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Large-scale policing data is vital for detecting inequity in police behavior and
policing algorithms. However, one important type of policing data remains
largely unavailable within the United States: aggregated police deployment
data capturing which neighborhoods have the heaviest police presences.
Here we show that disparities in police deployment levels can be quantified
by detecting police vehicles in dashcam images of public street scenes. Using
a dataset of 24,803,854 dashcam images from rideshare drivers in New York
City, we find that police vehicles can be detected with high accuracy (average
precision 0.82, AUC 0.99) and identify 233,596 images which contain police
vehicles. There is substantial inequality across neighborhoods in police vehi-
cle deployment levels. The neighborhood with the highest deployment levels
has almost 20 times higher levels than the neighborhood with the lowest.
Two strikingly different types of areas experience high police vehicle deploy-
ments — 1) dense, higher-income, commercial areas and 2) lower-income
neighborhoods with higher proportions of Black and Hispanic residents.
We discuss the implications of these disparities for policing equity and for
algorithms trained on policing data.
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1 INTRODUCTION

How do citizens hold the police to account, ensuring that they are
equitably protecting those they serve? A vital tool in the struggle
for police accountability has been data shedding light on police
activity. Statistical analysis of police data has been used to doc-
ument disparities in police stops, searches, use of force, and re-
spect [2, 25, 27-29, 52, 53, 64, 73]. These statistical analyses have
been instrumental to driving policy change and police reform: exam-
ples include a reduction in random police searches in Los Angeles
following a statistical investigation documenting racial bias [9, 56]
and a consent decree in Chicago following a Department of Justice
investigation documenting numerous rights violations [71]. In re-
cent years, policing datasets have become more widely available
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to the public [34, 53, 65], allowing activists, policymakers, and re-
searchers to examine a range of policing behavior, including stops,
searches, and arrests.

However, there is still one type of data that remains largely un-
available to the public within the United States: information on
where the police are deployed in the first place. This data is crucial
for several reasons. First, statistical analyses of police deployments
have revealed inefficiencies or inequities [49, 50] in which some
areas have disproportionate police deployments. Second, disparities
in police deployments create biases in downstream outcomes like ar-
rests. If an area has a heavier police presence, crimes are more likely
to result in arrests. Thus, more heavily policed neighborhoods may
appear to be more prone to crime, when they are simply more prone
to observed crime; similarly, residents of these neighborhoods may
appear to be more likely to commit a crime, when in fact they are
simply more likely to be arrested for it. This bias has been observed
in practice: for example, African Americans are far more likely to be
arrested for marijuana use than are white Americans, even though
surveys of drug use do not show the same racial disparities [57].
This bias could also propagate into algorithms used in policing and
criminal justice — including pretrial risk assessments [15, 16, 42]
and predictive policing algorithms [20, 45, 54, 58, 62] — since these
algorithms can use arrests, or outcomes downstream from arrests
like convictions, as input.

Deployment data are thus essential for monitoring disparities or
inefficiencies in policing and detecting potential biases in algorithms.
Even aggregated deployment data — grouped by neighborhood or
demographic — would be useful towards this end. In spite of this,
police deployment data remains largely unavailable to the public
within the United States. Addressing this need, we introduce a novel
methodology for monitoring police deployments: detecting police
vehicles in dashcam images of public street scenes. Using a dataset
of more than 24 million dashcam images collected throughout New
York City in 2020, we annotate a training dataset of 9,449 images for
presence of police vehicles, and train a deep learning model to iden-
tify police vehicles with high accuracy (average precision 0.82; AUC
0.99). We use this model to identify 233,596 dashcam images which
contain police vehicles. We develop a framework for analyzing in-
equality in police deployment levels across neighborhoods — that
is, the probability an image within a given neighborhood contains
a police vehicle — which compensates for several data and model
biases. Our analysis reveals substantial disparities in police deploy-
ments: the neighborhood with the highest police deployments has
almost 20 times higher deployments than the neighborhood with
lowest deployments. Two very different types of areas experience
high police deployments: dense, high-income, commercial areas;
and areas with higher proportions of Black and Hispanic residents
and lower incomes. We discuss the implications of these disparities
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for policing and algorithmic equity. We also discuss the residual po-
tential biases in the data which cannot be removed by our extensive
debiasing pipeline, and argue that this fact suggests that the police
should simply release more reliable and straightforward aggregated
deployment data.

