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ABSTRACT
Data sharing is crucial for open science and reproducible research,
but the legal sharing of clinical data requires the removal of pro-
tected health information from electronic health records. This pro-
cess, known as de-identification, is often achieved through the use
of machine learning algorithms by many commercial and open-
source systems. While these systems have shown compelling re-
sults on average, the variation in their performance across different
demographic groups has not been thoroughly examined. In this
work, we investigate the bias of de-identification systems on names
in clinical notes via a large-scale empirical analysis. To achieve
this, we create 16 name sets that vary along four demographic
dimensions: gender, race, name popularity, and the decade of pop-
ularity. We insert these names into 100 manually curated clinical
templates and evaluate the performance of nine public and pri-
vate de-identification methods. Our findings reveal that there are
statistically significant performance gaps along a majority of the
demographic dimensions in most methods. We further illustrate
that de-identification quality is affected by polysemy in names,
gender context, and clinical note characteristics. To mitigate the
identified gaps, we propose a simple and method-agnostic solution
by fine-tuning de-identification methods with clinical context and
diverse names. Overall, it is imperative to address the bias in ex-
isting methods immediately so that downstream stakeholders can
build high-quality systems to serve all demographic parties fairly.

CCS CONCEPTS
• Computing methodologies → Natural language process-
ing; • Human-centered computing→ Fairness; • Social and
professional topics→ Patient privacy.
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1 INTRODUCTION
The increased availability of clinical datasets [49, 71, 72] plays a sig-
nificant role in the recent advancements in machine learning (ML)-
aided healthcare systems [13, 37, 104, 115]. In order to share clinical
trial data legally, stakeholders must adhere to the Health Insurance
Portability and Accountability Act (HIPAA) Safe Harbor provisions
by masking 18 types of protected health information (PHI). If done
appropriately, clinical data sharing adds significant value to scien-
tific reproducibility [90] at low risk to patient privacy [77, 112]. In
this regard, various open-source software [73, 93] and commercial
companies provide services to de-identify electronic health records
(EHRs). Named entity recognition (NER) tools [78, 117, 134] in
natural language processing (NLP) libraries [15, 64, 86, 105] are
commonly used in this space.

Despite the compelling performance of many ML-empowered
healthcare systems [123], models have been shown to underperform
in minorities and minoritized populations, and naive applications
can extend and increase existing biases [37, 55, 55, 56, 113, 129, 132].
Disparities in performance between demographic groups can lead
to real harm [59, 88, 137]. For instance, a state-of-the-art early
warning model for acute kidney injury [122] failed to extend to
female patients due to its male-dominated training data [34]. In
de-identification specifically, failing to remove the PHI of certain
demographic groups would violate the Safe Harbor regulations.
This failure could exacerbate the known misuse of data from mi-
norities [30, 47, 54] and expose these groups to targeted attacks
such as identity theft [17, 18].

In this paper, we audit the performance of de-identification meth-
ods on a specific PHI category—names—from clinical notes. We
focus on names because they are correlated with demographic fea-
tures and are disproportionately identifiable amongst the defined
PHI categories. To date, existing studies [87, 91, 94] have compared
a limited number of baselines on short sentence templates that are
much simpler than the real clinical notes. In contrast, we conduct
a large-scale empirical evaluation of nine commercial and open-
source de-identification methods based on 16 name sets that vary
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(a) 4 demographic dimensions & (b) 16 name sets
Name Set Gender Race Popularity Decade First Name Last Name

1 Male White Top 2000s Jacob, Ethan, … Smith, Davis, …
2 Female White Top 2000s Emily, Emma, … Smith, Davis, …
… … … … … … …

(c) 100 clinical templates

Mr. **NAME** met Dr. **NAME**  on **DATE**.
Mr. **NAME** is a pleasant, well-developed obese male in no acute distress. 
…

Mr. Jacob Smith met 
Dr. Ethan Davis …

…

(d) 16,000 evaluation notes

spaCy Google NeuroNER
…

(e) 9 de-identification methods

&

(f) performance evaluation

populate the 
copies

duplicate 10 times
for each name set

Mr. Emily Smith met 
Dr. Emma Davis …

Figure 1: Workflow of our empirical study. We identify (a) four demographic dimensions and prepare (b) 16 name sets with
diverse settings. For each name set, we duplicate each of the (c) 100 clinical templates ten times and populate the copies with
randomly generated names. We then use these (d) 16,000 evaluation notes to assess (e) nine de-identification methods.

along four demographic dimensions—gender, race, name popularity,
and the decade of popularity—and 100 note templates [80] curated
from real-world clinical records. We adopt the gender and racial
categories in the U.S. Social Security [6] and Census [3] datasets
and calculate popularity from name frequency over three selected
decades. While we acknowledge the inherent limitation of using
standardized racial categorization and binary gender groups, our
work is a first step toward the evaluation of de-identifying names
in EHRs, capturing the real harm that gaps could incur.

First, we investigate whether demographic bias exists in clinical
de-identification methods. While some methods attain an overall
competitive recall, a majority of the examined methods exhibit
statistically significant performance gaps along most demographic
dimensions. For instance, we note that these methods are, on av-
erage, significantly better at recognizing “rare” names in White
people than “popular” names in Asian people.

Second, we assess potential factors contributing to the observed
underperformance.We find that nameswith polysemy—othermean-
ings in English—are disproportionately unrecognized, regardless of
the associated races. Most methods suffer when the gender inferred
from a name disagrees with the gender suggested by the semantic
context. Certain note characteristics, such as length and the number
of unique names included, also reduce performance.

Third, we perform fine-tuning on two of the open-source de-
identification methods (spaCy [64] and NeuroNER [43, 44]) with
clinical context and diverse names. We find that this significantly
improves the methods’ overall performance and reduces their demo-
graphic bias, especially along the dimensions of race and popularity.
We advise that this simple, method-agnostic solution should be a
minimal first step for practitioners in the de-identification space.

We contribute a comprehensive analysis of the bias in de-identif-
ying names from clinical notes, with insights into the existence
of the bias and the cause of the underperformance, and provide
a simple mitigation option. We emphasize that asymmetric de-
identification by existing methods could violate legal regulations
and is a serious socio-technical ethical issue. We encourage future
work to build upon our results, balancing both de-identification
performance and demographic fairness.

