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ABSTRACT

In this work, we present how code generation techniques signifi-
cantly improve the performance of the computational kernels in
the HyTeG software framework. This HPC framework combines
the performance and memory advantages of matrix-free multigrid
solvers with the flexibility of unstructured meshes. The pystencils
code generation toolbox is used to replace the original abstract
C++ kernels with highly optimized loop nests. The performance
of one of those kernels (the matrix-vector multiplication) is thor-
oughly analyzed using the Execution-Cache-Memory (ECM) per-
formance model. We validate these predictions by measurements
on the SuperMUC-NG supercomputer. The experiments show that
the performance mostly matches the predictions. In cases where
the prediction does not match, we discuss the discrepancies. Addi-
tionally, we conduct a node-level scaling study which shows the
expected behavior for a memory-bound compute kernel.
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1 INTRODUCTION AND METHODOLOGY

This article will deal with the question: How do we determine the
performance of a program? This question has no straightforward
answer, but the answer is rather manifold. In high-performance
computing (HPC), the relevant metrics are single-core performance
and multi-core performance or scaling. These aspects must be con-
sidered in combination because looking only at scaling tells little
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about the actual performance of the code and can even be mislead-
ing since a slow code will typically scale quite nicely. The reason is
that if shared resources are only utilized to a minor extent, there
are more reserves for parallel execution. If the shared resources are
already highly utilized by a sequential program, achieving good
scaling is harder. This paper lays out the basis for performance
engineering by thoroughly analyzing the computational kernels of
the HyTeG [13] simulation framework, specifically looking at the
single-core performance.

1.1 Sparse Matrices

Operations on matrices are a fundamental building block in nu-
merical algorithms, and they often form the basis for solving com-
putational problems where matrices with huge dimensions can be
involved. Generally, a matrix is a rectangular array arranged in
rows and columns. These dense matrices quickly reach the mem-
ory limits. For example, if a problem consists of 108 unknowns, a
dense matrix that describes the connection between these points
would reach a size of 108 · 108 ∗ 8 B = 80 PB, which is more than
any supercomputer can provide. Sparse matrices form an important
subclass when most elements are zero. This sparsity is exploited
by omitting the zero entries when storing the matrix, which can
dramatically reduce the amount of memory required. The simplest
version uses a list where each element contains the row, column,
and value of a matrix entry (Coordinate list (COO)). The memory
footprint can be further optimized using a compressed format like
the compressed row storage (CRS)[5] format. The CRS uses a list to
store the column indices of each matrix entry in the matrix. The
row indices of the matrix entries are not stored explicitly but only at
the start of a new row in the column list. The memory required for
the column is reduced from #𝑚𝑎𝑡𝑟𝑖𝑥_𝑒𝑛𝑡𝑟𝑖𝑒𝑠 to #𝑚𝑎𝑡𝑟𝑖𝑥_𝑐𝑜𝑙𝑢𝑚𝑛𝑠

using the compressed format.

1.2 Hybrid Tetrahedral Grids

The HyTeG software framework was developed in the TERRANEO
project [7] as successor of HHG [9]. The fundamental concept is to
use an unstructured grid of triangles or tetrahedra and perform a
uniform grid refinement in each of these. This concept combines
the advantages of unstructured grids for mesh flexibility and struc-
tured grids for performance. The refinement process leads to a
structured grid within each triangle. Figure 1 illustrates the process
with Figure 1a showing the initial mesh and Figure 1b the mesh
after two refinement steps.
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(a) Initial mesh (b) Mesh after two refinement

steps. The first refinement level

is shown in grey.

Figure 1: Refinement process for a mesh consisting of two

triangles. Degrees of freedom are shown as blue circles on

vertices and orange rectangles on edges.

This structure enables the usage of matrix-free methods and
provides a natural basis for multigrid methods. As in multigrid
terminology, we refer to the meshes obtained from the refinement
steps levels. For example, a grid on level five is constructed by
performing five refinement steps. In this article, we focus on two-
dimensional grids only, even though HyTeG is capable of three-
dimensional computations as well.

The framework utilizes degrees of freedom (DoF) located on the
vertices and the edges of the triangles. Figure 1 shows blue circles
for DoF located at the vertices and orange diamonds for DoF at the
edges. This arrangement allows, for example, to use finite elements
with a P1 or P2 discretization.

One technical detail worth mentioning here is that the connec-
tion to all neighbors is alike in the case of DoF located at the vertices.
This is not the case for DoF located at the edges. In contrast, there
are three groups for each side of the triangle. We refer to these
groups as X, Y, and XY, as shown in Figure 2. The connections to
the neighboring DoF are again the same within one of these groups.
These connections are also known as stencils, which contain the
corresponding weights to couple one DoF to its neighbors. In an
unstructured grid, these stencils are typically different from each
other. A structured grid is created within each triangle by using
regular refinement.

The similarity within each group of DoF means that the stencils,
i.e. the matrix rows, are also identical for each group. Therefore,
only four individual stencils are needed within each triangle, one
for the vertex DoF and one for each of the different groups of edge
DoF. In contrast to a matrix that explicitly describes and stores
the connections between all DoF, a so-called matrix-free storage is
naturally obtained when each stencil is constant.
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XYXY

XYXYXY

XYXYXYXY
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Figure 2: Grouping of degrees of freedom. Each type has

exactly the same neighborhood except for the boundaries

1.3 Execution-Cache-Memory Model

This part introduces the performance model used in Section 5. For
additional information, see, e.g., [18]. The ECMmodel can be viewed
as an extension of the Roofline model [20], which similarly uses the
principle that the execution speed of a program can be limited by
either data transfer or the execution of operations. Both models also
assume that these two limiting factors perfectly overlap, meaning
data transfer does not influence the execution and vice versa.

In contrast to the Roofline Model, the ECMmodel uses processor
cycles as a time unit, which has the advantage that the predictions
are mostly independent of the processor frequency. Additionally,
the model can take overlapping and non-overlapping parts into
account, which is essential to predict in-core execution times.

In-core describes the actual computation in the processor and the
loads and stores to and from the registers but leaves out the transfers
within the caches. The in-core contribution is split into two parts:
The first one is called𝑇𝑂𝐿 , which is short for𝑇𝑂𝑣𝑒𝑟𝐿𝑎𝑝𝑝𝑖𝑛𝑔 since the
computation itself does fully overlap with data transfers. The loads
and stores from and into the registers, however, do not overlap with
cache transfers and are therefore named 𝑇𝑛𝑂𝐿 for 𝑇𝑛𝑜𝑛𝑂𝑣𝑒𝑟𝐿𝑎𝑝𝑝𝑖𝑛𝑔 .
To determine 𝑇𝑛𝑂𝐿 and 𝑇𝑂𝐿 , the Intel Architecture Code Analyzer
(IACA) [11] can be used. This tool analyses the kernel’s C++ source
code or assembler code and predicts the execution happeningwithin
the CPU.

The transfers between the cache levels are also accounted for as
𝑇𝑑𝑎𝑡𝑎 . Splitting𝑇𝑑𝑎𝑡𝑎 into different parts for each interface between
two adjacent cache levels or the main memory which leads to,
e.g., 𝑇𝑑𝑎𝑡𝑎 = 𝑇𝐿1𝐿2 +𝑇𝐿2𝐿3 +𝑇𝐿3𝑀𝐸𝑀 for a CPU with three levels
of caches. The unit for data transfer used by the ECM model is
typically one cache line (CL) since this is the smallest data unit that
can be transferred in the caches. One CL on modern Intel CPUs
has a size of 64 B. A work unit is used for the computation, which
includes all the instructions necessary to process all elements in
one CL.
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load streams store streams bandwidth cycles per
cache line

1 1 70GB/s 2.5
3 1 87GB/s 2.0
1 3 60GB/s 2.9

Table 1: Bandwidth of different kernel using the Intel Skylake

Xeon Platinum 8174 CPU at 2.7GHz.

For example, eight iterations would be used as a work unit if an
analyzed loop adds two vectors using double-precision elements.
This assumes the typical double-precision element size of 8 B, which
means eight elements are contained in one CL.

The ECM is often displayed in a short form:
𝑇𝑂𝐿 | |𝑇𝑛𝑂𝐿 |𝑇𝐿1𝐿2 |𝑇𝐿2𝐿3 |𝑇𝐿3𝑀𝐸𝑀

The prediction for the case that the dataset fits into a certain cache
level or the main memory is determined by adding up the respective
transfer time. For example, if the data is in the L3 cache: 𝑇𝑛𝑂𝐿 +
𝑇𝐿1𝐿2 + 𝑇𝐿2𝐿3. The actual prediction is the maximum of 𝑇𝑂𝐿 and
the sum of the data transfers.

A crucial tool when modeling performance is the so-called layer
condition (LC) [18], which predicts the caching behavior of stencil
codes. These kernels typically apply the stencil at each grid point in-
side loops that span all dimensions. Each iteration updates points by
accessing various neighbors. In a two-dimensional grid, the points
are typically sequential in memory for one dimension, but there
are offsets in the other. An earlier iteration might have accessed
some of the neighboring points already, which means these points
might still be present in the cache. At least one point of the stencil
has never been accessed before and is loaded for the first time. The
vertical distance of the stencil also called the height, defines how
many rows of the grid array are required to apply the stencil. If
we assume sequential memory in the horizontal direction, a stencil
that accesses the top and bottom neighbor has a height of three
rows. The layer condition states that if the height of the stencils
times the memory for one row is smaller than the cache size, then
only the elements that have never been accessed are cache misses.

1.4 Hardware Description

Throughout this article, we will use an Intel Skylake Xeon Platinum
8174 CPU, as it is currently used in the SuperMUC-NG [15] super-
computer. This CPU supports both a 205W and 240W operational
TDP mode. For SuperMUC-NG, the TDP is set to 205W, which
results in a nominal CPU frequency of 2.7 GHz.

On the Skylake architecture, one can use Advanced Vector Ex-
tensions 2 (AVX2) instructions, which means that the equivalent
of four mul or add instructions can be executed in a single instruc-
tion when using double precision. Furthermore, fused multiply-add
instructions (FMA) are also available, which would also execute
the AVX mul and AVX add in the same instruction. The Skylake
architecture can perform two FMA AVX (vfmadd*)instructions per
cycle [1]. It is worth noting that AVX-512 is also supported, but the
clock frequency will be reduced when using AVX-512-enabled code.
This leads to the fact that mainly kernels that are bounded by the
computation and not the data transfer will benefit. Since this is not
the case for the kernels analyzed in this paper, AVX-512 does not
yield a performance benefit and is, therefore, not enabled.

cache line size 64 B
L1 cache size 32 KiB (per core)
L2 cache size 1024 KiB (per core)
L3 cache size 33MiB (shared)
Main Memory 96GB
Clock Speed (fixed) 2.7 GHz
Cores 24
Bandwidth L1↔ L2 64 B/cy (half-duplex)
Bandwidth L2↔ L3 16 B/cy (full-duplex)

Table 2: Intel Skylake Xeon Platinum 8174 CPU specification

and cache characteristics that are used as a basis for the per-

formance modeling. For half-duplex, only one direction at a

time can achieve the maximal bandwidth, while full-duplex

can use maximal bandwidth in both directions simultane-

ously.

Several tests were conducted on the main memory bandwidth
using the LIKWID tool suite. The results for different combinations
of load and store streams are presented in Table 1. It is important
to note that the number of streams is the actual number of streams
from an application point of view. This implies that the store stream
also includes one load stream for write-allocate.

In contrast to the roofline model, the ECM also requires the
quantities of transfers between the caches. Table 2 lists some of the
relevant specifications of this processor and the cache-hierarchy
characteristics that are used as a basis for the performance model-
ing.

For the bandwidth of the caches, half-duplex and full-duplex
mean that the cache can either read or write (half-duplex) or that
both can happen simultaneously (full-duplex). In the latter case, if
reading and writing co-occur, the actual bandwidth would be 2 · 16
B/cy. Normalized to one CL, which has 64 B, it takes one cycle to
transfer between L1 and L2 and four cycles between L2 and L3.

In addition to the transfers between different cache levels, the
bandwidth between the L3 cache and the main memory is re-
quired. To calculate the cycles it takes to get one CL from L3
cache to memory, the bandwidths from Table1 are used and con-
verted. For one load and store stream for example this reads (64 B ·
2.7GHz)/70GB/s = 2.47 cy.

1.5 Outline

The target application in developing HyTeG is simulating convec-
tion in the outer earth mantle. This can be modeled by a buoyancy-
driven convention in Stokes flow. Section 2 shows a simple example
of this application.

As mentioned before, the possibility to use matrix-free methods
is one of the defining features of HyTeG. A general comparison of
matrix-free vs. sparse matrix methods is drawn in Section 3, as well
as some experiments comparing HyTeG with the popular scientific
software suite PETSc [3, 4] regarding memory consumption.

To combine the benefits of maintainability and performance
HyTeG uses code generation for computationally intensive kernels.
The process of how these kernels are created and integrated is
described in Section 4.



PASC ’23, June 26–28, 2023, Davos, Switzerland Dominik Thönnes and Ulrich Rüde

In Section 5, the Execution-Cache-Memory (ECM) model [19,
10] is used to analyze the performance of the kernels in HyTeG
that execute the matrix-vector multiplication.

Finally, an intra-node scaling experiment of the investigated
kernel is shown in Section 6, followed by the conclusion and outlook
in Section 7.

2 PLUME IN RECTANGULAR DOMAIN

To demonstrate the capabilities of the HyTeG software framework,
we show the simulation of buoyancy-driven convection in Stokes
flow, which is described by an advection-diffusion problem. We use
Taylor-Hood (P2P1) elements for the discretization of the convec-
tion and a particle-based characteristics method for the advection.
[12] presents details about the particle-based characteristics method
and its solvers. The convection is solved using a MINRES ([16])
solver, which is easier to compare to PETSc than a more complex
multigrid solver. Figure 3 shows a visualization of the simulation
for different time steps. To obtain a baseline for the performance
analyses, we profiled the application on refinement level eight with
our naïve C++ version of the kernels without using the generated
kernels described in Section 4. The total number of DoF is 1.1 ·106 in
this example application. When looking at the MINRES solver used
to solve the convection, the matrix-vector multiplication accounts
for over 57 % of the runtime, which makes it a good candidate for
optimization.

3 COMPARING MATRIX-FREE AGAINST

SPARSE MATRIX METHODS

This section analyzes the performance benefits of matrix-free meth-
ods against sparse-matrix methods based on the two-dimensional
HyTeG grids described in Section 1.2. A sparse matrix format stores
all entries of the matrix except the ones that are zero. Additionally,
the positions of the entries in the matrix are also stored. On the
other hand, matrix-free methods do not store the entries, drastically
reducing memory usage and therefore increasing the performance.
Each row of the matrix describes the connection to the neighbors by
storing a factor for each neighboring point. When updating a point,
the corresponding sparse matrix row has to be loaded. Depend-
ing on the matrix’s size, the data transfers occur from the caches
or the main memory. Due to the regular refinement in HyTeG as
described in Section 1.2, the rows representing the points inside
one of the triangles are identical. In matrix-free methods, the row
is often referred to as stencil and the factors as weights. If the
stencil weights are constant, they can reside in the registers or the
cache, resulting in the advantage in memory transfers mentioned
above. However, if the weights vary, using matrix-free methods is
more complex. It is still possible to compute the weights on the
fly to reduce the memory transfers, but this introduced computa-
tional overhead compared to non-matrix-free methods. The number
of floating-point operations that need to be performed is identi-
cal. Therefore, this aspect is neglected in our analysis. At first, we
analyze the differences theoretically, where the data volume for
matrix-free and non-matrix-free variants is determined and com-
pared. In the second step, a benchmark application compares the
actual HyTeG routines against PETSc, one of HPC’s most popular
libraries for matrix operations.

(a) 10 time steps (b) 30 time steps

(c) 50 time steps (d) 70 time steps

Figure 3: Buoyancy-driven convection in Stokes flow dis-

cretized with Taylor-Hood (P2P1) elements and a particle-

based characteristics method.

3.1 Theoretical analysis

Since HyTeG performs a regular refinement inside each element,
the total number of DoF can be determined depending on the re-
finement level. The number of DoF that are located on the vertices
of the grid is

#𝑣𝑒𝑟𝑡𝑒𝑥 =
(2𝑙 + 1) ∗ (2𝑙 + 1 + 1)

2
where 𝑙 is the refinement level. Figure 1 shows an example mesh
for refinement levels zero and two. This is slightly different for the
DoF located at the edges. Due to the regular refinement, the edges
can be grouped into three different orientations. Each orientation
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(a) Stencil for one vertex de-

pending on vertices and edges

(b) Stencil for one group of

edges (XY) depending on ver-

tices and edges

Figure 4: Stencils for the vertices and one group of edges. The

other edge groups have the same number of neighbors or

stencil weights.

corresponds to one side of the original triangle as shown in Figure 2.
Each of the three orientations can be treated identically and named
X, Y, and XY in this paper. The number for one single orientation
(𝑥 in this case) is

#𝑒𝑑𝑔𝑒 =
(2𝑙 ) ∗ (2𝑙 + 1)

2
. Since there are three types of edge orientations, the total number
of DoF, including edges and vertices, is:

#dof = #𝑣𝑒𝑟𝑡𝑒𝑥 + 3 · #𝑒𝑑𝑔𝑒.
As stated, #dof is the same for matrix-free and non-matrix-free
algorithms. The difference between the two occurs when consid-
ering the stencil weights. Figure 4 shows the stencils for a vertex
(4a) and the XY group of edges (4b). To get the total number of
stencil entries, one has to sum up all stencil weights corresponding
to the neighboring vertex and edge DoF. For the DoF located at
the vertices, this sums up to 19 entries. Seven correspond to the
neighboring vertices (including the center), and twelve correspond
to the adjacent edges of various groups. In the case of DoF located
at the edges, four neighboring vertices and four adjacent edges
must be considered. The entries sum up to a total number of nine
stencil weights, including the edge itself.

Table 3 displays the required memory for a single triangle after
ten refinement steps, as one example. The calculations neglect the
domain boundary where the stencils are not fully populated and
assume double precision entries with a size of 8 B.

When summing up the stencil entries, this means that for storing
the matrix 80.0MiB + 113.4MiB = 193.4MiB are needed. Addition-
ally, the position of each stencil entry in the whole matrix needs to
be stored. A compressed format is often used in scientific comput-
ing to reduce the memory footprint of sparse matrices. When using
a compressed row or column format, the additional data is one
index for each element and one for each row/column in the matrix.
Using 32-bit integers this leads to 193.4MiB · 0.5 = 96.7MiB and
16.8MiB·0.5 = 8.4MiB of additional indexing memory. In summary,
the storage needed for the whole matrix is 298.5MiB. The source
and destination vectors allocate 16.8MiB each. The total memory
footprint for the matrix-vector multiplication with non-matrix-free

#𝑣𝑒𝑟𝑡𝑒𝑥 = 525825
#𝑒𝑑𝑔𝑒 = 524800
#dof = 2100225

dof_𝑚𝑒𝑚 = 8 B · #dof = 16.8MiB
𝑣𝑒𝑟𝑡𝑒𝑥_𝑚𝑒𝑚 = 8 B · 19 · #𝑣𝑒𝑟𝑡𝑒𝑥 = 80.0MiB
𝑒𝑑𝑔𝑒_𝑚𝑒𝑚 = 8 B · 9 · 3 · #𝑒𝑑𝑔𝑒 = 113.4MiB

memory mat-vec sparse matrix 332.1MiB

memory mat-vec theoretical matrix-free 33.6MiB
memory mat-vec HyTeG implementation 67.2MiB

Table 3: Required memory for degrees of freedom and sten-

cils if a uniform refinement is applied ten times (refinement

level 10). 𝑣𝑒𝑟𝑡𝑒𝑥_𝑚𝑒𝑚 refers to the memory required to store

all vertex stencils and 𝑒𝑑𝑔𝑒_𝑚𝑒𝑚 to store all edge stencils, re-

spectively.

matrix storage is, therefore, 332.1MiB. In comparison, a matrix-free
algorithm only requires the source and the destination vector, i.e.,
33.6MiB. Therefore the sparse matrix needs a factor of 332.1

33.6 = 9.9
more memory in this scenario.

3.2 Comparing implementations

In this part, we compare the PETSc library, which assembles the full
matrix, against implementing a matrix-free algorithm in the HyTeG
framework. This naïve implementation in HyTeG is optimized
for usability, using various abstractions provided by modern C++
programming capabilities. It is not optimized to reach the highest
possible performance but primarily to use a matrix-free structure.

One specialty about the implementation in HyTeG is that the
matrix-vector multiplication for discretizations that involve DoF at
vertices and edges is split into four different kernels. Each of these
kernels handles a different combination: vertex to vertex, edge to
vertex, vertex to edge, and edge to vertex. Using these different
kernels was the most straightforward approach when moving from
vertex-only meshes to meshes that support DoF at the vertices and
the edges. One possible optimization is merging the four kernels
into one to reduce the number of data streams. Because HyTeG
splits the matrix-vector multiplication into four parts, the memory
has to be loaded multiple times. In Figure 4, this separation can
be recognized by the difference in color. Figure 4a and Figure 4b
shows two kernels each. One kernel considers only the blue vertices,
and the other only the orange edges. All kernels update the green
points.

Both the DoF located at the vertices and the DoF situated at the
edges must be loaded two times and stored two times. This amounts
to 4 · 16.8MiB = 67.2MiB. Therefore, the expected difference is not
a factor of 9.9 as derived in Section 3.1 but rather 332.1

67.2 = 4.9.
To confirm the calculations, we used LIKWID to measure the

main memory volume during the execution of the application. The
main memory volume denotes the amount of memory loaded from
and stored to the main memory during the computation. Ideally,
one would instead measure the peak amount of memory allocated
instead of the total volume transferred during the execution. How-
ever, measuring the process’s peak amount of memory allocated is a
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Figure 5: Memory data volume for the matrix-vector mul-

tiplication of HyTeG and PETSc for different refinement

levels. Note that PETSc with 32-bit indices can only run up

to refinement level 12. The difference converges to a factor

of ≈ 5 as expected.

nontrivial task. There are different methods like the Linux function
getrusage, internal methods of the PETSc library, or external tools
like Valgrind1. Our experiments with these tools showed incon-
sistent measurements, especially for applications with a relatively
small memory footprint of a few hundred megabytes. Therefore, we
measured the memory volume instead of the peak amount of mem-
ory. Since the goal is to compare PETSc and HyTeG, this method is
well suited.

In the benchmark application, HyTeG first sets up the sten-
cils and then transforms them into a PETSC matrix stored in a
compressed format. In the next step, the application performs a
matrix-vector multiplication using the PETSc sparse-matrix and the
HyTeG stencils while measuring the memory volume for both op-
erations separately. Figure 5 shows the difference between the two
implementations. One interesting fact is that if PETSc is built with
32-bit integers, it can only be used up to refinement level 12 since,
at refinement level 13, there are more entries in the matrix than
232. Using 64-bit integers for indices further increases the memory
footprint of PETSc. Finally, above refinement level 14, the total
memory limit of the system is reached with PETSc while HyTeG
can utilize two steps more. This shows that HyTeG is capable of
performing a matrix-vector multiplication with up to 8.6 · 109 DoF
on a system with 96GB.

In summary, the benchmark application confirms the theoret-
ical advantages of matrix-free methods concerning memory us-
age. Since, in our case, the matrix-vector multiplication is memory
bound, the performance is cross-checked by measuring the memory
bandwidth and comparing it to the maximal memory bandwidth
achievable. The analysis with the LIKWID tools revealed that the
abstract C++ implementation on refinement level 12 only achieves ≈
12.5 GB/s. This bandwidth is far from the theoretical maximum, as

1https://valgrind.org/

shown in Table 1. The following section explores how this gap can
be closed using code generation to optimize performance.

4 CODE GENERATION

This section will introduce how code generation is used to generate
highly performant compute kernels from abstract C++ code. The
following shows a pseudo version of the abstract C++ kernel for the
matrix-vector multiplication kernel that couples the DoF located at
the vertices:

1 void kernel -vertex -to-vertex( double * triangle_destination , double const *

const triangle_soucrce , double const * const stencil_vtv , int level ){

2 for ( const auto& it : Iterator( level , 1 ) ){

3 tmp = 0.0;

4 for ( const auto direction : neighborsWithCenter ){

5 tmp += stencil_vtv[stencilIndexFromVertex( direction )] *

6 triangle_soucrce[indexFromVertex( level , it.x(), it.y(), direction )

];

7 }

8 triangle_destination[indexFromVertex( level , it.x(), it.y(), stencilDirection

:: VERTEX_C )] = tmp;

9 }}

Code generation can be used in various ways to aid software devel-
opment. The idea is generally to specify the problem in an abstract
and often simpler and more compact form. Code generation allows
for faster development and reduces the risk of errors since less
code must be developed and maintained. Another advantage is that
with a general problem specification, the generation framework
can produce code adjusted to the targeted hardware architecture
and take advantage of its specific features.

InHyTeG,we utilize code generation only for the time-consuming
parts of the code in contrast to other approaches in which the whole
framework, including the data structures, is generated. The Exas-
tenicls framework [14] employs whole program generation using a
domain-specific language to generate advanced multigrid solvers.
Other examples are the FEniCSx [17] and the Firedrake [8] projects,
which generate code for the solution of partial differential equations
using the finite element method.

For the generation of the compute kernels, we use the pystencils
[6] code-generation framework, which utilizes an embedded DSL in
Python. The general idea is to specify a stencil-based interpretation
of the compute kernels and automatically transfer these to highly
optimized C++ code. pystencils uses and extends the computer al-
gebra package SymPy such that stencil kernels can be formulated
symbolically. The framework can then transform the symbolic rep-
resentation into an abstract syntax tree (AST), a tree representation
of the code structure. Based on the AST, pystencils performs var-
ious optimizations, such as eliminating common subexpressions.
Finally, pystencils renders the AST into compilable C++ source code.
It is worth mentioning that other backends are also available to
generate source code for different hardware like GPUs. Once the
desired C++ functions are generated, these can replace the original
abstract C++ functions in the HyTeG framework.

The following shows an example of the pystencils code to
generate the kernel, which handles the matrix-vector multiplication
for the DoF located at the vertices. Additionally, the resulting C++

code is shown to demonstrate the usefulness of pystencils. In
contrast to the Python code, which is relatively easy to read, the
C++ kernel is highly error-prone, especially concerning indexing.
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1 triangle_source = VertexTriangleField('triangle_soucrce ',

const=True)triangle_destination =

VertexTriangleField('triangle_destination ')

2 vertex_to_vertex_stencil = StencilField('vtv',

vertex_stencil_layout)

3 level = 10

4 neighbors = list()

5 for direction in vertex_stencil_layout:

6 neighbors.append(vertex_to_vertex_stencil[direction]

* triangle_source(direction))

7

8 update = sympy.Eq(triangle_destination ((0, 0)), sum(

neighbors))

9

10 kernel = create_kernel('kernel ', [update], level)

11 print(generate_c_code(kernel))

1 void kernel(double * _data_triangle_destination , double const * const

_data_triangle_soucrce , double const * const _data_vtv)

2 {

3 const double xi_0= _data_vtv [2]; const double xi_1= _data_vtv [5]; const double

xi_2 = _data_vtv [0]; const double xi_3= _data_vtv [3];

4 const double xi_4= _data_vtv [6]; const double xi_5= _data_vtv [1]; const double

xi_6= _data_vtv [4];

5 for (int ctr_2 = 1; ctr_2 < 1024; ctr_2 += 1) {

6 for (int ctr_1 = 1; ctr_1 < 1024 - ctr_2; ctr_1 += 1) {

7 const double xi_10 = xi_0*_data_triangle_soucrce[ctr_1 + 1026* ctr_2 - ((ctr_2*(

ctr_2 + 1)) / (2)) - 1];

8 const double xi_11 = xi_1*_data_triangle_soucrce[ctr_1 + 1026* ctr_2 - ((( ctr_2

+ 1)*(ctr_2 + 2)) / (2)) + 1025];

9 const double xi_12 = xi_2*_data_triangle_soucrce[ctr_1 + 1026* ctr_2 - ((ctr_2*(

ctr_2 - 1)) / (2)) - 1026];

10 const double xi_13 = xi_3*_data_triangle_soucrce[ctr_1 + 1026* ctr_2 - ((ctr_2*(

ctr_2 + 1)) / (2))];

11 const double xi_14 = xi_4*_data_triangle_soucrce[ctr_1 + 1026* ctr_2 - ((( ctr_2

+ 1)*(ctr_2 + 2)) / (2)) + 1026];

12 const double xi_15 = xi_5*_data_triangle_soucrce[ctr_1 + 1026* ctr_2 - ((ctr_2*(

ctr_2 - 1)) / (2)) - 1025];

13 const double xi_16 = xi_6*_data_triangle_soucrce[ctr_1 + 1026* ctr_2 - ((ctr_2*(

ctr_2 + 1)) / (2)) + 1];

14 _data_triangle_destination[ctr_1 + 1026* ctr_2 - ((ctr_2*(ctr_2 + 1)) / (2))] =

15 xi_10 + xi_11 + xi_12 + xi_13 + xi_14 + xi_15 + xi_16;

16 }}}

5 PERFORMANCE MODELING

5.1 Experiment Description

The profiling in Section 2 revealed that the matrix-vector multi-
plication is the one part of the code that consumes most of the
time, which is often the case in numerical simulation codes. In this
section, we only focus on the matrix-vector multiplication analyses.
However, HyTeG also applies code generation to other operations
like vector addition or smoothers in the context of multigrid. HyTeG
uses functions and operators as basic build blocks. A matrix-vector
multiplication is equivalent to applying an operator to a function.
Therefore, the matrix-vector multiplication is also referred to as
apply in this publication. In our implementation, the matrix-vector
multiplication consists of four different kernels, as explained in Sec-
tion 3.2. Each kernel deals with a different combination of vertex
and edge DoF. Therefore, the resulting kernels are

• Vertex-to-Vertex(Figure 6a),
• Edge-to-Vertex (Figure 6b),
• Vertex-to-Edge (Figure 6c),
• Edge-to-Edge (Figure 6d).

Each of these kernels is analyzed separately in the corresponding
section. When iterating, we start at the lower left (the 90-degree
angle of the triangle), and the horizontal direction (X) is the inner
loop. These kernels do not update the DoF located on the boundaries.
The boundary points are handled by dedicated interface primitives

(a) Vertex-to-Vertex Stencil (b) Edge-to-Vertex Stencil

(c) Vertex-to-Edge Stencil (d) Edge-to-Edge Stencil

Figure 6: The four stencils involved in the matrix-vector

multiplication. The borders describe the availability in the

cache.

No borders: the entry was used in the last iteration and is

still in the L1 cache.

Yellow: the entry was never loaded before.

Pink: the entry was used in a former iteration and might still

be in the cache.

1 dstVertex[y][x] =
2 srcVertex[y-1][x+1] * c0 + srcVertex[y ][x+1] * c1 +
3 srcVertex[y-1][x ] * c2 + srcVertex[y ][x ] * c3 +
4 srcVertex[y+1][x ] * c4 + srcVertex[y ][x-1] * c5 +
5 srcVertex[y+1][x-1] * c6

Listing 1: Vertex-to-Vertex kernel

as explained in [13]. We chose a minimum refinement level of seven
to guarantee at least 100 entries in the longest row. Otherwise, the
loop overhead is observable, and the performance is limited.

5.2 Vertex to Vertex Kernel

The kernel that couples vertex and vertex DoF is analyzed first
and is shown in Listing 1. It is similar to a 9-point stencils kernel
which contains all direct neighbors in two dimensions, including the
diagonal ones. The only difference is that the top right and bottom
left entries are missing due to the triangular mesh. Figure 6a shows
the stencil pattern.

Table 2 describes the Intel Skylake architecture for which the
kernel is analyzed. As described in Section 1.3, the basic units in the
ECMmodel are cache lines (CLs). We must determine the work unit,
meaning how many operations are executed for data in a single
CL. The Skylake CPU has a CL size of 64 B on all cache levels. If
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LC levels ECM model prediction prediction
cycles cycles Gflop/s

L1 7-10 {10 | |8 |3 |8 |−} {10⌉11⌉19⌉−⌉} 14.8
L2 11-14 {10 | |8 |5 |8 |5.0} {10⌉13⌉21⌉26⌉ } 10.8

Table 4: ECM model for the Vertex-to-Vertex kernel. ECM

model and prediction are stated in CPU cycles (cy).

double precision (8 B) is assumed, one work unit performs eight
kernel iterations.

In the scalar case, the kernel executes seven multiplications and
six additions for each iteration. For a work unit of eight iterations,
this leads to (7+ 6) ∗ 8 = 104 operations. One AVX instruction oper-
ates on a vector length of 32 B, equivalent to four doubles. Therefore,
14 FMA AVX instructions are needed to process one work unit itera-
tion and 𝑇𝑂𝐿 = 7𝑐𝑦. However, these are only theoretical numbers
that do not consider the CPU’s hardware features, like the port
utilization. To obtain more realistic numbers, we use the IACA[11]
tool, which reports that it takes 10 cy to execute one work unit. The
CPU can sustain two AVX load and one AVX store per cycle, and
the kernel needs 14 AVX LOADs and two AVX STOREs, which leads
to 𝑇𝑛𝑂𝐿 = 7𝑐𝑦. Again, using IACA shows that practically 8 cy are
needed.

Next, the data transfer is analyzed. For the target array dstVertex,
two CL transfers are needed throughout the whole memory hierar-
chy since every store miss leads to a write-allocate. We assume that
the array entries 𝑎[𝑥−1] [𝑦+1], 𝑎[𝑥−1] [𝑦], 𝑎[𝑥] [𝑦] and 𝑎[𝑥] [𝑦−1]
are in the 𝐿1 cache since they have been used in the previous itera-
tion. These three entries are shown in Figure 6a without a border
and contribute only to 𝑇𝑛𝑂𝐿 . The entry 𝑎[𝑥] [𝑦 + 1] (yellow border
in Figure 6a) must always be loaded from the lowest memory level.
Up to this point, there are two CL loads and one CL store for each
work unit. Since the connection between the L1 and L2 cache has
a half-duplex bandwidth of 64 B/s, it takes three cycles to transfer
three cache lines (𝑇𝐿1𝐿2 = 3 cy). For the transfer between L2 and L3,
only the two cache line loads are considered since the store happens
simultaneously due to full-duplex. With the given bandwidth of
16 B/cy this results in 8 cycles (𝑇𝐿2𝐿3 = 8 cy).

The analysis for the remaining entries 𝑎[𝑥 + 1] [𝑦] and 𝑎[𝑥 +
1] [𝑦−1] is more complex since it depends on the size of the leading
dimension and whether these entries are still in the cache. The LC,
as described in Section 1.3, can determine the cache behavior. In this
case, if three successive rows of the array can reside in a particular
cache level, the LC for that cache level is fulfilled. Otherwise, the
lower levels in the memory hierarchy have to be accessed. For a
certain cache level 𝑘 , a number of entries 𝑛 and the cache Size 𝐶𝑘 ,
this condition is (3+ 1) ·𝑛 · 8𝐵 < 𝐶𝑘 . We add one line to account for
the target array dstVertex. To simplify the calculations, we ignore
that the row size decreases by one with each outer iteration.

The hierarchy of the HyTeG grids allows only for a finite set
of array lengths depending on the level of refinement. Therefore
we can determine for which cache level the LC is fulfilled for a
particular refinement level.

Table 4 shows the ECM model for different refinement levels. If
the level is below eleven, the LC for the L1 cache is fulfilled, and
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Figure 7: ECM model predictions and measurements for the

different kernels analyzed in Section 5.

additionally, the whole data fits into the L3 cache. The last column
states the performance prediction for the highest level in the given
range.

To calculate the predicted performance in Gflop, we multiply the
number of flops by the CPU frequency and divide that through the
predicted cycles. In the case that the L1 LC is fulfilled the prediction
is (8 · 13 flop · 2.7GHz)/19 cy = 14.78Gflop/s.

For the calculations in Table 4, we assume that the LC is constant
for the whole kernel, which is not the case since we deal with
triangular domains. Therefore the actual measured performance is
different, as shown in Figure 7.

Refinement level 11 shows a higher performance than the pre-
diction of 10.8 Gflop/s. We explain this by constantly decreasing
row sizes due to the triangular structure. After a certain number
of iterations, the rows will start to fit into the L1 cache again. It is
assumed that the LC for the L1 cache is fulfilled for the upper half
of the rows, which explains the performance overshoot compared
to the prediction. For level 12, the ratio of L1 LC reduces to bellow
10%, and therefore, the effect can be neglected.

The prediction of 10.8 Gflop/s is 17 % above the actual measured
performance of 9Gflop/s. The results from how the ECM model
was used in this publication do not consider the changes to the
L3 cache with the introduction of the Skylake microarchitecture.
Details on these changes, introduced with Skylake, can be found in
[2].

5.3 Edge-to-Vertex

This section analyzes the kernel that couples the edge DoF to the
vertex DoF. Listing 2 and Figure 6b show the details. Since the
horizontal, vertical, and diagonal edge DoFs are split into separate
arrays, there are three loads and one store stream.

Each iteration of the kernel executes twelve MULT and eleven
ADD instructions. Normalizing these numbers to an entire cache
line yields 24 MULT and 22 ADD. With FMA AVX, the theoretical
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1 vertex[y][ x] =
2 edgeX[y+1][x ] * c0 + edgeX[y ][x ] * c1 +
3 edgeX[y ][x-1] * c2 + edgeX[y-1][x ] * c3 +
4
5 edgeY[y ][x-1] * c4 + edgeY[y ][x ] * c5 +
6 edgeY[y-1][x ] * c6 + edgeY[y-1][x+1] * c7 +
7
8 edgeXY[y ][x-1] * c8 + edgeXY[y ][x ] * c9 +
9 edgeXY[y-1][x-1] * c10 + edgeXY[y-1][x ] * c11;

Listing 2: Edge-to-Vertex kernel

LC levels ECM model prediction prediction
cycles cycles Gflop/s

L1 7-8 {24 | |12 |5 |16 |−} {24⌉24⌉33⌉−⌉} 15.1
L2 9-10 {24 | |12 |9 |16 |8} {24⌉24⌉45⌉53⌉ } 13.4
L2 11-14 {24 | |12 |9 |24 |8} {24⌉24⌉45⌉53⌉ } 9.4

Table 5: ECM model for Edge-to-Vertex kernel.

throughput is at 12 cycles, but using the IACA tool, the prediction
is 24 cycles per iteration, leading to 𝑇𝑂𝐿 = 24𝑐𝑦.

Concerning the data transfer from the L1 cache, there are twelve
load streams and one store stream resulting in 2 AVX STOREs and
24 AVX LOADs per cache line. Therefore 𝑇𝑛𝑂𝐿 = 12, which IACA
also confirmed.

For the data transfer between the cache level, the writing to
the target array vertex causes the store and load of one cache
line due to write-allocate. The edgeX, edgeY, and edgeXY arrays
depend again on the LC. In the best case, only one entry per array
(yellow border in Figure 6b) needs to be fetched from memory
summing up to a total of three. The five entries without a border
in Figure 6b are always available in the L1 cache. The other four
entries reside in the L1 cache as long as the corresponding LC is
fulfilled. Figure 6b shows these entries with a pink border. In this
case, the predictions from the ECM model are 𝑇𝐿1𝐿2 = 5𝑐𝑦 and
𝑇𝐿2𝐿3 = 16𝑐𝑦. This condition holds if the refinement level is below
ten, and this also means that the entire data resides in the L3 cache,
meaning there is no traffic between the L3 and main memory.

If the LC is violated, four additional loads exist between each
cache level. Interestingly, due to the stencil’s shape for the edgeY
and edgeXY arrays, there is only one additional entry, but for the
edgeX array, there are two. This is because the kernel touches both
y+1 and y-1, whereas in the other cases, only y+1 is needed.

From level eleven onwards, there is also traffic between the L3
cache and the main memory. Since there are three loads and one
store stream, we use a transfer time of 2.0 cy per cache line from
Table 1.

Figure 6b show the measurements for this kernel, which are in
good accordance with the predictions.

5.4 Vertex-to-Edge Kernel

Now the kernel coupling from vertex DoFs to edge DoFs is analyzed,
shown in Listing 3 and Figure 6c. In contrast to the Vertex-to-Vertex
kernel, it writes to three data targets (edgeX,edgeY,edgeXY).

This kernel performs four multiplications and three additions for
all three target arrays in each iteration. A total of twelve MULT and

1 edgeX[y][ x] =
2 vertex[y+1][x-1] * c0 + vertex[y ][x ] * c1 +
3 vertex[y ][x+1] * c2 + vertex[y-1][x+1] * c3;
4
5 edgeXY[y][ x] =
6 vertex[y+1][x ] * c4 + vertex[y+1][x+1] * c5 +
7 vertex[y ][x ] * c6 + vertex[y ][x+1] * c7;
8
9 edgeY[y][ x] =
10 vertex[y+1][x-1] * c8 + vertex[y+1][x ] * c9 +
11 vertex[y ][x ] * c10 + vertex[y ][x+1] * c11;

Listing 3: Vertex-To-Edge kernel

LC levels ECM model prediction pred.
cycles cycles Gflop/s

L1 7-9 {14.8 | |12 |7 |16 |−} {14.8⌉19⌉35⌉−⌉} 13.0
L2 10 {14.8 | |12 |9 |24 |−} {14.8⌉21⌉45⌉−⌉} 10.1
L2 11-14 {14.8 | |12 |9 |24 |11.6} {14.8⌉21⌉45⌉56.6⌉ } 8.0

Table 6: ECM model for Vertex-to-Edge kernel.

nine ADD instructions. Using vectorization and fused multiply-add,
this reduces to 12 FMA AVX instructions for four iterations and 24
FMA AVX instructions for one work unit. Theoretically, two FMA
AVX instructions can be executed per cycle, suggesting that pro-
cessing an entire cache line needs 12 cycles. However, an analysis
of the kernel using the IACA tool shows that the throughput is
slightly higher 𝑇𝑂𝐿 = 14.8𝑐𝑦.

The kernel writes into three different array locations and reads
from twelve. However, [x][y], [x+1][y] and [x][y+1] are used
three times, and therefore only six actual loads are needed. IACA
predicts that these loads and stores take 12 cycles (𝑇𝑛𝑂𝐿 = 12𝑐𝑦).

Now the data transfers between the cache levels are analyzed.
There are three store streams and three load streams due to write-
allocate for the target arrays edgeX, edgeY,edgeXY. At least one CL
transfer is needed for the source array srcVertex. Figure 6c show
this point with a yellow border. Similar to the Vertex-to-Vertex ker-
nel, there are two entries in the source array (pink border) where
the LC determines from which level of the memory hierarchy they
are fetched. If the LC for the L1 cache is fulfilled 𝑇𝐿1𝐿2 = 7𝑐𝑦 and
𝑇𝐿2𝐿3 = 16. Once the L1 LC is violated𝑇𝐿1𝐿2 increases to 9𝑐𝑦, and in
the case that the L2 LC is also violated𝑇𝐿2𝐿3 becomes 24𝑐𝑦. Remem-
ber that only the load streams are considered for 𝑇𝐿2𝐿3 since this
connection is full-duplex and can read and write simultaneously.

For the transfer between the L3 cache and main memory, we use
the bandwidth from Table 1. Since there is one load and three store
streams to memory, 𝑇𝐿3𝑀𝐸𝑀 is 11.6 cy.

Table 6 displays the ECM model predictions for the kernel. The
ECM predictions here are in good accordance except for the higher
levels, where the prediction and the measurements diverge. We
attribute this to the fact that at refinement level 15, the LC for the
L3 cache would be violated, which already shows at smaller sizes.
Additionally, the ratio of three stores to one load stream reduces
the performance. Table 1 also displays this characteristic, where
the respective benchmark reaches the lowest bandwidth.
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1 dstEdgeX[y][ x] =
2 srcEdgeX [y ][x ] * c0 + srcEdgeY [y ][x ] * c1 +
3 srcEdgeY [y-1][x+1] * c2 + srcEdgeXY[y ][x ] * c3 +
4 srcEdgeXY[y-1][x ] * c4;
5 dstEdgeY[y][x] =
6 srcEdgeY [y ][x ] * c5 + srcEdgeX [y ][x ] * c6 +
7 srcEdgeX [y+1][x-1] * c7 + srcEdgeXY[y ][x ] * c8 +
8 srcEdgeXY[y ][x-1] * c9;
9 dstEdgeXY[y][x] =
10 srcEdgeXY[y ][x ] * c10 + srcEdgeX [y ][x ] * c11 +
11 srcEdgeX [y+1][x ] * c12 + srcEdgeY [y ][x ] * c13 +
12 srcEdgeY [y ][x+1] * c14;

Listing 4: Edge-to-Edge kernel

5.5 Edge-to-Edge

The last kernel to be analyzed is the one coupling edge and edge
DoF shown in Listing 4 and Figure 6d. This kernel uses three load
streams and three store streams.

