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Abstract

In centralized mechanisms and platforms, participants do not fully observe

each others’ type reports. Hence, the central authority (the designer) may

deviate from the promised mechanism without the participants being able to

detect these deviations. In this paper, we develop a theory of auditability

for allocation and social choice problems. Namely, we measure a mechanism’s

auditabilty as the size of information needed to detect deviations from it. We

apply our theory to study auditability in a variety of settings. For priority-

based allocation and auction problems, we reveal stark contrasts between the

auditabilities of some prominent mechanisms. For house allocation problems,

we characterize a class of dictatorial rules that are maximally auditable. For

voting problems, we provide simple characterizations of dictatorial and majority

voting rules through auditability. Finally, for choice with affirmative action

problems, we study the auditability properties of different reserves rules.
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1 Introduction

Scarce resources are oftentimes allocated in a centralized clearinghouse; the designer

collects participants’ type reports, and chooses an allocation through some publicly

announced mechanism. Some major examples include allocation of public school seats

or subsidized housing, auctions for online ads or spectrum licences, and presidential

elections. In these problems, participants know and observe their own type reports

and outcomes, but not necessarily those of others. Hence, if the designer uses a

mechanism that is different from the promised one, participants or an auditing entity

may not be able detect this deviation because of the limited information. In this

paper, we develop a general theory of auditability to compare mechanisms in terms

of how easy it is for participants or some third-party auditing entity to detect such

deviations.

We apply our theory across a wide range of applications such as allocation problems,

single-object auctions, voting with a binary outcome, and choice with affirmative

action. In all these settings, auditability can be an important consideration given

the practical concerns about errors, misconduct and fraud during the implementation

stage. For example, there have been multiple controversies during the implementation

of admissions to Chicago Public Schools (CPS).1 The Office of Inspector-General

(OIG) of Chicago Board of Education (Schuler, 2018) states that in the 2016-2017

admission year:

“. . . almost every kind of CPS elementary school imaginable improperly ad-

mitted students last school year. . . . Of more than 18,200 elementary-grade

admissions audited, nearly 6,900 failed the audit. That’s nearly two of every

five.”

The report further states that:

1More generally, the need for transparency and auditability in public school assignment has been

highlighted in Pathak (2017) and Benner and Boser (2018). The latter argues that the assignment

mechanism should be audited by an outside entity to guarantee that the implementation is consistent

with enrollment priorities. Such auditing practices have been adopted by school districts in New

Orleans and Chicago (Benner and Boser, 2018).
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“OIG interviews with principals of 30 audited schools that held more than 500

combined audit failures revealed that many didn’t know all the admissions rules,

which are scattered across several locations. Others knew the rules and broke

them. In some cases, audit failures may have been caused by documentation

errors. . . . Several principals weeded out applicants, based on a variety of

factors, including attendance concerns. . . . Some principals clearly played

favorites. Many schools bypassed [admission rules] to give preference to the

children of CPS employees, the siblings of existing students or lottery win-

ners, . . . One principal improperly admitted her four children, her niece and

nephew.”

Auditability issues are also salient in online ads auctions, which is largely driven

by the lack of bid-observability in these markets. Recently, there have been various

allegations against Google’s online ads auctions related to issues of auditability. In

2020, an antitrust lawsuit brought by a coalition of states led by Texas attorney

general Ken Paxton accused Google of not implementing the auctions in the way

they promised. The Wired magazine writes:2

“... the most recent complaint [against Google] ... provides unprecedented

insight into how Google allegedly misled advertisers and publishers for years

by manipulating auctions in its own favor using inside information. As one

employee put it in a newly revealed internal document, Google’s public claim

about second-price auctions were ’untruthful.’”

In fact, theoretical concerns about the scope for auctioneers to manipulate outcomes

in the second-price auction are not new (Vickrey, 1961), and they have received some

attention at different points in the media. For example, as the Digiday newsletter

writes:3

“In a second-price auction, raising the price floors after the bids come in allows

[online auctioneers] to make extra cash off unsuspecting buyers [. . . ] This

practice persists because neither the publisher nor the ad buyer has complete

2https://www.wired.com/story/google-antitrust-ad-market-lawsuit/
3https://digiday.com/marketing/ssps-use-deceptive-price-floors-squeeze-ad-buyers/
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access to all the data involved in the transaction, so unless they get together

and compare their data, publishers and buyers won’t know for sure who their

vendor is ripping off ...”

Motivated by the salience of auditability considerations in different environments,

we study auditability in a general model that covers a variety of settings. In our

model, there are N individuals and a commonly known mechanism which specifies

an outcome for each realization of individuals’ type reports. Given a profile of type

reports, which we call a problem, a deviation from a mechanism describes a situation

where the implemented outcome is different from the one promised by the mechanism.

For a given problem and a deviation, we say that a group of individuals detects the

deviation from the mechanism, if the group’s outcome could not have been resulted

by the mechanism for any problem that is consistent with the group members’ type

reports. We then define two straightforward and index-based measures that allow

us to compare mechanisms’ auditability properties on different dimensions. First,

for a given problem, the auditability index of a mechanism is the smallest integer

such that for any deviation, there is a group of individuals whose number does not

exceed this integer and who detects the deviation. Second, we define the worst-

case auditability index of a mechanism as its largest auditability index across all

problems. The main idea is that mechanisms with small auditability indices may

be easier to audit, while those with large auditability indices are more vulnerable to

undetected errors or fraud.

In our main application, we study some well-known and practically applied mecha-

nisms for allocation without money and unveil sharp contrasts in their auditability

properties. For general object allocation problems, we give a simple characterization

of the entire class of mechanisms with auditability index of one (Theorem 1). We

establish that such mechanisms are highly restrictive, in a sense that they violate

very basic notions of efficiency (Proposition 1). Hence, the reasonable range for the

auditability index of object allocation mechanisms falls between 2 and N .

Priority-Based Allocation. In the context of priority-based allocation, we investigate

the auditability properties of a large class of mechanisms that are outcome-equivalent

to the Deferred Acceptance mechanism of Gale and Shapley (1962) applied to sys-
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tematically modified problems. We call them Deferred-Acceptance (DA)-representable

mechanisms. Among many other well-studied mechanisms, this class covers the en-

tire family of application-rejection rules (Chen and Kesten, 2017), which includes the

prominent Deferred Acceptance and Immediate Acceptance (aka the ‘Boston’ mech-

anism) as special cases.

For the general class of DA-representable mechanisms, we provide a tight character-

ization result (that is, necessary and sufficient conditions) for having a worst-case

auditability index of two (Theorem 2). The characterization reveals close connection

between a mechanism’s low auditability index and the structure of stable outcomes

in the DA-representation.

As a corollary of our characterization result, we establish that Immediate Acceptance

has a worst-case auditability of two (Proposition 1). Interestingly, we find that the

Immediate Acceptance is the unique mechanism in the application-rejection family

that has good auditability properties: all other mechanisms in the family, including

Deferred Acceptance, have a worst-case auditability index of N (Proposition 4).

Our findings may contribute to the ongoing discussions and evaluations of popular

mechanisms for practical application. Traditionally, many school districts in the US

have been using Immediate Acceptance for centralized assignment. Starting from

the early 2000s, many major school districts transitioned to the Deferred Acceptance

mechanism, potentially because the latter mechanism is strategy-proof. That means,

in theory, parents do not have to worry about finding the best strategy for ranking

schools (Abdulkadiroğlu and Sönmez, 2003). Currently, Deferred Acceptance is used

for student assignment in Boston, New York City, Denver, Chicago, New Orleans,

Newark, and Indianapolis. Despite these transitions, the Immediate Acceptance still

remains one of the most common school assignment mechanisms. The mechanism is

used in Charlotte-Mecklenburg, Miami-Dade, Minneapolis, Seattle, Tampa-St. Pe-

tersburg, and many other school districts in the US and around the world. To the best

of our knowledge, we provide a first theoretical comparison of Immediate Acceptance

and Deferred Acceptance in terms of a new interesting and important dimension.

More specifically, we find that Immediate Acceptance has superior performance in

terms of auditability. The findings potentially highlight the importance of address-
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ing trust and transparency considerations, in order to maximize the adoption success

of the strategically simple and superior Deferred Acceptance for real-life assignment

problems.

House Allocation. In the context of house allocation (Hylland and Zeckhauser, 1979)

we focus on the large class of sequential dictatorships.4 It is well-known that these

mechanisms satisfy various desirable properties such as Pareto efficiency, non-bossiness

(Satterthwaite and Sonnenschein, 1981) and group strategy-proofness. In addition,

Pycia and Troyan (2023) showed more recently that sequential dictatorships are among

the few candidates that achieve high standards for strategic simplicity.5 Our main

result (Theorem 3) in this setting is a full characterization of maximally auditable

sequential dictatorships through a new class of mechanisms of which all members

are almost serial dictatorial. We also establish that the range of worst-case indices

for sequential dictatorships is wide and that even members that are close to a serial

dictatorship can be hard to audit (Proposition 5). Thus, our results suggest that one

cannot go much beyond simple dictatorial orderings if one wants to assure that the

mechanism remains easy to audit in our sense.

Single-Object Auction. We also demonstrate significant differences in the auditabil-

ities of some prominent single-object auction mechanisms. As a starting point, we

establish that auctions with a worst-case auditability index of one are characterized

by a very restrictive form of dictatorship: there must exist two individuals of which

one individual receives the object, whenever she reports a bid from a fixed subset of

her bids. However, whenever she reports a bid not in that set, the object is assigned

to the other individual (Theorem 4). In light of this result, it turns out that two pop-

ular auction formats can be regarded as close to being maximally auditable. Both

the standard first-price auction mechanism and the all-pay auction mechanism have

4In a sequential dictatorship (Ehlers and Klaus, 2003; Papai, 2000; Pápai, 2001) individuals se-

quentially choose their favorite objects from those that are still available. Who is the next individual

in the ordering may depend on all previous individuals’ assignments and hence its determination can

be complex. When individuals choose according to a fixed ordering, then a sequential dictatorship

reduces to a serial dictatorship (Satterthwaite and Sonnenschein, 1981).
5Pycia and Troyan (2023) show that sequential dictatorships closely resemble the entire class of

mechanisms that are strongly obviously strategy-proof for the context of object allocation without

money.
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a worst-case auditability index of exactly two (Proposition 6). On the other extreme,

we find that the second-price auction mechanism is minimally auditable by showing

that it has an auditability index of N for any profile of bids (Proposition 7).

Voting with a Binary Outcome. For voting problems, we first show that a worst-

case auditibility index of one requires the social choice mechanism to be dictatorial

(Theorem 5). We then restrict attention to the class of anonymous social choice

mechanisms for which all individuals are treated symmetrically. Interestingly, our

theory yields a simple and new characterization of the majority voting mechanism

as the unique most auditable anonymous mechanism. We show that the majority

voting is the unique mechanism with the smallest worst-case auditability index among

anonymous ones (Theorem 6).

Choice with Affirmative Action. Our theory can also address an important design

question about reserves processing orders in choice with affirmative action and dis-

tributional objectives. When choosing a subset of individuals for a limited num-

ber of positions, a reserves mechanism first sets aside (or reserves) several posi-

tions for a particular beneficiary group, and prioritizes the group for these (re-

served) positions. Reserves mechanisms have been used in controlled school choice,

(Hafalir, Yenmez, and Yildirim, 2013), college admissions in Brazil (Aygun and Bó,

2021), allocation of visa lotteries (Pathak, Rees-Jones, and Sönmez, 2020), pandemic

rationing (Pathak, Sönmez, Ünver, and Yenmez, 2021), and affirmative action in In-

dia (Sönmez and Yenmez, 2022), among many other applications.

The order in which applicants are considered for reserved versus non-reserved (open)

seats affects the final outcome (Dur, Kominers, Pathak, and Sönmez, 2018). The

reserved-seats-first and the open-seats-first are two well-studied implementations of

reserves mechanisms. Given the non-trivial implications of reserves processing orders,

researchers and policy makers may be interested in the choice of the ‘best’ reserves

mechanism. Some recent papers provide an axiomatic foundation for the reserved-

seats-first mechanism, where the axioms reflect the policy objectives of meeting dis-

tributional objectives and respecting priorities (Abdulkadiroğlu and Grigoryan, 2021;

Echenique and Yenmez, 2015). Our auditability theory provides a different angle for

comparing reserves mechanisms. We find that the reserved-seats-first mechanism is
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more auditable than the open-seats-first mechanism (Proposition 8)

The remainder of this work is organized as follows. In section 2, we discuss the related

literature. Section 3 introduces the model and our notions of auditability. Section

4 applies our theory to object allocation without money, section 5.1 to single-object

auctions, section 5.2 to voting, and section 5.3 to choice with affirmative action.

Section 6 discusses potential extensions and provides further considerations. Section

7 concludes. Proofs not in the main text are in Appendix A.

2 Related Literature

Our paper contributes to the relatively recent strand of literature on auditability,

transparency, and credibility of mechanisms. For auction mechanisms, these notions

have been studied by Akbarpour and Li (2020) and Woodward (2020), and for match-

ing mechanisms, by recent and concurrent works of Hakimov and Raghavan (2020),

Pycia and Ünver (2022), and Möller (2022). The existing literature typically studies

specific environments and a binary classification of mechanisms - (fully) auditable

versus not auditable - where an auditable mechanism is one where deviations can

always be noticed by a single individual. Full auditability is hard to achieve in the

static environment and without additional communication, and therefore most papers

on the topic include dynamic elements with ongoing private or public communication

from the designer. We do not explicitly model any form of communication. Instead,

we quantify a mechanism’s auditability with a natural informational measure—the

size of the group whose information is sufficient for detecting deviations from the

mechanism. Hence, whereas other papers on the topic study specific environments

and communication protocols, we introduce a general theory for auditability that is

applicable (and informative) for a variety of allocation and social choice problems.

Although our framework and theory substantially differ from the previous and concur-

rent works on the topic, some of our findings about specific mechanisms are related to

certain observations from these other works. For example, Akbarpour and Li (2020)

show that the first-price auction is credible, whereas the second-price auction is not
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credible. We find a stark contrast between the auditabilities of these mechansims

using our non-binary comparison measure. Hakimov and Raghavan (2020) observe

that in general the DA is not ‘transparent’. Möller (2022) shows that when school-

specific priorities are publicly known, DA achieves transparency if and only if it is a

serial dictatorship.6 Unlike the other papers, we do not explicitly model any com-

munication or public knowledge. Instead, we introduce a (non-binary) informational

measure which allows to quantify the degree of (non-)auditability of DA. We establish

that the worst-case auditability index of the DA is maximally large. Moreover, we

fully characterize all problems where the mechanism’s auditability index is exactly

two.

