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Figure 1: Sketch of difficulty amplification: (a) Consider a binary classification of hollow circles vs. filled triangles where a
potential decision boundary is indicated via the white dashed line. Above 𝑦 = 0 (blue) we have a simple group which is linearly
separable. Below 𝑦 = 0 (red) we have a more complex group with a non-linear decision boundary. (b) Illustration of test accuracy
when training on the simple group only (blue dashed) and the complex group only (red dashed). As expected we obtain better
accuracy on the simple group. (c) However, when training on both groups at once (solid), the model exacerbates the difference:
the observed accuracy disparity 𝑑 (vertical arrow in (c)) exceeds the estimated accuracy disparity from individual group training
𝑑 (vertical arrow in (b)). When 𝑑 > 𝑑 , we call this difficulty amplification.

ABSTRACT
Which parts of a dataset will a given model find difficult? Re-
cent work has shown that SGD-trained models have a bias towards
simplicity, leading them to prioritize learning a majority class, or
to rely upon harmful spurious correlations. Here, we show that the
preference for ‘easy’ runs far deeper: A model may prioritize any
class or group of the dataset that it finds simple—at the expense
of what it finds complex—as measured by performance difference
on the test set. When subsets with different levels of complexity
align with demographic groups, we term this difficulty disparity,
a phenomenon that occurs even with balanced datasets that lack
group/label associations. We show how difficulty disparity is a
model-dependent quantity, and is further amplified in commonly-
used models as selected by typical average performance scores. We
quantify an amplification factor across a range of settings in order
to compare disparity of different models on a fixed dataset. Finally,
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we present two real-world examples of difficulty amplification in
action, resulting in worse-than-expected performance disparities
between groups even when using a balanced dataset. The existence
of such disparities in balanced datasets demonstrates that merely
balancing sample sizes of groups is not sufficient to ensure un-
biased performance. We hope this work presents a step towards
measurable understanding of the role of model bias as it interacts
with the structure of data, and call for additional model-dependent
mitigation methods to be deployed alongside dataset audits.
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1 INTRODUCTION
Without actually training a model, understanding what the model
will find challenging is far from trivial. It is widely known that
a certain dataset may be hard for one model but not for another
[84]. For a given model, two classes may be easily separable, while
for another they may be hard to distinguish. As such, it follows
naturally that ‘difficulty’ is a function of both data and model, such
that we can’t properly account for difficulty by analyzing the dataset
alone.

In the context of machine learning fairness, for a given task
and dataset, a model may find one social group more difficult than
another, leading to disparate impact [6]. For example, Buolamwini
and Gebru’s [10] audit of commercial image recognition systems
finds they exhibit worse accuracy for darker-skinned women than
for any other group. Typically, such accuracy disparity is attributed
either to under-representation of certain groups, or to spurious
correlations between group information and target variable. In this
work, we further show that—even with perfectly balanced data
and in the absence of associations between group labels and class
labels—trained models can and do find certain groups harder than
others. Crucially, group difficulty is hard to ascertain during dataset
audit, providing key evidence for the necessity of a complementary
post-training model audit.

Given the existence of model-specific difficulty differences, we
consider the role of the model itself. It is well known that many
contemporary models are biased towards learning simple functions
[5, 40, 62, 70, 77], a phenomenon recently linked to an over-reliance
on spurious correlations [67, 70]. Here, we push this line of inquiry
further, and show that simplicity bias can be harmful in an entirely
different way: When a model finds one group easier than another
(even if sample sizes of each group are balanced), it will prioritize
the easy group at the expense of the difficult, resulting in a greater
performance disparity when compared to training each group sepa-
rately. We refer to this phenomenon as difficulty amplification (see
illustration in fig. 1). Through experiments using balanced datasets
(with identical label distributions between groups), we show that
between-group difficulty amplification is distinct and separate from
a majority group preference, and from learning simple “shortcuts”
[25, 70]. Our experiments further reveal that difficulty amplifica-
tion is sensitive to model architecture, training time, and parameter
count. Seemingly innocuous design decisions, such as whether to
use early stopping, affect both amplification factor and the resulting
performance disparity.

We demonstrate the substantial and heterogeneous impact of dif-
ficulty amplification via two case studies. First, we observe a worse-
than-expected performance disparity between race-annotation groups
on an age classification task using FairFace [41]. Second, we show
a worse-than-expected performance disparity between household
income quartiles during an object classification task using Dollar
Street [23]. We also explore the potential impact of additional data
collection and oversampling as they are common strategies relied
upon for mitigating disparate outcomes.We present preliminary yet
positive results highlighting the need for bias mitigation strategies
that focus not only on the choices pertaining the core components
of training: dataset, architecture, and algorithm; but also their
interactions with each other.

To summarize, we highlight the following conceptual contributions
in this work:

(1) difficulty disparity, a pervasive phenomenon that persists
in models even after dataset audits,

(2) difficulty amplification factor, quantifying how much a
model exacerbates difficulty disparity, and

(3) empirical evaluation showing the role of model architec-
ture, training time, and parameter count.

Building on our findings of deep data—model interdependence, we
argue in favor of model-specific fairness audits by:

(1) demonstrating the substantial impact of difficulty amplifica-
tion on two real-world case studies, and

(2) exploring the impact of two common mitigation strate-
gies—additional data collection and oversampling—both of
which are performed after having identifiedmodel-dependent
performance disparities.

2 BACKGROUND AND RELATEDWORK
2.1 Biased datasets and biased models
Bias in ML systems arises from many sources. At the most basic
level, a dataset itself is biased if certain groups are under-represented
[36, 55, 73, 87]. Proposals to rectify under-representation include ac-
tively collectingmore data for certain groups [21], under/oversampling
or reweighting during training [4, 11, 67, 88], and optimizing for
worst-group (as opposed to average) accuracy [66]. Recent work
has suggested fine-tuning on an explicitly balanced set [47].

Alternatively, datasets can reinforce harmful associations [28],
both due to sampling error and by inadvertently capturing an un-
desirable association that is present in society. Bucketed as spurious
correlations [57, 67, 81] or shortcuts [25], a large body of fairness
work seeks to train models that learn some true function invariant
to the spuriously correlated feature. Both under-representation and
spurious correlations dominate the fairness literature landscape,
though in both cases the onus is squarely on the data. Like our
work, Wang et al. [81] have argued that balancing a dataset is not
sufficient to preclude biased model performance, attributing the
resulting bias to hidden (i.e., unlabeled) spurious correlations or
confounders in the dataset. In contrast, our work differs through
its focus on an entirely distinct contributing factor: the relative
complexity difference of the groups, which we explore using exper-
iments manipulating the difficulty gap.