2 RELATED WORK
2.1 Auditing policing practices

An extensive academic literature uses large-scale policing data to
statistically audit policing for efficiency and equity [1, 2, 25, 27-
30, 45, 52, 53, 59, 64, 73, 75]. (Here and throughout the paper, we
focus our discussion on policing within the United States because
policing practices are highly heterogeneous across countries and our
data is from New York City.) The existing academic literature largely
analyzes outcomes downstream of police deployment patterns: that
is, it studies not where police go, but what they do once they get
there. For example, many papers [27, 28, 30, 52, 53, 59, 75] quantify
disparities in how likely the police are to stop drivers of different
races. Work has also studied post-stop outcomes: for example, [29]
studies racial disparities in whether police grant leniency to drivers
pulled over for speeding; [2, 36, 52, 53, 64] study racial disparities
in police searches; and [73] studies racial disparities in how respect-
ful officers are to drivers of different races. Work also quantifies
police misconduct [31]; use of force [25]; police killings [21]; and
downstream effects of police violence [1].

Outside of academia, there have also been extensive journalistic,
activist, and legal efforts to quantify disparities in policing. Journalis-
tic efforts include an investigation by the Los Angeles Times [10, 56]
which documented racial bias in policing practices, ultimately re-
sulting in a curtailment of random vehicle searches in an effort to
reduce racial bias [9]. Closer to our own work, Mueller and Baker
[49] analyzed confidential data on detective deployments within
New York City and found racial and socioeconomic inequality in
whether neighborhoods had enough homicide detectives to meet
their needs. This report was followed by calls for increased trans-
parency and more equitable deployments [50], testifying to the
importance of police deployment data. Activists have also compiled
large datasets on police activity [65]. Finally, many legal efforts
against the police have leveraged large-scale policing data [67, 71].

Other efforts have quantified disparities in policing using datasets
other than large-scale data from the police themselves. For exam-
ple, journalists have analyzed footage of individual police encoun-
ters [66]; researchers have also interviewed individuals about their
experiences with police [22] and conducted analyses of survey data
on experiences with police [19].

2.2 Effect of deployment disparities on algorithmic bias

Many algorithms used in policing and criminal justice use data from
outcomes downstream from police deployments, including arrests
and convictions. Examples include pretrial risk assessments [15, 16,
42] and predictive policing algorithms [20, 45, 54, 58, 62].1 Thus,
disparities in police deployments can bias the data these algorithms
use [16, 20, 45, 54, 58, 62]. For example, Lum and Isaac [45] argue

'We note that the implementation details of many of these algorithms remain murky,
and not all of them rely on arrest or conviction data.

Franchi et al.

that disparities in police deployments could result in increasingly
severe biases over time in predictive policing algorithms trained
on arrest data. In their model, heavy police deployments in areas
result in higher arrest levels at the same crime levels; consequently,
the algorithm learns that areas with heavy police deployments are
riskier than they really are, and recommends that even more police
be deployed there; this further biases the arrest rates which are fed
back into the algorithm, exacerbating inequality over time.

2.3 Analysis of public street scene datasets

Streetview imagery datasets — for example, Google Street View,
Microsoft Bing Maps, Baidu Total View, and Tencent Street View —
are increasingly used for urban analytics. Research has used such
datasets to count trees [68, 77], utility poles [40], traffic signs [8, 69],
bike racks [46] and manholes [72]. Streetview data has also been
used for computational social science purposes: for example, estimat-
ing the demographic makeup of neighborhoods [26] or quantifying
human political stereotyping [79].

More recently, dashcam datasets collected by Automotive Origi-
nal Equipment Manufacturers (OEMs) and add-on manufacturers
such as Nexar or Mobileye that provide cloud-connected dashcam
products have enabled street view image datasets to be collected
at a greater spatial scale and temporal density [78] (in contrast to
Streetview data, which may be collected at much lower temporal
density). This type of data has been used to assess pavement quality
and classify road surface types [17], detect lanes or curbs [80], or
detect potholes and other defects [60].

Dashcam data has a unique combination of properties that make
it apt for the automated detection of objects in dense, feature-rich en-
vironments. Dashcam data is frame-by-frame, inexpensive to gather,
not fixed in terms of camera perspective, and capable of depicting
pedestrians, other vehicles, and small objects in detail. Dashcam
datasets have been used to characterize when and where people
were out in New York City during different phases of curfew and
social distancing policy [12, 13, 35]. This work points to the possibil-
ity of using the density of the data from dashcam datasets to look at
more dynamic aspects of urban environments—the number of people
and cars, the density of traffic, and the prevalent activities [13].