On a higher level, our study of auditability contributes to the theoretical understand-

ing about the structure of matching mechanisms. Naturally, the notion of auditability

is closely related to the question of how a single individual (or a group of individu-

als) can affect the outcome of the mechanism by only changing her own type report.

This question has been discussed by Arnosti (2020), who note that the DA mecha-

nism is ‘unpredictable’ in this sense. Gonczarowski and Thomas (2023) also explore

this problem, and also study a parallel notion of ‘verifiability’ in matching problems.

Gangam, Mai, Raju, and Vazirani (2023) analyze the notion of ‘robust’ stable match-

ing, which is simultaneously a stable matching for two problems that only differ by

one type report. Interestingly, the authors highlight implications of their theory to

some notion of credibility or auditability for stable mechanisms.

Lastly, our paper relates to the literature on the role of privacy in market design.

Without privacy concerns, the central authority could achieve more transparency

by some (credible) communication of all participants’ type reports and outcomes.

When there are privacy concerns, one would prefer that transparency is achieved

with minimal informational leakage. One implication of our auditability index is that

it measures the smallest amount of private information needed for a successful audit.

Hence, more auditable mechanisms achieve trust and transparency with less privacy

costs.

6Möller (2022) also characterizes the entire class of transparent, efficient and strategy-proof mech-

anisms as the class of sequential dictatorships. Crucially, our results on sequential dictatorships are

not logically connected to those in Möller (2022).
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There is a line of research in the auctions literature that studies the possibilities of

improving auditability and transparency with cryptographic protocols (e.g., Brandt

(2001); Ferreira and Weinberg (2020)) and blockchain (e.g. (Chitra, Ferreira, and Kulkarni,

2023)). In a more general environment, Canetti, Fiat, and Gonczarowski (2023))

study the possibility of trustworthy mechanisms that preserve the privacy of the

central authority (i.e., reveal no information about the mechanism), as opposed to

preserving privacy of market participants. To our knowledge, the privacy ques-

tion in object allocation (without money) is relatively underexplored. In a recent

paper, Haupt and Hitzig (2023) examine privacy-preserving implementation (with-

out any cryptographic commitments) of prominent object allocation mechanisms

and auctions through ‘sequential elicitation protocols’. Specifically, whereas our au-

ditability notion tells how much privacy can be preserved under a successful audit,

Haupt and Hitzig (2023) ask whether privacy can be protected in the sense of not

eliciting information that is inconsequential for computing the final outcome. Fi-

nally, Ollar, Rostek, and Yoon (2021) analyze the influence of privacy on efficiency in

dynamic markets from a market design perspective.7

3 Mechanisms and Auditability

There is a set of individuals I, a set of options Ωi for each i ∈ I, and a set of feasible

outcomes Ω ⊆ ×i∈IΩi. Each individual i has a type report θi ∈ Θi, and Θ ⊆ ×i∈IΘi

denotes the set of feasible type report profiles. We refer to an element θ := (θi)i∈I ∈ Θ

as a problem. A mechanism is a mapping ϕ : Θ → Ω that gives a feasible outcome

ϕ(θ) for every problem θ ∈ Θ.

For a problem θ ∈ Θ, and a subset of individuals I ⊆ I, define θI := (θi)i∈I ∈

×i∈IΘi := ΘI and θ−I := (θi)i∈I\I ∈ ×i∈I\IΘi := Θ−I .

We measure the auditability of a mechanism by how easy it is for individuals to

detect deviations from it. Formally, a deviation from mechanism ϕ at problem θ is

7For a recent survey on privacy in economic theory see, for instance,

Acquisti, Taylor, and Wagman (2016).
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an outcome ω 6= ϕ(θ). We say that the non-empty set of individuals I ⊆ I detects

the deviation ω 6= ϕ(θ) if for any θ′−I ∈ Θ−I ,

ω(i) 6= ϕ(θI , θ
′
−I)(i) for some i ∈ I.

In other words, a deviation is detected by a group of individuals if the group’s infor-

mation, consisting of their type reports and assignments, is sufficient to rule out that

the promised mechanism was used.

We define the auditability index of a mechanism as the smallest integer such that for

any deviation, there is a subset of individuals whose cardinality does not exceed that

integer and who detect the deviation.

Definition 1. Consider a mechanism ϕ.

(i) The auditability index of ϕ for a given problem θ is

#ϕθ = max
ω 6=ϕ(θ)

min
{

|I| : I ⊆ I, I detects the deviation
}

.

(ii) The worst-case auditability index of ϕ is

#ϕ = max
θ∈Θ, ω 6=ϕ(θ)

min
{

|I| : I ⊆ I, I detects the deviation
}

.

The basic idea behind the definitions is the following: a lower auditability index

means that less information is needed to detect deviations. Hence, mechanisms with

a lower auditability index are easier to audit.

We do not provide any explicit microfoundations for how information is collected or

accessed. However, we believe that our auditability index is a natural measure for

information, and one can find many examples and stories where such a measure is

informative. For instance, one could imagine that some individuals observe some

other individuals’ type reports, or individuals share reports with each other, or a

third party auditing entity samples a subset of type reports and outcomes.

Note that if we treat each individual’s private information as an atom—a smallest

piece of information—then our auditability index can be interpreted as the number of
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pieces of information needed for detecting deviations. Hence, our auditability index

may be deemed as a natural benchmark for comparing auditability. More generally, we

believe that our theory will also be informative for alternative notions of auditability,

such as a probabilistic one. We elaborate on this point in Section 6.

4 Auditability in Object Allocation

4.1 Preliminaries

Consider the problem of allocating a set of objects O to a set of individuals I, with

|I| = |O| = N ≥ 2. The setup corresponds to a special case of our model where

Ωi ≡ O for all i ∈ I, and Ω ⊆ OI is the space of one-to-one functions ω : I → O.

For now, we will keep the setup general and will not specify what a type report θi of

individual i stands for. In next subsections, we will study two special cases separately:

In the first model the type reports represent preference rankings and priority scores

over objects (priority-based allocation), and in the second model the type reports will

be preference rankings over objects only (house allocation).

We first provide a tight characterization of the entire class of object allocation mech-

anisms with (worst-case) auditability index of one. The characterization will pin

down a very restrictive class of mechanisms, that will fail to satisfy mild (efficiency)

properties.

Fix a mechanism ϕ. We say object o is possible for individual i at type report θi if

o = ϕ(θi, θ−i) for some θ−i. We say that an individual i clinches object o at type

report θi, if o is the only possible object for i when she reports θi. Given a subset

of objects O ⊆ O, we say that i clinches o from set O at type report θi, if o is the

only possible object among O for i at θi. That is, there is no o′ ∈ O \ {o} such that

ϕ(θi, θ−i)(i) = o′ for some θ−i.

Definition 2. We say ϕ has a sequential clinching implementation at problem

θ, if ϕ(θ) is an outcome of the following algorithm:
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Step 0. Initially all individuals and objects are available. Start with Step 1.

Step t. Pick an available individual i who clinches some object o among the available

ones when she reports θi.
8 Make i and o unavailable. If there is no available individual,

the algorithm terminates. Otherwise, proceed to Step t+ 1.

We characterize mechanisms with sequential clinching implementation as the unique

mechanisms with an auditability index of one.

Theorem 1. Consider an arbitrary mechanism ϕ.

1. For any θ ∈ Θ, #ϕθ = 1 if and only if ϕ has a sequential clinching implemen-

tation at θ.

2. #ϕ = 1 if and only if ϕ has a sequential clinching implementation at any

problem θ, and moreover, the mechanism can be implemented with a sequential

clinching order that only depends on the set of available objects at each step (but

otherwise does not depend on the problem).

Proof. See Appendix A.1.

Being able to clinch an object is a strong restriction on the mechanism.9 To empha-

size the limitations of sequential clinching implementation, we demonstrate that all

these mechanisms violate basic efficiency notions when type reports represent stan-

dard preferences (as in the next sections’ applications). In particular, we show that

mechanisms with an auditability index of one do not satisfy the full range property.

We say a mechanism φ has full range if for any outcome ω ∈ Ω, there is a problem

8We implicitly assume that such an individual exists, which is a strong restriction and a defining

feature of the sequential clinching implementation.
9Sequential clinching implementation is substantially different from serial dictatorial implemen-

tation which we study in Section 4.3. The former is much more restrictive. In fact, for a ‘generic’

problem serial dictatorships do not have a sequential clinching implementation. We discuss these

points further in Appendix C.
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θ such that ϕ(θ)(i) = ω(i) for all i ∈ I.10 In other words, a mechanism has full range

if every outcome may be selected for some problem.

Proposition 1. If #ϕ = 1, then ϕ does not have a full range.

Proof. See Appendix A.2.

If individuals’ type reports represent their preferences over objects, then the full range

property is implied by a very weak notion of efficiency which says that a mechanism

should always assign everyone to their most preferred objects whenever it is feasible

to do so. Hence, almost any reasonable mechanism will have a worst-case auditability

index of weakly larger than two. Interestingly, as we will see in the next subsections,

many highly applicable mechanisms achieve this lower bound, that is, they have a

worst-case auditability index of exactly two.

4.2 Priority-Based Allocation

The priority-based allocation model covers various real-life assignment problems, in-

cluding school choice and college admissions. The type report of an individual i ∈ I

is θi = (Pi, ri), where Pi is a strict preference ranking over objects O, and ri ∈ RN

is a vector of object-specific priority scores for individual i. For individuals i and j,

and an object o ∈ O, we say that i has a higher priority at o than j if rio > rjo. Let

P = (Pi)i∈I and r = (ri)i∈I denote the profile of preferences and priorities, respec-

tively. We assume strict priorities, that is, for any θ = (P, r) ∈ Θ, any i, j ∈ I, and

o ∈ O, we assume that rio 6= rjo.
11

10In the context of house allocation (Section 4.3), the condition is also known as citizen sovereignty

(Pápai, 2001).
11In some allocation problems, such as school choice, applicants are categorized into a few priority

classes, and strict priorities are obtained only after ties are broken using randomly drawn lottery

numbers. In our setup, the r’s denote this strict priority scores obtained after the tie-breaking,

i.e., the priority group plus the random number. We think of the refined priorities as the private

information in our model. In several school districts, such as the New York City, the random numbers

are privately known by applicants, which is consistent with our setup.

14



Given a problem θ = (P, r), we say that o is the n-th most preferred object for

individual i at preference ranking Pi if
∣

∣{o′ ∈ O : o′Pio}
∣

∣ = n − 1. In that case, we

also say that i ranks o in the n-th position, or that o has the n-th position in i’s

preference ranking. We use the term ‘higher rank’ and ‘better position’ to refer to a

position corresponding to a smaller n.

We start by describing the (individual-proposing) Deferred Acceptance (DA) mech-

anism of Gale and Shapley (1962). Then, we provide a novel and helpful way to

instrumentalize the DA to define a class of mechanisms. For this class, we provide a

general characterization result for having problem-specific and worst-case auditability

index of two.

Deferred Acceptance (DA) for input θ: Start with Step 1.

Step t ≥ 1. Each individual i claims her most preferred object according to Pi among

those that have not rejected her. Each object o that is claimed by some individuals, is

tentatively assigned to the claimant with the highest priority score at o and rejects the

rest. If there are no rejections, the algorithm terminates and the tentative assignments

are finalized. Otherwise, we proceed to Step t + 1.

Given θ, denote the outcome of the DA mechanism by DA(θ).

We define a large class of mechanisms that have a DA-representation through some

modified priorities. For a given problem θ = (P, r), we first modify the priority scores

by a mapping τ : Θ → (RN)N , and then we compute the outcome of the mechanism

by applying DA to the modified problem (P, τ(θ)).

We restrict attention to a mapping τ : Θ → (RN)N that satisfy certain properties.

Consider arbitrary two problems θ = (P, r) and θ′ = (P ′, r′), and denote r̂ := τ(θ)

and r̂′ := τ(θ′). Let i, j ∈ I and o ∈ O be arbitrary. Then, the following conditions

hold.

• Independence of Irrelevant Alternatives. Suppose (i) o has the same

position in the preference rankings Pi and P ′
i , (ii) o has the same position in
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the preference rankings Pj and P ′
j , and (iii) rio > rjo ⇐⇒ r′io > r′jo. Then,

r̂io > r̂jo ⇐⇒ r̂′io > r̂′jo.

• Monotonicity. Suppose (i) o has a weakly better position in the preference

ranking P ′
i compared to Pi, (ii) o has a weakly worse position in the preference

ranking P ′
j compared to Pj, and (iii) rio > rjo =⇒ r′io > r′jo. Then,

r̂io > r̂jo =⇒ r̂′io > r̂′jo.

• Equal Treatment. Suppose (i) o has the same position in preference rankings

Pi and Pj , and (ii) rio > rjo. Then,

r̂io > r̂jo.

Definition 3. We say a mechanism ϕ is DA-representable, if there is a mapping

τ satisfying the three assumptions above, such that for any problem θ = (P, r),

ϕ(θ) = DA(P, τ(θ)).

It is straightforward that DA itself is a DA-representable mechanism: for each i ∈ I,

we can take τ to be the ‘identity’ projection of priority scores. That is, for any

θ = (P, r), let τ(θ) = r.

More interestingly, the widely applied Immediate Acceptance (IA) mechanism is

also DA-representable.

Immediate Acceptance (IA) for input θ: Start with Step 1.

Step t ≥ 1. Each available individual claims her most preferred available object.

Each object that is claimed by some individuals, is assigned to the the claimant with

the highest priority score for the object. The assigned objects become unavailable. If

there are no available objects, the algorithm terminates. Otherwise, we proceed to

Step t+ 1.

Given θ, denote the outcome of the IA mechanism by IA(θ).
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Consider the following mapping τ . For any problem θ = (P, r), the modified priority

scores r̂ = τ(θ), and all i, j ∈ I, o ∈ O,

r̂io > r̂jo

if and only if either o is ranked in a strictly better position at Pi than at Pj , or o is

ranked in the same position at Pi and Pj, and rio > rjo. Then, IA is DA-representable

through the mapping above.