2.2 Beyond spurious correlations
There is increasing focus on the model itself, independent of the
role of data [37], of which bias amplification is a relevant example
[80, 90]. Here, a small correlation in the training set is amplified into
a larger correlation at test time. In empirical experiments evaluating
bias amplification, Hall et al. [31] suggest that if group membership
is easier to identify than class membership, models prefer to use
the spurious correlation. They also report no bias amplification
in the case where there is no spurious correlation present in the
data: this is expected given the definition of amplification involves
a multiplication of an existing data bias.
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Figure 2: (a) ResNet-18 finds certain class pairs of CIFAR-100 more difficult than others, according to binary test accuracy.
(b) Rank ordering of difficulty varies across models, measured here by Kendall’s 𝜏 . (c) 1D PLS projection of binary accuracies
onto cosine distance between class mean vectors. Red cells—pairs where increasing inter-class distance decreases accuracy—
demonstrate there is no clear way to identify what a model will find difficult without training.

Other subtle biases have been identified in the balanced data
setting. Leino et al. [52] show that models trained with SGD overly
rely upon moderately spuriously-correlated features if they are
sufficiently numerous relative to the size of training set. Khani and
Liang [43] find that adding feature noise equally across groups
induces disparity, a fact that can also be attributed to the relative
difficulty of group information versus the desired target. Khani and
Liang [44] find removing spurious features can disproportionately
lower performance on certain groups, and argue (as do we) that
a balanced dataset is not a sufficient guard against biased perfor-
mance. Mannelli et al. [54] use teacher-student networks to show
subtle properties such as differences in group distance from the
overall mean and differences in group variance are sufficient to
induce biased outcomes in the absence of spurious correlations.
Each of these works adds credence to a central notion of our work:
that dataset bias is hard to identify, difficult to remove, and yet
doing so is not necessarily sufficient to reduce model bias.

2.3 Inductive bias towards simplicity
Numerous recent works have identified the tendency for SGD-
trained models to prioritize simple data points during training,
resulting in simple functions being learned before more complex
ones [5, 40, 77]. Jo and Bengio [39] show that convolutional net-
works are overly dependent on surface-level statistical properties of
images, such that applying a Fourier filter to the training set is suffi-
cient to radically degrade test performance. Rahaman et al. [62] also
show models are biased towards low-frequency functions, learning
these simpler functions before more complex, higher-frequency
examples. Though often framed as a positive, allowing neural net-
works to learn functions that generalize well by applying Occam’s
razor, Shah et al. [70] cite this simplicity bias as potentially harm-
ful, at root causing both vulnerability to adversarial attacks and
over-reliance on spurious correlations. Similarly, Dagaev et al. [16]
reserve as much skepticism for overly simple solutions as for overly

complicated, arguing that excessively simple solutions are likely
to rely on potentially harmful “shortcuts” [25]. Sagawa et al. [67]
find that increasing model size yet further pushes the model to
rely upon spuriously-correlated features where they carry more
signal than the intended features. While our conclusions—that a
bias for simplicity isn’t always desirable—are shared with other
works [16, 67, 70], our unique contribution is to show that simplicity
bias may be harmful even in the balanced data regime and absent
of obvious shortcuts, due solely to model-perceived complexity
differences between groups.

3 PRELUDE: DATA DIFFICULTY IS
MODEL-SPECIFIC

This work is predicated on a simple, perhaps even obvious idea:
that certain facets of a dataset may be more or less difficult to
a given model. Whether individual data points, classes, or social
groups, identifying what will be difficult to a model isn’t always
possible ahead of time, nor need it align with human intuition. As
an illustration, we begin with a short investigation of difficulty
difference between pairs of classes, though from § 4 onward we
focus on social groups.

3.1 Not all class pairs are equally difficult
As a warm-up, we show how a chosen model finds separating
certain pairs of classes more difficult than other pairs, by training
a ResNet-18 [35] classifier on coarse-grained CIFAR-100 [48]. To
reduce the confounding effects of covariate shift, we draw ten
random train/test splits from the full dataset (i.e. drawn from the
original train and tests combined so as tomaximize data availability).
We train a randomly-initialized model on each random train split,
and measure a class pair’s difficulty by its binary classification
accuracy on the corresponding test split, having masked irrelevant
outputs before the softmax layer.
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Figure 2a shows how the model produces test accuracies that
vary between class pairs. For example, this model achieves near per-
fect test accuracy on flowers vs. aquatic mammals, and substantially
lower performance on non-insect invertebrates vs. insects. Crucially,
this view of difficulty is just that of this specific model. Were we
to perform this evaluation on a different model, our results would
differ.

3.2 Which class pairs are difficult depends on
the model

To test whether difficulty is model-specific, we repeat the exper-
iment using the following models: an SVM with an RBF kernel;
a 3-layer and a 5-layer fully-connected network; LeNet, a simple
CNN [51]; AlexNet, a more complex CNN [49]; ResNet-34 and -50;
and a fully-connected layer over pre-trained representations ex-
tracted from ResNet-50 trained using SimCLR [14] on ImageNet-1K
[65], and those of RegNet-128Gf [61] trained with SwAV [12] on 1
billion public images from Instagram [27] (see appendix B for a full
description).

Figure 2b shows how the rank order correlation of pairwise dif-
ficulties varies between models, as measured by Kendall’s 𝜏 . For a
specific example, between the 3-layer FC model and LeNet, there is
high (but not perfect) 𝜏 , indicating that broadly what LeNet finds
difficult so too does the FC network. In contrast, between the RBF
SVM and a linear layer on RegNet-128Gf representations, there is
much lower (though still positive) 𝜏 , indicating that the pairwise
ordering does vary considerably. This aligns with recent work [30]
showing that the difficulty of individual data points is shared across
random initializations of the same model architecture, but difficulty
is only partially consistent across architectures. While the consis-
tently positive correlations in fig. 2b suggest that difficulty does
comprise a data-driven, model-independent component, the lower
correlations between certain model pairs (e.g., SVM vs. RegNet)
confirm that there is also a substantial model-specific factor.

3.3 Data difficulty is not model difficulty
We test the relationship between a data-only view of difficulty
and model-specific difficulty using the partial least squares (PLS)
analysis shown in fig. 2c. PLS attempts to find low-dimensional
projections of both the input and output variables such that their
covariance is maximized. We apply PLS to determine how much
a data-only difficulty measure can explain a model+data measure,
where the data-only measure is the rank cosine distance between
the input data class means, and the model+data measure is the
rank test accuracy (see appendix A). If model difficulty was purely
a function of data difficulty, we would expect PLS to find a well
fitting linear regression model. Instead, PLS finds a near-zero fit
(𝑅2 = 0.058). From the 1D projection, we see that for some classes
(in blue, e.g. carnivores vs. food containers), increasing inter-class
distance tends to increases binary accuracy, though for many class
pairs (in red, outdoor scenes vs. outdoor things) the opposite is true.
Summary: There is no clear difficulty ordering of class pairs that is
consistent across all models. What a model finds difficult is not solely
a function of the data, indicating a complex relationship between data
and model.

4 NEURAL NETWORKS PRIORITIZE “EASY”
Above we establish how difficulty is a function of both model and
data. Now, we turn to identifying which groups neural networks
find simpler. To this end, we explore data difficulty as a notion that
is relative to a given model. We also quantify how much models
selectively prioritize the simple group by way of measurement of
the amplification factor.

4.1 Definitions
Let acc(𝑋, y,M) be the cross-validated test accuracy on the classi-
fication dataset (𝑋, y) of a modelM, andM𝑋,y be a model trained
on (𝑋, y). Given two groups 𝛼 and 𝛽 , let (𝑋𝛼 , y𝛼 ) and (𝑋𝛽 , y𝛽 ) de-
note corresponding slices of the dataset each with the same number
of samples,1 such that a model trained only on group 𝛼 is M𝑋𝛼 ,y𝛼 .

Estimated difficulty disparity. First, we define the estimated
difficulty disparity 𝑑 as the difference in accuracy between a model
trained and evaluated on each group in isolation,

𝑑 = acc(𝑋𝛼 , y𝛼 ,M𝑋𝛼 ,y𝛼 ) − acc(𝑋𝛽 , y𝛽 ,M𝑋𝛽 ,y𝛽 ) . (1)

Observed difficulty disparity. Second, the observed difficulty
disparity is the difference in accuracy between groups on a model
trained on both groups,

𝑑 = acc(𝑋𝛼 , y𝛼 ,M𝑋,y) − acc(𝑋𝛽 , y𝛽 ,M𝑋,y) . (2)
Difficulty amplification. We hypothesize that due to simplicity

bias, certain models, when given a choice between groups (i.e.,
during training on both groups), will prioritize the group they
find simple, resulting in worse-than-expected performance for the
group they find complex (i.e., according to training on each group
in isolation). As such, if the model trained on both groups exhibits
worse disparity than when trained in isolation, 𝑑 > 𝑑 , we say that
the model exhibits difficulty amplification. Over many model runs,
groups, or samples from the dataset we can define an amplification
factor 𝑘 = 𝑑/𝑑 .

In practice, calculating amplification is a two-stage process. First,
we train 𝑁 randomly-initialized models on each group in isolation
and compute the average cross-validated test accuracy. Between
each pair of groups, we calculate the estimated difficulty disparity
𝑑 . Second, we train a new set of 𝑁 models on the full dataset and
compute average test accuracy broken out by group. For each group
pair, we calculate the observed difficulty disparity 𝑑 , from which
we calculate amplification factor 𝑘 .

4.2 Simulating difficulty disparity with
CIFAR-100

To test for simplicity bias and measure difficulty disparity in a
controlled setting, we design a task based on CIFAR-100 that is
group-balanced and absent correlations between group labels and
target labels. We extract the binary test accuracies for each pair
of coarse classes and treat their pairwise differences as estimated
difficulty disparity 𝑑 . We let group 𝛼 be the class pair 𝑦𝛼0 , 𝑦

𝛼
1 with

the highest accuracy and 𝛽 be the lowest 𝑦𝛽0 , 𝑦
𝛽

1 . To simulate a
binary classification task with two differently-difficult groups, we
1We enforce equal group sizes to remove the effect of group imbalance. Where possible,
groups should also have identical label distributions, though this is not always practical
(as is the case in § 6.2). In our work, we achieve this via stratified subsampling.
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Figure 3: Accuracy and disparity for ResNet-18. (a) Binary classification (squares vs. circles) comprising two groups. Easy
group (blue) is high-accuracy pair flowers vs. aquatic mammals. Difficult group (red) is low-accuracy pairmedium mammals
vs. carnivores. Decision boundary for illustration only; cf. fig. 1a. (b) Train accuracy (solid lines) for complex group is learned
slower but both groups reach perfect train accuracy during combined training. (c) However, test accuracy (solid lines) for
complex group is persistently lower during combined training. Dashed lines are test accuracy from single-group training.
(d) Observed disparity 𝑑 peaks early in training but large gap persists after training. Black dashed line is estimated disparity 𝑑:
observed disparity above this line indicates amplification. Shading is standard error over 10 runs with different train/test splits.

stitch these pairs together into a single binary task, where 𝑦0 =

{𝑦𝛼0 , 𝑦
𝛽

0 }, 𝑦1 = {𝑦𝛼1 , 𝑦
𝛽

1 } (see fig. 3a). Finally, we train 𝑁 models on
this task and calculate observed difficulty disparity 𝑑 .

4.3 Results
In fig. 3b we see the training accuracy of the simple group 𝛼 im-
proves much more rapidly than the complex 𝛽 , though both groups
reach perfect train accuracy eventually. In contrast, the test accura-
cies in fig. 3c (solid lines) remain notably different at convergence,
with the model displaying lower accuracy on the complex group.
This gap is the observed accuracy disparity shown in Figure 3d.
Here, we observe that observed disparity peaks after just a few
steps, before a slight decline to a plateau. Supporting our hypothe-
sis, observed disparity remains higher than estimated disparity we
would have expected from separate training (the black dashed line).
Replications of this experiment on both Fashion MNIST [86] and
EMNIST Letters [15] show similar results (see fig. S1 and fig. S2).

Note that because estimated difficulty disparity is calculated
using individual groups, and observed difficulty disparity with all
groups combined, the size of the training set differs between these
two measures. Interestingly, fig. 3c shows higher average accuracy
for the single-group training compared to the combined-group
training, suggesting that overall dataset size is not responsible for
the increased disparity.
Summary: This simple experiment shows that models trained across
groups with different difficulty do prioritize the simpler group, lead-
ing to an outsized observed disparity, primarily driven by under-
performance on the more difficult group.

5 AMPLIFICATION FACTOR VARIES ACROSS
MODELS

To quantify the effect of the simplicity bias, we compute an ampli-
fication factor by repeating the above experiment using different

pairs of classes with different estimated disparity, and compute
their observed disparity after combined training. We retrain on
30 sampled pairs of label pairs, recomputing both estimated and
observed difficulty disparity, and apply OLS linear regression to
estimate the amplification factor (see appendix E for details). This
method can easily be applied to any dataset annotated with group
information, by replacing the sampling of pairs of classes with the
sampling of different group combinations. We compute 𝑘 for each
model listed in § 3.

Furthermore, we evaluate the effect of model scale on amplifi-
cation factor by varying the width of ResNet-18; evaluate various
settings of weight decay; and evaluate the role of early stopping by
computing amplification through training. Our choice to investi-
gate these three parameters is motivated by their expected effect
on simplicity bias. Following [40] we expect models to exhibit a
stronger preference for simplicity earlier in training, which would
often materialize when using early stopping. Weight decay is a
common regularization technique intended to limit overfitting by
penalizing excessively complex functions, and the role of width in
over-reliance on spurious correlations is reported by [67].

For a complementary test of the bias against complexity, we
also try to push the model to choose a more complex solution. We
enforce a Lipschitz constraint by applying a penalty on the norm of
the gradients, a technique commonly used to stabilize discriminator
training in GANs [29]. We add the following penalty term to our
loss function 𝐿,

𝐿′ = 𝐿 + 𝜆( | |∇x 𝑓 (x) | |2 −𝐶)2 , (3)

where ∇x 𝑓 (x) is the gradient of the network’s outputs with respect
to its inputs, the penalty coefficient 𝜆 = 10, and 𝐶 determines the
Lipschitz constraint: a low 𝐶 pushes the model towards simpler
functions, and high 𝐶 towards more complex.
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Figure 4: Observed difficulty disparity as a function of estimated difficulty disparity. (a) ResNet-18 amplifies difficulty disparity
but LeNet attenuates. Points are sampled tasks with varying estimated difficulty disparities. Solid line is linear regression.
Dashed grey line is amplification factor 𝑘 = 1. (b) Model architecture impacts difficulty amplification factor. See fig. S4 for R2

and fig. S3 for raw test accuracies.

5.1 Results
Model architecture. In fig. 4a, we illustrate the difference in ampli-
fication factor between two models, LeNet and ResNet-18. We find
that the ResNet-18 amplifies disparity by a factor of 𝑘 = 1.19± 0.12.
In contrast, LeNet diminishes disparity (𝑘 = 0.84 ± 0.04), result-
ing in an observed disparity lower than expected. Thus, from this
simple example we show that model choice influences difficulty
amplification. Across the full suite of models (fig. 4b) we again see
significant variation in amplification factors across the different
models, with the certain models attenuating and others amplifying.
However, the simpler models all exhibit poor test accuracy averaged
over the entire dataset (see fig. S3), offering a candidate explanation
for the lack of amplification. These models may be too simple to
learn the dataset at all, resulting in equally poor performance across
all groups.

Width.However, within a specific architecture, increasing width
seems to reduce amplification. Figure 5a shows the amplification
factor for ResNet-18 rapidly decreasing to almost 1 (no amplifica-
tion) as network width increases. These results align with those
of Sagawa et al., who report that while overparameterization typ-
ically increases reliance on spurious correlations and increases
worst-group error, this effect is reversed as groups become more
balanced, such that increasing parameter count becomes helpful
[67, e.g. fig. 6].

Early stopping. As training proceeds (fig. 5b), 𝑘 increases to a
peak around 1.2 early in training, before decreasing to a plateau a
little over 1. This highlights the important role of early stopping
in amplifying disparity, particularly in light of prior work arguing
that models learn more simple functions earlier in training [40].

Weight decay. Figure 5c shows next to no effect of scaling the
weight decay parameter. This is a surprising negative result, as our
expectation was that applying stronger weight decay would further
bias the model towards the simpler group, increasing amplification.
One possible explanation is the sensitivity of the ℓ2 penalty to
choices of model and dataset, as reported by Sagawa et al. [66].
While the purpose of our work is to introduce the notion of difficulty
disparity and difficulty amplification, further research is needed to

confirm the role of weight decay across various settings, and its
interaction with other implicit regularization schemes.

Gradient penalty. In contrast, applying a penalty to the norm
of the gradients, rather than the parameters, is sufficient to lower
𝑘 to below 1 for all values of 𝐶 considered here. This suggests
that applying a gradient penalty to balance out the implicit bias
towards simplicity may be a helpful strategy in combating difficulty
disparity.
Summary: High-performing models—those optimized for average
test accuracy—consistently display difficulty amplification. This phe-
nomenon is exacerbated by early stopping, but may be reduced using
a gradient penalty.

6 DIFFICULTY AMPLIFICATION HAS
REAL-WORLD IMPACT

To demonstrate the impact of simplicity bias via difficulty amplifi-
cation, we now present two case studies where observed disparity
varies by group, and where observed disparity often exceeds esti-
mated disparity.

6.1 Age classification on FairFace
FairFace [41] is a dataset of human face images intended for fairness
research and audit purposes. It comprises a subset of the YFCC-
100M Flickr dataset [75], with each sample annotated with per-
ceived age, race, and gender labels, and aims to capture a reasonably
balanced distribution with respect to race and gender. We provide
an extended commentary on the nature of the annotations in § 8.5,
though for our purposes, FairFace serves as a useful illustration
of the presence of algorithmic bias even when using a balanced
dataset. Having discarded information on perceived gender, we
construct an age classification task, and evaluate performance dis-
parities between groups2, where a group comprises all samples
with the same race annotation, which we describe as, for example,

2While many datasets that include group labels fail to capture the complex realities
regarding why such labels might have been constructed, it remains important to
evaluate for whom these models function as intended. See § 8 for extended commentary
on demographic annotations.
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Figure 5: Design decisions influence amplification factor. All panels are a ResNet-18 on 30 sampled synthetic tasks based on
CIFAR-100 (see fig. 3a). (a) Network width has a negative effect on amplification, reducing it to near 1. (b) 𝑘 peaks early in
training before plateauing just above 1. (c) Weight decay has no effect on 𝑘 . (d) Applying a gradient penalty to bias the model
toward a 𝐶-Lipschitz functions lowers 𝑘 . See fig. S5 for 𝑅2.

“black-annotated” or “white-annotated”. While FairFace is reason-
ably balanced, we further apply subsampling in order to precisely
equalize the number of samples in each group, and we match the
age distribution in each group to remove spurious correlations
between race annotation and age annotation. We train a randomly-
initialized ResNet-18 model to classify each sample into one of nine
age buckets. We evaluate models trained on each race-annotation
group independently, and models trained on all samples together.
See appendix D for details.

Figure 6a shows the observed (opaque) and estimated (translu-
cent) performance disparity between black-annotated images and
other race-annotation groups. For all but one comparison, the ob-
served disparity exceeds the estimated disparity, indicating the pres-
ence of difficulty amplification. Due to our balanced and distribution-
matched dataset construction, we can confidently say that this is
not a result of an imbalanced dataset or group/label associations.
In practical terms, this figure shows that this particular model,
ResNet-18 trained from scratch, performs worst on black-annotated
samples, and crucially that this performance gap is worse-than-
expected: the model has selectively prioritized other groups that it
finds simpler.

In contrast, Figure 6b shows the same comparison of each race-
annotation group, but compared against a white-annotated baseline
instead. Here, we observe the opposite effect compared with fig. 6a.
Observed disparity (opaque) is always lower than estimated dis-
parity (translucent), indicating attenuation of difficulty for this
group relative to the given model. Unlike the worse-than-expected
disparity the model exhibits on black-annotated samples, for white-
annotated samples the model demonstrates lower-than-expected
disparity. These results reinforce that performance disparities are
complex and hard to predict, and may have heterogeneous impact
across different groups.

6.2 Object classification on DollarStreet
Dollar Street [23] is a dataset of geographically-diverse images
spanning a broad range of household incomes. We use the labels
associated with each image in a 138-class object classification task,

where group information is household income quartile. We explic-
itly rebalance the dataset via subsampling to ensure each group
has the same number of data points, though in this experiment, we
don’t match the label distributions between groups due to limited
data availability for certain group × label pairs. We evaluate models
trained on each income quartile independently, and models trained
on all quartiles together. We train single-layer FC networks on rep-
resentations extracted from ResNet-18 pretrained on ImageNet-1K.
See appendix C for details, including discussion on the potentially
confounding effects of pretraining.

Figure 7a shows the observed (opaque) and estimated (translu-
cent) performance disparity between images from households in
the lowest (1st) income quartile, compared against other quartiles.
As with FairFace, observed disparity consistently exceeds the es-
timated disparity, indicating difficulty amplification. In contrast,
fig. 6b compares each quartile against the highest (4th) income quar-
tile, and presents a mixed picture. Here, the observed performance
gap between 1st and 4th is amplified (though to the benefit of the
4th quartile, and the detriment of the 1st), whereas the observed
disparity between the 4th and the two middle quartiles is slightly at-
tenuated. These results again confirm that performance disparities
persist in the balanced data setting, and performance disparities
may be selectively amplified depending on one’s choice of model.
In the case of this Dollar Street example, this selective amplification
results in worse-than-expected performance disparities and exces-
sively degraded performance on images from the lowest-income
households.
Summary: Across two tasks on two different datasets, models exhibit
selective difficulty amplification, resulting in worse-than-expected
performance disparity for certain groups. On Dollar Street, this is a
real-world impact on income disparity, and on FairFace, this manifests
as racial performance disparity.

7 MITIGATING DIFFICULTY AMPLIFICATION
The case studies with Dollar Street and FairFace demonstrate that
neither a balanced dataset nor equivalent distributions across groups
are sufficient to preclude performance disparities. Moreover, they
demonstrate the heterogeneous impact these disparities can have,
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Figure 6: Performance disparity and amplification, measured by difference in mean test accuracy, on FairFace age classification,
disaggregated by annotator-perceived race. Translucent bars are estimated disparity from single-group training; opaque bars
are observed disparity when trained on entire (balanced) dataset. (a) Performance disparity relative to the black-annotated
group. Model demonstrates higher test accuracy for most other race-annotation groups (opaque). Compared with single-group
training (translucent), this particular model consistently amplifies the disparity, resulting in poorer-than-expected model
performance for the black-annotated samples. (b) Performance disparity relative to the white-annotated group. In contrast, for
white-annotated samples, observed disparity (opaque) is consistently lower than estimated disparity (translucent, indicating
disparity attenuation.

and their unpredictable effects (e.g. our ResNet-18 model ampli-
fies performance disparity on black-annotated samples, but not on
white-annotated samples). What should one do when faced with
such a scenario? Having audited our dataset, having striven for
balance, imagine we find that our chosen model finds one group
harder than the others. Here, we explore two potential remedies.
First, we try additional data collection for the group the model
performs poorly upon. Second, in the event this is not possible, we
consider oversampling the challenging group such that challenging
examples a more likely to be included in a given mini-batch.

We evaluate both mitigation strategies on the same FairFace
setup as described in § 6.1. As a result of our explicit re-balancing via
subsampling, we conveniently have access to previously-discarded
samples for various groups. To counter poor model performance on
the black-annotated group, we add the full set of black-annotated
samples. This results in an imbalanced dataset, where all other
groups are balanced but black-annotated samples are overrepre-
sented by a factor of approximately 1.6. For our oversampling ex-
periment, we imagine a setting where further data collection is
not possible, and so return to the balanced data setting. Instead,
we assign twice the weight to each black-annotated sample, such
that a member of this group is twice as likely to be included in a
mini-batch than any other group.

The results of these experiments can be seen in fig. 8. Figure 8a
shows a clear effect of additional data collection, reducing the ob-
served disparity (opaque bars) versus the balanced baseline (translu-
cent) relative to all other groups. Thus, we conclude that where
performance disparity is present even with a balanced dataset,
a helpful mitigation strategy might be to extend data collection
for those groups suffering worse performance. Where previous
work has suggested collecting additional data to achieve a balanced
dataset (e.g. [21]), here our results suggest we take one step fur-
ther and construct explicitly unbalanced datasets, though skewed
in favor of the groups our chosen model finds challenging. Such
model-dependent data collection entails a feedback cycle of model

selection, model evaluation, and targeted data collection that is un-
common in contemporary machine learning practice, and presents
a challenge to the use of standardized, off-the-shelf training sets.

In fig. 8b we show a clear effect of oversampling in reducing
observed disparity (opaque bars) versus the uniformly sampled
baseline (translucent), though a smaller effect than that of addi-
tional data collection. These results indicate that where additional
data collection may be undesirable, oversampling the groups the
model finds challenging may be a viable alternative. We note that
oversampling a minority class is a common fairness strategy when
handling performance disparities caused by under-representation
in a dataset [82, 88]. However, in our experiments our signal for
oversampling is not relative group size, but performance gap. Start-
ing from a balanced dataset, we increase the sampling likelikhood
of samples in the black-annotated group because of the observed
performance disparity, not because of a difference in group size. As
with additional data collection, these results highlight the neces-
sity of a tight and iterative loop involving model development and
fairness evaluation.
Summary: Faced with observed performance disparity that persists
with balanced data, an effective mitigation strategy may be to collect
additional data for the groups the model performs poorly upon. Should
this not be possible, oversampling may be a suitable alternative.

8 DISCUSSION
8.1 Auditing for bias
At its heart, our work presents yet another way in which models
exhibit bias and performance disparities across demographics. A
frequent refrain in the ML community is that such disparities are
the fault of the data, rather than algorithmic bias [37]. Indeed, a
series of thorough audits have revealed that popular datasets under-
represent minoritized groups [10, 17, 20, 71, 73, 83]; reify harmful
associations and perpetuate stereotypes [8, 9, 19, 24, 64, 78]; and
operationalize concepts such as gender and race in a way that ap-
plies a veneer of “objectivity” to socially-constructed and culturally
specific concepts [18, 42, 59, 63]. Fixing these issues at the level of
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Figure 7: Performance disparity and amplification, measured by difference in mean test accuracy, on Dollar Street object
classification, disaggregated by household income quartile. Translucent bars are estimated disparity from single-group training;
opaque bars are observed disparity when trained on the entire (balanced) dataset. (a) Performance disparity relative to lowest
(1st) income quartile. Model demonstrates higher test accuracy for most other income quartiles (opaque). Compared with
single-group training (translucent), this model consistently amplifies the disparity, resulting in poorer-than-expected model
performance for the lowest income quartile. (b) Performance disparity relative to highest (4th) income quartile. In contrast, for
the highest income group, observed disparity (opaque) versus the 1st quartile is larger than estimated (translucent), whereas vs.
the 2nd and 3rd quartiles the performance disparity is slightly attenuated.

the data may not even be possible, for example it is often unde-
sirable to collect the demographic information needed to ensure
balance in the first place [2, 37, 79]. That being said, acknowledging
issues with our use of data does not absolve all that comes after, as
exemplified by bias amplification [31, 80, 90]. Here, in support of
the role of post-training audit, we choose the setting where the data
is “perfect”, in that it is both explicitly balanced, and groups and
labels are decorrelated. The variability of both difficulty disparity
and amplification from model to model is a strong reminder that
both those who develop and deploy ML systems must take action
to ensure their fairness.

8.2 Measuring difficulty
In this work we choose to measure difficulty using cross-validated
test accuracy, averaged over all samples in a group or class. While
it may be possible to rewrite the specific results above in terms of
accuracy disparity, we instead refer to difficulty disparity because
our core claims involve relative, model-perceived group difficulties,
and we expect difficulty amplification to also occur in settings
where accuracy is not an appropriate performance metric.

Recent works have investigated alternative methods for quanti-
fying model-specific example difficulty, including loss [3, 32] and
prediction disagreement between models [72], mini-batches [13],
and throughout training [74, 76]. [37] identifies samples that are
often forgotten after compression. Applying these sample-level
measures to evaluating group-level difficulty disparity remains an
interesting future direction.

8.3 Fairness definitions
By discussing issues of bias and disparity, we engage in a broader dis-
cussion about fairness in ML systems. Here, we follow others in fo-
cusing on the performance gap between groups [1, 22, 28, 34, 45, 85],
though an alternative approach would be to focus explicitly on
worst-group performance instead [56, 66, 89]. Others rely upon
counterfactual fairness [46, 50, 53], according to which a “fair” sys-
tem reaches the same decision on two otherwise identical individ-
uals belonging to different protected groups, though this draws

increasing criticism due to its requirement that concepts such as
race or gender both be well-defined [7] and can be changed while
only minimally impacting other attributes [33, 38]. Our aim in this
work is not to use a metric by which to deem systems fair or unfair,
but to highlight the possible role of model bias—in this case, due
to preference for simplicity—that will have subsequent fairness
impacts. Even assuming a satisfactory yardstick by which to mea-
sure, and a model accordingly deemed fair, fairness is of course
not necessarily implied. When situated within a broader societal
context, any model can be put to harmful use, and it is a common
pitfall of the ML community to narrowly situate our work inside
neatly-defined abstractions [69].

8.4 Spurious correlations
Similarly, a key ambition of our work is to push research into
sources of bias outside of the typical characterizations: spurious cor-
relations and under-representation. Indeed we suggest that reduc-
ing the study of model bias to these two dimensions is an instance
of excessive abstraction through formalization [69]. By focusing on
the settings where these issues are resolved, we hope that future
research can take a more nuanced look at the biased behavior of
models where not obviously the result of a data issue. A plausible
outcome of this kind of research could be that in certain situations
ML might not be appropriate at all, if we can’t guarantee that the
system won’t develop unpredictable and hidden biases.

8.5 FairFace race and gender annotations
While we select FairFace as a helpful proof-of-concept for the idea of
difficulty amplification, there are aspects of the dataset’s annotation
practices that make for challenging, if not uncomfortable, usage.
Though we don’t make use of so-called gender annotation, we
wish to reinforce that gender is not a binary and is not objectively
externally-perceivable. This is not just a matter of “subjectivity”,
a point which Karkkainen and Joo themselves gesture towards,
but the more fundamental idea that whether or not the annotators
reach consensus, their very act of assessing gender reifies a socially-
constructed concept. Moreover, the use of binary labels is by design
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Figure 8: Twomitigation strategies for performance disparity. (a) Collecting additional data. After increasing the amount of data
available for the black-annotated group by a factor of 1.6, we find observed disparity is substantially reduced. (b) Oversampling.
Where additional data collection may not be possible, oversampling the black-annotated group by a factor of 2 also reduces
observed disparity, though to a lesser extent than data collection. Translucent bars are observed disparity without intervention
(also shown in fig. 6a); opaque bars are with mitigation strategy applied.

exclusive of non-binary and gender-nonconforming people, groups
already overlooked by machine learning research [42].

As for race annotations, again Karkkainen and Joo appear to give
little thought to the socially-constructed nature of race. Appealing
to a supposed objectivity, they first take their initial set of race-
annotation groups from the U.S. Census Bureau, before going on
to further break down certain groups (such as East and South East
Asian) because “they look clearly distinct” (p. 1550), and discarding
Native Americans, Hawaiians and Pacific Islanders due to limited
data availability. At the point of annotation, no information is
presented as to whether the annotators were trained or presented
with reference images, nor is consideration given to the social and
cultural contexts of the annotators which would naturally influence
their understanding of racial groupings. While Karkkainen and Joo
present a well-motivated argument for focusing on race rather than
the easy-to-compute skin tone used in similar research—due on the
one hand to the effect of external lighting conditions and on the
other to the high variance of skin tone within racial groups—if one
is to focus on race-based performance disparities rather than skin-
tone based disparities, significantly more attention must be paid to
the partial and culturally-specific way in which race is constructed
and deployed.

We have chosen to use FairFace as it presents a mostly balanced
dataset that allows us to explore the effect of simplicity bias on a
dataset of human images, annotated with a fairness group label (in
this case, race) that is widely understood as being a source of ma-
chine learning disparity. That said, the above comments regarding
data annotation practices should be considered a significant caveat
of our real-world case study.

8.6 Limitations
Our primary aim is to further highlight the key role of the model
in accuracy disparity. We do however assume access to group in-
formation for audit purposes, which may not be available in many
realistic scenarios, nor desirable to obtain. We intentionally choose
to explore the balanced dataset setting, though separating difficulty
disparity from other sources of bias may be difficult in practice.
Future work may seek to explore a broader array of model families,
and a more detailed investigation of the role of different regular-
ization techniques. Our exploration of the role for additional data

collection and oversampling, presented as candidates for potential
mitigation strategies, are not intended be readily-deployed solu-
tions to alleviate model bias. Instead, both potential strategies are
presented as evidence in support of the unique nature of difficulty
amplification, and on the need for model-specific bias mitigation
strategies.

9 CONCLUSION
We have argued that what a model finds difficult is not simply
a function of the data, but a function of both model and dataset.
This is particularly a problem in a fairness context if difficulty is
correlated with group information. We have found that certain
models further amplify difficulty disparity, resulting in observed
difficulty disparity over and above estimated difficulty disparity,
as a result of the bias of certain models towards easy examples.
Difficulty amplification varies with model architecture, model scale,
training time and regularization strategy, and seemingly innocu-
ous design decisions can have a substantial and counter-intuitive
impact. We have shown how difficulty disparity and amplification
take place in the Dollar Street setting, where our simple model is bi-
ased against images in the low income quartile, and in the FairFace
setting, where our exhibit the worst age classification performance
on black-annotated samples. Through our explorations of two can-
didate mitigation strategies in this real-world setting, we suggest
that explicitly collecting additional data for complex groups, or if
not possible, oversampling, may be helpful tools for mitigating per-
formance disparities that persist in the balanced data regime. Taken
together, our results highlight the key role of the model—above and
beyond the dataset—in creating group disparities.
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A PLS METHODOLOGY
Given 𝑚 classes, we extract 𝑑 = 𝑚𝑚−1

2 binary accuracies corre-
sponding to each possible pairing, and convert them to rank orders.
We repeat this for each of the 𝑛 models under consideration, re-
sulting in a 𝑑 × 𝑛 matrix of difficulty ranks. We construct a 𝑑 × 1
data difficulty matrix from the cosine distance between the mean
of each class.

We fit a partial least squares regression model to both the model
difficulties and the data difficulties using scikit-learn [60]. For visual-
ization purposes we use a single component, though in subsequent
tests we find no difference in model fit when increasing the num-
ber of components. We evaluate how well the data difficulty is
explained by the model difficulty using 𝑅2.

B MODEL ARCHITECTURE AND
HYPERPARAMETERS

B.1 SVM
For the SVM we use an RBF kernel with hyperparameters 𝐶 = 1.0
and 𝛾 = 1

3072 , using the scikit-learn implementation.

B.2 Neural networks
All models are implemented in PyTorch [58] with TorchVision. Mod-
els are trained to minimize cross-entropy loss using SGD with
learning rate 0.01, momentum 0.9, weight decay of 0.0001 for 500
epochs with batch size 128.

FC. The fully-connected networks are either 3 or 5 hidden layers
with 256 units and ReLU activation. Batch normalization is applied
to the inputs.

LeNet. LeNet [51] is a simple CNN, with two convolutional
layers interleaved with max pooling, three fully-connected layers,
and ReLU activation function.

AlexNet. AlexNet [49] is a deeper CNN, with five convolutional
layers interleaved with max pooling, three fully-connected layers,
and ReLU activation function.

ResNet. We use 18-, 34- and 50-layer variants of the variable-
width ResNet [35] implementation introduced in [67].

SSL. For both SSL models, we extract final-layer representations
for each data point from an SSL-pretrained model. We pass these
representations through a 1-layer FC network as described above.
Representations are extracted from one twomodels. The first is from
a ResNet-50, pretrained with SimCLR [14] on ImageNet-1K [65].
The second is from a RegNet-128Gf model [61] trained with SwAV
[12] on 1 billion public images from Instagram [27]. Representations
were extracted using VISSL [26] from models publicly available in
the model zoo.

C DOLLAR STREET EXPERIMENT
C.1 Dataset
Dollar Street3 is a dataset of geographically-diverse images span-
ning a broad range of household incomes. Dollar Street comprises
23724 RGB 480 × 480 images of objects and people in everyday
environments around the world, each associated with one of 138

3https://www.gapminder.org/dollar-street

class labels. For our purposes, we discard geographic information
and use income quartiles as group label.

Throughout this work, we have endeavored to remove bias re-
sulting from group imbalance and label/group correlation. However,
in the Dollar Street example we introduce an additional possible
source of bias via ImageNet-1K pretraining. ImageNet-1K signifi-
cantly under-represents many social groups [20] and geographies
[17, 71], and exhibits harmful associations between race and certain
class labels [73]. Geographic under-representation is a plausible rea-
son for income-quartile difficulty disparity. This, however, cannot
explain difficulty amplification.

C.2 Model
We follow the representation extraction method outlined in ap-
pendix B.2, though we use the representations from supervised
learning models rather than SSL. Specifically, we extract from a
ResNet-50 trained with supervised learning on ImageNet-1K [65].
We train a single layer fully-connected network of varying width,
following the standard SGD training regime specified above.

D FAIRFACE EXPERIMENT
D.1 Dataset
FairFace [41] is a publicly-available dataset of face images for fair-
ness audit and evaluation, intentionally constructed to be approxi-
mately racially balanced. The dataset is a subset of the YFCC-100M
Flickr dataset [75], and comprises 97698 RGB 224 × 224 images of
human faces, each annotated with age, race, and gender groups as
perceived by Amazon Mechanical Turk annotators, according to
majority vote among a committee of three. Images are labeled with
perceived age from 0-2 years, 3-9, 10-19, and in 10 year increments
until 70+. Gender scores are a binary of male or female, and race
annotation is a single selection from one of White, Black, Latino
Hispanic, East Asian, Southeast Asian, Indian and Middle Eastern.
In our work, we ignore gender annotations, and use age annotation
as a target label and race annotation as group information. To act
as a reminder that these are the annotations of external labelers,
we use the terms such as “black-annotated” rather than Black, and
“white-annotated” rather than white, throughout this work.

D.2 Model
We use a standard, randomly-initialized (i.e. not pretrained) ResNet-
18 model, as used in our other experiments. Given an image of a
face, the model is trained to perform age classification into one
of the nine perceived age buckets provided as part of the FairFace
dataset. To perform multi-class classification, we apply a softmax
layer to the model outputs and train with cross-entropy loss. All
other hyperparameters are as described in appendix B.

E CALCULATING AMPLIFICATION FACTOR
WITH LINEAR REGRESSION

Given a vector of estimated accuracy disparities d̃, and a vector
of observed accuracy disparities d, we estimate the amplification
factor using OLS linear regression.

In our synthetic setup, we additionally control for the effect of
confounds including within-class separability (e.g. aquatic mammal

https://www.gapminder.org/dollar-street
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/mediummammal in fig. 3a), and diagonal separability (e.g.medium
mammal / flower), by including them as nuissance regressors. Our
full model is of the form:

d = 𝑋𝛽 + 𝜖, 𝑋 =

©«

d̃
s𝑎,1
𝑎,0
s𝑏,1
𝑏,0
s𝑏,1
𝑎,0
s𝑏,0
𝑎,1

ª®®®®®®®¬
, (4)

where amplification factor is the first parameter, 𝑘 = 𝛽0, and s𝑏,1𝑎,0 is
the separability (i.e. accuracy) between group 𝑎, label 0 and group
𝑏, label 1. We use Python statsmodels [68] to fit the model.

Received 6 February 2023; accepted 7 April 2023



Simplicity Bias Leads to Amplified Performance Disparities FAccT ’23, June 12–15, 2023, Chicago, IL, USA

12 10 100 1,000 10,000
Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Tr

a
in

 a
c
c
u

ra
c
y

Simple
Complex

(a) Train accuracy

12 10 100 1,000 10,000
Step

0.4

0.6

0.8

1.0

Te
s
t 

a
c
c
u

ra
c
y

Simple
Complex

(b) Test accuracy

12 10 100 1,000 10,000
Step

0.0

0.1

0.2

0.3

0.4

O
b

s
e
rv

e
d

 d
is

p
a
ri

ty

(c) Observed disparity

Figure S1: Accuracy and disparity for ResNet-18 on Fashion MNIST [86]. Experiment design is identical to fig. 3. Simple group
is Trouser/Sneaker; complex group is T-Shirt/Shirt. Results align with those observed on CIFAR-100. (a) Train accuracy for
complex group is learned slower but both groups reach perfect train accuracy. (b) However, test accuracy for complex group is
persistently lower. Dashed lines are binary accuracy from single-group training. (c) Observed disparity 𝑑 peaks early in training
but large gap persists after training. Red dashed line is estimated disparity 𝑑: observed disparity above this line indicates
amplification. Shaded area is standard error over 10 runs each with different train/test split.
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Figure S2: Accuracy and disparity for ResNet-18 on EMNIST letters [15]. Experiment design is identical to fig. 3. Simple group
is Q/X ; complex group is I /L. Results align with those observed on CIFAR-100. (a) Train accuracy for complex group is learned
slower but both groups reach perfect train accuracy. (b) However, test accuracy for complex group is persistently lower. Dashed
lines are binary accuracy from single-group training. (c) Observed disparity 𝑑 peaks early, drops below estimated disparity
during training, and then stabilizes at slight amplification.
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(a) Full CIFAR-100 coarse
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Figure S3: Amplification factor 𝑘 as function of average test accuracy on (a) the full CIFAR-100 coarse dataset, and (b) the 30
sampled tasks used for computing amplification factor. Choosing a higher accuracy model, e.g./ an SSL model, would increase
amplification. Vertical bars are standard error of the coefficient 𝑘 . Horizontal bars (barely visible in left panel) are standard
deviation of test accuracy over (a) 10 seeds and (b) 10 seeds and 30 tasks. Solid black line fit with linear regression. Dashed gray
line is 𝑘 = 1.
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Figure S4: 𝑅2 values for linear regression calculation of amplification factor, for various models, corresponding to fig. 4
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Figure S5: 𝑅2 values for linear regression calculation of amplification factor, corresponding to fig. 5.
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