2 RELATEDWORK
De-identification. The HIPAA Safe Harbor regulations require

clinical trial data to be properly anonymized before being shared for
various purposes [83, 125]. Toward this goal, the de-identification of
EHRs has drawn long-lasting attention from both clinical practition-
ers and the NLP community [73, 93]. Traditional de-identification
methods use rule-based pattern matching [20, 50, 97, 121] or ML
algorithms [10, 44, 128, 135] for sequence tagging and attain com-
petitive results in the i2b2 (Informatics for Integrating Biology and
the Bedside) de-identification challenges [119, 127]. Several com-
panies, like Google and Amazon, also provide commercial services
to detect and obscure PHI data in plain text. Along a related line
of research, many NLP systems [15, 64, 86, 105] can fulfill a similar
goal by treating de-identification as an NER problem [78, 117, 134].

Bias in NLP Systems. Existing work reports the prevalence of
systematic bias in NLP frameworks [26, 114]. Unfairness in text
representations [28, 33, 75, 100, 138] or language models [95, 96]
can be escalated in downstream applications such as sentiment
analysis [24, 74], machine translation [110, 118], and coreference
resolution [107, 139]. Gender [36, 89, 120] and racial [27, 41] bias
in NLP systems may bring about catastrophic social consequences
[68, 109]. In response, researchers have proposedmetrics [29, 40, 70]
and methods [65, 103, 116] to mitigate bias in NLP models.

Bias in Healthcare and Other High-Stakes Applications. Demo-
graphic bias exists in healthcare systems [129, 132], typically in
an implicit and unconscious way [59, 88, 137]. For instance, when
medical assistance leverages biased artificial intelligence [67, 92],
the unfairness is usually carried forward to subsequent healthcare
practice [53, 57]. Hence, addressing the bias here demands joint
efforts from both ML researchers [23, 38] and healthcare profession-
als [32, 99]. Bias could also occur in other high-stakes domains such
as job applications [22, 42, 60] and law enforcement [31, 45, 46]. We
leave a detailed discussion of the bias in those areas to future work.

Bias in Clinical De-identification. In light of the discussion above,
it is crucial to carefully examine the bias in de-identification meth-
ods, given the pivotal role of de-identification in healthcare pipelines.
Previous work [87, 91, 94] has only compared a small set of baselines
based on template sentences that are much simpler than realistic
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Name Set Gender Race Popularity Decade First Name Examples Last Name Examples

1 Male White Top 2000s Jacob, Ethan, Tyler, . . . Smith, Davis, Brown, . . .
2 Female White Top 2000s Emily, Emma, Olivia, . . . Smith, Davis, Brown, . . .
3 Male White Medium 2000s Wade, Ted, Brien, . . . Waldon, Clapp, Bogle, . . .
4 Female White Medium 2000s Mabel, Liz, Terressa, . . . Waldon, Clapp, Bogle, . . .
5 Male White Bottom 2000s Nicki, Leslee, Marti, . . . Lofft, Lyna, Tamaro, . . .
6 Female White Bottom 2000s Glenn, Lyle, Heath, . . . Lofft, Lyna, Tamaro, . . .

7 Male Black Medium 2000s Cedric, Marlon, Ollie, . . . Booker, Grier, Spikes, . . .
8 Female Black Medium 2000s Aisha, Ebony, Jamila, . . . Booker, Grier, Spikes, . . .
9 Male Asian Medium 2000s Zhi, Nguyen, Rajeev, . . . Ngo, Mao, Ahmed, . . .
10 Female Asian Medium 2000s Neha, Priya, Xin, . . . Ngo, Mao, Ahmed, . . .
11 Male Hispanic Medium 2000s Leonel, Camilo, Cruz, . . . Ceja, Amaro, Recinos, . . .
12 Female Hispanic Medium 2000s Celina, Rebeca, Luisa, . . . Ceja, Amaro, Recinos, . . .

13 Male White Top 1970s Patrick, Brian, Eric, . . . Smith, Davis, Brown, . . .
14 Female White Top 1970s Amy, Lisa, Laura, . . . Smith, Davis, Brown, . . .
15 Male White Top 1940s Jerry, George, Frank, . . . Smith, Davis, Brown, . . .
16 Female White Top 1940s Linda, Carol, Nancy, . . . Smith, Davis, Brown, . . .

Table 1: 16 name sets of diverse demographic backgrounds and examples of first and last names for each set. Name Sets 1 ∼ 6
are names with top, medium, and bottom popularity in the 2000s that are also exclusive to the White racial group. Name Sets
7 ∼ 12 are names with medium popularity in the 2000s that are also exclusive to the Black, Asian, and Hispanic racial groups.
Name Sets 13 ∼ 16 are names with top popularity in the 1970s and 1940s that are also exclusive to the White racial group.

clinical de-identification challenges. There lacks a holistic analysis
that explores the bias in de-identification methods of different cate-
gories, the factors leading to the methods’ underperformance, and
the solution to alleviate the bias. Therefore, our paper aspires to
fill this gap via extensive empirical studies based on 16 name sets
with diverse demographic backgrounds, 100 real-world clinical note
templates, and nine public and private de-identification methods.

3 EXPERIMENT SETUP
In this paper, we focus on assessing the bias in de-identifying a
specific type of PHI data—people’s names—from clinical records.
We choose names amongst the defined PHI types because they are
commonly associated with specific demographic features and are
particularly identifiable.

As illustrated in Figure 1, we first identify (a) four demographic
dimensions (i.e., gender, race, name popularity, and the decade of
popularity) and prepare (b) 16 name sets with diverse demographic
settings in Table 1. Each name set consists of 20 first and 20 last
names, which can be paired to produce 400 full names in total.
We then curate (c) 100 clinical templates from hospital discharge
records [80]. For each name set, we duplicate each of the 100 tem-
plates ten times and fill in full names randomly generated from that
name set. This creates a total of (d) 16,000 notes with 116,160 name
mentions for evaluation.We use these notes to conduct a large-scale
empirical analysis of (e) nine de-identification baseline methods to
inspect the bias along the four demographic dimensions.1

3.1 Definition of Demographic Dimensions
To measure the demographic information associated with a name,
we define the following four demographic dimensions.

• The gender of a name refers to the sex assigned at birth to
someone with that name, because the phonological property

1Our code is available at https://github.com/xiaoyuxin1002/bias_in_deid.

of a name suggests the associated gender [35]. We examine
two groups for gender: male and female.

• The race of a name refers to the expected racial or ethnic
identity of someone with that name, reflecting the varia-
tion in prevalence that exists between different self-reported
racial or ethnic groups [62]. We consider four racial or ethnic
groups: White, Black, Asian, and Hispanic. Other groups are
skipped due to prohibitively small community sizes.

• The popularity of a name refers to the size of the population
of a gender within a decade having that name. We compare
three groups here: top, medium, and bottom popularity.

• The decade of popularity refers to the decade in which a
name is popular in the U.S. in terms of babies being given
the name, as name trends change over time [58]. We assess
three decade groups: 2000s, 1970s, and 1940s.

Limitations of Standardized Demographic Categories.We acknowl-
edge the limitation of using standardized self-reported racial cate-
gorization and binary gender groups when composing the name
sets. More fine-grained racial categorizations are possible in future
work, and there could be variety in the linguistic norms and naming
traditions even within each racial group we consider. Transgender
and non-binary gender groups are also important to consider in
future work, as these groups may use gender-neutral names or have
variations in name usage between records.

We use standardized self-reported racial categorization and bi-
nary gender groups because it is important to evaluate the per-
formance of de-identification methods on data that is routinely
collected in EHRs [21]. We emphasize that we do not perform any
demographic inference as part of a classification system or training
set in this work. We do not believe that these categories should be
viewed as scientific truth and recognize the larger critical interroga-
tion surrounding whether gender and ethnicity should be discerned
from names in such systems [84]. Instead, we use these categories
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in the spirit in which they were created by the U.S. Office of Man-
agement and Budget to “monitor and redress social inequality” [25].
The examination of the impact of more fluid categorizations of
gender, race, and religion is important for future work in this space.

3.2 Construction of Name Sets
In this study, we compute the popularity of first names for each
gender based on the U.S. Social Security dataset [6] across the entire
population, rather than for each racial group. We then select names
that are primarily associated with a self-identified racial group with
a margin over 10% based on the mortgage application dataset in
[126]. We note that this is different from picking the most popular
names for each racial group independently.

In the U.S. setting, all top popularity names, as evaluated by
absolute frequency ranking, are identified with the White racial
group. For this reason, we consider names associated with the
Black, Asian, or Hispanic groups that are of medium popularity.
First names of medium popularity for each race and gender (i.e.,
Name Sets 3, 4, 7, 8, 9, 10, 11, and 12) are randomly sampled from
those with a frequency ranking between 400 and 8,000 in the entire
population in the 2000s. First names of bottom popularity for the
White group (i.e., Name Sets 5 and 6) are randomly sampled from
those occurring exactly five times in the 2000s. We set each name
set to 20 names since based on the procedure described above, there
are only 20 names that are of medium popularity in the 2000s and
primarily used by Blackmales.We also ensure that first names of top
popularity within each gender and decade are mutually exclusive
(i.e., no shared first names in Name Sets 1, 2, 13, 14, 15, and 16).

We prepare last names in a similar fashion based on the 2000
Census dataset alone [3], because we assume that the last name
popularity is relatively fixed. Specifically, this means that the most
popular last names for the White racial group in the 1970s and
1940s are assigned to be the same as those in the 2000s.

Limitations of the Datasets.We acknowledge that our datasets are
limited to the U.S., and therefore, our findings need to be reproduced
in other contexts with distinct name distributions. Furthermore,
our use of the mortgage application dataset for self-reported racial
matching is limited to those who have the financial security to apply
for a loan. As we do not have access to other sources of names and
self-reported races, we use the available data to demonstrate that—
even in this presumably more privileged subset of the population—
there are de-identification gaps.

3.3 Group Pooling for Demographic
Performance Comparisons

To evaluate model performance along each demographic dimension,
we design experiments that control for other dimensions as follows.

• We assess the impact of gender by pooling and comparing
the results of male (i.e., 1, 3, 5, 7, 9, 11, 13, and 15) and female
Name Sets (i.e., 2, 4, 6, 8, 10, 12, and 16). Race, popularity,
and decade of popularity all vary within these two groups.

• We compare performance along race by pooling Name Sets
3 and 4 for the White group, Name Sets 7 and 8 for the Black
group, Name Sets 9 and 10 for the Asian group, and Name
Sets 11 and 12 for the Hispanic group. These are the male
and female names of medium popularity in the 2000s across
the four racial groups.

• We examine the influence of popularity by forming and
comparing names with varying levels of popularity within
the White group, where top popularity is based on Name
Sets 1 and 2, medium popularity is based on Name Sets 3
and 4, and bottom popularity is based on Name Sets 5 and 6.

• We evaluate the difference in performance among the three
decade groups by comparing the male and female names of
top popularity for the White group in each decade: Name
Sets 1 and 2 for the 2000s, Name Sets 13 and 14 for the 1970s,
and Name Sets 15 and 16 for the 1940s.

3.4 Preparation of Clinical Templates
We manually curate 100 clinical note templates based on hospital
discharge records from Beth Israel Lahey Health between 2017 and
2019. We follow the HIPAA Safe Harbor provisions by marking
the occurrence of names in the templates and replacing other PHI
classes with realistic, synthetic values. We note that our templates
[80] are more complex than those used in existing benchmark
datasets [87, 91, 94], with an average of 12,893 characters and 3.5
unique names per template and each unique name appearing an
average of 2.1 times per template. This design is more analogous to
real-world de-identification challenges and more likely to expose
flaws in less effective methods.

3.5 De-identification Baseline Methods
In our large-scale empirical analysis, we examine nine popular de-
identification methods of three different categories. For packages
that offer multiple model options, we report the option with the
highest performance in our experiments.2

Three off-the-shelf NLP libraries with the NER function:
• spaCy [64] (25.9k GitHub Stars) is widely adopted for indus-
trial information extraction. We choose RoBERTa-base [82],
which is pre-trained on a massive general-purpose corpus,
as the backbone of its NER pipeline.

• Stanza [105] (6.6k GitHub Stars) is a natural language anal-
ysis package. We apply its 18-class NER model variant based
on the contextual string representations [16] and pre-trained
on the OntoNotes corpus [130].

• flair [15] (12.7k GitHub Stars) is a powerful NLP frame-
work. We employ its large four-class NER model variant
built on XLM-R embeddings [39] and document-level fea-
tures [111] and pre-trained on the CoNLL03 corpus [108].

Three commercial services for PHI detection:
• Amazon Comprehend Medical DetectPHI Operation [4] is a
HIPAA-eligible NLP service. We segment input notes into
pieces shorter than 20,000 characters, the maximum allowed
input length, when making the API calls.

• MicrosoftAzure Cognitive Service for Language PHI Detec-
tion [9] de-identifies PHI information in unstructured texts.
We divide notes into slices shorter than 5,120 characters to
obey the input length threshold.

• Google Cloud Data Loss Prevention De-identification API
[1] inspects and redacts sensitive data intelligently. We select
the outputs for the class PERSON_NAME and remove the
titles before the recognized full names.

2The number of GitHub Stars and citations listed below are accessed on April 24, 2023.
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Method Overall Performance (↑) Bias along Dimensions (↓)
Precision Recall F1 Gender Race Popularity Decade

spaCy 0.917±0.001 0.629±0.001 0.746±0.001 0.002∗±0.001 0.013∗±0.002 0.028∗±0.002 0.007∗±0.002
Stanza 0.678±0.001 0.881±0.001 0.766±0.001 0.002∗±0.001 0.016∗±0.002 0.011∗±0.001 0.005∗±0.001
flair 0.920±0.001 0.974±0.000 0.946±0.000 0.003∗±0.000 0.006∗±0.001 0.008∗±0.001 0.002∗±0.000
Amazon 0.923±0.001 0.925±0.001 0.924±0.001 0.005∗±0.001 0.022∗±0.001 0.032∗±0.001 0.001±0.001

Microsoft 0.664±0.001 0.960±0.001 0.785±0.001 0.003∗±0.001 0.023∗±0.001 0.010∗±0.001 0.006∗±0.001
Google 0.609±0.001 0.869±0.001 0.716±0.001 0.009∗±0.001 0.025∗±0.001 0.014∗±0.002 0.010∗±0.001
NeuroNER 0.946±0.001 0.944±0.001 0.945±0.000 0.001±0.001 0.045∗±0.001 0.026∗±0.001 0.002±0.001
Philter 0.227±0.001 0.794±0.001 0.353±0.001 0.000±0.001 0.000±0.001 0.003∗±0.002 0.000±0.001
MIST 0.474±0.001 0.751±0.001 0.581±0.001 0.013∗±0.001 0.022∗±0.002 0.017∗±0.002 0.003∗±0.002

Table 2: Overall performance (higher is better), bias along demographic dimensions (lower is better), and the associated
bootstrapped standard error of the examined de-identification methods. We measure the bias with recall equality difference
and bold the best two scores in each column. In particular, flair achieves the highest recall and F1 and the lowest bias for
race and popularity. Moreover, the asterisk next to a bias score indicates a statistically significant difference in performance at
an adjusted significance level (5% for gender, 0.833% for race, 1.667% for popularity and decade). A majority of the examined
methods exhibit statistically significant performance gaps along most demographic dimensions.

We note that both Amazon Comprehend Medical DetectPHI Op-
eration and Microsoft Azure Cognitive Service for Language PHI
Detection are intended to be used for our specific case of free-text
medical note de-identification. Google Cloud Data Loss Prevention
De-identification is intended for the general text.We use this service
because othermedically-focused services operated byGoogle do not
operate on free-text notes. Specifically, Google Cloud Healthcare
API for de-identification [2] only operates on FHIR JSON embed-
dings and DICOM images, and Google Cloud Healthcare Natural
Language API [8] only recognizes medical knowledge categories.

Three open-source de-identification toolkits:
• NeuroNER [43, 44] (212 citations) is an NER tool based on
the long short-term memory model [63]. We use the model
pre-trained on the 2014 i2b2 de-identification corpus [119]
with GloVe word embeddings [102] and collect the outputs
for PATIENT and DOCTOR as the set of recognized names.

• Philter (Protected Health Information filter) [97] (31 ci-
tations) leverages the Python NLTK module and regular
expressions for rule-based de-identification.

• MIST (MITRE Identification Scrubber Toolkit) [10] (156 ci-
tations) is a suite of tools for identifying and redacting PHI
in free-text medical records. We pre-train the model sup-
plied by the Carafe engine, a conditional random field-based
[76] sequence tagger, on the 2006 i2b2 de-identification cor-
pus [127] as instructed and view the outputs for the classes
PATIENT and DOCTOR as the set of recognized names.

3.6 Evaluation of Bias
To quantify the bias of each method along each dimension, we fol-
low [87] by introducing the recall equality difference: the average
absolute difference between the recall of each demographic group
and that of all the groups along the corresponding demographic
dimension. More specifically, for dimension 𝐷 and its entailed set
of demographic groups G𝐷 = {G𝐷

1 ,G𝐷
2 , . . . }, recall equality dif-

ference = 1
| G𝐷 |

∑
G𝐷
𝑖
∈G𝐷 |Recall(G𝐷

𝑖
) − Recall(G𝐷 ) |. We use the

recall equality difference as the fairness metric since it demonstrates
the difference in recall each demographic group would experience
while expecting the reported average performance. We also explore

another fairness metric—recall maximum difference—and report
the results in Appendix A.3.

We carry out the Wilcoxon signed-rank test [133] for the dimen-
sion of gender and the Friedman test [51] for the dimensions of
race, popularity, and decade to assess the null hypothesis that a
de-identification method treats all the groups equally well along a
demographic dimension. After applying the Bonferroni correction
[131], the adjusted significance levels for gender, race, popularity,
and decade are 5%, 0.833%, 1.667%, and 1.667%, respectively.

4 Q1: IS THERE DEMOGRAPHIC BIAS?
Toward the first question of whether demographic bias exists in
de-identification methods, we obtain two key takeaways. First, the
tested de-identification methods perform differently, with some
achieving a relatively high recall. Second, a majority of the meth-
ods exhibit statistically significant performance gaps along most
demographic dimensions. Such disparities call for urgent review
and action to address bias in existing de-identification methods.

4.1 Overall Performance Varies
We present the overall performance of the nine de-identification
methods in Table 2. The performance varies across the methods
with some methods obtaining a relatively high recall. In particular,
flair performs rather well, especially in recall and F1, probably due
to its use of large pre-trained language models and document-level
features. NeuroNER also achieves competitive scores, especially in
precision and F1, possibly because it is pre-trained on clinical cor-
pora. In contrast, spaCy gives the lowest recall, which suggests a
high risk of information leakage, albeit its popularity in the NLP
community (it has the most GitHub Stars among the three NLP
libraries we consider). Interestingly, Google dramatically under-
performs compared to the other two commercial platforms (i.e.,
Amazon and Microsoft). As a rule-based method, Philter outputs
highly imprecise predictions in the complicated clinical context.

4.2 Significant Demographic Gaps in
De-identification Performance

We find that a majority of the examined methods demonstrate sta-
tistically significant differences in performance along most of the
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(c) Recall of De-identification Methods on Names of Different Popularities
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(d) Recall of De-identification Methods on Names of Different Decades
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Figure 2: Recall and 95% bootstrapped confidence interval of the demographic groups along each dimension by each examined
de-identification method. Disparities in performance between different groups are more obvious along the dimensions of race
and popularity than along the dimensions of gender and decade.

four demographic dimensions. Table 2 exhibits the recall equality
difference and the hypothesis test results, where an asterisk next
to a score indicates a statistically significant difference at the corre-
sponding significance level. In particular, Amazon and Google give
the highest recall equality difference for name popularity and the
decade of popularity, respectively, which should be a call for ac-
tion for these commercial services. Although NeuroNER delivers an
overall competitive de-identification performance, its recall equal-
ity difference is rather high, especially along the dimensions of race
and popularity. We note that the rule-based Philter has very low
bias and that flair achieves not only the highest recall but also
relatively low recall equality differences along all four dimensions.

At a fine-grained level, we plot in Figure 2 the recall of the de-
mographic groups along each dimension by each method. Along
the dimension of gender, all the methods score better or equally
well for female names than male names. Nevertheless, these meth-
ods act very differently in the four racial groups. More specifi-
cally, Stanza and NeuroNER attain very low recall in the Asian

racial group, while MIST scores much higher. The three commercial
services—Amazon, Microsoft, and Google—all perform better in
the White and Hispanic racial groups than in the Black and Asian
racial groups. Moreover, the performance of most methods deterio-
rates with the popularity of names, with the exceptions of Stanza
and MIST. Finally, the disparity in recall among the three groups
with different decades of popularity is more moderate. Stanza,
Microsoft, and Google are more capable of recognizing popular
names from more recent decades, while spaCy behaves oppositely.

We visualize in Figure 3 the recall of the 16 name sets averaged
across the examined methods to further examine performance dis-
parities. We observe that the average recall of the name sets with
top popularity (i.e., Name Sets 1, 2, 13, 14, 15, and 16) outperforms
the other sets. In addition, we note that the least popular names as-
sociated with the White racial group (i.e., Name Sets 5 and 6) score
higher on average recall than the more popular names associated
with the Asian racial group (i.e., Name Sets 9 and 10).
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Figure 3: Average recall and standard error of each name set by the examined de-identification methods, ordered by decreasing
recall. The average recall on name sets with top popularity exceeds the other sets by a clear margin. Moreover, the methods are,
on average, more capable of recognizing less popular names associated with the White racial group compared to more popular
names associated with the Asian racial group.
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Figure 4: Recall and 95% bootstrapped confidence interval on polysemy first names associated with three racial groups by
each examined de-identification method. The recall ranking among the three groups remains relatively consistent for most
methods as that based on the original setting in Figure 2 (b). The increase in recall illustrated by the lighter color bar refers to
the partially correct de-identification of non-polysemy last names.

5 Q2: WHAT CAUSES DE-IDENTIFICATION
UNDERPERFORMANCE?

For the second question of what factors contribute to the underper-
formance, we draw three critical findings.

• Polysemy names account for methods’ underperformance
but not necessarily their demographic bias.

• Most methods are better at recognizing names in agreement
with the gender suggested by the local context.

• Longer templates with more unique names and medication
injection histories make de-identification harder.

5.1 Polysemy Names Lead to Underperformance
To understandwhat names are the hardest to recognize, we calculate
the recall of each sampled name. We observe that names with the
lowest recall usually have othermeanings in English (i.e., polysemy).
For instance, “An” in An Dizon and An Son—the two names with
the lowest recall—is both a prevalent determiner in English and a
first name of medium popularity associated with the Asian female
group. “Cleveland” in Cleveland Spikes—the fifth hardest name by
recall—is both a large city in the U.S. and a first name of medium
popularity for the Black male group.

Therefore, we prepare five polysemy first names for each of the
White, Black, and Asian racial groups as follows:

• White: Sydney, Faith, Forest, Cliff, June
• Black: Quincy, Cleveland, Kenya, Prince, Ivory
• Asian: Asian, Thai, King, Long, Young, Can

These sets share the same gender, name popularity, and the decade
of popularity and only differ in race. Since we can only find five
polysemy first names from the Black racial group and not enough
polysemy first names from the Hispanic group that meet this re-
quirement, we limit all sets to five names and omit the Hispanic
group here. We then follow the procedure in Sec 3 and evaluate the
methods on the polysemy first names listed above.

As shown in Figure 4, although we utilize polysemy first names
for all three racial groups, the variation in performance persists. In
addition, for all the methods except Stanza, the recall ranking of
the three racial groups assessed on polysemy first names remains
relatively consistent as that based on the original setting in Figure 2
(b). We also consider the scenario when a method can correctly
recognize the non-polysemy last names and plot the increased recall
above the original bar in lighter colors in Figure 4. In this case,
most methods can see a significant increase in recall, especially for
Google, NeuroNER, and Philter. Hence, names with overlapping
meanings in English only explain the underperformance of the
de-identification methods, but not necessarily their bias across
demographic groups.

5.2 Methods Improve when De-identifying
Context-Consistent Names

NER systems usually capture the contextual dependencies for tag
decoding [78], and the semantic context often indicates the gender
associated with a name. For example, titles (e.g., Mr. and Mrs.) can
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Figure 5: Difference in recall and 95% bootstrapped confidence interval between names that are consistent and inconsistent
with the genders suggested by the local context. A positive recall difference means that performance was best when there was
gender consistency, while a negative recall difference means that performance was best when there was gender inconsistency.
Methods leveraging the gender context for name recognition are expected to see a positive recall difference.
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Figure 6: Relationship between template characteristics and template recall averaged across the examined methods. With
statistically significant p-values, a template’s average recall decreases with its length and the number of unique names included.

Mr. **NAME** arrived from **HOSPITAL**.
Mr. **NAME** is a pleasant, well-developed obese male in 
no acute distress. 
It is very important to keep your appointment with your new 
PCP, Dr. **NAME**.

Patient was given:
**DATE** 08:29 PO/NG Atenolol 25 mg **NAME**
**DATE** 08:29 PO/NG Aspirin 81mg **NAME**
**DATE** 08:29 PO Cetirizine 10 mg **NAME**

Template 86: (Average Recall = 0.625)

Medications on Admission: 
amlodipine 10 mg tablet, 1 tablet(s) by mouth once a day
(**NAME** **DATE** 20:17)
chlorthalidone 25 mg tablet, 1 tablet(s) by mouth once a day
(**NAME** **DATE** 20:17)

Template 67: (Average Recall = 0.675) Template 50: (Average Recall = 0.952)

Figure 7: Average recall and snippets of three templates. Unlike usual templates (e.g., Template 50), templates with a low
average recall (e.g., Templates 86 and 67) usually include medication injection histories that offer little semantic context for
name recognition.

appear before full names, and appositions (e.g., son and daughter)
can describe relationships. We expect methods leveraging such
context for name recognition to have higher recall on names where
there is local context agreement with the gender as compared to
those with disagreement. To assess this, we identify in our note
templates where name gender can be easily inferred from the local
context to determine if the consistency between the names and the
inferred genders impacts de-identification quality.

Figure 5 plots the recall difference between context-consistent
and -inconsistent names by the examined methods. Albeit with
relatively large confidence intervals, We find that most methods
perform better on names aligned with the implied gender. spaCy
is the only exception, perhaps shedding light on its lowest overall
recall (see Table 2).

Limitations of Gender-Inconsistent Evaluation in Experiment Setup.
We acknowledge that replacing gender-inconsistent pronouns in
notes prior to evaluation would be an easier test for models. How-
ever, we note that not all clinical records will contain gender-
confirming pronouns, especially for transgender and non-binary
individuals [84], and argue that de-identification methods should be
able to operate properly in these gender-inconsistent situations. We
also note that if we limit our analysis to only using male-originating
notes with male name sets and female-originating notes with fe-
male name sets, our results still hold (see Appendix A.1). We note
that in this setting, we do not explicitly assess the gender gap since
male- and female-originating notes do not overlap.
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Method Fine-tuning Overall Performance (↑) Bias along Dimensions (↓)
Context Name Precision Recall F1 Gender Race Popularity Decade

spaCy

out-of-the-box 0.916 0.623 0.741 0.003 0.027 0.025 0.005
clinical diverse 0.990±0.007 0.950±0.006 0.969±0.002 0.012±0.004 0.024±0.005 0.005±0.002 0.006±0.001
clinical popular 0.998±0.004 0.737±0.072 0.846±0.046 0.012±0.007 0.094±0.029 0.127±0.035 0.003±0.004
general diverse 0.915±0.072 0.830±0.083 0.864±0.035 0.036±0.005 0.071±0.011 0.049±0.042 0.008±0.005
general popular 0.873±0.110 0.492±0.069 0.629±0.083 0.010±0.003 0.059±0.032 0.326±0.060 0.007±0.003

NeuroNER

out-of-the-box 0.955 0.953 0.954 0.005 0.044 0.030 0.001
clinical diverse 0.978±0.014 0.978±0.009 0.978±0.005 0.007±0.001 0.019±0.006 0.012±0.008 0.002±0.001
clinical popular 0.989±0.003 0.865±0.021 0.923±0.013 0.008±0.004 0.065±0.007 0.118±0.010 0.001±0.001
general diverse 0.958±0.022 0.943±0.029 0.950±0.010 0.016±0.007 0.041±0.010 0.031±0.014 0.007±0.006
general popular 0.924±0.022 0.777±0.018 0.844±0.019 0.003±0.001 0.062±0.005 0.324±0.021 0.004±0.003

Table 3: Overall performance (higher is better) and bias along demographic dimensions (lower is better) of two de-identification
methods fine-tuned with different setups. We measure the bias with recall equality difference, report the mean scores and stan-
dard errors based on five trials with different seeds, and bold the best score in each column for each method. For both methods,
using clinical context and diverse names for fine-tuning improves the overall performance and reduces the demographic bias
along most dimensions, especially race and popularity.

5.3 Performance Decays with Template Length
and Name Quantity

Other properties of a note template may also affect the de-identifica-
tion performance. We consider three characteristics—template leng-
th, number of unique names, and number of name mentions in a
template—and visualize their relationships with a template’s aver-
age recall in Figure 6. Our findings suggest that recall deteriorates
with both the length of a note and the number of unique names
that it contains.

We identify two of the worst-performing templates in terms of
recall: Templates 86 and 67. These templates appear six and four
times, respectively, in the five templates with the lowest recall by a
method. As shown in Figure 7, unlike other templates (e.g., Template
50), Templates 86 and 67 are notable for having large blocks of
medication history that provide little indication for the names that
intersperse them. This unique characteristic of clinical records calls
for special attention in future de-identification systems. We further
investigate the performance of the examined methods on these
hard templates in Appendix A.2 and find that their performance
follows the overall pattern in Table 2.

6 Q3: CAN BIAS BE MITIGATED?
To answer the third question of how to mitigate the bias in de-
identification methods, we propose a simple and method-agnostic
solution of fine-tuning themethodswith clinical context and diverse
names. This setup not only improves the overall recall but also
reduces the bias significantly along most demographic dimensions.

6.1 Fine-tuning De-identification Methods
We prepare the fine-tuning de-identification datasets by consid-
ering two types of context and two types of names. We treat the
longitudinal clinical narratives in the 2014 i2b2 de-identification
challenge [119] as the clinical context and the Wikipedia articles in
the DocRED dataset [136] as the general context. We generate 160
diverse names by randomly sampling ten names from each of the
16 name sets in Table 1 and 160 popular names based on the most
popular names over the three chosen decades that do not appear
in the 16 name sets. For each type of context, we randomly sample

1,000 templates for training and 100 for validation. These templates
are then populated with the names of each type (i.e., diverse names
and popular names) separately. In this way, we create four fine-
tuning setups in total by pairing the two types of context with the
two types of names.

To compare the effectiveness of these setups, we fine-tune two de-
identification methods—spaCy [64] and NeuroNER [43, 44]—with
distinct out-of-the-box performance. spaCy is a widely-adopted
NLP library that delivers a low de-identification recall and a moder-
ate demographic bias in Table 2. In contrast, NeuroNER is pre-trained
on the original 2014 i2b2 de-identification corpus, which yields a
competitive recall with high bias along the dimensions of race and
popularity. After fine-tuning with their respective default hyperpa-
rameters, these methods are evaluated on 1,600 test notes. These
test notes are constructed by filling in the 100 templates in Sec 3.4
with the remaining ten names (not selected for the 160 diverse
names during fine-tuning) from each of the 16 name sets separately.
Here, the test notes are disjoint with the fine-tuning context/names.

6.2 Clinical Context and Diverse Names
Improve Performance

Table 3 displays the overall performance and the demographic
bias (i.e., the recall equality difference) of the two methods after
fine-tuning. We repeat the fine-tuning five times with different
seeds and report the mean scores and standard errors. Impressively,
despite the distinct out-of-the-box performance of the two fine-
tuned methods, the setup composed of clinical context and diverse
names largely enhances the overall performance of both methods
and diminishes their unfairness, especially along the dimensions of
race and popularity.

In particular, although most of the four fine-tuning setups im-
prove spaCy’s overall performance, fine-tuning with clinical con-
text and diverse names sees the largest boost in spaCy’s recall by
over 0.3. On the other hand, since NeuroNER is pre-trained on clini-
cal corpora, most of the four fine-tuning setups are ineffective in
enhancing NeuroNER’s strong out-of-the-box performance. How-
ever, fine-tuning with clinical context and diverse names is the
only exception here, which increases the precision, recall, and F1 of
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NeuroNER by around 0.02 each. Moreover, along the dimensions of
race and popularity, where the degree of unfairness is rather high,
this setup can significantly reduce the bias of both methods.

We suggest that fine-tuning de-identification methods with clini-
cal context and diverse names should be done as an immediate fix to
improve fairness before applying the methods to clinical tasks. The
method-agnostic effectiveness and simplicity of this setup highlight
the importance of training data diversity to model fairness [85].

7 DISCUSSION
Demographic Associations of Names. Names can be associated

with certain demographic features [52, 81]. For instance, in our U.S.
Social Security [6] and Census [3] data sources, there is variation
in name popularity between self-reported ethnic groups. In human
decision-making, such associations have been shown to correlate
with discriminative hiring [22, 60] and loan granting [61] practices.
Other work has explored the biases learned by large language mod-
els when the demographic context is varied directly in input [79] or
using names as a proxy for demographic [87, 91, 94]. For example,
NLP models link the female gender to specific stereotypical occu-
pations [28] and tend to generate violent or negative-toned text
when given “Muslim” as a demographic descriptor for input [11].
We emphasize that the biases inherently learned by NLP models
may perpetuate biases and, therefore, require careful audits. We
acknowledge that our analysis based on de-identifying names may
not necessarily generalize to other PHI types and leave this further
investigation to future work.

Bias in Healthcare. Bias in healthcare can occur in both sys-
tematic and implicit ways based on demographic factors such as
race, ethnicity, gender, sexual orientation, or socio-economic status
[48, 59, 88, 137]. These biases can then be unintentionally learned by
ML models [14, 57, 101]. For instance, NLP models trained on race-
redacted clinical notes have been shown to capture self-reported
race through other proxy information [12] and mimic the existing
biases in text completions for clinical treatment decisions [138]. Our
study demonstrates that existing clinical de-identification meth-
ods discriminate based on the demographic associations of names.
The bias in these methods could further escalate the unfairness in
downstream healthcare systems.

Importance of De-identified Data for Reproducibility. ML models
rely on large amounts of data for training [19], but in the case
of health data, there are privacy concerns. By removing PHI, re-
searchers can protect stakeholders’ privacy with de-identified data
[112] and avoid biasing their models through more representative
datasets [37]. To this end, clinical de-identification has attracted
long-lasting attention from the research community [73, 93] and
large amounts of resources from the industrial world (e.g, [5, 7]).
We highlight the importance of equitable de-identification because
legal and ethical data sharing should be encouraged [112] to im-
prove the reproducibility of clinical findings and the credibility of
healthcare systems [90, 124].

Harm of Minority Exclusion. We stress that it is not acceptable to
exclude some populations from de-identified data sharing. When
demographic groups are absent in data, models trained on that data
will perform poorly on the missing groups [98]. This can result
in misdiagnoses, inadequate treatments, and a failure to address

health disparities [56]. Hence, it is crucial to ensure that data for
model training is diverse and representative of the populations they
will serve [37]. Future work should consider proactive measures to
collect and include data from underrepresented populations and
address systemic biases during data collection and analysis.

Ramifications of Poorer Privacy for Marginalized Groups. General
disparities in de-identification performance can lead to poorer pri-
vacy for marginalized groups and engender crimes such as identity
theft [17, 18]. This adds to the existing difficulties with data collec-
tion and monitoring faced by marginalized communities [30, 47].
Even when data sharing is consented, the data can be used outside
of the given context, leading to representational harm for groups
that are already targeted [54]. In future work, we advocate for
data collection and de-identification practices that promote trust
and do not discourage minorities from seeking medical care and
participating in clinical data sharing.

Importance of Audits to Create Change. Audits in healthcare help
to identify areas of improvement [69], assess compliance with reg-
ulations and standards [66], and hold organizations accountable for
their actions [106]. Past work on ML audits has demonstrated the
ability to make meaningful changes and reduce performance gaps
in deployed systems with biases. For example, a recent audit on
the bias in automated facial analysis algorithms [31] stimulated the
targeted companies to reduce accuracy disparities between demo-
graphic groups [106], However, companies that provided similar
algorithms and were not included in the original audit did not make
corresponding changes [106]. We encourage clinical practitioners
to build upon our de-identification audit to provide high-quality,
equitable de-identification services to all demographic groups.

8 CONCLUSION
In this paper, we contribute a large-scale empirical analysis of de-
identifying names from clinical records and present findings that
demonstrate systemic bias in performance. Our results should sound
the alarm for clinical and ML stakeholders, as bias in clinical de-
identification not only raises legal concerns but also make certain
demographic groups more prone to privacy leakage. Hence, we
call for an urgent review of existing de-identification methods and
actions (e.g., fine-tuning with our recommended setup) to improve
the fairness and accountability of healthcare systems.

Despite the comprehensiveness of our study, we acknowledge the
limitation of using coarse racial and gender categorizations when
constructing our name sets. In addition, while our analysis is readily
applicable to many widely-adopted de-identification methods, we
did not evaluate its generalization to approaches focusing on other
PHI classes. We leave to future work the investigation of bias in
de-identifying other PHI classes based on more fluid racial and
gender categorizations.
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(b) Recall of De-identification Methods on Names of Different Popularities when Evaluated on Gender-Consistent Notes Only
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(c) Recall of De-identification Methods on Names of Different Decades when Evaluated on Gender-Consistent Notes Only
Decade
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Figure 8: Recall and 95% bootstrapped confidence interval of the demographic groups along the dimensions of race, name
popularity, and the decade of popularity by each examined de-identification method under gender-consistent evaluation. These
methods behave similarly compared to the original setup in Figure 2.

A APPENDIX
In the appendix, we include additional analysis exploring the robustness of our results in gender-consistent note population, in the subset of
notes with the poorest overall performance, and using another fairness metric of recall maximum difference.

A.1 Gender-Consistent Note Population
To examine the influence of gender-inconsistent pronouns used in our note template population, we run a robustness check on our results
where we only consider male-originating clinical notes populated with male name sets and female-originating notes populated with female
name sets. We note that in this setting, we do not conduct a direct comparison of the gender gap since the male- and female-originating
notes are disjoint. Otherwise, the experiment follows the procedure in Sec 3.

Figure 8 illustrates the recall of the demographic groups along the dimensions of race, name popularity, and the decade of popularity by
each de-identification method under this gender-confirming evaluation setup. The Wilcoxon signed-rank test with p-value = 0.082 indicates
that these methods behave consistently to the original setup in Sec 3, and our observations about the race, popularity, and decade disparities
based on Figure 2 still hold.
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Method Overall Performance (↑) Bias along Dimensions (↓)
Precision Recall F1 Gender Race Popularity Decade

spaCy 0.874±0.003 0.504±0.003 0.640±0.003 0.004±0.003 0.022∗±0.004 0.037∗±0.005 0.005±0.004
Stanza 0.615±0.003 0.791±0.003 0.692±0.002 0.001±0.002 0.007±0.003 0.028∗±0.004 0.011∗±0.003
flair 0.878±0.002 0.945±0.001 0.910±0.001 0.005∗±0.001 0.014∗±0.002 0.016∗±0.002 0.004∗±0.001
Amazon 0.882±0.002 0.883±0.002 0.883±0.002 0.009∗±0.002 0.025∗±0.003 0.047∗±0.003 0.003∗±0.002

Microsoft 0.619±0.003 0.936±0.002 0.745±0.002 0.003∗±0.001 0.033∗±0.003 0.013∗±0.002 0.009∗±0.002
Google 0.558±0.003 0.856±0.002 0.676±0.002 0.011∗±0.002 0.034∗±0.003 0.011∗±0.003 0.008∗±0.003
NeuroNER 0.929±0.002 0.899±0.002 0.914±0.001 0.005∗±0.002 0.044∗±0.003 0.052∗±0.003 0.005±0.002
Philter 0.134±0.001 0.562±0.003 0.216±0.002 0.000±0.002 0.000±0.003 0.003∗±0.004 0.000±0.004
MIST 0.306±0.002 0.532±0.003 0.388±0.002 0.020∗±0.003 0.040∗±0.004 0.019∗±0.005 0.009∗±0.004

Table 4: Overall performance (higher is better), bias along demographic dimensions (lower is better), and the associated bootstrap
standard error of the examined de-identification methods on the hardest 20 templates. We measure the bias with recall equality
difference and bold the best two scores in each column. These methods’ overall performance follows the general pattern when
evaluated on the full set of 100 templates in Table 2. Some methods exhibit lower bias here, possibly due to equally poor
performance across demographic groups in harder templates.

Method Recall Maximum Difference (↓)
Gender Race Popularity Decade

spaCy 0.002±0.002 0.025±0.004 0.042±0.004 0.010±0.004
Stanza 0.002±0.001 0.032±0.003 0.017±0.003 0.008±0.002
flair 0.003±0.001 0.013±0.002 0.013±0.001 0.003±0.001
Amazon 0.005±0.001 0.034±0.002 0.047±0.002 0.001±0.001

Microsoft 0.003±0.001 0.033±0.002 0.015±0.001 0.009±0.001
Google 0.009±0.001 0.044±0.003 0.020±0.003 0.015±0.003
NeuroNER 0.001±0.001 0.089±0.003 0.040±0.001 0.003±0.001
Philter 0.000±0.001 0.000±0.002 0.004±0.003 0.000±0.002
MIST 0.013±0.002 0.043±0.004 0.026±0.004 0.004±0.003

Table 5: Recall maximum difference (lower is better) and the associated bootstrapped standard error of the examined de-
identification methods. We bold the best two scores in each column. The bias in these methods measured by recall maximum
difference along each dimension is similar to the pattern measured by recall equality difference in Table 2.

A.2 Evaluation of Difficult Note Templates
Here we identify the set of 20 templates that receive the lowest average recall by the examined de-identification methods and investigate
how the performance of these methods changes in Table 4 when evaluated on these harder templates. Although the scores of their overall
performance drop compared to Table 2, the best-performing methods based on the original full set of 100 templates still perform well on
these hardest 20 templates. However, some of the examined methods, such as Stanza and Google, exhibit lower bias now, potentially due to
equally poor performance across demographic groups in harder templates.

A.3 Recall Maximum Difference
Besides recall equality difference, we consider an additional fairness metric—recall maximum difference, which illustrates the largest gap in
recall any demographic group would experience while anticipating the reported average performance. For dimension 𝐷 and its entailed set
of demographic groups G𝐷 = {G𝐷

1 ,G𝐷
2 , . . . }, recall maximum difference = maxG𝐷

𝑖
∈G𝐷 |Recall(G𝐷

𝑖
) − Recall(G𝐷 ) |.

Table 5 displays the recall maximum difference of each examined de-identification method along each dimension. These methods’
behaviors here are similar to their bias measured by recall equality difference in Table 2. Methods that attain the lowest recall equality
difference still perform well in terms of recall maximum difference.
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