGD solver strategy for a single sparse tensor. Arguments
are supplied controlling which modes/weights are to be updated. In the temporal
case, only the temporal weights are updated while the factor matrices are held fixed.
Similarly, the factor matrix updates keep the temporal weights fixed. Thus the code
implements a static GCP factorization procedure as a special case.

This class hierarchy abstracts the sampling procedures for approximating F' and
Y (e.g., stratified) and the SGD step procedures (e.g., ADAM) in Algorithms 4.2 to 4.4
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Algorithm 4.4 GCP-SGD solver for factor matrices {A*)}.

I: function FACGCPSGD(X;, {AMY, ., {A™Y, H, {snlnew, t, i)
F ESTIMATEOBJECTIVE(X, {A(k)}, S¢, {A(k)}, H, {sh}then,t, w, A\, 0)

2:

3: while F > toly and at most ky iterations do

4: Fold — F

5: for 7; iterations do

6: Y « STRATGRAD(X;, {AM)},s))

7 for k=1,...,d do

8: G Y Zy, diag(s;) + AAY

9: for h € H do

10: B« diag(sh)Z;‘CZk diag(sp)

11: C «+ diag(sh)z;‘:zk diag(sh)

12: GH G pth (A(’“)B -~ A(k)C)
13: end for

14: end for

15: {A®Y « ApamFac.STeEP({AM}, {GM)Y )
16: 14—1+1

17: end for

18: P« ESTIMATEOBJECTIVE(X, {A(k)}, S¢, {A(k)}, H, {sh}hen,t,w, A,0)
19: if F > Fold then

20: {A®)} « ADAMFAC.UPDATE({A®)}, FALSE)
21: F — Fold

22: 141 — Ty

23: else

24: {A®Y  Apam.uppaTE({A®}, TRUE)

25: end if

26: end while

27: return {A(k)}, ]
28: end function

allowing new sampling and step procedures to be easily plugged in. Furthermore, the
sampling classes also implement the needed gradient computations for the GCP-SGD
procedure (i.e., line 10 of Algorithm 4.3 and lines 7-14 of Algorithm 4.4), allowing the
code to take advantage of special structure. For example, a “dense” sampling class
is provided for the Gaussian case with f(x,m) = (z — m)? that uses for the factor
matrix gradient (not including regularization and history terms for brevity)

1 OF
2 HAK)

The code also supports replacing the GCP-SGD solution procedure for the temporal
weights with a single least-squares solve in the Gaussian case, and thus includes
the original OnlineSGD algorithm as a special case by choosing the Gaussian loss
function, least-squares temporal solve, dense gradient evaluation, no history window,
and a single factor matrix update iteration per streamed tensor slice.

Finally, the sampling/gradient and step abstractions allow for plugging in high-
performance, multi-threaded implementations of these computations provided by the
GenTen software package. This software package implements sampling procedures,

(5.1) = X, Z; diag(s;) — A® diag(s;)Z] Zy, diag(s;).
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Algorithm 4.5 Objective estimate using stratified sampling with p’ nonzeros of X
and ¢’ zeros.

1: function ESTIMATEOBJECTIVE(X, {A(k)}, St, {A(k)}, H, {Sh}thewn, t, w, A, p)
2: 7 < nnz(X) > Number of nonzeros in X
3 C+Ilile—n > Number of zeros in X
£ F+«o0

5: forc=1,...,p' do > Sample p nonzeros of X
6 i < random element of {1,...,n}

7 (i1,...,1q) < indices of nonzero i of X

8 m<— Zf:l Stj szl az(f;

9: F—F+(n/p)f(@i,..i,,m)
10: end for
11: c+1

12: while ¢ < ¢’ do > Sample g zeros of X
13: for k=1,...,ddo

14: i, < random element of {1,... I}

15: end for

16: if ;, .., # 0 then

17: continue

18: end if .

19: m = s s aty)
20: F«—F+((/d)f(0,m)
21: c+—c+1
22: end while

A RIS d k
23 return B4+ 43, 0 07"V — MallE + 3 250 1AM F + Sl
24: end function

MTTKRP, and SGD step procedures using the Kokkos C++ performance portabil-
ity API [6, 7] allowing a single C++ implementation of each kernel to be executed
with high performance on a variety of contemporary architectures, including mul-
ticore CPUs and manycore GPUs. These kernels are exposed to Matlab through
the MEX API and a variety of bundled Matlab classes and functions allowing Gen-
Ten kernels to be integrated within the Tensor Toolbox. This enables the high-level
streaming algorithm to be rapidly developed and modified within Matlab but en-
able high-performance by executing all performance-critical kernels with compiled
C++, multithreaded code. For example, this allows the streaming code to be exe-
cuted in Matlab, but have the kernels run on attached GPUs, resulting in substantial
speedups.

6. Numerical Experiments. We now present several numerical experiments
that compare the accuracy of the OnlineGCP method with several static and stream-
ing alternatives for Gaussian, Poisson, and Bernoulli loss functions. The static meth-
ods are applied to the entire d + 1-way tensor formed by stacking the streamed slices
across the temporal mode, whereas the streaming methods update their decomposi-
tion one slice at a time. For the streaming methods, we generate an initial CP model
by applying an appropriate static decomposition method (i.e., CP-ALS, CP-APR, or
GCP) to a small portion of the streaming data, which we call a warm-start. Through-
out these experiments we will measure the effectiveness of the OnlineGCP approach
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Algorithm 4.6 Stratified sampling for p nonzeros of X and ¢ zeros.

1: function STRATGRAD(X, {AM)}, s,)

2: 7 < nnz(X) > Number of nonzeros in X
3 C< Il Ix—n > Number of zeros in X
4 Yo

5: forc=1,...,pdo > Sample p nonzeros of X
6 i < random element of {1,...,7n}

7 (i1,...,1q) < indices of nonzero i of X

8 m“ZJ 15tJHk 1”52

0: Gisooviia < Uinoia + (/) (OF [OM) (24, i, )

10: end for

11: c+1

12: while ¢ < g do > Sample ¢ zeros of X
13: for k=1,...,ddo

14: iy < random element of {1,... I}

15: end for

16: if Tiy,... iq 7é 0 then

17: continue

18: end if

19: mezj 1 5tj Hk 1a(k)
200 G s b (CT)(OF /Om)(0,m)
21: c+c + 1
22: end while
23: return 9

24: end function

by comparing local and global reconstruction losses. In the context of streaming we
define the local reconstruction loss as the total loss for a given decomposition, divided
by the norm of the data, for every observed time slice:

(6.1) Flocal(Xe, My) = T 2 Zf Tit, Mit)
i 2

where M; = [[sy; AV A(d)]] and AV ... A indicate the values of factor matrices
computed at that point in time. This evaluates how well our current model fits the
most recently observed data. For OnlineGCP, we compute a sampled approximation
to Floeq; using the sampling procedure in Algorithm 4.5 but not including history,
factor matrix, or temporal weight regularization terms.

For the global reconstruction loss we back test the model at our final time step
against all previously observed data. The functional form is the same as in (6.1)
however we use the factor matrices A(1)7...,A(d) from the final time step. This
evaluates how well the final model approximates all observed data. For OnlineGCP,
we compute the true value of the global loss instead of a sampled approximation.
Since the static methods use all available data, the local and global reconstruction
losses are identical.