More generally, the family of Application-Rejection (AR)mechanisms of Chen and Kesten

(2017) are examples of DA-representable mechanisms and include both IA and DA

as special cases. For a given natural number e ∈ N, let ARe denote the AR mech-

anism corresponding to parameter e. The standard description of these mechanisms

are provided in Appendix B. In the following, we describe the mechanisms through a

DA-representation.

Fix an e ∈ N. We say that o is a tier t ∈ N object for i if e(t − 1) ≤
∣

∣

{

o′ ∈ O :

o′Pio
}
∣

∣ < et. Consider the following mapping τe. For any problem θ = (P, r), the

modified priority scores r̂ = τ(θ), and all i, j ∈ I, o ∈ O,

r̂io > r̂jo

if and only if i ranks o in a better (more preferred) tier than j, or i and j rank o in the

same tier and rio > rjo. We define ARe as the mechanism that is DA-representable

through τe.

Note that when e = 1, ARe is equivalent to IA, and for any e ≥ N , ARe is equiv-

alent to DA. When 2 ≤ e < N , ARe is known as a Chinese parallel mechanism

(Chen and Kesten, 2017).

The class of DA-representable mechanisms includes a large subclass (but not all) of the

Preference Rank Partitioned rules studied by Ayoade and Pápai (2023). In particular,

DA-representable rules cover all the ARs, the Secure Immediate Acceptance mech-

anism (Dur, Hammond, and Morrill, 2019), the class of First-Priority-First mech-

anisms (Pathak and Sönmez, 2013), and French-priority mechanisms Bonkoungou

(2017).
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Before stating our main general result in this section, we introduce one more defi-

nition. For a given (P, r), we say that an outcome ω is stable if there are no two

individuals i, j ∈ I and object o ∈ O such that (1) oPiω(i), (2) ω(j) = o, and

(3) rio > rjo. Here is an important implication of the DA-representation: if a ϕ

is DA-representable through a mapping τ , then for any problem θ = (P, r), then

the outcome ϕ(P ) is stable at problem (P, τ(θ)). This observation follows directly

from the definition of DA-representability and stability of the DA (Gale and Shapley,

1962).

In the following theorem, we fully characterize problems where a given DA-representable

mechanism has an auditability index of two, as well as all DA-representable mecha-

nisms with a worst-case auditability index of two.

Theorem 2. Consider an arbitrary mechanism ϕ, which is DA-representable through

the mapping τ .

1. For a given problem θ = (P, r), #ϕθ = 2 if and only if for any outcome ω 6=

ϕ(θ), either ω is not stable at (P, τ(θ)), or it is stable at (P, τ(θ)), and there

are two individuals i and j, such that

• i and j prefer each other’s objects at ω more than their own ones, that is,

ω(j)Piω(i) and ω(i)Pjω(j),

• for any o /∈ {ω(i), ω(j)}, oPiω(i) or oPjω(j).

2. #ϕ = 2 if and only if the conditions in point 1 are satisfied for all problems.

Proof. See Appendix A.3.

To put it simply, Theorem 2 says that a DA-representable mechanism will have an

auditability index of two only when either stable outcomes are unique or all other

stable outcomes are sufficiently undesirable for individuals.

For any DA-representable mechanism ϕ and any problem θ = (P, r), the characteriza-

tion result gives a simple recipe for verifying whether #ϕθ = 2 or not, in polynomial

time. Instead of considering all stable outcomes at (P, τ(θ)), let us just compute the
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stable outcome ω̄ that is least preferred by all individuals (this can be computed by

the object-proposing version of the DA (Gale and Shapley, 1962)). Note that ω̄ would

satisfy the two preference conditions in Theorem 2 if and only if all stable outcomes

ω 6= ϕ(θ) at (P, τ(θ)) would satisfy them. Hence, to verify that #ϕθ = 2, one can

just check whether ω̄ satisfies the two preference conditions or not. Of course, this

can be done computationally efficiently.

Theorem 2 has other important corollaries. First, we can use the result to compute

the worst-case auditability index of IA.

Proposition 2. #IA = 2.

Proof. By Theorem 2, it is sufficient to show that for any problem θ = (P, r) there

is a unique stable outcome at problem (P, τ(θ)), where τ is the mapping in the DA-

representation of IA.

Consider an arbitrary problem θ = (P, r), and let r̂ = τ(θ). To show that there is a

unique stable outcome at problem (P, r̂), we prove the following equivalent claim.

Claim. At every step t of the implementation of IA, if an individual i receives an

object o, then i receives o at every stable outcome of problem (P, r̂).

We prove the claim by induction. Suppose i receives o at step 1 of the implementation

of IA. Then, o is the most preferred object of i, and she has the highest original

priority score at o among all individuals for whom o is the most preferred object.

Hence, by construction of r̂, individual i has the highest modified priority score at o,

i.e., i = argmaxj∈I r̂jo. Thus, i must receive o at every stable outcome of problem

(P, r̂).

Now suppose the claim holds for steps 1, 2, . . . , t− 1, and i receives o at step t of the

implementation of IA. Then, o is the t-th most preferred object of i according to Pi,

and there is no other available individual j 6= i who ranks o in a higher position than

t on Pj. Hence, by construction of r̂, individual i has the highest modified priority

at o among all available individuals. Thus, i receives o at every stable outcome of

problem (P, r̂). This completes the proof of the claim, and therefore the proof of

Proposition 2.
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The next direct corollary of Theorem 2 is a full characterization of all problems where

DA has an auditability index of two.

Proposition 3. #DAθ = 2 if and only if for any ω 6= DA(θ), either ω is not stable

at θ, or it is stable at θ and there are two individuals i and j, such that

• i and j prefer each other’s objects at ω more than their own ones, that is,

ω(j)Piω(i) and ω(i)Pjω(j),

• for any o /∈ {ω(i), ω(j)}, oPiω(i) or oPjω(j).

This gives a relatively simple characterization of all problems for which DA has an

auditability index of two. The necessary conditions for having #DAθ = 2 are gener-

ally restrictive. One can use the characterization result to compute the proportion of

problems for which DA achieves an auditability index of two, either computationally

or analytically. In our next result, we show that the worst-case auditability index of

DA is maximally large. We prove this as a part of a more general proposition.

Proposition 4. #ARe = N for any e > 1. In particular, #DA = N .

Proof. Consider an arbitrary ARe with e > 1. It is sufficient to find a problem θ,

such that #ARθ
e = N .

Suppose individuals and objects are indexed, i.e., I = {i1, . . . , iN} andO = {o1, . . . , oN},

and consider a problem θ where for all n ∈ {1, . . . , N}, in ranks on+1 as her most

preferred object, and she ranks on as her second most preferred object. Here, we

define oN+1 := o1. These preferences are illustrated in the table below.

i1 i2 · · · iN−1 iN

o2 o3 . . . oN o1

o1 o2 . . . oN−1 oN

. . . . . . . . . . . . . . .

Moreover, suppose that for all n ∈ {1, . . . , N}, in has the highest priority at on.
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In that problem, ARe assigns every individual her most preferred object, i.e.,

ARe(θ) =
{

(in, on+1)
}N

n=1
.

Consider the outcome ω =
{

(in, on)}
N
n=1 and an arbitrary subset of individuals I ⊂ I

(i.e. |I| < N). It suffices to show that I does not detect the deviation ω 6= AR(θ).

Take an arbitrary in /∈ I, and let θ′in differ from θin by letting in rank on as her first

choice. Then, ARe(θ−in , θ
′
in
) = ω. This completes the proof.

Together, Propositions 2 and 4 reveal a strong contrast among the AR mechanisms:

namely, #AR1 = 2, and #ARe = N for all e > 1.

4.3 House Allocation

In this section, we study the house allocation model (Hylland and Zeckhauser, 1979)

which carries both theoretical importance and covers a wide range of applications

such as the assignment of public houses, dormitory rooms, transplant organs and

more. For each i ∈ I, a type report θi now takes the form of a strict preference

ranking over objects O.

We concentrate on the large class of sequential dictatorships that have first been stud-

ied by Ehlers and Klaus (2003), Pápai (2001) and Papai (2000). Let a suboutcome

σ be a one-to-one function from I ⊂ I to O ⊂ O with |I| = |O|. Denote σ∅ as the

empty suboutcome and let S ′ be the set of all suboutcomes. Given a suboutcome

σ ∈ S ′, let Ī(σ) := I \ I and Ō(σ) := O \ O be the set of individuals and objects

that are unassigned under σ, respectively. A dictatorial structure is a mapping

π : S ′ → I such that for any suboutcome σ, π(σ) ∈ Ī(σ). We also call π(σ) the

dictator at σ.

Definition 4. A mechanism ϕ is a sequential dictatorship if there is a dictatorial

structure π such that for each θ, the outcome of ϕ can be determined through the

following algorithm:
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Step 1. Let σ∅ = σ0(θ). Individual i1(θ) ≡ π(σ∅) = id is the first dictator. She

chooses her favorite object o1(θ) from the set of unassigned objects. Let σ1(θ) be the

suboutcome/outcome in which i1(θ) is assigned to o1(θ) and all other individuals are

unassigned. If all individuals have been assigned an object, stop. If not, continue to

Step 2.

Step t ≥ 2. The individual it(θ) ≡ π(σt−1(θ)) is the t-th dictator. She chooses her

favorite object ot(θ) from all unassigned objects. Let σt(θ) be the suboutcome/outcome

that assigns individuals according to σt−1(θ) and additionally assigns it(θ) to ot(θ). If

all individuals have been assigned an object, stop. If not, continue to Step t+ 1.

In words, at each step, the respective dictator is assigned to her most preferred object

still left after all previous dictators have been assigned. In this sense, for each problem,

the algorithm sequentially assigns individuals according to a strict dictatorial ordering

over individuals. Moreover, the first dictator is always the same and the identity of

dictator at a step only depends on the assignments of previous dictators and not on

their detailed type reports. Also note that for each problem the algorithm terminates

after exactly N steps.

Prior to presenting our first result, we need to introduce some additional notation:

Given any sequential dictatorship ϕ and for each step t ≤ N , let Iϕt ⊆ I be the set

of individuals that are dictators at step t for at least one problem. Let Sϕ contain

all suboutcomes that can realize at some step of the inducing algorithm. A promi-

nent special case of a sequential dictatorship is the well-known serial dictatorship

(Satterthwaite and Sonnenschein, 1981) defined as follows. A sequential dictatorship

ϕ is a serial dictatorship, if |Iϕt | = 1 for all t ∈ {1, . . . , N}. That is, individuals

choose according to a fixed dictatorial ordering.

Our first result establishes that sequential dictatorships are not easy to audit in

general.

Proposition 5. Let N ≥ 4. Then, there exists a sequential dictatorship ϕ with

#ϕ ≥ N − 1.

22



Proof. Consider the sequential dictatorship ϕ specified as follows: For all t ∈ {1, . . . , N−

2}, let |Iϕt | = 1. Denote {i, j} := IϕN−1 ∪ IϕN and let IϕN−1 ∩ IϕN 6= ∅. Thus, there exists

a problem θ′ such that π(σN−2(θ
′)) = i. Let Θ′ := {θ′′ ∈ Θ| σN−2(θ

′′) = σN−2(θ
′)}

and assume that for all θ∗ /∈ Θ′, we have π(σN−2(θ
∗)) = j. In the following, let

o′, o′′ ∈ Ō(σN−2(θ
′)).

We proceed with constructing the problem which will be the basis for the deviation.

Consider a problem θ such that

• o′ θi o
′′ and o′ θj o

′′ and for all ô /∈ {o′, o′′}, we have ô θi o
′ and ô θj o

′,

• ϕ(θ′)(i′) ranks first on θi′ for all i
′ ∈ I \ {i, j}.

A quick inspection reveals that for all i′ ∈ I \ {i, j}, it must be ϕ(θ′)(i′) = ϕ(θ)(i′).

Hence, θ ∈ Θ′, which implies that ϕ(θ)(i) = o′ and ϕ(θ)(j) = o′′.

Let ω 6= ϕ(θ) be a deviation at problem θ, where

• ω(i) = ϕ(θ)(j) and ω(j) = ϕ(θ)(i),

• ω(i′) = ϕ(θ)(i′), for all i′ ∈ I \ {i, j}.

Consider an arbitrary I ⊆ I with |I| = N − 2. It suffices to show that I does not

detect the deviation. Since N ≥ 4, we must be in one of the following four cases:

In the first case, suppose that I ∩ {i, j} = ∅. It is clear that since ω(i′) = ϕ(θ′)(i′)

for all i′ ∈ I \ {i, j}, individuals I cannot detect ω. In the second case, suppose

that j /∈ I and i ∈ I. Thus, there exists k /∈ I with k 6= j. Consider a problem

θ̂ = (θ̂{j,k}, θ−{j,k}) where k ranks o′ first on θ̂k and j ranks ϕ(θ)(k) first on θ̂j . This

leads to ω(k′) = ϕ(θ̂)(k′) for all k′ ∈ I and hence I does not detect ω. In the third

case, suppose that i /∈ I and j ∈ I. Consider a problem θ̃ = (θ̃i, θ−i), where i ranks

o′′ first on θ̃i. Then, it must be ϕ(θ̃) = ω, which means that I does not detect ω. In

the fourth case, let {i, j} ⊂ I. Since N ≥ 4, we can select two individuals l, l′ /∈ I.

Consider a problem θ̄ = (θ̄{l,l′}, θ−{l,l′}) such that l ranks ϕ(θ)(l′) first on θ̄l and l′
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ranks ϕ(θ)(l) first on θ̄l′ . Then, ϕ(θ̄)(k′) = ω(k′) for all k′ ∈ I. Thus, I does not

detect ω. We thus conclude that #ϕ ≥ N − 1, when N ≥ 4.

The constructed mechanism in the proof works like a serial dictatorship including step

N − 2 and the individuals i and j always choose at the last two steps. Furthermore,

in the constructed mechanism only for one particular suboutcome σ, where i and j

are both still unassigned, individual i is the dictator. We then focus on a problem

where we reach this particular suboutcome σ and where i and j compete for one of the

remaining two objects. The deviation ω at this problem only swaps the assignments

of i and j. Intuitively, any group that wishes to detect this deviation must be able to

verify that σ was reached and that i is not receiving her favorite remaining object.

However, such a verification would require a group of at least N − 1 individuals.

Yet, some sequential dictatorships can still achieve near maximal auditability. Before

stating the main characterization that formalizes this insight, we introduce a new

class of mechanisms that will be central for the result.

Definition 5. A sequential dictatorship ϕ is a vice dictatorship if the following

three conditions are satisfied:

(1) Iϕt is a single individual for each t ∈ {4, . . . , N − 2}.

(2) There are at most two individuals in Iϕ2 ∪ Iϕ3 .

(3) For any pair σ, σ̂ ∈ Sϕ, if Ō(σ) = Ō(σ̂) and Ī(σ) = Ī(σ̂), then π(σ) = π(σ̂).

In other words, there are at most two individuals that share the roles as the second and

third dictator, while for all other steps except the last two steps, only one individual

can be the dictator.12 Additionally, condition (3) requires that at each step, the

identity of the dictator is fully determined by the set of still unassigned objects and

unassigned individuals.13

12In fact, condition (1) and (2) together imply that there are at most two individuals that can be

dictators at the last two steps, i.e. |IϕN−1
∪ I

ϕ
N | = 2.

13Clearly, condition (1) and (2) already imply that condition (3) holds for any pair of suboutcomes

until step N − 1.
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Also note that the class of vice dictatorships contains all serial dictatorships. Our

main result of this section establishes that vice dictatorships characterize all sequential

dictatorships with a worst-case auditability index of two.

Theorem 3. Let |N | ≥ 5. If ϕ is a sequential dictatorship, then #ϕ = 2 if and only

if ϕ is a vice dictatorship.

Proof. See Appendix A.4

Essentially, when ϕ is not a vice dictatorship, then one can identify two individuals

i, j whose relative position in the dictatorial orderings changes across two problems

θ̂, θ̃ while the same two objects o′, o′′ remain unassigned until either i or j is at

turn. Moreover, at these two problems all other individuals rank o′, o′′ at the last two

positions and receive their best ranked objects, whereas i and j both rank o′ and o′′

at the first and second position, respectively. The key features of the two problems

basically ensure that no pair of individuals can unveil whom of i and j should have

received o′. Similar as in the proof of Proposition 5, we therefore can construct a

deviation with respect to one of these two problems that only swaps the assignments

of i and j and cannot be detected by any pair of individuals.

By contrast, vice dictatorships can be regarded as ‘almost’ serial dictatorial. Specifi-

cally, if there is an indeterminacy of relative positions in the dictatorial orderings for

two individuals that these two individuals cannot resolve with their information as

a group, then one of these individuals can resolve the indeterminacy together with

the first dictator. This eventually implies that there are always two individuals that

can detect a deviation. More generally, in conjunction with Proposition 5 the result

indicates that pursuing a high level of auditability requires dictatorial structures with

low complexity.
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5 Other Applications

5.1 Single-Object Auctions

Consider the problem of selling a single object to individuals in I. The setup corre-

sponds to the special case of our problem with Ωi = {0, 1} × R+ for all i ∈ I. Given

an outcome ω ∈ ×i∈IΩi, we interpret ω(i) = (1, y) as i receiving the object and

paying y, and ω(i) = (0, y) as i not receiving the object and paying y. The space of

feasible outcomes Ω ⊆ ×i∈IΩi is such that exactly one individual receives the object.

A problem θ = (bi)i∈I ∈ RI
+ is a vector of individuals’ bids such that bi 6= bj for any

i, j ∈ I.14 Let Θ be the space of all problems.

We say an auction mechanism is a fixed-pay auction, if each individual’s payment

only depends on her bid and on whether she receives the object or not. Formally,

a fixed-pay auction is a mechanism ϕ : Θ → Ω for which there are no problems

b, b′ ∈ Θ and an individual i ∈ I with bi = b′i, such that for (x, y) := ϕ(b)(i) and

(x′, y′) := ϕ(b′)(i), x = x′ and y 6= y′. The class of fixed-pay auctions includes two

important mechanisms: the first-price auction and the all-pay auction.

The First-Price Auction (FPA) is a fixed-pay auction mechanism such that for

any problem b ∈ Θ and the corresponding outcome ω = FPA(b),

ω(i) =







(1, bi) bi = maxj∈I bj ,

(0, 0) otherwise.

The All-Pay Auction (APA) is a fixed-pay auction mechanism such that for any

problem b ∈ Θ and the corresponding outcome ω = APA(b),

ω(i) =







(1, bi) bi = maxj∈I bj ,

(0, bi) otherwise.

14Unequal bids are necessary for defining the common auction mechanisms. We may think that

it is unlikely to have problems where some individuals submit the exact same bids. Alternatively,

we may assume that there is a deterministic (observable) tie-breaking rule.
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Our first result is a characterization of the entire class of auctions mechanisms with

a worst-case auditability index of one. We say a fixed-pay auction ϕ is a dual-

dictatorship, if there are individuals i1 and i2, and a subsets of bids B̄ ⊆ R+, such

that for any problem b ∈ Θ, and the corresponding outcomes (x1, y1) = ϕ(b)(i1) and

(x2, y2) = ϕ(b)(i2), the following conditions hold:

(1). x1 = 1 if and only if b ∈ B̄,

(2). x2 = 1 if and only if b /∈ B̄.

In other words, dual-dictatorships require that only two individuals i1 and i2 can

receive the object, and moreover, i1 receives the object whenever her bid is in some

set B̄, and otherwise, i2 receives that object.

Theorem 4. #ϕ = 1 if and only if the auction mechanism ϕ is a dual-dictatorship.

Proof. See Appendix A.5.

From Theorem 4, we conclude that the auditability indices of the FPA and APA

shall be weakly larger than two. In our next result, we show their auditability indices

are exactly two, which means that the mechanisms are maximally auditable among

non-dual-dictatorial fixed-pay auctions.

Proposition 6. #FPA = #APA = 2.

The result is immediate given the following observation: under both auction formats,

whenever an individual i with the highest bid does not receive the object, and some

individual j with a lower bid receives it, then i and j detect the deviation. The formal

proof is immediate and therefore omitted.

The final (non-fixed-pay) auction mechanism that we study is the Second-Price

Auction (SPA), defined as follows: for any problem b ∈ Θ and the corresponding

outcome ω = SPA(b),

ω(i) =







(1, b̄) bi = maxj∈I bj , and

(0, 0) otherwise,
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where b̄ = maxj∈I\{i} bj is the second highest bid. We show that the SPA is maximally

not auditability for any problem.

Proposition 7. For any problem b ∈ Θ, #SPAb = N .

Consider a deviation where an individual i with the highest bid receives the object

and pays a bid b̃ that is strictly larger than the second highest bid b̄, but smaller than

bi. Then, no proper subset of individuals can detect the deviation, as they cannot

know whether someone outside of the subset has bid b̃ or not. The formal proof is

immediate and therefore omitted.

5.2 Voting with a Binary Outcome

Consider the problem where individuals I collectively choose to implement one of two

alternatives. This corresponds to the special case of our problem where Ωi = {0, 1}

for all i ∈ I, and the set of feasible outcomes Ω ⊆ {0, 1}I is such that ω(i) = ω(j)

for all ω ∈ Ω and i, j ∈ I. Let θi ∈ {0, 1} for all i ∈ I.

We say a social choice mechanism is dictatorial if there is an individual i ∈ I, such

that ϕ(θ) = ϕ(θ′) for any problems θ and θ′ with θi = θ′i.

Theorem 5. #ϕ = 1 if and only if the social choice mechanism ϕ is dictatorial.

Proof. See Appendix A.6.

The dictatorial mechanism gives all the decision power to a single individual. It may

be interesting to study mechanisms that treat individuals ‘symmetrically’, which we

do next. For the rest of this section, we assume thatN = |I| is an odd number. We say

a social choice mechanism ϕ is anonymous, if ϕ(θ) = ϕ(θ′) for any θ ∈ Θ = {0, 1}I ,

and θ′ can be obtained from θ by permuting zeros and ones. In other words, an

anonymous mechanism only considers the numbers of zeros and ones in the problem,

and not the individuals’ identities.
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An important example of an anonymous social choice mechanism is the majority

voting mechanism. A social choice mechanism is a majority voting mechanism

for outcome x ∈ {0, 1}, if for any θ ∈ Θ = {0, 1}I,

ϕ(θ)(i) = (x, x, . . . , x) if and only if
∑

i∈I

θi ≥
N + 1

2
.

It is easy to see that the auditability index of a majority voting mechanism is (N +

1)/2. In the following theorem, we give a stronger result: we characterizes majority

voting as the unique most auditable anonymous social choice mechanism.

Theorem 6. If ϕ is an anonymous social choice mechanism, then #ϕ ≥ N+1
2

. More-

over, #ϕ = N+1
2

if and only if ϕ is the majority voting mechanism.

Proof. The proof that a majority voting mechanism has a worst-case auditability

index of (N + 1)/2 is immediate, and therefore omitted. To prove the theorem, it is

sufficient to show that any other anonymous mechanism has a worst-case auditability

index of strictly larger than (N + 1)/2.

Consider an anonymous social choice mechanism ϕ, which is not the majority voting

mechanism. Then, there are problems θ and θ′ with either

n :=
∑

i∈I

θi <
∑

i∈I

θ′i := n′ ≤
N − 1

2
,

or

n :=
∑

i∈I

(1− θi) <
∑

i∈I

(1− θ′i) := n′ ≤
N − 1

2
,

such that ϕ(θ) = (x, x, . . . , x) 6= (y, y, . . . , y) = ϕ(θ′). Without loss of generality, (by

renaming zeros and ones if necessary) suppose that n :=
∑

i∈I θi <
∑

i∈I θ
′
i := n′ ≤

N−1
2

. Moreover, again without loss of generality (by choosing a larger n and a smaller

n′), suppose that n and n′ are consecutive numbers, i.e., n′ = n + 1.

Consider the deviation (y, y, . . . , y) 6= ϕ(θ). We argue that no subset of individuals

I ⊆ I with |I| < N − n can detect this deviation. Since I ⊆ I, it should be that

∑

i∈I

θi ≤
∑

i∈I

θi = n.
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Therefore, there are type reports θ̃−I of individuals in I \ I, such that
∑

i∈I θi +
∑

i∈I\I θ̃i = n′. Namely, this condition is satisfied for θ̃−I that differs from θI by only

that one additional individual in I \ I has a type report equal to one, instead of zero.

Since,
∑

i∈I θi +
∑

i∈I\I θ̃i = n′ =
∑

i∈I θ
′
i, and ϕ is anonymous, we get that

ϕ(θI , θ̃−I) = ϕ(θ′) = (y, y, . . . , y).

Thus, I does not detect the deviation (y, y, . . . , y).

Since I, |I| < N − n was arbitrary, by definition of the auditability index we get that

#ϕθ ≥ N − n > N −
N − 1

2
=

N + 1

2
.

This completes the proof of Theorem 6.

Note that the characterization results in Theorems 5 and 6 crucially rely on using

the notion of worst-case auditability. Specifically, some anonymous (and hence non-

dictatorial) social choice mechanisms may have an auditability index of one for some

(or most) problems. Consider for instance the ‘veto mechanism’ that implements the

outcome 1 unless some individual’s type report is 0. Here, one can easily see that for

any problem for which at least one individual has a type report equal to 0, the veto

mechanism has an auditability index of one. However, also note that for the problem

where each individual’s type report is 1, the veto mechanism has an auditability index

of N .

5.3 Choice with Affirmative Action

We study the problem of selecting a subset of individuals for up to Q < |I| positions,

subject to meeting certain distributional targets. The individuals are partitioned

into two (disjoint) subsets IL and IH , where IL denotes the individuals from low-

income status, and IH denotes the individuals of high-income status. The type report

θi = ρi ∈ R+ of individual i ∈ I is her priority score. The space of options for each

i is Ωi = {0, 1}, where 1 denotes being selected, and 0 denotes not being selected.

The set of feasible outcomes Ω ⊆ {0, 1}I are those ω for which
∑

i∈I ω(i) = Q and

30



∑

i∈IL
ω(i) ≥ R. The former condition can be interpreted as non-wastefulness of the

outcome, and the latter condition can be interpreted as meeting the distributional

targets.15 The model covers a myriad of important applications, including all those

mentioned in the introduction.

In these problems, an outcome is typically chosen by reserves mechanisms, where

low-income applicants are preferentially treated for R of the (reserved) positions.

There are two well-studied reserves mechanisms, which we discuss below.

• Reserved-seats-first (RSF) mechanism: For a given θ ∈ Θ, REG(θ) is

determined as follows:

In the first step, choose up to R highest priority individuals from IL, and let Ī

denote the set of chosen individuals. In the second step, choose up to Q − |Ī|

highest priority individuals from I\ Ī. Let I denote the set of chosen individuals

after these two steps. Then, for all i ∈ I,

REG(θ)(i) = 1[i ∈ I].

• Open-seats-first (OSF) mechanism: For a given θ ∈ Θ, OSF (θ) is deter-

mined as follows:

In the first step, choose up to Q − R highest priority individuals from I, and

let Ī denote the set of chosen individuals. In the second step, choose up to

R highest priority individuals from IL \ Ī, and let Ĩ denote the set of chosen

individuals in this step. In the third step, choose up to R− |Ĩ| highest priority

individuals from I \ (Ī ∪ Ĩ). Let I denote the set of chosen individuals after

these three steps. Then, for all i ∈ I,

OSF (θ)(i) = 1[i ∈ I].

15Restricting the set of feasible outcomes to those that are non-wasteful and meet the distributional

targets is crucial for our results. More specifically, our results do not extend to the environment

where the designer could choose a deviation violating these conditions. Our modelling choice is

natural in an environment where non-wastefulness and meeting distributional objectives are hard

requirements.

31



There are well-known results about the properties of the RSF and OSF rule. The

RSF mechanism minimizes priority violations (i.e., situations where a lower priority

individual is chosen, and a higher priority one is not) subject to meeting the reserves

(Abdulkadiroğlu and Grigoryan, 2021; Echenique and Yenmez, 2015). On the other

hand, the OSF mechanism provides an additional boost to low-income applicants:

the mechanism first chooses some of the highest priority low-income applicants from

the general pool (step one), and only after that, it chooses an additional R of the

remaining (lower priority) low-income applicants (step two). In this way, OSF admits

more low-income applicants than RSF (Dur et al., 2018). Choosing more low-income

applicants under OSF comes at the cost of creating priority violations, and the same

distributional outcomes can be achieved by the RSF with a higher reserves ratio.

Abdulkadiroğlu and Grigoryan (2021) mention that the RSF mechanism solves this

tradeoff in a more transparent way; any priority violation can be explained by diversity

objectives under RSF, but not under OSF. Our auditability theory provides a very

different angle for comparing the two reserves mechanisms.

Proposition 8. #RSF = R + 2 and #OSF ≥ max{Q− R + 1, R + 2}.

Proof. See Appendix A.7

If the proportion of reserves R/Q is small, there may be a large gap between the

auditabilities of RSF and OSF. For example, if this proportion is 20%, the RSF will

have about four times smaller auditability index than the OSF. Some examples of

small reserves ratios in real-life problems include allocation of H1-B visas with about

23% (Pathak et al., 2020), and pandemic rationing with about 10-40% (Pathak et al.,

2021).16

16A more detailed account of the reserves policy pandemic rationing can be found here:

https://www.covid19reservesystem.org/policy-impact.
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6 Discussion

In this paper, we introduce and analyze a novel informational property/measure for

mechanisms. Namely, we quantify the size of information needed to detect deviations

from a mechanism. Our auditability measure proves tractable and informative, and

our approach appears insightful in different applications. We believe that there is

a scope for future research with refined auditability notions that also account for

some important strategic considerations. We discuss some if these possible extensions

below.

1. First, in our model, we take type reports (problems) as given, whereas in reality

they may be determined endogenously. More specifically, the mechanism itself

could influence the realized problem, which in turn will impact the auditability

of the mechanism.

2. Second, our auditability index is defined with respect to adversarial deviations

from the mechanism (i.e., those that are hardest to detect). Yet, in some appli-

cations some deviations may be more likely to occur than others. For example,

the mechanism might be implemented by a strategic authority with preferences

over possible outcomes, who chooses deviations to maximize their utility. In

such a setup, a credibility notion in the spirit of Akbarpour and Li (2020) may

be more relevant.

3. Finally, we define detecting a deviation as a situation where a group of individ-

uals can rule out that the promised mechanism was used based on the collective

information on the group’s type reports and their final assignments. It may be

interesting to consider the strategic aspects of how this collective information

is generated. For example, if this information about the group is being shared

voluntarily, we may restrict attention to detections where everyone in the group

prefers the promised outcome to the deviation. Similarly, if the group’s in-

formation is being observed by some other individual (from or outside of the

group), potentially against the group’s will, then we may restrict attention to

detections where at least one individual prefers the promised outcome to the
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deviation. One could also imagine that the group’s information is audited by

a trusted third party. In this case, one may restrict attention to detections

that are optimally planned. That is, the auditing entity may anticipate the

likely deviations by the designer and then chooses the subset of observations

accordingly.

Our main motivation for keeping our framework general and abstract is to cover a

comprehensive spectrum of scenarios, applications and considerations. For exam-

ple, in many applications there is no centralized authority or the authority is not

strategic. As motivated in our introduction, deviations may even result from docu-

mentation errors, or other kinds of mistakes and misunderstandings by the operator.

How information can be collected or accessed can also vary heavily across applica-

tions. Therefore, we believe that our high level analysis is a crucial benchmark for

studying auditability. We hope that future research can incorporate strategic con-

siderations with refined auditability notions tailored towards applications where they

appear particularly relevant.

Although our analysis abstracts away from certain important features (such as how

information may be accessed), our theory can be directly applied to obtain insights

for alternative and more specific (microfounded) auditability notions. To support

this claim, consider a setup where audits are conducted by a third party, which sam-

ples and observes M ≤ N of the type reports and outcomes uniformly at random.

In this framework, we can measure auditability as the probability of detecting de-

viations. Suppose we want to understand how Immediate Acceptance and Deferred

Acceptance would compare with respect to this measure. From our theory, we know

that the Immediate Acceptance mechanism has a worst-case auditability index of two

(Proposition 2). Hence, for any problem and any deviation, there are at least two

individuals whose information alone is sufficient to detect the deviation. In a suf-

ficiently large market, the probability that the auditor will access both individual’s

information is at least about
(

M
N

)2
. Hence,

(

M
N

)2
is a lower bound for the probabil-

ity of detecting an adversarial deviation. If the audit is strategic instead of uniform

random, the detection probability will be even larger. In contrast, since the Deferred

Acceptance mechanism has a worst-case auditability index of N (Proposition 4), un-
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less M = N , at some problems the probability of detecting a deviation is zero for any

audit sample of size M < N .

7 Conclusion

We introduce a novel framework for studying auditability of mechanisms and provide

new insights on prominent mechanisms in different settings such as allocation prob-

lems, auctions, voting, and choice with affirmative action. Our theory and findings

may contribute to discussions on the choice of a mechanism for real-life problems.

Our auditability notion might be useful in other problems and domains not studied

in this paper. For example, one could explore auditability of mechanisms in related

allocation problems such as multi-unit auctions, many-to-many matching problems,

or non-binary voting settings. Additionally, one could investigate algorithmic imple-

mentations and computational complexity questions related to detecting deviations

and measuring auditability. We leave this and related questions, as well as many

possible extensions of our theory, for future research.
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A Omitted Proofs

A.1 Proof of Theorem 1

Part 1. Consider an arbitrary θ ∈ Θ. Our goal is to show that #ϕθ = 1 if and only

if ϕ has a sequential clinching implementation at θ.

First, we prove the ‘if’ part. Suppose ϕ is a sequential clinching mechanism. Consider

an arbitrary problem θ, and an arbitrary deviation ω 6= ϕ(θ). We show that some

individual i detects the deviation ω.

Let i be the first individual in the sequential clinching implementation such that

ϕ(θ)(i) 6= ω(i) := o (that is, who gets the ‘wrong’ object under ω). Let O be the
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set of available objects at the step that i clinches ϕ(θ)(i). By the choice of the step,

o ∈ O. (since all individuals in previous steps have received the ‘correct’ objects). By

definition of sequential clinching, ϕ(θ)(i) is the only possible object among O for i at

θi. Hence, i detects the deviation ω.

We now prove the ‘only if’ part. Suppose #ϕθ = 1. For an arbitrary θ, we will

find a sequence of individuals (i1, i2, . . . , iN) that would correspond to the sequential

clinching implementation of ϕ at problem θ.

Let ω := ϕ(θ). For an individual i, let Oi(θi) denote the set of possible objects for i at

θi. First, we show that there is an individual i1 such that |Oi1(θi1)| = 1. Suppose, for

the sake of contradiction, that there is no such individual. Or equivalently, suppose

that |Oi(θi)| ≥ 2 for all i ∈ I. Consider a directed graph whose vertices are individuals

I, and where we have a directed edge from vertex i to vertex j if and only if there

is an object o ∈ Oi(θi) such that ω(j) = o. Since each vertex has an outdegree of at

least one, there is a directed cycle. Select one such cycle, and let the individuals trade

their objects at ω according to this cycle. The resulting outcome, call it ω′, gives a

possible object to each individual. Hence, the deviation ω′ 6= ω cannot be detected

by any single individual. This contradicts that #ϕ = 1.

Thus, i1 is the desired individual in step 1 of the sequential clinching implementation.

Let o1 be ϕ(θ)(i1). Consider the restriction of the problem to individuals I \{i1} and

objects O\{o1}. Again, we can use a proof by contradiction to show that there is an

individual an i2 such that |Oi2(θi2) \ {o1}| = 1.

We construct the rest of the individuals (i3, . . . , iN) in the same way, completing the

proof of Part 1.

Part 2. Next, we prove the following: #ϕ = 1 if and only if ϕ has a sequential

clinching implementation at any problem θ, and moreover, the mechanism can be

implemented with a sequential clinching order that only depends on the set of available

objects at each step (but otherwise does not depend on the problem).

The first part of the previous statement (sentence) is a direct consequence of Part 1.

Our goal is to prove the second part of the statement, that is, to find a sequential
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clinching implementation of ϕ, where the selection of individuals only depends on the

set of available objects at each step. First, we state and prove an intermediate result.

Claim. Let O and I be any set of available objects and individuals that can be

achieved by some sequential clinching implementation of ϕ at some problem θ. Then,

there is an individual i ∈ I such that
∣

∣Oi(θ
′
i) ∩ O

∣

∣ = 1 for all θ′i.

Proof. The proof of the Claim resembles the proof of the ‘only if’ part of Theorem

1. Suppose, for the sake of contradiction, that O and I can be achieved by some

sequential clinching implementation of ϕ at some problem θ, and for any i ∈ I, there

is a type report θ′i such that
∣

∣Oi(θ
′
i)∩O

∣

∣ ≥ 2. Consider the problem (θ′I , θ−I), and let

ω := ϕ(θ′I , θ−I). By definition of the sequential clinching implementation, individuals

in I \ I are matched to the same objects in O \ O at both problems θ and (θ′I , θ−I).

Consider a directed graph whose vertices are individuals I, and where we have a

directed edge from vertex i to vertex j if and only if there is an object o ∈ Oi(θi)∩O

such that ω(j) = o. Since each vertex has an outdegree of at least one, there is a

directed cycle. Select one such cycle, and let the individuals trade their objects at

ω according to this cycle. The resulting outcome, call it ω′, gives a possible object

to each individual. Hence, the deviation ω′ 6= ω cannot be detected by any single

individual. This contradicts that #ϕ = 1.

Now, consider the following sequential clinching implementation of ϕ for some arbi-

trary θ. Let the first clincher i1 be an individual for whom |Oi1(θi1)| = 1 for all type

reports θ′i1 . In general, let the step t clincher it be the available individual for whom
∣

∣Oit(θ
′
it
)∩Ot

∣

∣ = 1 for all θ′it , where Ot is the set of available objects at step t. At any

step, if there is more than one such available individual, select one with some fixed

tie-breaking rule. The sequential clinching order in this implementation only depends

on the set of objects. This completes the proof of Theorem 1.
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A.2 Proof of Proposition 1

Suppose #ϕ = 1. By the second part of Theorem 1, there is a sequential clinching

implementation of ϕ where the identity of each step’s clincher only depends on the

set of available objects. Let (i1, i2, . . . , iN) be the sequence of individuals in this

sequential clinching implementation.

Suppose, for the sake of contradiction, that ϕ has full range.

Claim. For any problem θ, |Oin(θin)| ≥ n for all n ∈ {1, 2, . . . , N}.

Proof. Consider an arbitrary problem θ and an arbitrary n ∈ {1, 2, . . . , N}. We will

show that |Oin(θin)| ≥ n.

Suppose, for the sake of contradiction, that |Oin(θin)| ≤ n − 1. Since ϕ has full

range, there is a problem θ′ such that ϕ(θ′) assigns all objects in Oin(θin) to the first

|Oin(θin)| individuals in {i1, i2, . . . , in−1}. Consider the problem (θin , θ
′
−in

). Then, by

definition of the sequential clinching implementation, it should be that ϕ(θin , θ
′
−in

)

also assigns all objects Oin(θin) to the first |Oin(θin)| individuals in {i1, i2, . . . , in−1}.

Therefore, ϕ(θin , θ−i′n
)(in) /∈ Oin(θin), which is a contradiction.

We now prove Proposition 1. If Oi2(θi2) 6= O, fix some o ∈ O \Oi2(θi2). If Oi2(θi2) =

O, o can be arbitrary. Since ϕ has full range, there is a problem θ̄ such that ϕ(θ̄)(i1) =

o. Let ω := ϕ(θ̄i1 , θ−i1). Since |Oi2(θi2)| ≥ 2 (by the Claim), and by the choice of o,

we have |Oi2(θi2) \ {o}| ≥ 2. Also, since for each n ∈ {3, . . . , N}, |Oin(θin)| ≥ n ≥ 3

(by the Claim), we have that |Oin(θin) \ {o}| ≥ 2.

Consider a directed graph whose vertices are individuals I \{i1}, and where we have a

directed edge from vertex i to vertex j if and only if there is an object o′ ∈ Oi(θi)\{o}

such that ω(j) = o′. Since each vertex has an outdegree of at least one, there is a

directed cycle. Select one such cycle, and let the individuals trade their objects at

ω according to this cycle. The resulting outcome, call it ω′, gives a possible object

to each individual. Hence, the deviation ω′ 6= ω cannot be detected by any single

individual. This contradicts that #ϕ = 1.
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A.3 Proof of Theorem 2

The second part of Theorem 2 follows directly from the first part. In what follows we

prove the first part of Theorem 2.

Suppose ϕ is DA-representable through mapping τ : Θ → (RN)N . Fix an arbitrary

problem θ = (P, r). To simplify notation, let us denote the modified priorities by

r̂ = τ(θ).

First, we establish that ϕ does not have a sequential clinching implementation at θ.

More specifically, no individual i can clinch an object o at θ. To see this, consider

a type report θ′j of some individual j 6= i, where j ranks o as her most preferred

object, and she has a strictly higher priority score at o than i. Define r̂′ = τ(θ−j , θ
′
j).

Since τ is monotone and symmetric, it should be that r̂′jo > r̂′io. Hence, the DA

implementation at problem (P, r̂′) can never assign o to i instead of j. Since, ϕ does

not have a sequential clinching implementation at problem θ, by Theorem 1, we have

that #ϕθ > 1.

We now proceed with the proof of Theorem 2. We first prove the ‘if’ part. Suppose

that for any outcome ω 6= ϕ(θ), either ω is not stable at (P, τ(θ)), or it is stable at

(P, τ(θ)), and there are two individuals i and j, such that

• i and j prefer each other’s objects at ω more than their own ones, that is,

ω(j)Piω(i) and ω(i)Pjω(j),

• for any o /∈ {ω(i), ω(j)}, oPiω(i) or oPjω(j).

Consider an arbitrary deviation ω 6= ϕ(θ) and suppose that it is not stable at problem

(P, r̂). Then, by definition of stability, there are two individuals i, j ∈ I and object

o ∈ O such that (1) o Pi ω(i), (2) ω(j) = o, and (3) r̂io > r̂jo. However, since ϕ

is DA-representable, there are no type reports θ−{i,j} of individuals in I \ {i, j} for

which ϕ produces such an outcome. Hence, i and j detect the deviation.

Now suppose there ω 6= ϕ(θ) is stable at (P, r̂), and it satisfies two preference con-

ditions in the statement of Theorem 2. Namely, there are individuals i and j that
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prefer each others’ objects at ω to their own, and there is no object o /∈ {ω(i), ω(j)}

that is less preferred by both individuals than their respective objects at ω.

Suppose, for the sake of contradiction, that there are type reports θ′−{i,j} of individuals

in I \ {i, j}, such that ϕ(θ{i,j}, θ
′
−{i,j}) = ω. Let r̂′ = τ(θ{i,j}, θ

′
−{i,j}). Since ϕ is DA-

representable, ω should be the outcome of the DA implementation at the modified

problem (Pi, Pj, P
′
−{i,j}, r̂

′).

Consider the following mutually exclusive and collectively exhaustive scenarios: (i) j

is assigned to ω(j) before i is assigned to ω(i), (ii) i is assigned to ω(i) before j is

assigned to ω(j), (iii) i and j are assigned to their respective objects at ω in the same

step. We study each of these cases separately.

Case 1. Suppose j is assigned to ω(j) before i is assigned to ω(i). Let t be the step

of the DA implementation at the modified problem, when i claims and is assigned

to ω(i), and j has already been tentatively assigned to ω(j). Since j prefers ω(i)

over ω(j), it means that at the beginning of step t some individual in I \ {i, j} is

tentatively assigned to ω(i).

Therefore, at the beginning of step t we have that no object is tentatively assigned to

i, and both objects {ω(i), ω(j)} are tentatively assigned to some individuals. Since

|I| = |O|, there should be some object o /∈ {ω(i), ω(j)} that is not tentatively assigned

to anyone. Since no object is simultaneously less preferred by both i and j than their

own objects at ω, then either i prefers o to ω(i), or j prefers o more than ω(j). Either

way, we arrive at a contradiction: i cannot prefer o more than ω(i) because she is

claiming ω(i) at step t when o is available, and j cannot prefer o more than ω(j),

because ω(j) is tentatively assigned to j, despite that o is not tentatively assigned to

anyone (and hence, has not been claimed by anyone in any previous step).

Case 2. Suppose i is assigned to ω(i) before j is assigned to ω(j). This case is

symmetric to Case 1, and hence, the proof is similar (identical).

Case 3. i and j are assigned to their respective objects at ω in the same step. The

proof is similar to Case 1. Let t be the step of the DA implementation, when i and j

claim and are assigned to their respective objects at ω. Since i prefers ω(j) over ω(i)

43



and j prefers ω(i) over ω(j), it should be that both objects are tentatively assigned to

some individuals in I \ {i, j}. Therefore, at the beginning of step t, we have that no

object is tentatively assigned to i and j, and both objects {ω(i), ω(j)} are tentatively

assigned to some individuals other than i and j. Since |I| = |O|, there should be

some object o /∈ {ω(i), ω(j)} that is not tentatively assigned to anyone (in fact, there

are at least two such objects). Since no object is simultaneously less preferred by

both i and j than their own objects at ω, then either i prefers o to ω(i), or j prefers

o more than ω(j). Either way, we arrive at a contradiction: both i and j are claiming

their respective objects at ω in step t, despite that o is not tentatively assigned to

anyone (and hence, has not been claimed by anyone in any previous step).

We now prove the ‘only if’ part. The proof is by contraposition. Suppose there is an

outcome ω 6= ϕ(θ) which is stable at (P, r̂), and for any pair of individuals, one of the

conditions in the statement of Theorem 3 fails. We will show that no two individuals

detect the deviation ω, which would imply that #ϕθ > 2.

Consider arbitrary two individuals i and j. By the supposition above, i and j do

not satisfy one of the preference conditions in the statement of Theorem 2. Namely,

either one of the individuals in {i, j} does not prefer the other individual’s object at

ω to her own, or both individuals in {i, j} prefer the other individual’s object at ω

to their own, and there is an object o /∈ {ω(i), ω(j)} such that ω(i)Pio and ω(j)Pjo.

We will prove #ϕθ > 2 for each of these cases separately.

Case 1. Suppose that one of the individuals in {i, j} does not prefer the other

individual’s object at ω to her own. Without loss of generality, suppose ω(i)Piω(j).

Consider the type reports θ′−{i,j} = (P ′
−{i,j}, r

′
−{i,j}) of individuals in I \ {i, j} where

every individual in this set ranks her assigned object at ω as her first choice. Other-

wise, the preferences and priorities agree with those in problem θ. To establish that i

and j do not detect the deviation ω, it is sufficient to show that ϕ(θ{i,j}, θ
′
−{i,j}) = ω.

Let r̂′ = τ(θ{i,j}, θ
′
−{i,j}) denote the modified priorities at problem (θ{i,j}, θ

′
−{i,j}).

Since ω is a stable outcome at problem (P, r̂), it should be that any object that i

prefers to ω(i) is assigned to an individual with a higher r̂ priority score than i at
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outcome ω. Similarly, any object that j prefers to ω(j) is assigned to an individual

with a higher r̂ priority score than j at outcome ω. Since τ is monotone, it should

be that these priority scores’ comparisons are preserved for r̂′. Hence, during the

implementation of DA at problem (P{i,j}, P
′
−{i,j}, r̂

′), individuals i and j will be re-

jected by all objects that they prefer more than ω(i) and ω(j), respectively. Hence,

the DA implementation at problem (P{i,j}, P
′
−{i,j}, r̂

′) produces ω. Or equivalently,

ϕ(θ{i,j}, θ
′
−{i,j}) = ω.

Case 2. Suppose that both i and j prefer the other individual’s assignment at ω to

their own, and there is an object o /∈ {ω(i), ω(j)} such that ω(i)Pio, and ω(j)Pjo.

Since ω(j)Piω(i), ω(i)Pjω(j), and ω is stable at problem (P, r̂), it should be that i

has a higher r̂ priority at ω(i) than j, and j has a higher r̂ priority at ω(j) than i.

Let k be the individual with ω(k) = o, where o is as defined above. Consider type

reports θ′−{i,j} = (P ′
−{i,j}, r−{i,j}) of individuals in I \ {i, j}, such that all individuals

in this set other than k rank their assigned objects at ω as their first choice, and

otherwise, the preference rankings and priority scores agree with θ−{i,j}. We construct

the type report θ′k = (P ′
k, r

′
k) of k as follows.

• k shares the same ranking of objects as i until (and including) ω(i), but she

ranks o as her next choice right after ω(i),

• r′k satisfies r′kõ < riõ for all o′ with o′Piω(i) (or equivalently, for all o
′P ′

kω(i).

• If riω(i) > rjω(i), then r′kω(i) is an arbitrary number in (rjω(i), riω(i)). Otherwise,

r′kω(i) is an arbitrary number strictly smaller than riω(i).

Let r̂′ = τ(θ{i,j}, θ
′
−{i,j}) denote the modified priorities at problem θ{i,j}, θ

′
−{i,j}.

Claim. r̂′kω(i) < r̂′iω(i) and r̂′kω(i) > r̂′jω(i).

Proof. The first inequality in the claim directly follows from the construction of θ′k

and the equal treatment property of τ applied to i and k at problem (θ{i,j}, θ
′
−{i,j}).
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We now prove r̂′kω(i) > r̂′jω(i). The proof is by contradiction. Suppose r̂′kω(i) < r̂′jω(i).

Consider an alternative problem θ′′ = (P ′′, r′′) that differs from (θ{i,j}, θ
′
−{i,j}) by only

that k’s priority score r′′kω(i) at object ω(i) is as follows. If riω(i) > rjω(i), then r′′kω(i)

is an arbitrary number strictly greater than riω(i). Otherwise, r′′kω(i) is an arbitrary

number in (riω(i), rjω(i)). Let r̂
′′ = τ(θ′′).

When moving from problem (θ{i,j}, θ
′
−{i,j}) to problem θ′′, both the preference rankings

of j and k, and the priority score comparison between j and k are unchanged. Hence,

by the independence of irrelevant alternatives property of τ , and by our supposition,

we have that r̂′′kω(i) < r̂′′jω(i). Note that the type reports of i and j are unchanged

across problems θ and θ′′. Therefore, by the monotonicity property of τ , and by that

r̂jω(i) < r̂iω(i) (which we established in the beginning of the proof of Case 2 of the

‘only if’ part), we get r̂′′jω(i) < r̂′′iω(i). Finally, by the equal treatment property of τ

applied to i and k at problem θ′′, we get r̂′′iω(i) < r̂′′kω(i). Combing three inequalities

above, we have,

r̂′′kω(i) < r̂′′jω(i) < r̂′′iω(i) < r̂′′kω(i),

a contradiction.

We now complete the proof of Case 2 of the ‘only if’ part.

Since ω is a stable outcome at (P, r̂), it should be that any object that i prefers to

ω(i) is assigned to an individual with a higher r̂ priority than i at outcome ω. By the

monotonicity property of τ is a monotone mapping, this is also true for r̂′ priority

scores. Similarly, any object that j that prefers to ω(j) is assigned to an individual

with a higher r̂ priority than j at outcome ω, and this is also true for r̂′ priority

scores.

Since k has a lower r̂′ priority scores than i at all objects weakly more preferred than

ω(i) (according to P ′
k), during the implementation of DA at the modified problem

(P{i,j}, P−{i,j}, r̂
′), she will be rejected by all objects strictly more preferred than ω(i),

and she will be tentatively assigned at ω(i) at some step. Since r̂′kω(i) > r̂′jω(i) (by the

second part of the Claim), j will be eventually rejected by ω(i).

Continuing the DA implementation, i and j will be eventually rejected by all objects
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that they prefer strictly more than ω(i) and ω(j), respectively. Since r̂′kω(i) > r̂′iω(i)

(by the first part of the Claim), i will be tentatively assigned to ω(i), and k will

be rejected by that object, and she will be assigned to o. In conclusion, the DA

implementation at the modified problem (P{i,j}, P−{i,j}, r̂
′) would yield the outcome

ω. Hence, ϕ(θ{i,j}, θ
′
−{i,j}) = ω, and i and j do not detect the deviation.

Since i and j were arbitrary, we conclude that #ϕθ > 2. This complete the proof of

Theorem 2.

A.4 Proof of Theorem 3

Before we start with the proof of Theorem 3, we introduce the following definitions:

Given any sequential dictatorship ϕ, any θ and any i ∈ I, let n(θ, i) ∈ {1, . . . , N}

be such that in(θ,i)(θ) = i. Given any I ′ ⊆ I, let Sϕ(I ′) = {σ ∈ Sϕ|I ′ ⊆ Ī(σ) and

π(σ) ∈ I ′}.

We first prove the ‘only if’ part of the statement. Let ϕ be a sequential dictatorship

that is not a vice dictatorship. We show that there exists a deviation that cannot be

detected by any pair of individuals. We need to distinguish the following cases:

Case 1. Let ϕ be such that Definition 5 (3) is satisfied. We now further distinguish

between the two subcases, where Definition 5 (2) is either satisfied or not.

Case 1.1 Suppose that Definition 5 (2) is satisfied and note that this implies that

Definition 5 (1) is violated.

We now proceed in two steps: First, we establish a lemma that will be helpful to iden-

tify the problem and the individuals that will be affected by the deviation. Second,

we construct the problem and the deviation and show that no pair of individuals can

detect it.

Step 1:

We start with the lemma mentioned above.

Lemma 1. There exists I ′ with I ′ ∩ (Iϕ2 ∪ Iϕ3 ) = ∅ and |I ′| ≥ 3 such that (1) there
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are σ̂1, σ̂2 ∈ Sϕ(I ′) with π(σ̂1) 6= π(σ̂2) and (2) |Ō(σ̂1) ∩ Ō(σ̂2)| ≥ 2.

Proof. In the first part, we show that there is I ′ that satisfies condition (1). In the

second part, we show that such I ′ automatically satisfies condition (2).

Part 1: We distinguish two cases:

First, suppose that the last two dictators on ϕ are always the same (i.e. for any pair

of problems θ′, θ′′, we have Ī(σN−2(θ
′)) = Ī(σN−2(θ

′′)). Thus, since Definition 5 (2) is

satisfied and Definition 5 (1) violated, there have to be two individuals i′, j′ /∈ Iϕ2 ∪ Iϕ3

and two suboutcomes σ̂1, σ̂2 ∈ Sϕ, where π(σ̂1) = i′, π(σ̂2) = j′, |Ī(σ̂1)| ≥ 3 and

|Ī(σ̂2)| ≥ 3. Select an arbitrary k′ ∈ IϕN . Hence, k
′ /∈ Iϕn for all n ≤ N − 2. Then, the

conditions in (1) are satisfied for I ′ = {i′, j′, k′}.

Second, assume that the last two dictators on ϕ are not always the same. Thus, there

are two problems θ′, θ′′ such that there is an individual i′ ∈ I, where i′ ∈ Ī(σN−2(θ
′))

and i′ /∈ Ī(σN−2(θ
′′)). Hence, for I ′ = {i′} ∪ Ī(σN−2(θ

′′)), we have σN−2(θ
′′) ∈ Sϕ(I ′),

π(σN−2(θ
′′)) = i′ and |Ī(σN−2(θ

′′)| ≥ 3. Let j′, k′ ∈ Ī(σN−2(θ
′′)) such that n(θ′, j′) <

n(θ′, k′). Thus, n(θ′, j′) < n(θ′, i′). This ensures that σn(θ′,j′)(θ
′) ∈ Sϕ(I ′) with

π(σn(θ′,j′)(θ
′)) = j′. Then, the conditions in (1) are satisfied for I ′ = {i′, j′, k′}. Part

2: We now show that any I ′ that satisfies condition (1) also satisfies condition (2).

Concretely, consider I ′ that satisfies condition (1).

We proceed by contradiction: Suppose that for any pair σ, σ′ ∈ Sϕ(I ′), with π(σ) 6=

π(σ′), we have |Ō(σ) ∩ Ō(σ′)| < 2. By condition (1) there are σ̂1, σ̂2 ∈ Sϕ(I ′) with

π(σ̂1) = i′, π(σ̂2) = j′ and i′ 6= j′. Assume that |Ō(σ̂1) ∩ Ō(σ̂2)| = 0. Thus, there

exist two objects o∗, o∗∗ both in Ō(σ̂1) and both not in Ō(σ̂2) and two objects õ, õ′

both in Ō(σ̂2) and both not in Ō(σ̂1).

Next, consider a problem θ∗ where for all k̄ ∈ I, for each ô1 ∈ O \ {õ, õ′, o∗} and

for each ô2 ∈ {õ, õ′, o∗}, we have ô1 θ∗
k̄
ô2. Thus, there exists σ̂ ∈ Sϕ(I), where

{õ, õ′, o∗} ⊆ Ō(σ̂). Hence, π(σ̂) = i′. Consider θ∗∗ such that for all k̄ ∈ I, for each

ô3 ∈ O \ {õ, o∗, o∗∗} and for each ô4 ∈ {õ, o∗, o∗∗}, we have ô3 θ∗∗
k̄

ô4. This implies

that there exists σ̄ ∈ Sϕ(I ′), where {õ, o∗, o∗∗} ⊆ Ō(σ̄). Hence, π(σ̄) = i′. However,

note that |Ō(σ̂2) ∩ Ō(σ̄)| ≥ 2. Thus, since π(σ̂2) = j′ we arrive at a contradiction. A
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similar argument will apply to the case where |Ō(σ̂1) ∩ Ō(σ̂2)| = 1 and is therefore

omitted.

This completes the proof of the lemma.

We proceed as follows: we choose an arbitrary set of individuals I ⊆ I that satisfies

the conditions of Lemma 1. This set will contain the individuals that are affected by

the deviation we are about to construct in Step 2 below.

Specifically, by Lemma 1, there is σ1, σ2 ∈ Sϕ(I) such that π(σ1) 6= π(σ2) and for

which |Ō(σ1) ∩ Ō(σ2)| ≥ 2. Denote π(σ1) = i, π(σ2) = j and consider an arbitrary

pair of objects o′, o′′ ∈ Ō(σ1) ∩ Ō(σ2). Now note that by definition of Sϕ there exist

θ̂ and θ̃ such that there are n, n′ ∈ {1, . . . , N − 1} with σn(θ̂) = σ1 and σn′(θ̃) = σ2.

Also note that for every θ̂∗ such that for all i∗ /∈ Ī(σ1), ϕ(θ̂)(i∗) is ranked first on θ̂∗i∗ ,

we must reach σn(θ̂
∗) = σ1.

Step 2:

Construction of the problem: Consider the following problem θ that will be the basis

for the deviation: First, for all k∗ /∈ {i, j}, object ϕ(θ̂)(k∗) ranks first on θk∗ and for

each ō /∈ {o′, o′′}, let ō θk∗ o′ and ō θk∗ o′′. Second, suppose that θi and θj rank o′ first

and o′′ second.

It is easy to check that ϕ(θ)(i) = o′, ϕ(θ)(j) = o′′ and ϕ(θ)(k∗) = ϕ(θ̂)(k∗) for all

k∗ /∈ {i, j}.

Construction of the deviation: We are now ready to construct the deviation ω 6= ϕ(θ)

at problem θ:

• For all k∗ ∈ I \ {i, j}, let ω(k∗) = ϕ(θ)(k∗).

• ω(i) = o′′ and ω(j) = o′.

Detectability: Take any Î ⊂ I with |Î| = 2. We verify that Î does not detect ω

considering the following exhaustive case distinction.
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Case 1.1.1: Suppose that Î ∩ {i, j} = ∅. Since for all k∗ ∈ I \ {i, j} we have

ω(k∗) = ϕ(θ)(k∗), we know that Î does not detect ω.

Case 1.1.2: Suppose that Î = {i, j}. First, note that for every θ̃∗ where for all

j∗ /∈ Ī(σ2), object ϕ(θ̃)(j∗) ranks first on θ̃∗j∗ , we must reach σ2 = σn′(θ̃∗). Now,

consider problem θ′ as follows: For all j∗ /∈ Ī(σ2) specify that ϕ(θ̃)(j∗) ranks first on

θj∗ and for each ō /∈ {o′, o′′}, let ō θj∗ o′ and ō θj∗ o′′. Furthermore, suppose that

θ′i = θi and θ′j = θj and that for all j̄ ∈ Ī(σ2) \ {i, j}, objects o′, o′′ rank last on θ′
j̄
.

Calculating the outcome reveals that ω(i) = ϕ(i)(θ′) and ω(j) = ϕ(j)(θ′). Thus, Î

does not detect ω.

Case 1.1.3. Suppose that |Î ∩ {i, j}| = 1.

• If Î = {id, i}, then consider θ̄ such that for all l∗ /∈ Î, o′ is ranked first on θ̄l∗

and o′′ ranks last on θ̄l∗ . Let θ̄i = θ̄i and θ̄id = θid . Thus, ω(id) = ϕ(θ̄)(id). This

implies that n(θ̄, i) ≥ 3. Hence, ω(i) = ϕ(θ̄)(i) = o′′.

• If Î = {i, ĵ} with ĵ 6= id, then consider θ̄ such that for all l∗ /∈ Î, o′ is ranked first

on θ̄l∗ and ω(ĵ) ranks last on θ̄l∗ . Let θ̄i = θi and θ̄ĵ = θĵ . Thus, ω(i) = ϕ(θ̄)(i)

and ω(ĵ) = ϕ(θ̄)(ĵ).

• If Î = {j, ĵ}, then consider θ̄ such that for all l∗ /∈ Î and for each ō /∈ {o′′, ω(ĵ)},

we have ō θl∗ o
′′ and ō θl∗ ω(ĵ). Let θ̄i = θi and θ̄ĵ = θĵ . Thus, ω(j) = ϕ(θ̄)(j) =

o′ and ω(ĵ) = ϕ(θ̄)(ĵ).

Hence, in all three instances above, Î does not detect ω.

Since the selection of Î was arbitrary, we can conclude #ϕ > 2. This completes the

arguments for this case.

Case 1.2. Suppose that ϕ violates Definition 5 (2). We proceed in a similar manner

as in Case 1.1. We first identify the individuals that will be affected by the deviation

we aim to construct. In a second step, we will apply the arguments in Step 2 of Case

1.1.
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Case 1.2.1. Suppose that Iϕ2 is not a singleton. We first show that there exists

I = {i, j} with I ⊆ Iϕ2 ∪ Iϕ3 such that there exist σ1, σ2 ∈ Sϕ(I), where π(σ1) = i,

π(σ2) = j, |Ō(σ1)| = N − 2 and |Ō(σ2)| = N − 1. We need to consider the following

subcases:

Case 1.2.1.1. Suppose that Iϕ2 = Iϕ3 . Then, since Definition 5 (2) is violated, we must

have |Iϕ2 | = |Iϕ3 | ≥ 3. Thus, there exists j ∈ Iϕ2 and θ̂, where n(θ̂, j) ≥ 4. Let i ∈ Iϕ3

such that n(θ̂, i) = 3. Since j ∈ Iϕ2 , there exists θ̃ such that n(θ̃, j) = 2 > n(θ̃, i).

Thus, we can select I = {i, j}, σ1 = σ2(θ̂) and σ2 = σ1(θ̃) to satisfy the claim above.

Case 1.2.1.2. Suppose that Iϕ2 6= Iϕ3 and that there exists i′ ∈ Iϕ2 with i′ /∈ Iϕ3 . Thus,

there exists j ∈ Iϕ2 and θ̂, where n(θ̂, j) ≥ 4. Let i ∈ Iϕ3 be such that n(θ̂, i) = 3.

Since j ∈ Iϕ2 , there exists θ̃ such that n(θ̃, j) = 2 > n(θ̃, i). Thus, we can select

I = {i, j}, σ1 = σ2(θ̂) and σ2 = σ1(θ̃) to satisfy the claim above.

Case 1.2.1.3. Suppose that Iϕ2 6= Iϕ3 and that there exists i′ ∈ Iϕ3 with i′ /∈ Iϕ2 . Thus,

we can select i ∈ Iϕ3 and θ̂ such that n(θ̂, i) = 3 and i /∈ Iϕ2 . Moreover, because Iϕ2

is not a singleton, we can select j ∈ Iϕ2 with n(θ̂, j) ≥ 4. Also, since j ∈ Iϕ2 , there

exists θ̃ such that n(θ̃, j) = 2 > n(θ̃, i). Thus, we can select I = {i, j}, σ1 = σ2(θ̂),

σ2 = σ1(θ̃) to satisfy the claim above.

For each of the three subcases above, since N ≥ 5 and a single object is assigned

in σ2 and only two objects are assigned in σ1, we must have |Ō(σ1) ∩ Ō(σ2)| ≥ 2.

Consider an arbitrary pair of objects in o′, o′′ ∈ Ō(σ1) ∩ Ō(σ2). Also note that for

every θ̂∗, where for all i∗ /∈ Ī(σ1), object ϕ(θ̂)(i∗) is ranked first on θ̂∗i∗ , we eventually

must reach σ2(θ̂
∗) = σ1. We now can apply the arguments of Step 2 in Case 1.1.

Case 1.2.1. Suppose that Iϕ2 is a singleton. Thus, |Iϕ3 | ≥ 2 and Iϕ2 ∩ Iϕ3 = ∅.

Note that since Iϕ2 is a singleton and |Iϕ3 | ≥ 2, there must exist σ1, σ2 ∈ Sϕ such

that |Ō(σ1)| = N − 2 and |Ō(σ2)| = N − 2 as follows: there is a unique object o∗

that is assigned in both σ1 and σ2 (that is the other assigned objects and the two

suboutcomes are not the same) and for which π(σ1) 6= π(σ2). Otherwise, we would

reach a contradiction to |Iϕ3 | ≥ 2. Now note that N ≥ 5 implies that there is a pair

of objects õ, ô ∈ Ō(σ1) ∩ Ō(σ2).
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We now consider I = {i, j} such that π(σ1) = i and π(σ2) = j and we choose an

arbitrary pair o′, o′′ ∈ Ō(σ1) ∩ Ō(σ2). Again, note that for every θ̂∗ such that for all

i∗ /∈ Ī(σ1), ϕ(θ̂)(i∗) is ranked first on θ̂∗i∗ , we must reach σn(θ̂
∗) = σ1. We now can

apply the arguments of Step 2 in Case 1.1. and thereby complete the arguments for

this subcase.

This completes the arguments for Case 1.2.

Case 2. Let ϕ be such that Definition 5 (3) is violated. We proceed in a similar

manner as in the previous cases.

Since Definition 5 (3) is violated, there must exist a pair σ1, σ2 ∈ Sϕ, with Ō(σ1) =

Ō(σ2) and Ī(σ1) = Ī(σ2) such that π(σ1) 6= π(σ2). Denote π(σ1) = i, π(σ2) = j and

let {o′, o′′} ⊆ Ō(σ1) ∩ Ō(σ2). Now, consider two problems θ̂, θ̃ such that σ1 = σn(θ̂)

and σ2 = σn(θ̃) for some step n. Again, for every θ̂∗ such that for all i∗ /∈ Ī(σ1),

object ϕ(θ̂)(i∗) is ranked first on θ̂∗i∗ , we must reach σn(θ̂
∗) = σ1. Finally, apply Step

2 of Case 1.1.

This completes the arguments for Case 2, and hence, the ‘only if’ direction.

We proceed with the ‘if’ part of the statement. Suppose that ϕ is a vice dictatorship.

To establish that #ϕ = 2, consider an arbitrary problem θ and an arbitrary deviation

ω 6= ϕ(θ). We have to show that there is a group of two individuals that can detect

the deviation. Consider the smallest step n ∈ {1, . . .N − 1} such that ω(in(θ)) 6=

ϕ(θ)(in(θ)). Thus, there exists n′ > n such that ω(in′(θ)) 6= ϕ(θ)(in′(θ)), where

ω(in′(θ)) = ϕ(θ)(in(θ)). Denote in(θ) := i and in′(θ) := j.

Case 1: Suppose that {i, j} = Iϕ2 ∪ Iϕ3 . Since ω(id) = ϕ(θ)(id), we have i = i2(θ
′)

for all θ′ with θ′i = θi, where ϕ(θ′)(id) = ϕ(θ)(id) and thus ϕ(θ′)(i) = ϕ(θ)(i) 6= ω(i).

Hence, Î = {i, id} detect ω.

Case 2: Suppose that {i, j} = IϕN−1 ∪ IϕN . Then {ω(i), ω(j)} = Ō(σN−2(θ)), since

otherwise there must exist k /∈ Ī(σN−2(θ)) such that ω(k) 6= ϕ(θ)(k), which would

contradict the assumption that n is the smallest step for which ω(in(θ)) 6= ϕ(θ)(in(θ)).

Also notice that {ω(i), ω(j)} = Ō(σN−2(θ)) implies that ω(i) = ϕ(θ)(j) and ω(j) =

ϕ(θ)(i). Hence, ω(j) = ϕ(θ)(i) θi ω(i). Moreover, by Definition 5 (3), for any pair
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σ, σ̂ ∈ Sϕ with Ō(σ) = Ō(σ̂) and Ī(σ) = Ī(σ̂), we must have π(σ) = π(σ̂). This

implies that Î = {i, j} detect ω.

Case 3: Finally, suppose that {i, j} 6= Iϕ2 ∪I
ϕ
3 and {i, j} 6= IϕN−1∪I

ϕ
N . If i = id, then id

detects the deviation since for all θ′ with θ′i = θi, it must be ϕ(θ′)(id) = ϕ(θ)(id). For

i 6= id, it must be ω(j) = ϕ(θ)(i) θi ω(i). Since {i, j} 6= Iϕ2 ∪Iϕ3 and {i, j} 6= IϕN−1∪IϕN ,

we know that for all θ′ with θ′i = θi, it must be ϕ(θ′)(i) θ′i ϕ(θ
′)(j). Thus, Î = {i, j}

detect ω.

Since we selected the problem and deviation arbitrarily, we conclude that any devia-

tion can be detected by at most two individuals. Thus, #ϕ = 2. This completes the

proof for Theorem 3.

A.5 Proof of Theorem 4

We first prove the ‘if’ part. Suppose ϕ is a dual-dictatorship. Consider an arbitrary

problem b ∈ Θ and a deviation ω 6= ϕ(b). Let i be some individual for whom

ω(i) 6= ϕ(b)(i). Also, let (x, y) = ω(i) and (x′, y′) = ϕ(b)(i). Consider cases:

1. x = x′. We show that i detects the deviation ω. Suppose, for the sake of

contradiction, that she does not detect the deviation, i.e., there is problem

b̄ ∈ Θ with b̄i = bi, such that (x, y) = ϕ(b̄)(i). Since, i has the same bid and

allocation at problems b and b̄, and ϕ is a fixed-pay auction, we should have

that y = y′. This contradicts that (x, y) = (x′, y′).