For each group of edge DoFs, five MULT and four ADD instruc-
tions per iteration need to be performed. Like before, there are
eight iterations when normalizing to an entire cache line, leading
to 5 · 3 · 8 = 120 multiplications and 4 · 3 · 8 = 96 additions. Within
one FMA AVX instruction, a maximum of four MULT and four
ADD instructions are executed, reducing the total operations to
30 FMA AVX instructions. The IACA tool reports that it takes 20
cycles to process one cache line for this kernel which is higher than
the theoretical value of 15 cycles since the Skylake architecture is
theoretically capable of performing 2 FMA AVX instructions per
cycle (𝑇𝑂𝐿 = 20𝑐𝑦).

Looking at the data traffic between the L1 cache and the registers,
three writes, and nine loads (three per group) are necessary. Since
one AVX load is equivalent to four double loads, this results in six
AVX STOREs and 18 AVX LOADs per cache line. IACA shows that
it takes ten cycles, which leads to 𝑇𝑛𝑂𝐿 = 10

For the data traffic within the cache hierarchy, the dstEdgeX,
dstEdgeY, and dstEdgeXY arrays cause one store and one load
stream each. For the srcEdgeX,srcEdgeY, and srcEdgeXY arrays,
each array has one entry that was never touched, causing one load
stream throughout the whole cache hierarchy. The last iteration
used one entry of each array, meaning these entries still reside in
the L1 cache. For the remaining three entries, the LC determines the
location in the memory hierarchy. Figure 6d shows the entries in
the L1 cache without a border, the new entries with a yellow border,
and the entries that are possibly in the cache with a pink border. If
the L1 layer condition is fulfilled the ECM reads 𝑇𝐿1𝐿2 = 9𝑐𝑦 and
𝑇𝐿2𝐿3 = 24𝑐𝑦. The ECM model for the different refinement levels is
presented in Table 7.

Above level eight, the L1 LC no longer holds and𝑇𝐿1𝐿2 increases
to 12 cy. Until level ten, the entire data can also be kept in the
L3 cache, meaning there is no data traffic to memory. From level
eleven on, the memory traffic needs to be considered. We used the
bandwidth results for the LIKWID benchmark with one load and
one store stream since it has the same ratio. The transfer time for
one cache line from main memory to L3 cache is, therefore, 2.5 cy
The six streams that are required result in a prediction of 𝑇𝐿3𝑀𝐸𝑀

being 15 cy.
Figure 6d compares the measurements with the predictions,

which match very well. The fact that on refinement level seven, the

LC levels ECM model prediction prediction
cycles cycles Gflop/s

L1 7-8 {20 | |10 |9 |24 |−} {20⌉19⌉43⌉−⌉} 11.5
L2 9-10 {20 | |10 |12 |24 |15} {20⌉22⌉46⌉61⌉ } 10.8
L2 10-14 {20 | |10 |12 |24 |15} {20⌉22⌉46⌉61⌉ } 8.1

Table 7: ECM model for the Edge-to-Edge kernel

whole dataset nearly fits into the L2 cache explains this point being
above the prediction of the ECM model.

6 MULTI-CORE SCALING

This section analyzes the scaling of all four kernels when execut-
ing on a single node. When using the ECM model to predict the
performance for a specific number of cores, one has to differenti-
ate between exclusive and shared resources within the CPU. All
compute units, registers, the L1, and the L2 cache are exclusive for
each core. However, the L3 cache and the main memory are shared
amongst different cores. Therefore, we expect perfect scaling if the
data fits in the L2 cache.

Figure 8 shows weak scaling of the four kernels from 1 to 48
processes for refinement level 8.Weak scalingmeans the application
adds a new triangle for each process to the mesh. The scheduling
is chosen to fill one socket before using the second socket. As
expected, the scaling up to six processes is linear since all the data
can be kept in the L2 cache. Beyond this, the shared L3 and main
memory cause a saturation up to the entire socket containing 24
processes.

The Vertex-to-Vertex-Apply kernel shows a particular be-
havior. After ten processes, the performance decreases because
the shared L3 cache can no longer hold the whole mesh. In other
words, the size of the L3 cache available per core decreases when
the number of processes increases.

Once processes utilize the second socket, the performance in-
creases linearly. The scheduling of the processes causes this char-
acteristic. Since the first socket is already fully saturated, the per-
formance can only increase by 1/24 because new processes have to
wait for all 24 processes on the other socket. Overall this scaling
behavior follows the characteristic of memory-bound kernels in
general.

7 CONCLUSION AND OUTLOOK

This paper analyses the differences between matrix-free and sparse
matrix versions of matrix-vector multiplication. One clear advan-
tage of the matrix-free version is the reduced memory footprint. In
particular, the article compares the standard HPC library PETSc
against the recently developed HyTeG framework concerning their
memory requirements. Here, HyTeG could reduce memory con-
sumption significantly when the matrix-free methods were em-
ployed. Furthermore, PETSc must be compiled with 64-bit integer
indices to reach the same number of global DoF as HyTeG since
the default 32-bit indices would overflow at refinement level 12.
Section 4 shows how HyTeG uses code generation techniques to
fully utilize the memory bandwidth.
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Figure 8: Intra-node scaling of the four different kernels to

the full socket of one SuperMUC-NG node containing two

sockets. The first 24 processes are scheduled onto one socket

before the second socket is used. This scheduling explains

the saturation at 24 processes due to the saturation in main

memory.

The paper demonstrates how an elaborate exercise in perfor-
mance modeling can be used to determine theoretical peak per-
formance. This analysis is based on the ECM model. The article
demonstrates that all analyzed kernels can reach the ECM-predicted
performance limit when using code, the generation techniques of
HyTeG. A first single-core comparison of the complete matrix-
vector multiplication of HyTeG with PETSc on the SuperMUC-NG
system showed a speedup of 5.3 in favor of HyTeG. However, more
analyses would be required to evaluate this difference further.

The article thus presents a detailed performance analysis of the
most critical kernels relevant for 2D simulations with the HyTeG
framework. However, as discussed in Section 5, the four kernels
needed to perform one complete matrix-vector multiplication are
currently independent routines. As such, they cause an overhead
in memory transfer. Merging these four kernels into a single one
will accelerate the execution further. The same code generation
techniques as already used could significantly reduce the work.
However, the surrounding data structures need extensive adjust-
ments to support the changed interface. In the limit, this loop merge
could improve the performance of the whole matrix-vector multi-
plication by another factor of four, provided that data can be reused
entirely and thememory bandwidth is still the limiting performance
factor.

Clearly, the next significant step is to extend the performance
analysis to 3DHyTeG-meshes. The transition from 2D to 3D leads to
much more complicated stencil patterns, especially for DoF located
at the edges. A comprehensive study will be the topic of future
research.
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