As indicated in Table 4.1, the OnlineSGD method has numerous hyperparame-
ters. The values used in each experiment are summarized in Table 6.1. These values
were chosen empirically to produce good results through hand-tuning, but are not
necessarily optimal.
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Table 6.1: OnlineSGD hyperparameters for the numerical experiments. Here R is the
rank of the CP model, o, ay are the ADAM learning rates of the temporal weight and
factor matrix solvers, respectively, k., kf are the number of epochs for each solver, w
is the multiplicative weight of the history term, H is the size of the history window,
and Hyy,;; is the size of the warm-start. All experiments used § = 1 (no exponential
down-weighting of historical slices), A = p = 0 (no rank regularization penalty),
Tw = T§ = 100 iterations per epoch, and the default ADAM update parameters
(B1 =0.9, B2 =0.999, and e = 107%).

Experiment R ay ke ag kK w  H  Hpy

Synthetic Gaussian 20 10.0 20 -1074 5 1 50 10
Synthetic Poisson 20 1.0 20 <1074 10 10 50 10
Taxicab Poisson 50 10.0 1 -1073 1 1 30 20
Chicago Binary 50 0.1 5 -1073 5 10 500 20
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Fig. 6.1: Results of the synthetic Gaussian experiment showing comparable perfor-
mance between OnlineGCP, OnlineSGD, OnlineCP, and static CP-ALS.

6.1. Synthetic Data Experiments. We first describe experiments with two
synthetic data sets derived from randomly generated K-tensors which the computed
decomposition methods should recover. For these experiments we also measure the
congruence [26] between the K-tensor computed by each method and K-tensor used



STREAMING GCP TENSOR DECOMPOSITIONS 19
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Fig. 6.2: Results of the synthetic Poisson experiment showing comparable performance
between OnlineGCP, static CP-APR, and static GCP (using 50,000 zero/nonzero
samples for each objective and gradient evaluation).

to generate the data (called the K-tensor score). A perfect recovery corresponds to a
score of 1.0.

Gaussian. To construct a Gaussian distributed synthetic data set, we first con-
structed a random 3-way, rank-20 K-tensor with factor matrices of size 300 x 20,
300 x 20, and 200 x 20, respectively. Each factor matrix entry was drawn uniformly
at random from (0,1). This K-tensor provides the ground truth for the model. A
dense tensor was then generated by multiplying out the K-tensor and perturbing each
entry by draws from a zero-mean Gaussian distribution with a standard deviation of
0.2. This tensor is then streamed slice-by-slice, where each slice is a dense 300 x 300
matrix. The warm-start was generated by applying CP-ALS to the first 10 slices.
We then compared our method to static CP-ALS applied to the full 300 x 300 x 200
tensor, OnlineCP, and OnlineSGD using 10,000 nonzero samples for each objective/-
gradient evaluation, no zero samples (since the tensor is dense), and the remaining
hyperparameters as indicated in Table 6.1. In Figure 6.1 we demonstrate comparable
results for the local reconstruction loss, global reconstruction loss, and K-tensor score
with respect to the ground truth and the considered methods.

Poisson. To generate a Poisson distributed synthetic data set, we used the pro-
cedure described in [4] to generate a sparse 3-way tensor of size 300 x 300 x 200, R = 20
factors, and roughly 3.2% nonzero sparsity. We then stream this tensor slice-by-slice
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Poisson Decomposition Of Taxicab Tensor
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Fig. 6.3: Results of the NYC Taxicab experiment with Poisson loss showing compara-
ble performance between OnlineGCP, static CP-APR, and static GCP (using 50,000
zero/nonzero samples for each objective evaluation and 10,000 zero/nonzero samples
for each gradient evaluation).

in OnlineGCP as before, but this time comparing to static CP-APR and GCP with
Poisson loss computed from the full tensor dataset. OnlineGCP used a warm-start
constructed from applying CP-APR to the first 10 slices, all tensor nonzeros in the
objective/gradient evaluations, and 50,000 and 10,000 zero samples for the objective
and gradient, respectively. In Figure 6.2 we see fairly comparable results in losses
among all of the methods. For the comparison to the ground truth decomposition
CP-APR performs slightly better than the two GCP based methods.