2. x 6= x′. The condition means that i receives the object under one of the out-

comes ω or ϕ(b), and she does not receive the object under the other outcome.

Let i1 be the first dictator in the definition of the dual-dictatorship. Then, it

should be that i1 too receives the object under one of the outcomes ω or ϕ(b),

and she does not receive the object under the other outcome. However, by

definition, whether i1 receives an object or not is fully determined by her bid

bi1 . Hence, i1 detects the deviation ω.

We proved that in both cases a single individual detects the deviation ω. Since b ∈ Θ
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and deviation ω 6= ϕ(b) were arbitrary, we conclude that #ϕ = 1.

We now prove the ‘only if’ part. Suppose #ϕ = 1.

Claim 1. ϕ is a fixed-pay auction.

Proof. We prove the claim by contradiction. Suppose, there are problems b, b′ ∈ Θ

and an individual i with bi = b′i, such that for (x, y) := ϕ(b)(i) and (x′, y′) := ϕ(b′)(i),

we have that x = x′ and y 6= y′. For the problem b, consider the deviation ω that

differs from ϕ(b) only by that ϕ(b)(i) = (x′, y′). Then, no single individuals detects

this deviation, contradicting #ϕ = 1.

Let Ī ⊆ I be the set of individuals that receive the object under some problem. If Ī

is singleton, then ϕ is a dual-dictatorship with B̄ = R+. For the rest of the proof, we

assume that Ī is not a singleton.

Claim 2. There is an i1 ∈ Ī and a B̄ ⊆ R+, such that for all b ∈ Θ and (x, y) =

ϕ(b)(i1),

x = 1 if and only if bi1 ∈ B̄.

Proof. We prove the claim by contradiction. Suppose, for all i ∈ Ī there is a bid

bi ∈ R+ and others’ bids b′−i and b̃−i, with (x′, y′) = ϕ(bi, b
′
−i) and (x̃, ỹ) = ϕ(bi, b̃−i),

such that x = 1 and x̃ = 0. Fix the problem b = (bi)i∈I , and let i be the individual

who receives the object at ϕ(b). Consider a deviation ω 6= ϕ(b) such that some

individual i′ ∈ Ī \ {i} receives the object. Then, no single individual detects the

deviation ω.

Claim 3. |Ī| = 2.

Proof. We prove the claim by contradiction. Suppose |Ī| > 2. For any i ∈ Ī \ {i1},

let the bid bi be such that for some bids of others b′−i, i receives the object at the

outcome ϕ(bi, b
′
−i). Fix the bids of individuals in Ī \ {i1} at (bi)i∈Ī\{i1} and set the

bid of i1 at some bi1 /∈ B̄. Let b denote the corresponding problem (where the bids

of individuals in I \ Ī are arbitrary). Then, it should be that some individual in
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i ∈ Ī \ {i1} receives the object. Consider a deviation ω 6= ϕ(b) such that some other

individual i′ ∈ Ī \ {i1, i} receives the object (such a i′ exist since we assumed that

|Ī| > 2). Then, no single individual detects the deviation ω, which contradicts that

#ϕ = 1.

By Claims 2 and 3, i1 and i2 := Ī \ {i1} are the dual-dictators of ϕ. This completes

the proof of Theorem 4.

A.6 Proof of Theorem 5

The ‘if’ part is trivial: if a social choice mechanism is dictatorial, then any deviation

is detected by the dictator (i.e., the individual ī in the definition of the dictatorial

social choice mechanism).

We now prove the ‘only if’ part. The proof is by contraposition. Suppose the social

choice mechanism ϕ is not dictatorial. Then, there is no individual i ∈ I, such that

ϕ(θ) = ϕ(θ′) for any problems θ and θ′ with θi = θ′i. Equivalently, for any individual

i ∈ I, there are two problems θ and θ′ with θi = θ′i := θ̄i, such that ϕ(θ) 6= ϕ(θ′).

Consider the problem θ̄ = (θ̄i)i∈I , and the deviation ω 6= ϕ(θ̄). It is immediate from

the construction of θ̄ that no individual detects the deviation ω. Thus, #ϕ > 1.

A.7 Proof of Proposition 8

The proof has four parts. In Part 1 we show that #RSF ≤ R + 2. In Part 2 we

construct a problem θ such that #RSF θ ≥ R + 2. Parts 1 and 2 jointly establish

that #RSF = R+2. In Part 3 we construct a problem θ such that #OSF θ ≥ R+2.

Finally, in Part 4 we construct a problem θ such that #OSF θ ≥ Q−R+ 1. Parts 3

and 4 jointly establish that #OSF ≥ max{Q− R + 1, R + 2}.

Part 1. #RSF ≤ R + 2.

First, we introduce several definitions and state a lemma about the RSF mechanism.

For a given outcome ω ∈ Ω, and individuals i, j ∈ I, we say that i’s priority is
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violated by j, if ω(i) = 0, ω(j) = 1, and ρi > ρj. We say an outcome ω is within-

type priority compatible, if whenever i’s priority is violated by j, it should be

that

i ∈ IH and j ∈ IL.

We say that an outcome ω is saturated priority compatible, if whenever i’s priority

is violated by j, i /∈ IL and j ∈ IL, then it should be that

∣

∣

{

i′ ∈ IL : ω(i′) = 1
}∣

∣ = R.

We say a choice mechanism ϕ is within-type priority compatible (or saturated priority

compatible), if the outcome ϕ(θ) is within-type priority compatible (or saturated

priority compatible) for all θ ∈ Θ.

The following result is a special case of Theorem 3 in Imamura (2020).

Lemma 2. In the choice with affirmative action setting, RSF is the unique within-

type priority compatible and saturated priority compatible mechanism.

Now we prove #RSF ≤ R + 2. Consider an arbitrary problem θ and an arbitrary

deviation ω 6= RSF (θ). By Lemma 2, the outcome ω is either not within-type priority

compatible, or not saturated priority compatible. We consider each case separately.

First, suppose ω is not within-type priority compatible. Then, there are individuals

i and j, such that i’s priority is violated by j, and one of the following holds: (i).

i, j ∈ IL, (ii). i, j ∈ IH , or (iii). i ∈ IL and j ∈ IH . None of these cases can happen

under the RSF mechanism, hence, {i, j} detects the deviation ω.

Now, suppose ω is not saturated priority compatible. Then, there are individuals i

and j, such that i’s priority is violated by j, i ∈ IH , j ∈ IL, and

∣

∣

{

i′ ∈ IL : ω(i′) = 1
}
∣

∣ > R.

Let Ĩ ⊆
{

i′ ∈ IL(θ) : ω(i
′) = 1

}

be the lowest priority R+1 individuals in the subset.

It is immediate from the description of RSF that i should have been chosen over some

individual in Ĩ. Hence, Ĩ ∪ {i} (whose size is R + 2) detects the deviation ω.
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Since the problem θ and deviation ω was arbitrary, we conclude that #RSF ≤ R+2.

Part 2. There is problem θ, such that #RSF θ ≥ R + 2.

Consider a problem θ, where all individuals in IL have lower priorities than all indi-

viduals in IH .

For this problem, RSF chooses R individuals with the highest priorities from IL

and Q − R individuals with the highest priorities from IH . Consider the deviation

ω 6= RSF (θ), that chooses all R + 1 highest priority individuals in IL and only

Q−R+1 highest priority individuals from IH . Then, no subset of individuals of size

strictly less than R + 2 detects the deviation ω. Hence, #OSF θ ≥ R + 2.

Part 3. There is a problem θ, such that #OSF θ ≥ R + 2.

The proof of this part is identical to that of Part 2. Namely, we use the same problem

and deviation to prove the result.

Part 4. There is a problem θ, such that #OSF θ ≥ Q− R + 1.

Consider a problem θ where min{Q − R, |IL| − R} individuals in IL have highest

priorities among all individuals I, and the remaining individuals in IL have the lowest

priorities among all individuals I. For this problem, the OSF mechanism would chose

min{Q−R, |IL| −R}+ R = min{Q, |IL|} highest priority individuals in IL.

Let i be the highest priority non-chosen individual in I \ IL under OSF (θ), and let ĩ

be the lowest priority chosen individual in IL. Consider the deviation ω that differs

from OSF (θ) by that ω(i) = 1 and ω(̃i) = 0. Let I ⊆ I be an arbitrary subset of

individuals with |I| < Q− R + 1. Consider cases:

(i). Suppose I ⊆ IL. Since the outcome of individuals in I \ {̃i} is the same under

OSF (θ) and ω, this subset does not detect the deviation.

(ii). Suppose I ∩ IH 6= ∅. Since IH 6= ∅ and |I| < Q − R + 1, we have that

|I ∩ IL| < Q − R. Consider the problem θ′, such that θ′I = θI , and individuals in
(

I ∩ IL \ {̃i}
)

∪ {i} have higher priorities than everyone in I \ I. Then, the set of

chosen individuals from I is the same under both ω and OSF (θ′). Hence, I does not
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detect the deviation ω. This completes the proof of Proposition 8.

B Application-Rejection (AR) Mechanisms

The application-rejection mechanism with permanency-execution period e, denoted

by ARe, selects outcomes as follows. We follow the description in Chen and Kesten

(2017). Take any problem θ:

Round t = 0. Each individual claims her most preferred object. Each object that is

claimed by some individuals, is assigned to the claimant with the highest priority and

rejects the rest.

(in general) Rejected individuals that have not yet claimed their e-th most preferred

object, claim their most preferred objects that has not rejected them. In case an

individual is rejected from her top e most preferred objects, she becomes passive in

this round. Each object that is claimed by some individuals, is tentatively assigned

to the claimant with the highest priority and rejects the rest. The round terminates

either when each individual is assigned or passive. All tentatively assigned individuals

become unavailable, and we proceed to the next round.

Round t ≥ 1. Each available individual claims her te+1-st most preferred object.

Each object with claimants, is assigned to the one with the highest priority and rejects

the rest.

(in general) Rejected individuals that have not yet claimed their te+e-th most preferred

objects, claim their most preferred objects that has not rejected them. In case an

individual is rejected from her top te + e most preferred objects, she remains passive

in this round. Each object that is claimed by some individuals, is tentatively assigned

to the claimant with the highest priority and rejects the rest. The round terminates

either when each individual is either tentatively assigned or passive. All tentatively

assigned individuals become unavailable, and we proceed to the next round.

The algorithm terminates when each agents has been assigned to an object. In this

case, all assignments become final and the resulting outcome is ARe(θ).
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C An Application of the Sequential Clinching Char-

acterization

In this section, we elaborate on the auditability properties of serial dictatorships

which are formally introduced in section 4.3. We have already established that these

mechanisms have a worst-case auditability index of two (Theorem 3) sinc each serial

dictatorship is a vice dictatorship in the sense of Definition 5. The question is whether

there are some problems for which serial dictatorships have an auditability index of

one, instead of two. We show that this ‘rarely’ happens. We will use the sequential

clinching characterization result for auditability index of one (Theorem 1) to establish

this result. More specifically, we will show that for a ‘generic’ problem, a serial

dictatorship mechanism does not have a sequential clinching implementation.

Consider an arbitrary serial dictatorship ϕ, and let us index individuals based on the

fix dictatorial ordering. I = {i1, i2, . . . , iN}. That is, in = Iϕn for all n ∈ {1, . . . , N}.

Proposition 9. As N → ∞, the proportion of problems for which ϕ has an audiability

index of one converges to zero.

Proposition 9 follows from a lemma that we state and prove next.

In what follows we fix a problem θ. For each n ∈ {1, 2, . . . , N}, let Ōn denote the n

most preferred objects of in.

Lemma 3. A serial dictatorship ϕ has a sequential clinching implementation at prob-

lem θ if and only if Ōn ( Ōn+1, for all n ∈ {1, 2, . . . , N − 1}.

Proof. Let Oin(θin) be the set of possible objects for in at type report θin . From the

description of the serial dictatorship, we can conclude that each in is guaranteed to

be assigned to one of her n most preferred objects. Moreover, she may be assigned to

any of the n most preferred objects, depending on the type reports of earlier dictators.

Hence, for each n ∈ {1, 2, . . . , N}, we have that

Oin(θin) = Ōn.
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We now prove the Lemma, and we start with the proof of the ‘if’ part. Suppose

Ōn ( Ōn+1 for all n ∈ {1, 2, . . . , N − 1}. We will show that the serial dictatorial

implementation at problem θ is the desired sequential clinching implementation of ϕ.

The proof is by induction. It is immediate that i1 = id (the first dictator) is clinching

her most preferred object o1. Now suppose the claim holds for up to some step t ≥ 1.

Consider the step t + 1 of the serial dictatorial implementation. Since it clinches

some object among available ones at step t (by the induction hypothesis), it should

be that the clinched object is the unique available object in Oit(θit) (by definition of

clinching). Hence, it clinches the last remaining available object at Oit(θit) at step

t, which in turn implies that at step t + 1, no object in Oit(θit) is available. Since,

Ōt ( Ōt+1 = Oit+1
(θit+1

), we conclude that Oit+1
(θit+1

) \ Ōt is a singleton. In other

words, there is a unique available object in Oit+1
(θit+1

), which should be clinched by

it+1 at step t + 1. This completes the proof of the ‘if’ part.

We now prove the ‘only if’ part. The proof is by contraposition. Suppose, there is an

n ∈ {1, 2, . . . , N}, such that Ōn \ Ōn+1 6= ∅. Let us pick the smallest such n.

With the similar induction proof as in the ‘if’ part, but only applied up until to step

t = n, we can see that at step t + 1 all objects Ōt are unavailable, and all objects

in O \ Ōt are available. Note that because it+1 is the dictator at step t + 1, no

individual other than it+1 can clinch an object among O \ Ōt at this step. Thus,

it+1 is the only potential candidate for being a clincher. Yet, we will show that

it+1 too cannot clinch an object among O \ Ōt. By the choice of t, we know that

Ōt \ Ōt+1 6= ∅. Since Ōt ( Ōt+1 = Oit+1
(θit+1

), there should be at least two available

objects in Oit+1
(θit+1

) \ Ōt+1. Hence, it+1 does not clinch any object among O \ Ōt.

This completes the proof of the ‘only if’ part of the Lemma.

Computing the proportion of problems that satisfy the conditions of Lemma 3 is a

tractable combinatorial exercise. This proportion goes to zero as N becomes large,

which proves Proposition 9.
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