Closest to our own work in this genre is Sheng et al. [63], which
uses Streetview data to quantify how the density of surveillance
cameras varies across and within cities. However, our work differs
in important ways: most notably, we study police deployment, not
surveillance cameras. Overall, the works are complementary: Sheng
et al. [63] analyzes surveillance cameras across 16 cities at lower
spatial and temporal resolution, and we analyze police deployments
across a single city at high resolution.

3 DATASET

We estimate the total number and spatial distribution of police
vehicles visible in public street scenes in New York City using a
large dataset of dashcam images collected throughout 2020. In this
section, we describe the dashcam dataset. In the next section, we
describe our pipeline for analyzing it.



Detecting disparities in police deployments using dashcam data

3.1 Dataset details

Our dataset is provided by Nexar, a company which provides ride-
sharing (Uber, Lyft, NYC Taxi, etc) drivers with dashboard cameras
(dashcams) to record their drives (which can be useful if, for example,
an accident occurs). The dataset consists of 24,803,854 images taken
throughout the five boroughs? of New York City between March 4
2020 and November 15 2020. Each image is 1280 x 720 pixels. We
remove a small number of duplicate images (less than 0.01% of the
overall dataset) with identical latitudes, longitudes, and timestamps.

3.2 Geographic and temporal coverage

Data was provided to us by Nexar in two phases. Phase 1 consists
of 3,987,835 images sampled prior to September 1 2020, and is ex-
tremely geographically and temporally skewed. Geographically, it is
concentrated within the boroughs of Manhattan and Brooklyn, and
does not contain data from the boroughs of Staten Island, Queens,
and the Bronx at all; temporally, it overrepresents data from Thurs-
day nights. Phase 2, which constitutes the majority of the dataset,
consists of 20,816,019 images sampled after October 4 2020, and
is much more geographically and temporally representative: it is
sampled at all times of the day, on all days of the week, and also
covers the entire geographic area of New York City.

Because Phase 2 is much more representative than Phase 1, we
conduct our primary analysis of disparities using only data from
Phase 2. We additionally conduct numerous validations and bias
corrections, described in §4.1, to compensate for non-representative
sampling in the dataset. Geographic and temporal coverage during
the Phase 2 period is very good. Specifically, 100% of hours dur-
ing the Phase 2 period are covered; 99.6% of Census Block Groups
(CBGs)? have at least one image, with a mean of 168.2 images per
CBG; 88% of roads contained within the borders of New York City are
covered by at least one image, using data from OSMNX [6]. Figure
1 summarizes geographic data availability; Figure S1 summarizes
temporal data availability.

3.3 Ethical considerations

Our use of this dataset was deemed not human subjects research
by our university’s Institutional Review Board. Nonetheless, we
carefully considered the costs and benefits of this research prior to
embarking on it. A key concern for this type of research is that the
"subjects"—police vehicles, other vehicles, and other bystanders—do
not consent to the initial data collection nor its subsequent use
in this research. However, under American Psychological Associ-
ation Ethics guidelines [3], informed consent procedures can be
waived when permitted by law, federal and institutional regula-
tions, or when the research would not reasonably be expected to
distress or harm participants and involves naturalistic observations
or archival research for which disclosure of responses would not
place participants at risk of criminal or civil liability or damage
their financial standing, employability or reputation, and for which
confidentiality is protected. These provisions are the primary reason

2New York City is divided into five areas, referred to as boroughs: Queens, Brooklyn,
Manhattan, the Bronx, and Staten Island.

3Census Block Groups are Census areas consisting of a couple hundred to a couple
thousand people, and are the finest geographic resolution at which we conduct our
analysis. New York City has more than 6,000 Census Block Groups.
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Fig. 1. Number of images per Census Block Group in the Phase 2 dataset
we use in our primary analysis of disparities.

why naturalistic observation in public settings does not normally
require informed consent [32]. Ultimately, we felt that the potential
benefits of this work — namely, quantifying disparities in police
deployments to enable more equitable policing — more than offset
the costs. This conclusion is consistent with the numerous research
works [12, 13, 26, 35, 63, 79] which have used similar datasets cap-
turing public street scenes for research. However, we do believe
that it would benefit the public to have broader awareness that data
from instruments such as dashcams are now being aggregated on a
large-scale basis.

4 STATISTICAL ANALYSIS

In this section, we describe our procedure for assessing disparities in
police deployments. First, we describe the mathematical framework
to estimate disparities in police deployments while compensating for
potential data and model biases (§4.1). We then provide detail on the
deep learning model, which is a key ingredient to this framework,
as it detects police vehicles from dashcam images (§4.2).

4.1 Mathematical framework

Our goal is to assess disparities in police vehicle deployments while
mitigating the effects of potential model or dataset biases. Here
we introduce our mathematical framework for doing this. Before
describing the details of the framework, the high-level intuition is
that we are reweighting the Nexar data sample, which is sampled
from a non-representative set of locations, so that it matches the
locations where different demographic groups actually live. For ex-
ample, to calculate the police deployment levels that Asian residents
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of New York City experience, we reweight the original data sample
to upsample neighborhoods with larger Asian populations.

More formally, let A denote the demographic variable — for ex-
ample, racial group — over which we wish to assess disparities in
police deployment, and let a denote specific values of this variable.
Our goal is to estimate the probability a person of group a has a
police vehicle visible when they are on a street in their home Census
area: in other words, to estimate Pr(y = 1|A = a), where y indicates
whether there is a police vehicle visible. Letting C denote Census
area, and summing over Census areas, we can write:

Pr(y=1]A=a) = ZPr(C:c|A:a) Pr(y=1/C=c,A=a)
c

(Y]
:ZPr(C:c|A:a) ‘Pr(y=1|C=c)

where the second line reflects our assumption that conditional
on Census area, the probability a police vehicle is visible is constant
across groups: that is, one group within a Census area is no more
likely to observe a police vehicle than another. We use fine-grained
Census areas throughout our analysis — Census Block Groups — to
render this assumption reasonable.*

We estimate the first term in the product, Pr(C = ¢c|A = a), as
the fraction of people of group a who live in Census area c. Let
N¢q denote the number of people of group a living in Census area
c. Then, letting Pr(C = c|A = a) denote our estimate of the true
probability Pr(C = ¢|A = a), our estimator is:

Nca
Zc Nea
The other term we must estimate to compute Equation 1 is Pr(y =
1|C = ¢). Let § = 1 if our police vehicle detection model detects a
police vehicle in an image and § = 0 otherwise. Then our estimator
is:

Pr(C=clA=a) = %)

Pr(y=1|C=¢) =Pr(§=1|C=c) - Pr(y=1[§=1) +

_ _ A 3)
Pr(§=0|C=c) -Pr(y=1[§=0)

In other words, we estimate the fraction of images which truly have
police vehicles in a Census area by taking the fraction classified pos-
itive multiplied by the estimated classifier precision PAr(y =1lg=1),
plus the fraction classified negative multiplied by the estimated
classifier false omission rate Pr(y = 1|§ = 0). This procedure com-
pensates for imperfect classifier performance. This procedure will
be invalid if classifier performance — i.e., Pr(y = 1|§ = 1) and
Pr(y = 1|§ = 0) — does not remain constant across Census areas,
and in particular if it varies by demographic group a. Given the
extensive literature illustrating that classifier performance can vary
by by demographic group [7, 11, 14, 38, 76], this is important to
verify, and in §4.2.3 we do so.

Overall, our estimation procedure compensates for two types of
potential bias. Equation 2 compensates for a data bias, reweighting
the Nexar dataset (which is sampled from a set of locations which
does not necessarily match the population distribution; Figure 1) to
match the population distribution of demographic subgroups. This is
conceptually similar to inverse propensity weighting procedures [4]
which are used to compensate for non-representative data in other

4We use data from the 2020 American Community Survey.
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settings. Equation 3 compensates for imperfect model performance,
and allows us to check that model performance is unbiased (i.e.,
calibrated) across demographic subgroups.

We note that there are other biases which could prevent us from
perfectly estimating disparities in police deployments. In the Dis-
cussion section, we discuss two potential biases in more detail. First,
the sample of Nexar images we have within each Census area ¢ may
be biased, in the sense that it may not capture the true probability a
resident of that Census area will see a police vehicle at any given
time when they are out on the road. For example, if vehicles are
prohibited from driving near protest areas, which also have larger
police presences, we will not have images of large police presences
near protests. It is not possible to correct for this bias with the data
we have because 1) the true distribution may differ from the Nexar
sampling distribution along unobservable dimensions which we
cannot reweight along and 2) we may simply have no Nexar im-
ages in some regions of the true distribution (e.g. if all vehicles are
banned near protests). A second potential bias is that police vehicles
represent only a subset of overall police activity: for example, they
do not capture officers on foot. We return to both these points below.

4.2 Deep learning model

We train a deep learning model to identify police vehicles with
high accuracy. Our model training pipeline consists of three steps.
First, we annotate a large dataset of images for presence of police
vehicles (§4.2.1); second, we train a police vehicle detection model
on this dataset (§4.2.2); finally, we use a held-out dataset to verify
that the model achieves high accuracy on the dataset overall and is
not biased with respect to demographic groups (§4.2.3).

4.2.1 Data annotation. We begin by creating training, validation,
and test datasets for our police vehicle detection model. Following
standard machine learning practice, we use the training set to opti-
mize the parameters of each machine learning model; the validation
set to select the model which yields the best performance; and the
test dataset to measure the performance of the chosen model. We
draw all training images from a random 10% of the dataset, and
reserve the remaining 90% for validating the model and analyzing
disparities.

A challenge in creating the training set is that the dataset is
imbalanced — the vast majority of images do not contain police
vehicles — and highly imbalanced datasets can produce inferior
model performance [33]. To mitigate this issue, we construct a more
balanced training set by sampling images near police stations, which
are more likely to contain police vehicles: specifically, we filter for
images within 0.25 miles of one of NYC’s 77 police precinct stations,
which raises the proportion of images with police vehicles from
about 1% to roughly 7%. The risk of this training strategy is that it
potentially introduces distribution shift [39], which can also harm
model performance, because images near police stations may differ
from the overall image distribution; below, we describe how we
check for this concern.

We collect annotations for 15,250 images using Scale.Al [61], an
outsourcing platform for annotations similar to Amazon Mechanical
Turk. Each image is annotated with rectangular bounding boxes
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to identify police vehicles. We utilize evaluation tasks (images pre-
verified with ground truth annotations by us) on the platform to
disqualify inaccurate labelers. Every image labeled by a Scale.Al
annotator is then submitted to a review phase, where a separate,
high-scoring labeler checks each image for accuracy. In choosing
which types of NYPD vehicles to have annotators label, we account
for the fact that the NYPD has several divisions, including the pris-
oner transport, building maintenance, and museum units [55], that
are not involved in active policing. We instruct annotators to only
label NYPD sedans, SUVs, compacts, and trucks (but not buses or
4x4 trucks) to mitigate this. In total, 1,088 images from Scale.AI have
police vehicles; we add these to the training set.

To further increase the size of the training dataset, we use the
model trained on the Scale.AI annotations to select images which
it predicts have police vehicles (at a confidence threshold of 0.9).
Specifically, we apply the model to 450,000 images selected at ran-
dom from the 10% training sample (not just images near police
stations); examine all images passing the 0.9 confidence threshold
and manually verify whether these images do, in fact, contain police
vehicles, and add the images with verified labels to the train set. The
final training set consists of 4,748 images with police vehicles and
4,701 images without police vehicles.

In contrast to the training set, which oversamples images near
police stations, the validation and test splits are both random sam-
ples of 20,000 images from the overall dataset. A random sample is
essential because it provides us with an unbiased measure of perfor-
mance, which our estimation framework requires (§4.1). To annotate
the validation and test sets, we use Scale.Al to collect annotations
and manually audit all images labeled as positive for correctness.
The validation set includes 247 positive images (i.e., which contain
police vehicles) out of 20,000, and the test set includes 239 positive
images out of 20,000.

4.2.2 Model training. We frame our police vehicle detection prob-
lem as a rectangular object detection problem. We fine-tune models
from the widely-used You Only Look Once (YOLO) suite of object
detection models [74] which have been pretrained on the MS-COCO
dataset to detect object classes including vehicles [24]. We compare
performance from a range of model configurations (for example,
we compare performance from model variants YOLO5X [70] and
YOLO7-E6E [74], and experiment with hyperparameter evolution).
We use average precision on the validation set to select the model
which yields optimal performance.’ Our final model is trained using
the default hyperparameter configuration for YOLOv7. To choose
a threshold for positive classification, we use the threshold (0.77)
which maximizes the F-score on the validation set.

4.2.3 Model validation. Using the held-out test set, we first assess
model performance both on the dataset as a whole, and then ver-
ify that the model achieves consistent performance across subsets
of the dataset. Figure 2 shows the precision-recall curve and ROC

SBecause each image can potentially contain multiple police vehicles and multiple
model predictions, to compute average precision, we define an overall model prediction
for each image as the maximum model prediction for any object detection (or as 0 if
no objects are detected). We define the true label for each image as 1 if it contains any
police vehicles, and 0 otherwise. We do this because it allows us to compute precision
and recall statistics at the per-image level, not the per-object level, and our primary
analysis is at the per-image level.
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Fig. 2. Receiver Operating Characteristic (ROC) and Precision-Recall curves
for our final model, evaluated on the test set.

curve for the test set, and Table S2 reports average precision, AUC
(i.e., AUROC), precision and recall. The model achieves high perfor-
mance (test set AUC 0.99, average precision 0.82). This speaks to one
benefit of our methodology: because we have chosen a relatively
feasible object detection task (likelier easier than identifying surveil-
lance cameras, as attempted in previous work [63], which are much
smaller) we are able to achieve high performance. Figure 3 shows
specific true positive, false positive, and false negative classifications
on the dataset, demonstrating that the model can recognize police
vehicles in a wide variety of images, but also that it can be confused
by optical illusions and poor light conditions.

Our estimation framework (§4.1) requires that our model is cali-
brated across subgroups — that is, Pr(y = 1| = 1) and Pr(y = 1|§ =
0) remain similar across subgroups. We therefore assess whether
this is the case using the test set, and as an additional validation
assess model average precision and AUC across subgroups. Figure 4
shows that the model is calibrated across demographic variables (e.g.
% White, % Black, population density, median household income,
and Manhattan vs. non-Manhattan). The model is also calibrated
across a number of other variables (whether the image is taken
during the day, on the weekend, or during phase 1). Table S1 shows
that AUC and average precision remain consistently high across
subgroups (AUC 0.98-0.99 for all subgroups; average precision 0.77-
0.84). The only evidence of miscalibration we see does not occur in
the variables over which we assess disparities, and thus does not
threaten the validity of those estimates. Specifically, the model is
somewhat miscalibrated by distance from nearest police stations:
Pr(y = 1|9 = 0) is higher for images closer to police stations. This
is unsurprising, given the overdensity of police vehicles near police
stations, and may also result from the distribution shift from train-
ing set to validation/testing set. We experiment with two fixes for
this issue: first, we try upsampling images which the model misclas-
sifies, but find it harms overall performance significantly. Second,
we recalibrate the final model using distance from nearest police
station as a covariate. This recalibration does not significantly affect
our main results, as expected, so we do not use the recalibrated
model for simplicity. There is also slight evidence of miscalibration
by distance from nearest crime, but it is inconsistent and depends
on the temporal threshold used for determining the nearest crime.
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(a) True Positives (b) False Positives (c) False Negatives

Fig. 3. Examples of police vehicle detections. Notice the different times of day, differing camera perspectives, and multiple types of vehicles. Initially, the object
detection model was easily confused by NYC taxis, buses, white sedans, and white SUVs. As more training data was added, the model was more difficult to
confuse, with incorrect classifications occurring typically with optical illusions and poor light conditions. Note that images are cropped and zoomed to better
depict annotated regions; raw images are 1280x720.
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Fig. 4. Calibration plots by subgroup, evaluated on the test set. The left plot shows Pr(y = 1|§ = 1); the right subfigure shows Pr(y = 1| = 0). Lines
indicate uncertainty in estimates, calculated as 1.96 times the Bernoulli standard error; if the difference between the orange and blue dots is smaller than the
uncertainty, it indicates that there is no statistically significant difference in model performance across the stratification.

Overall, the model is generally well-calibrated and achieves high as described in §4.1 to compute disparities in police deployments
performance across subgroups over which we assess disparities, as across demographic groups.
our mathematical framework requires. At our positive classifica- As an additional validation, we assess whether the police detec-
tion threshold of 0.77, the model classifies 233,596 images (out of tions correlate as expected with external data. Specifically, we assess
24,803,854 total) as containing a police vehicle. From the validation whether Census Block Groups whose images have a lower mean
set, we estimate f’}(y =1|§=1) and f’}(y = 1| = 0), and use them distance to crime or to police stations are likelier to have police
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Fig. 5. Disparities in police deployments by borough, density, and zone.

vehicles detected, as one would expect. We find that both corre-
lations hold (p < 0.001, Pearson correlation across Census Block
Groups). This provides an additional validation beyond assessing
model performance, since it suggests that police vehicle presence
shows the same correlations with crime and police stations which
we would expect police activity as a whole to display.

5 ANALYSIS OF DISPARITIES

We examine disparities in police deployments —i.e., Pr(y = 1|A = a),
computed as described in §4.1 — by racial group (white, