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ABSTRACT
Bias in machine learning has rightly received significant attention
over the past decade. However, most fair machine learning (fair-ML)
works to address bias in decision-making systems has focused solely
on the offline setting. Despite the wide prevalence of online systems
in the real world, work on identifying and correcting bias in the on-
line setting is severely lacking. The unique challenges of the online
environment make addressing bias more difficult than in the offline
setting. First, Streaming Machine Learning (SML) algorithms must
deal with the constantly evolving real-time data stream. Secondly,
they need to adapt to changing data distributions (concept drift) to
make accurate predictions on new incoming data. Incorporating
fairness constraints into this already intricate task is not straightfor-
ward. In this work, we focus on the challenges of achieving fairness
in biased data streams while accounting for the presence of concept
drift, accessing one sample at a time. We present Fair Sampling over
Stream (FS2), a novel fair rebalancing approach capable of being
integrated with SML classification algorithms. Furthermore, we de-
vise the first unified performance-fairness metric, Fairness Bonded
Utility (FBU), to efficiently evaluate and compare the trade-offs
between performance and fairness across various bias mitigation
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methods. FBU simplifies the comparison of fairness-performance
trade-offs of multiple techniques through one unified and intuitive
evaluation, allowing model designers to easily choose a technique.
Overall, extensive evaluations show our measures surpass those of
other fair online techniques previously reported in the literature.
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1 INTRODUCTION
Machine learning-based decision-making systems are becoming
increasingly crucial due to their extensive applications across di-
verse fields, including criminal justice, job application screening,
loan decisions, and resource allocation. However, the growing re-
liance on automated decision-making systems has led to heightened
scrutiny concerning issues of fairness and accountability in these
models [12, 37, 53]. For instance, Amazon’s decision to abandon an
automated hiring tool after discovering its bias against women [29]
is just one among many similar cases [11, 31]. The detrimental
effects of such biases underscore the importance of developing
fairness-conscious classifiers that yield accurate predictions with-
out discriminating against marginalized subgroups in society. Vari-
ous strategies have been proposed for fair decision-making systems,
e.g., to identify and eliminate discrimination [20, 40] and mitigate
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the inherent bias in historical data [24, 25]. However, these ap-
proaches overlook a critical domain that is prevalent in the real
world: the online setting.

In real-world streaming applications, data is generated in real-
time (online) and its characteristics and distribution change over
time. Consequently, it is essential to design non-discriminatory
decision systems that consider the unique challenges of the online
setting. However, most work in fair-ML approaches fairness as a
static issue and assumes that all data can be afforded for multiple
scans and that the underlying population characteristics do not
evolve [20, 38, 46]. Thus, they fail to address the challenges in the
online setting. Specifically, the first significant challenge involves
handling the constantly produced real-time data stream, i.e., the data
is infinite. Since no memory can load infinite data, fairness-aware
learning for the online setting must process each incoming instance
“on arrival,” without requiring storage and reprocessing. Most fair-
ML, however, assumes the entire dataset can be scanned multiple
times.

The second challenge is that the target concepts may also evolve.
In other words, the instance at time 𝑡 + 1 can be generated by a
different function than the one that generated the instance at time
𝑡 . For example, in early 2020, patients with symptoms like fever,
cough, etc., would likely have a seasonal flu diagnosis, which may
not be the case in the Covid-19 era. While initially, Covid-19 would
have represented a minority of the cases as compared to the flu,
over time, it became the majority class. Thus, the class we need
to balance in our dataset can change over time. Addressing bias
and changing distribution at the same time is difficult. The third
significant challenge is an intuitive measure capable of quantifying
the trade-off between fairness and performance. So far, fairness evalu-
ations have primarily reported fairness improvement and accuracy
loss as two separate metrics without a reliable method for jointly
measuring the inherent trade-off between them. However, in real-
world applications, business analytics may require a single metric
for both performance measures [46]. Therefore, a unified and effi-
cient measurement metric is essential for clear comprehension of
the trade-off between fairness and accuracy of the model.

To address the aforementioned challenges, we present Fair Sam-
pling over Stream (FS2), a novel meta-strategy for online stream-
based decision-making and Fair Bonded Utility (𝐹𝐵𝑈 ), a novel uni-
fied fairness-performance trade-off measurement metric. Our ap-
proach eliminates the bias in the data stream before applying the
SML (Streaming Machine Learning) classification algorithm [3];
thus, the proposed approach is model agnostic. The novel fairness
improvement method takes into account continuous data streams,
eliminates discrimination, and accounts for evolving data distribu-
tion. Additionally, it strikes an effective and robust balance between
prediction accuracy and fairness performance. Our major contribu-
tions are:

• FS2: a meta-strategy that builds on the popular data bal-
ancing scheme SMOTE [9] and can be integrated with any
data stream classifier. Unlike the existing SMOTE-based fair
stream processing [3, 19], 𝐹𝑆2 introduces a fairness guaran-
tee without performance degradation and is not restricted
to batches.

• Anovel fairness-performancemetric that assesses the fairness-
accuracy trade-off of ML bias mitigation methods in a unified
and intuitive manner.
• Qualitative and quantitative experiments on five groups of
biased data streams show the effectiveness of the proposed
unified metrics and fairness-conscious online learners in
streaming environments.

The remainder of the paper is organized as follows. Section 2 and
Section 3 review relevant work and the necessary background on
discrimination-aware learning. Next, we discuss the limitations of
the class balancing technique in Section 4. We present 𝐹𝑆2 and bias-
performance measurement metric in Section 5. Section 6 analyzes
the experimental results. Finally, we conclude the paper in Section 7.

2 RELATEDWORK
2.1 Fairness-aware Learning
Anumber of approaches have been proposed to address the problem
of bias and discrimination in machine learning and can be broadly
grouped under three categories: pre-, in-, or post-processing [14,
34, 43, 47, 48, 52]. i) Pre-processing techniques focus on mitigat-
ing and correcting bias in the data used for training the model,
i.e., model-independent. The most popular ones include massag-
ing [25] and reweighting [6], which are also extended in [24]. ii)
In-processing techniques transform an algorithm to improve fair-
ness, typically by embedding the fairness in the objective function
using regularization or other constraints [51]. The authors in [27]
first propose this category by integrating discrimination into the
model splitting criteria for fair tree induction. Recently, [49] fur-
ther improved and extended these splitting criteria in the online
settings. iii) Post-processing techniques are based on either adapting
the decision boundary or simply modifying the output of a model,
e.g., the prediction labels. With supplementary prediction thresh-
olds in place, [21] works against discrimination, while in [7], the
decision boundary of AdaBoost is adjusted for fairness. However,
transferring such approaches to an online setting is not trivial, as
boundary/prediction might evolve due to the non-stationary spread
over time. However, the above approaches fail to tackle bias and
discrimination in the pre-processing of stream data. This work pro-
poses a novel pre-processing method that effectively mitigates bias
in streaming data and ensures fairness in the resulting machine
learning models.

2.2 Stream Learning
The main challenges of learning in a stream setting are concept
drift, where the joint data distribution changes over time, and class
imbalance [1, 16, 28]. To address the first challenge, learning meth-
ods must adapt incrementally by incorporating new information
into the model [32, 41, 42] and by forgetting outdated informa-
tion [17, 50]. Various sampling methods have been proposed for the
second challenge, including the most representative (C-SMOTE)
[3] to address the class imbalance in a continuous data stream
while ensuring the model can adapt to shifts in the data distribu-
tion. However, these techniques focus entirely on accuracy without
considering fairness.
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2.3 Fairness-aware Stream Learning
Despite the wide prevalence of the stream learning setting and the
presence of bias and discrimination in real-world applications, sur-
prisingly, little work has explored this environment. The authors in
[2] consider an individual fairness approach and deploy an auditor
to detect fairness violations. Online SMOTE Boost [39] is made
cost-sensitive by adding various parameters of the Poisson distribu-
tion for different classes to address bias. In addition, FABBOO [23]
adjusts the training distribution on-the-fly, considering both the
imbalanced nature of the stream and the model’s discriminatory
behavior as evaluated from past data. One common drawback to
all of these methods is that their balancing approaches are driven
by the SMOTE, which can further exacerbate bias (c.f., Section 4).
Our method addresses this drawback by introducing an additional
clustering for a fairness guarantee.

3 BASIC CONCEPTS
Let 𝐷 be a sequence of instances 𝑑1, 𝑑2, . . . , 𝑑𝑛 , where 𝑑 ∈ R, arrives
at time 𝑡1, 𝑡2, . . . , 𝑡𝑛 . Also, let 𝑌 be a sequence of corresponding
class labels, such that for each 𝑑 ∈ 𝐷 , there exists a corresponding
class label 𝑦 ∈ 𝑌 . We assume each data instance in the continuous
stream has the form 𝑑 = {𝐴, 𝑆,𝑌 }, where 𝐴, 𝑆 , and 𝑌 represent
a set of attributes, the sensitive attribute (e.g., gender/race), and
the true class label, respectively. In fair-ML, a sensitive attribute
is a characteristic legally protected from discrimination (e.g., race,
color, gender, etc.). Though some sensitive attribute classes are
historically marginalized (e.g., people of color or women), others are
still untouched.We call the former and the latter classes unprivileged
group and privileged group, respectively. Without loss of generality,
we assume a binary classifier, 𝑓 () : 𝐷 → 𝑦, such that 𝑦 ∈ {−1, +1},
where the predicted class label is 𝑌 .

Usually, each new data instance from the continuous stream is
processed one by one in the online learning environment. A charac-
teristic of that learning is that the true class label of each instance
is revealed to the learner before the arrival of the next instance.
Specifically, if we predict the class label of a data instance 𝑑 ar-
riving at time 𝑡 using 𝑓𝑡−1, i.e., the classifier from time 𝑡 − 1, the
true class label of 𝑑 is revealed to the online learner before the
arrival of the next data instance. The model is then updated using
this true class label to get 𝑓𝑡 . This sequence of events is referred to
first-test-then-train or prequential evaluation setup [15].

Concept drift, the changes in the underlying distribution of the
continuous data stream over time, is another characteristic of on-
line learning. We can define the changes as 𝑃𝑡𝑎 (𝐷,𝑌 ) ≠ 𝑃𝑡𝑏 (𝐷,𝑌 )
for two different time 𝑡𝑎 and 𝑡𝑏 . Such changes often render the
current classifier ineffective since it cannot deal with the changes
in the data distribution, thereby necessitating a model update. Also,
the continuous data stream can be imbalanced. Machine learning
models typically neglect the minority class in such situations to
prevent overfitting and loss of generalization [44]. Our technique
does not require the minority class to be predefined in advance
and assumes that the same class will always be the minority class.
In other words, we allow for the possibility that the role of the
minority class may alternate between the two classes. We analyze
the extent of the imbalance in data by computing the imbalance

ratio (IR) using the following equation.

𝐼𝑅 =
𝑆𝑡𝑚𝑖𝑛

𝑆𝑡𝑚𝑎𝑗
+ 𝑆𝑡𝑚𝑖𝑛

(1)

where 𝑆𝑡𝑚𝑖𝑛
and 𝑆𝑡𝑚𝑎𝑗

are the minority and majority classes at time
𝑡 , respectively.

The offline fairness-aware classification performs a mapping,
𝐹 : (𝐴, 𝑆,𝑌 ) ⇒ 𝑌 , where the goal is to assign a class label to each
data instance accurately without discriminating against the unpriv-
ileged group. The desirable class label (e.g., receiving a loan in loan
decisions) is known as ‘favorable’ label and the undesirable one
(e.g., being denied a loan) is called ‘unfavorable’ label. We focus on
parity-based approaches that compare a fair-ML model’s behavior
towards the unprivileged and privileged groups. We employ statis-
tical parity [26] and equal opportunity [21], which we extend to
the online setting.

Statistical parity quantifies the disparity between the probability
of the privileged and unprivileged groups receiving a benefit. The
Cumulative Statistical Parity Difference (𝐶𝑆𝑃𝐷) in Equation 2 rep-
resents the cumulative difference in statistical parity between the
privileged and unprivileged groups over time. _ ∈ [0, 1] is a decay
factor used to regulate the amount of influence of the previous time
instance. In other words, the larger the _ (a configurable parameter),
the higher the contribution of historical information.

𝐶𝑆𝑃𝐷𝑡 = (1 − _) × (
∑𝑡
𝑖=1 (𝐹𝑖 (𝑑𝑖 ) ∧ 𝑌 = 1|𝑆 = 𝑠)∑𝑡

𝑖=1 (𝑑𝑖 |𝑆 = 𝑠

−
∑𝑡
𝑖=1 (𝐹𝑖 (𝑑𝑖 ) ∧ 𝑌 = 1|𝑆 = 𝑠)∑𝑡

𝑖=1 (𝑑𝑖 |𝑆 = 𝑠)
) + _ ×𝐶𝑆𝑃𝐷𝑡−1

(2)

However, statistical parity may result in the phenomenon of
reverse discrimination in certain conditions, i.e., the scenario when
data instances that are not deserving of a positive assignment re-
ceive one incorrectly, since it does not consider real class labels.
Therefore, we also consider Equal Opportunity, which measures
the difference in True Positive Rates (TPR) between the privileged
and unprivileged groups. Cumulative Equal Opportunity Differ-
ence 𝐶𝐸𝑂𝐷 in Equation 3 is the cumulative difference in equal
opportunity between the privileged and unprivileged groups over
time.

𝐶𝐸𝑂𝐷𝑡 = (1 − _) × (
∑𝑡
𝑖=1 (𝐹𝑖 (𝑑𝑖 ) ∧ 𝑌 = 1|𝑆 = 𝑠, 𝑌 = 1)∑𝑡

𝑖=1 (𝑑𝑖 |𝑆 = 𝑠, 𝑌 = 1)

−
∑𝑡
𝑖=1 (𝐹𝑖 (𝑑𝑖 ) ∧ 𝑌 = 1|𝑆 = 𝑠, 𝑌 = 1)∑𝑡

𝑖=1 (𝑑𝑖 |𝑆 = 𝑠, 𝑌 = 1)
) + _ ×𝐶𝐸𝑂𝐷𝑡−1

(3)

where ∧ is the logical symbol and _ is used for correction in the
early stages of the stream.

4 IMPACT OF CLASS BALANCING ON
FAIRNESS

Inequality in class distribution is a hallmark of biased data. As the
instances in the underprivileged group are not as prevalent as those
in the privileged group, the model can overlook patterns in the
classification of the underprivileged group. Thus, models trained
on biased datasets can assign favorable labels to the privileged sub-
group and do the opposite to the unprivileged one to achieve high
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accuracy. We can deploy class balancing techniques such as over-
sampling and undersampling to address unequal representation.

Oversampling increases the minority class representation by
creating synthetic instances while undersampling balances repre-
sentation by reducing majority class instances. We examine the
drawbacks of these techniques and how they affect the bias and fair-
ness in a model’s output in detail in later. Some key limitations of
popular class-balancing techniques include: oversampling can lead
to overfitting if samples from a few classes are replicated multiple
times [8, 13, 45] and undersampling can lead to hidden information
being ignored due to the samples that were removed [9, 35, 50]).
However, other under-explored drawbacks exist, particularly in
fairness research, while alleviating bias.

Traditional class-balancing techniques aim to equalize the statis-
tical representation of minority and majority class samples. How-
ever, since these methods focus on addressing the imbalance solely
concerning the target variable (i.e., the class label), they do not
account for the inherent properties of the dataset. Thus, the bias
in the dataset can increase after balancing the class labels, further
degrading the model’s fairness. This is particularly problematic in
the case of multiple privileged and unprivileged subgroups. Not
all privileged subgroups are privileged in the same way and/or to
the same extent; the same goes for the unprivileged subgroups. Un-
dersampling can lead to a disproportional increase in the number
of instances of the more favorable privileged group. On the other
hand, oversampling may result in a disproportionate increase in
the instances of the more favored unprivileged group because they
may be a bigger proportion of the minority class, leaving the worst
favored unprivileged group severely underrepresented.

Figure 1 presents our initial evaluation results, which reveal that
common class balancing techniques can lead to further distribution
bias in the dataset. In Figure 1, the original Bank Marketing dataset
has 24% of positive (subscribe) samples while the rest are negative
(non-subscribe). After class balancing with Random Over Sampling
(ROS), 11,788 more positive samples are added, of which only 15%
are unprivileged subgroup. Thus, the process increases bias in the
distribution, as more privileged subgroup samples are added dur-
ing the balancing process. In other words, the representation of
unprivileged favorable groups in the data set declines further.

Figure 1: The distribution bias in the BankMarketing dataset
with and without class balancing.

Figure 2 represents another limitation of the common class bal-
ancing technique, SMOTE. Specifically, the minority class samples

synthesized by SMOTE may belong to the majority class in the
feature space. Meanwhile, the random selection of samples can
exacerbate in-class bias in the dataset, especially when dealing with
multiple sensitive attributes. Our proposed scheme overcomes the
above-mentioned issues, which we elaborate on in Section 5.2.2.

Figure 2: Illustration of oversampling by SMOTE and 𝐹𝑆2.
Circle and Triangular nodes represent samples with major-
ity and minority labels, respectively. The hollow nodes are
samples created based on the closest neighbors of minority
samples within each cluster.

5 METHODOLOGY
This section first introduces the proposed Fairness Bonded Utility
(FBU) metric to combine fairness and performance into a single met-
ric. To the best of our knowledge, FBU is the first metric designed to
compare various combinations of fairness and performance metrics
effectively. Subsequently, we present Fair Sampling over Stream
(𝐹𝑆2), an innovative fair rebalancing technique tailored for biased
data streams. This method can be seamlessly integrated with any
stream-learning classification technique, thus offering a versatile
solution for addressing fairness concerns in stream processing.

5.1 Fairness Bonded Utility
A long-standing challenge in fair-ML is the intricate trade-off be-
tween model performance and fairness. Typically, a model’s per-
formance degrades as fairness guarantees become stronger. This
complicates the decision about which fairnessmetric to use for what
application, as analyzing this trade-off (performance and fairness)
is not trivial. Fairness Bonded Utility (FBU) solves this problem
by assigning each fairness technique into one of five intuitive “ef-
fectiveness” levels ranging from “Jointly advantageous” (fairness
and performance both improve) to “Jointly disadvantageous” (both
degrade). At a high level, FBU does this by measuring how the
performance of a model varies with different fairness techniques
in a two-dimensional coordinate space and computing a trade-
off baseline that categorizes the various fairness techniques into
effectiveness levels. FBU can drastically simplify the agonizing
decision-making process of which fairness technique to use for
which application scenario.
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We first construct the environment for the FBU to measure the
performance of different fairness techniques. Specifically, it is a two-
dimensional coordinate system (see Figure 3). The 𝑥-axis and 𝑦-axis
represent the pseudo-models with different replacement ratios and
the model’s performance and fairness, respectively. Our technique
is flexible and can be used with any fairness metrics (e.g., CSPD,
CEOD) to measure fairness and performance metrics (e.g., accuracy,
f1-score). Next, we present the trade-off baseline and the evaluation
outcome.

Creating a trade-off baseline. The idea behind the trade-off
baseline in FBU is centered around the zero-normalization principle
presented by Speicher et al. [36]. It states that bias is minimized
when every individual receives the same label, although this may
lead to decreased performance and vice versa.

We use this principle to create multiple pseudo-models, 𝑀𝑝 ,
where 𝑝 ∈ {10%, 20%, . . . , 100%}. We substitute a proportion 𝑝 of
the original model’s predictions in each pseudo-model with the
same output label. Then, we vary the proportion of substituted
predictions in each pseudo model, with 𝑝 ranging from 10% to
100%. For instance, in 𝑀10, we randomly select 10 percent of the
predictions from the original predictions to be replaced. It is worth
noting that we choose the labels with a higher percentage from the
original model as replacement labels. In 𝑀100, we replace all the
predictions of the original model with the highest percentage of
output labels. In general, as the proportion of replaced predictions
increases, the model’s fairness improves, but its accuracy declines.

Next, we use the original model (with no fairness technique) and
the created pseudo models to form the trade-off baseline. We derive
the first point for the trade-off baseline from the (performance,
fairness) coordinate of the original model (point𝑀𝑜𝑟𝑖 in Figure 3(b)).
Then, we plot the (performance, fairness) coordinates of the ten
pseudo models (i.e.,𝑀80,𝑀90,𝑀100, 𝑒𝑡𝑐 . in Figure 3(b)). Finally, we
connect them to form the trade-off baseline.

Five effectiveness levels. The trade-off baseline categorizes
the different bias mitigation techniques being compared into five
intuitive effectiveness levels, each with a different bias-performance
trade-off. The first level, region 1 in Figure 3(b), is a “Jointly advan-
tageous”: A technique belongs in this category if it improves both
model performance and fairness relative to the trade-off baseline.
Region 2 in Figure 3(b) denotes a “Impressive” trade-off: a tech-
nique in region 2 enhances either model performance or fairness
compared to the trade-off baseline, making it overall better than
the trade-off baseline. If a technique improves model performance
but leads to a decrease in fairness, it is considered an “Reversed”
trade-off and falls into region 3 (Figure 3(b)). A technique in region 4
in Figure 3(b) is a “Deficient” trade-off: it leads to a decline in either
model performance or fairness compared to the baseline, making it
overall worse than the trade-off baseline. A region 5 technique (in
Figure 3(b)) represents a “Jointly disadvantageous” trade-off since
it decreases both model performance and fairness compared to the
original model.

Quantitative evaluation of trade-offs. The “Jointly advanta-
geous” (region 1), “Jointly disadvantageous” (region 5), and “De-
ficient” (region 4) trade-off regions offer clear indications of the
effectiveness of the bias mitigation technique. Therefore, we con-
centrate on quantifying the trade-off quality of bias mitigation
techniques in the “Impressive” trade-off region. Specifically, we will

measure the strengths and weaknesses of different bias mitigation
methods that fall in the “Impressive” region (region 2) based on the
area enclosed by the fairness-performance points and the baseline
(see Figure 3(b)). Techniques with larger areas have better and de-
sirable fairness-performance trade-offs. Using area as a measure of
trade-off instead of other criteria, such as distance from the trade-
off baseline, we can have a fair comparison even in cases where the
trade-off baseline is curved.

The final output of FBU for a technique will be five percentages:
one percentage for each region representing how many cases for
that technique fell in that region. The number of cases per region
is computed by: 𝑛𝑟 𝑥 𝑛𝑡 𝑥 𝑛𝑓 𝑥 𝑝𝑚 , where 𝑛𝑟 , 𝑛𝑡 , 𝑛𝑓 , and 𝑝𝑚 are
the number of run times, techniques compared against, fairness
metrics used, and performance metrics used, respectively.

5.2 Fair Sampling over Stream
There are two fundamental challenges facing Fair Sampling over
Stream (FS2): the first is the lack of the entire dataset in the rebalanc-
ing phase. The second is synthesizing fair data. We first discuss the
online monitoring of the continuous data stream andmodel updates.
Then we elaborate on the challenge of synthesizing fair data.

5.2.1 Online Monitoring and Model Update. In continuous data
streams, the status of minority and majority classes can evolve. In
other words, a class currently identified as a minority may turn
into the majority class, or vice versa [41]. Additionally, approaches
focusing solely on fairness in recent outcomes (i.e., in the immedi-
ate future) are inadequate in combating discrimination over time.
Although individual instances of discrimination may seem minor
when evaluated alone, they can accumulate and result in substantial
bias in the long term. Hence, monitoring the subgroup distribution
in the data stream over time is vital for both the efficiency and
fairness of the model. However, the primary challenge faced by
FS2 is its inability to consistently monitor data to address both
concept drift and fairness concerns. In streaming machine learning,
we assume the data stream to be infinite. Firstly, no memory can
physically store infinite data; secondly, this would be against the
stream paradigm approach. Therefore, storing every new sample
in memory is impossible until the data stream ends.

We employ a different approach from previous non-stationary
studies [10, 18] to address this problem. FS2 employs ADWIN [5]
to detect changes in both accuracy and fairness, reflecting both
concept and fairness drifts. In other words, drift is detected when
either fairness or the data distribution evolves. Specifically, we will
use ADWIN to save the most recently seen samples and apply the
synthesis algorithm (explained below in Section 5.2.2) using the
samples stored in ADWIN. ADWIN maintains a variable-length
window of recently seen items and can automatically detect and
adapt the window size to the current rate of change in the data. As
shown in Equation 4, ADWIN employs a threshold known as 𝛿 (i.e.,
performance threshold and fairness threshold) to configure the error
to have two levels automatically: warning level and change level.

𝑙𝑒𝑣𝑒𝑙𝐸𝑟𝑟𝑜𝑟 = log( 2 × log𝑛
𝛿

) (4)

We identify the warning level by multiplying 𝛿 by 10, and 𝛿

helps determine the change level. Since 𝛿 is in the denominator,
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Figure 3: The FBU fairness-accuracy trade-off baseline is depicted by the original trade-off point (𝑀𝑜𝑟𝑖 ) and the points generated
by the pseudo models (𝑀10,. . . ,𝑀100). A bias reduction method is considered effective if it shows a superior trade-off compared
to the FBU baseline, i.e., it lies above the red line.

multiplying it by 10 will result in a lower value than the one ob-
tained by using 𝛿 alone. Therefore, we will reach the warning level
before the change level and can detect changes early to take appro-
priate action. The window size at any given time is represented by𝑛.

ADWIN monitors the error that occurs over the data in the win-
dow. If the error reaches a threshold of the warning level, ADWIN
assumes that either a concept drift or fairness drift is starting to
occur, and it starts collecting new samples in a new window. If
the error exceeds the change level, ADWIN assumes either a con-
cept drift or a fairness drift has occurred, and it substitutes the old
window with the new one.

5.2.2 Synthetic fair data. Here we propose a new strategy for syn-
thesizing fair data to address the challenges posed by class balancing
and its impact on model fairness. Our proposed approach elimi-
nates the in-class and between-class imbalance in the oversampling
part. Unlike traditional class balancing techniques such as SMOTE,
our method identifies the true minority classes in the dataset (see
Figure 2), and adds fairness constraints to the generation process
for synthetic samples.

At a high level, rather than directly running SMOTE, our ap-
proach first determines similar samples via clustering, then filters
the clusters using silhouette score to ensure a good clustering. Fi-
nally, it uses SMOTE within each cluster to generate synthetic
minority samples. Notably, our approach not only enhances the
fairness of the balancing method but also preserves the accuracy of
the prediction. We discuss our approach in detail below.

First, we use a clustering algorithm to identify homogeneous sub-
groups of feature similarity in the feature space. In our experiments,
we use the KNN algorithm. Note that any clustering algorithm can
be applied, but different clustering algorithms may have different
clustering results and time complexity. By partitioning the dataset
according to the selected number of clustering families𝑀 , samples
with similarities in the feature space will be classified into the same
clusters. We measure the quality of clustering by silhouette analysis.
The silhouette score measures how similar an object is to its own
cluster compared to others, and the value is between [−1, 1]. A
value of 1 indicates perfect separation, and a value of −1 suggests
that the object is in the wrong cluster. Values between 0 and 1

show the degree of separation, with values closer to 1 indicating a
stronger separation.

After determining the optimal number of clusters𝑀 , the algo-
rithm performs filtering detection for each cluster. The algorithm
calculates the silhouette score of each sample and then removes
samples with the lowest 20% silhouette score from the dataset. The
intuition for this is as follows. Let’s imagine a realistic data distri-
bution situation where a sample of a minority group exists near
the cluster boundaries. In this case, we can assume that SMOTE
selects the minority group sample near the clustering boundary
as the template. Then, the synthetic data generated based on this
sample will also be close to the clustering boundary. In addition,
there is a risk that the generated synthetic data are even closer to
the clustering boundary than the original data. This increases the
number of samples near the cluster boundaries, thus blurring the
boundaries between different clusters, making it difficult to separate
these samples in the feature space and a higher probability of being
assigned to incorrect clusters. As a result, new instances generated
based on these samples may further increase the distribution bias.

After the filtering is complete, the algorithm checks each cluster.
Specifically, the algorithm detects the proportion of minority class
samples in each cluster to determine its synthetic weight, which
is directly related to the proportion of minority samples in the
cluster. If the percentage of minority samples in a cluster is high,
the cluster is a better representative of minority samples. In other
words, clusters with a high percentage of minority class samples are
assigned higher synthetic weights. For each cluster, the synthetic
weight is calculated according to Equation 5:

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑊𝑒𝑖𝑔ℎ𝑡 =

{
𝑊𝑖 =

𝑁𝑖

𝑁𝑇𝑜𝑡𝑎𝑙

𝑊1 +𝑊2 + · · · +𝑊𝑛 = 1
(5)

where 𝑁𝑖 is the number of minority class samples in each cluster,
𝑁𝑇𝑜𝑡𝑎𝑙 is the total number of minority class samples, and𝑊𝑖 is the
synthetic weight of cluster 𝑖 . The sum of all weights is one, and the
number of samples selected for each cluster is calculated according
to Equation 6:

𝐺𝑖 = 𝑁𝑛𝑢𝑚 ×𝑊𝑖 (6)
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where 𝑁𝑛𝑢𝑚 is the total number of samples to be synthesized.
After calculating the number of samples selected for each cluster,
the model will randomly select samples in the clusters, and a new
minority sample is generated according to the SMOTE [9] gener-
ation algorithm based on the k-nearest neighbors of the minority
samples.

5.2.3 FS2 Algorithm. The algorithm is outlined in Algorithm 1,
which uses two slidingwindows of samples𝑊 and𝑊𝑙𝑎𝑏𝑒𝑙 (line 1).𝑊
contains all samples collected recently.𝑊𝑙𝑎𝑏𝑒𝑙 is an array indicating
whether the corresponding samples in𝑊 belong to the privileged
favorable subgroup, privileged unfavorable subgroup, unprivileged
favorable subgroup, or unprivileged unfavorable subgroup. The FS2
algorithm has nine counters (lines 2-4): 𝐶0, 𝐶1, 𝐶2 and 𝐶3 count
the number of instances in each subgroup, while 𝐶0, 𝐶1, 𝐶2 and 𝐶3
count the number of instances of different subgroups generated by
the synthesis algorithm. The𝐶𝑔𝑒𝑛 counter for each sample 𝑑𝑖 in the
sliding window𝑊 keeps track of the number of times 𝑑𝑖 is used to
generate synthetic samples.

𝐹𝑆2 tracks instances of different classes. After new samples are
continuously collected, the number of samples of different classes
in𝑊 can deviate significantly. In this case, the representation of
different subgroups in𝑊 may change, and FS2 will synthesize new
samples to balance the representation of different subgroups. In
line 5, the variable 𝑎𝑑𝑤𝑖𝑛 is a change detector that ensures the two
windows (𝑊 ,𝑊𝑙𝑎𝑏𝑒𝑙 ) remain consistent with any concept drift by
using the class value of the incoming sample. 𝑎𝑑𝑤𝑖𝑛 is used later
for adapting the model to concept and/or fairness drift as needed.
In line 6, the variables 𝑏𝑎𝑙𝑅, 𝑓 𝑎𝑖𝑟𝑅 are initialized to 0.

For each new instance 𝑑𝑖 (line 7), we first train the pipeline
learner 𝑙 using the new sample (line 8). After this process, the new
sample 𝑑𝑖 is saved in the sliding window𝑊 (line 9). The function
𝑈𝑝𝑑𝑎𝑡𝑒𝑊 𝑖𝑛𝑑𝑜𝑤𝑠 adds a new bit into𝑊𝑙𝑎𝑏𝑒𝑙 depending on the new
sample’s class label 𝑌 (i.e., 0 if 𝑌 = 0). In line 11, the function
𝑢𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑠 increments the relative counter 𝐶0, 𝐶1, 𝐶2, or 𝐶3
depending on the sample’s class label 𝑌 and sensitive attribute 𝑆 .

After that, the 𝑎𝑑𝑤𝑖𝑛 is updated with the sensitive attribute
𝑆 and class value 𝑌 of the incoming sample 𝑑𝑖 (line 12), and the
𝑐ℎ𝑒𝑐𝑘𝐷𝑟𝑖 𝑓 𝑡 function uses 𝑎𝑑𝑤𝑖𝑛 to check for any concept or fair-
ness drift (line 13). The function adapts by reducing𝑊 following
the windowmaintained by 𝑎𝑑𝑤𝑖𝑛 to the occurrence of concept drift
or fairness drift. Additionally, it updates𝑊𝑙𝑎𝑏𝑒𝑙 and the counters𝐶0,
𝐶1,𝐶2 and𝐶3 based on this reduction. Furthermore, if the instances
removed from𝑊 have been used to create synthetic samples, the
function also updates the counter of instances generated for that
class (𝐶0, 𝐶1, 𝐶2 or 𝐶3). Line 14 determines the actual representa-
tion of each subgroup and then saves the associated window and
counters into𝑊𝑠𝑦𝑛 , 𝐶𝑠𝑦𝑛 , and 𝐶𝑠𝑦𝑛 .

Then, we evaluate whether the instances in𝑊𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 satisfy
or surpass the hyperparameter 𝑚𝑖𝑛𝑆𝑖𝑧𝑒 set by the user (line 15).
𝑚𝑖𝑛𝑆𝑖𝑧𝑒 denotes the minimum number of data samples already
seen before rebalancing can occur. For example, if 𝑚𝑖𝑛𝑆𝑖𝑧𝑒 = 5,
we must observe at least 5 samples before rebalancing. Thus, the
rebalancing starts if both criteria are met; otherwise, the algorithm
waits for further samples. The imbalance ratio between the num-
ber of minority and majority instances is calculated according to
Equation 1, whereas Equation 2 is used to compute the statistical

parity difference. Then, the results are stored in 𝑏𝑎𝑙𝑅 and 𝑓 𝑎𝑖𝑟𝑅,
respectively (line 16). Next, we present the rebalancing task of the
algorithm.

𝑊 is unbalanced and unfair if𝑏𝑎𝑙𝑅 and 𝑓 𝑎𝑖𝑟𝑅 are less than 𝑝1 and
𝑓1, respectively. Therefore, new synthetic samples 𝑑𝑖 are generated
using the 𝐹𝑎𝑖𝑟𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 until𝑊 becomes fair and balanced (line 18).
Specifically, we stop synthesizing samples when 𝑏𝑎𝑙𝑅 and 𝑓 𝑎𝑖𝑟𝑅

reach 𝑝1 and 𝑓1, respectively. This process of generating samples is
better than SMOTE in terms of fairness.

Before generating new data points, FS2 calculates the number
of instances introduced for each batch subgroup. Then, it clusters
the instances in sliding window𝑊 , identifies similar individuals
through the feature space, filters the boundary samples, and calcu-
lates the synthetic weights for the different clusters. FS2 randomly
selects samples in each cluster to synthesize new instances 𝑑𝑖 and
updates the counter 𝑆𝑔𝑒𝑛 until the synthesis number of that clus-
ter is reached the required value. Also, we deploy the one-time
principle, i.e., a sample is used only once to synthesize instances
during the rebalancing phase to avoid overfitting. The algorithm
violates the one-time principle only when the number of synthe-
sized instances needed to rebalance𝑊 is larger than the number of
samples. In that case, the function reuses the same samples multiple
times during the same rebalancing phase. Finally, we use the new
synthesized instances 𝑑𝑖 to train the learner 𝑙 (line 19) and calculate
the new 𝑏𝑎𝑙𝑅 and 𝑓 𝑎𝑖𝑟𝑅 (line 21).

5.2.4 FS2 Classification. FS2 is a meta-strategy that solves class
imbalance and cumulative discriminatory results in data streams.
In particular, we have integrated the Adaptive Hoeffding Trees
(AHT) [4] classifier. AHT is a stream-based decision tree induction
algorithm that ensures the tree’s adaptation to changes in the un-
derlying data distribution by updating the tree with new instances
from the stream and replacing underperforming sub-trees. There-
fore, for the online setting, AHT is superior to the majority of other
classifiers. However, FS2 can be pipelined with any data stream
classifier.

6 EXPERIMENTAL EVALUATION
6.1 Datasets
The lack of access to good datasets hinders online fairness re-
search—the large amount of data required and the necessity for
concept drift to be present limit the availability. We use three real
and one synthetic dataset (see Table (1 for details). i) Bank Telemar-
keting Data (BNK) [30]: the objective of the classification task here
is to determine whether a client will subscribe to a term deposit. ii)
Give Me Some Credit Dataset (GMSC) [22]: to determine whether
to approve a loan application. iii) NYPD [33]: we use this dataset to
predict whether a suspect was convicted of a felony. iv) Synthetic:
we followed the initialization process by authors [24], which in-
volves generating each attribute as a different Gaussian distribution.
To simulate class imbalance and concept drift, we introduced these
elements into the data stream by shifting the mean of the average
of each Gaussian distribution.
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Algorithm 1: FS2 Leaning Algorithm
Input: a discriminated data stream 𝐷 , the pipeline learner 𝑙 ,

optional sampling ratio 𝑝1 and 𝑓1
1 𝑊,𝑊𝑙𝑎𝑏𝑒𝑙 ← ∅;
2 𝐶0, 𝐶1, 𝐶2, 𝐶3 ← 0;
3 𝐶0, 𝐶1, 𝐶2, 𝐶3 ← 0;
4 𝐶𝑔𝑒𝑛 ← ∅;
5 𝑎𝑑𝑤𝑖𝑛 ← ∅;
6 𝑏𝑎𝑙𝑅, 𝑓 𝑎𝑖𝑟𝑅 ← 0;
7 for each instance 𝑑𝑖 in 𝐷 do
8 𝑇𝑟𝑎𝑖𝑛 (𝑑𝑖 , 𝑙);
9 𝑊 ← 𝐴𝑑𝑑 (𝑑𝑖 );

10 𝑈𝑝𝑑𝑎𝑡𝑒𝑊 𝑖𝑛𝑑𝑜𝑤𝑠 (𝑑𝑖 ,𝑊𝑙𝑎𝑏𝑒𝑙 );
11 𝐶0,𝐶1,𝐶2,𝐶3 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑠 (𝑑𝑖 );
12 𝑎𝑑𝑤𝑖𝑛 ← 𝐴𝑑𝑑 (𝑑𝑖 );
13 𝐶ℎ𝑒𝑐𝑘𝐷𝑟𝑖 𝑓 𝑡 (𝑎𝑑𝑤𝑖𝑛,𝑊 ,𝑊𝑙𝑎𝑏𝑒𝑙 ,𝐶1,𝐶2,𝐶3,𝐶4,𝐶0,𝐶1,𝐶2,𝐶3,𝐶𝑔𝑒𝑛);

14 𝑊𝑠𝑦𝑛,𝐶𝑠𝑦𝑛,𝐶𝑠𝑦𝑛 ←
𝐶ℎ𝑒𝑐𝑘𝑅𝑒𝑝 (𝐶1,𝐶2,𝐶3,𝐶4,𝐶0,𝐶1,𝐶2,𝐶3);

15 if CheckSize(minSize, 𝐶𝑠𝑦𝑛) then
16 𝑏𝑎𝑙𝑅, 𝑓 𝑎𝑖𝑟𝑅 ←

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 (𝐶1,𝐶2,𝐶3,𝐶4,𝐶0,𝐶1,𝐶2,𝐶3) following
Equation (1) and Equation (2);

17 while 𝑓1 > 𝑓 𝑎𝑖𝑟𝑅 𝑜𝑟 𝑝1 > 𝑏𝑎𝑙𝑅 do
18 𝑑𝑖 ← 𝐹𝑎𝑖𝑟𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 (𝑊𝑠𝑦𝑛, 𝑆𝑔𝑒𝑛);
19 𝑇𝑟𝑎𝑖𝑛 (𝑑𝑖 , 𝑙);
20 𝐶𝑠𝑦𝑛+ = 1;
21 𝑏𝑎𝑙𝑅, 𝑓 𝑎𝑖𝑟𝑅 ←

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 (𝐶1,𝐶2,𝐶3,𝐶4,𝐶0,𝐶1,𝐶2,𝐶3)
following Equation (1) and Equation (2);

22 end
23 end
24 end

Table 1: Summary of the dataset used in the evaluations.

Dataset Sample# Features# Sensitive
Attribute

BNK 52944 150 Age
GMSC 150,000 29 Age
NYPD 311,367 16 Gender
SYN 1,000,000 21 Synth

6.2 Baselines and Metrics
We compare FS2 against four state-of-the-art online fairness stream-
ingmethods based on fourmetrics. The four baselines are: i) Fairness-
aware Hoeffding Tree [49] (FAHT): FAHT is a fairness-focused
variation of the Hoeffding tree algorithm considering both per-
formance and fairness when selecting split attributes, ii) Online
Smooth Boosting [39] (OSBoost): it is made cost-sensitive by adding
various parameters of the Poisson distribution for different classes,

iii) Online fairness and class imbalance-aware boosting [23] (FAB-
BOO): it considers long-term class imbalance to fight class imbal-
ance and discrimination from a boosting approach, and iv) Contin-
uous SMOTE [3] (C-SMOTE): is an approach that addresses class
imbalance by resampling the minority class using a sliding window
without fairness.

We use two performance and two fairness metrics to evaluate
the proposed method. i) Balanced Accuracy is the arithmetic mean
of Specificity (True Negative Rate) and Sensitivity (True Positive
Rate). ii) Recall measures the proportion of actual positive cases
the model correctly identified. iii) Cumulative Statistical Parity Dif-
ference (CumSPD) is a measure of the cumulative statistical parity
difference between the protected and deprived groups (Equation 2),
a value of 0 represents fairness. iv) Cumulative Equal Opportunity
Difference (CumEOD) is a measure of cumulative equal opportu-
nity difference between the privileged and unprivileged groups
(Equation 3).

6.3 Experimental Results
6.3.1 Effect of varying window size. We first evaluated the impact
of various window sizes on the proposed solution using sizes 500,
1000, 2000, 5000, and 10000. We present the results of Balanced
Accuracy for the predictive performance and CumSPD for fairness.
As Figure 5 shows, we observe that when the window size surpasses
2000 both Balanced Accuracy and CumSPD remain constant. This
behavior is due to the occurrence of concept drift; the large sliding
window (window size > 2000) can not discard outdated instances
before the concept drift, while the smaller window (size = 500 or
1000) can accommodate newer instances after concept drift and
discards the older ones. Generally, smaller window settings yield
better fairness but at the cost of prediction performance degrada-
tion. Conversely, excessively large window settings can impede the
model’s ability to adjust decision boundaries during concept drift,
thus negatively affecting model fairness.

6.3.2 Influence of different decay factors. In this section, we an-
alyze the effect of varying decay factors on model fairness and
performance in diverse data flow variations (Figure 4). First, we
consider fixed class-imbalance, i.e., the class ratio is fixed over the
data stream. The low decay factor values negatively impact model
performance, with Recall dropping below 60% for a decay factor of
< 0.4. However, for the decay factor of ≥ 0.5, Balanced Accuracy
and Recall do not significantly change. Furthermore, the model’s
capacity to alleviate unfair outcomes is unchanged for all decay
factor values. Next, we consider increasing and decreasing class
imbalance and observe a steady rise in Recall as the decay factor
increases. Finally, in the case of fluctuating class imbalance, low
values of the decay factor decrease the performance as in previ-
ous cases, while high values also impact minority classes. In this
case, the positive class alternates between minority and majority.
High decay factor values allow the model to consider more history
and lead to class imbalance weights assigned by 𝐹𝑆2 not being
adjusted to recent changes. Overall, the value of the decay factor
directly affects the performance of 𝐹𝑆2. Low values of the decay
factor produce fluctuating class imbalance weights that decrease
the model’s performance, and in some cases, values close to 1 are
also not appropriate.
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Figure 4: The impact of decay factor on the synthetic dataset of varying class imbalance.

Figure 5: The impact of window size on model performance
and fairness.

6.3.3 FS2 compared to state-of-the-art methods. We compare the
performance-fairness of the proposed method (FS2) with the four
baselines. The results are demonstrated in Table 2; the darker hue
of red denotes the best model performance, followed by a lighter
red-pink shade as the second-best performance. FS2 performs the
best in 12 of the 16 performance-fairness evaluations, and it closely
followed the top performer (with a margin of 1-3%) in the remaining
4 measurements. One of the key reasons for this superior perfor-
mance is the design of our approach, which is specifically tailored
to handle both fairness and concept drift. This adaptability gives
FS2 a significant edge over other models that are not equipped to
manage these challenges effectively.

In the BNK dataset, FS2 achieved a maximum Balanced Accuracy
of 81%, surpassing the powerful C-SMOTE. The cumulative EOD
and SPD are the best for FS2 with a 0.02 and 0.01 score, respectively,
while its recall score of 0.78 is the second highest. FS2 outperforms
existing models on the GMSC dataset regarding Balanced Accuracy,
Cumulative EOD, and SPD with scores of 0.83, 0.01, and 0.01. It is
the second-best in Recall, with a score of 0.78. Similarly, for the
NYPD dataset, FS2 surpasses all four baseline methods as it offers
the best score for all the fairness-performance metrics, i.e., Balanced
Accuracy (0.68), Recall (0.54), Cumulative SPD (0.06), and Cumula-
tive EOD (0.03). Finally, in the case of the SYN dataset, FS2 performs
fairly well–it is the second best in Balanced Accuracy and Recall.
But it outshines in fairness as it scored a cumulative SPD (0.04)
and OPD (0.06). Overall, FS2 demonstrates superior performance
compared to other methods in terms of both accuracy and fairness.

6.3.4 The effectiveness analysis. With the proposed FBU, we can
now evaluate the trade-off between fairness and performance based
on the proposedmetric. Figure 6 shows the overall results. Aswe can
see, 𝐹𝑆2 achieves a Jointly advantageous or Impressive trade-off (i.e.,
it beats the trade-off baseline constructed by FBU) in most cases, i.e.,
79% of the time. The corresponding percentages for FATH, OSBoost,
FABBOO, and C-SMOTE were 32%, 25%, 58%, and 31%, respectively.
In addition, 𝐹𝑆2 has significantly fewer Jointly disadvantageous
trade-off cases (just 1%) than other existing methods. For example,
FATH has a Jointly disadvantageous trade-off rate of 15%, 15 times
higher than that of 𝐹𝑆2. Overall, 𝐹𝑆2 achieves the best trade-off,
significantly improving over all existing methods. The obtained
results in Figure 6 are also consistent with the results in Table 2, but
are presented in a unified manner that is easy to interpret, verifying
the theoretical design of FBU.

6.3.5 Concept and fairness drift detection. We tracked the vari-
ation of the model performance on the synthetic dataset using
FBU, a choice dictated by the unique advantages of synthetic data.
Real-world datasets often fail to provide enough samples for a com-
prehensive evaluation, while synthetic data allow us to increase
the sample size and achieve a more robust evaluation. Furthermore,
synthetic data enable precise control over key factors such as fair-
ness and concept drift, providing a clearer picture of our model’s
response to these variables. The results are shown in Figure 7. Our
approach (the orange curve) is designed for streaming data and can
adapt and regain its performance after a concept drift occurs (the
curve first goes down and then up). Since we can handle fairness
drifts, we observe that our model can adapt to both fairness and
concept drift. For example, C-SMOTE has a significant decrease in
the model’s overall performance because of the lack of detection of
fairness drift. At the same time, the intuition and validity of FBU are
well represented. Note that without FBU we would need to show
the changes in performance and fairness separately, complicating
the analysis of the specific impact trade-off between them.

7 CONCLUSION
Offering fair predictions in the presence of a continuous and infinite
stream of data remains an open challenge in streaming machine
learning applications. In this work, we proposed Fair Bonded Util-
ity (𝐹𝐵𝑈 ), the first fairness metric to unify the comparison of the
fairness-performance trade-offs of multiple fairness techniques into
one that simplifies the task of choosing a fairness scheme. Then,
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Figure 6: The effectiveness distribution of various data handling techniques, including FS2, FATH, OSBoost, FABBOO, and
C-SMOTE has been evaluated using the FBU. FS2 proves to be the most effective, with 79% of the cases falling into the “Jointly
advantageous” and “Impressive” categories.

Table 2: The predictive and fairness performance comparison.

Dataset Sensitive Attribute Methods Balanced Accuracy Recall Cumulative SPD Cumulative EOD

BNK Age

FAHT 0.73 0.52 0.16 0.18
OSBoost 0.73 0.71 0.18 0.19
FABBOO 0.76 0.54 0.05 0.08
C-SMOTE 0.80 0.81 0.34 0.14

FS2 0.81 0.78 0.02 0.01

GMSC Age

FAHT 0.62 0.28 0.02 0.04
OSBoost 0.65 0.57 0.04 0.06
FABBOO 0.81 0.76 0.02 0.01
C-SMOTE 0.80 0.80 0.07 0.02

FS2 0.83 0.79 0.01 0.01

NYPD Gender

FAHT 0.55 0.28 0.17 0.28
OSBoost 0.52 0.07 0.25 0.15
FABBOO 0.62 0.50 0.07 0.06
C-SMOTE 0.56 0.42 0.34 0.16

FS2 0.68 0.54 0.06 0.03

SYN synth.

FAHT 0.62 0.28 0.08 0.16
OSBoost 0.57 0.31 0.08 0.11
FABBOO 0.67 0.58 0.09 0.07
C-SMOTE 0.67 0.62 0.26 0.16

FS2 0.65 0.61 0.04 0.05

Figure 7: The performance evaluation of concept and fairness
drift.

we presented Fair Sampling over Stream (𝐹𝐶2), a novel fair class-
balancing technique capable of handling continuous data streams

with concept and fairness drift. Extensive evaluations show our ap-
proach gives superior fairness results according to multiple widely-
used fairness metrics without sacrificing performance. The pre-
processing nature of our method can improve performance and
fairness in different applications due to the ease of integration.
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