6.2. Realistic Data Experiments. We now present several experiments using
real data tensors with non-Gaussian loss functions.

NYC Taxicab. We use New York City Yellow Taxi data from 2018 to gen-
erate tensors corresponding to travel throughout the city [18]. These data provide
fields containing pick-up and drop-off dates/times, pick-up and drop-off locations,
trip distances, itemized fares, rate types, payment types, and driver-reported passen-
ger counts. For this experiment, we use pick-up and drop-off dates/times to generate
a four way tensor of size 263 x 263 x 24 x 365 with approximately 3.8% nonzero spar-
sity containing counts of the number of taxi rides between the given taxi zones over
the given hour for the given day. Accordingly, we generated CP decompositions using
Poisson loss via OnlineGCP (streaming one slice at a time corresponding to a single
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Binary Decomposition Of Chicago Tensor
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Fig. 6.4: Results of the Chicago Crime experiment with Bernoulli loss showing com-
parable performance between OnlineGCP and static GCP (using 50,000 zero/nonzero
samples for each objective evaluation and 10,000 zero/nonzero samples for each gra-
dient evaluation).

day), GCP, and CP-APR. OnlineGCP used a warm-start constructed from applying
CP-APR to the first 10 days worth of data, 50,000 zero and nonzero samples for the
objective, and 10,000 zero and nonzero samples for the gradient. In Figure 6.3 we
again see comparable results in terms of the achieved local/global loss compared to
the static methods.

Chicago Crime. To demonstrate the approach for non-Poisson loss, we used the
Chicago Crime tensor provided by FROSTT [23] converted to a binary tensor where
any nonzero value was replaced by one (this is reasonable since a majority of the
entries are one anyway). Sticking with our streaming convention across the last mode
we oriented the tensor such that entry X(i, j, k,1) denoted whether on hour 7, crime
j was committed in neighborhood k for day [ from our first date. We used a starting
data of | = 500 because there is significantly less data for days prior to this date. The
resulting tensor is of size 24 x 77 x 32 x 5687 with roughly 1.6% sparsity. A warm-
start for the first 20 days was generated via GCP with Bernoulli loss using 50,000
zero/nonzero samples for the objective function and 10,0000 zero/nonzero samples
for the gradient. Given the relatively small tensor slices each time step, OnlineGCP
used all nonzeros along with 10,000 and 1,000 zero samples for each objective function
and gradient evaluation, respectively. In Figure 6.4 we again see comparable results
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in terms of the achieved local/global loss compared to the static GCP method. Note
however that OnlineGCP required a much larger history window (H = 500) than
the other experiments to maintain consistent global loss over the entire streaming
experiment.

7. Conclusions. In this work, we developed a method called OnlineGCP for
efficiently computing GCP decompositions of streaming tensor data. The method ex-
tends prior work in the literature on streaming CP decompositions to the GCP case
allowing for arbitrary objective/loss functions defining the CP optimization problem.
Similar to other streaming CP methods, the approach incrementally updates the
temporal weights and CP model factors as each new tensor slice is observed without
revisiting prior data. It includes a tunable history term to balance reconstruction of
new and old tensor data, and employs stochastic gradient descent solvers enabling
scalability to large, sparse tensors. The effectiveness of the approach was demon-
strated on several synthetic and real datasets incorporating Guassian, Poisson, and
Bernoulli loss functions, where comparable losses were observed compared to other
streaming and static methods appropriate for the chosen form of loss.

While the approach was shown to be effective and scalable, it relies on expert
choice of numerous hyperparameters that can dramatically affect accuracy and com-
putational cost. Unfortunately, our experience has shown these parameters must be
empirically chosen on a case-by-case basis. The sensitivity of the method to these
hyperparameters primarily derives from its use of stochastic gradient descent as an
optimization strategy, so future work will involve investigation of alternative solution
strategies that rely on fewer hyperparameters and are more robust to their values.
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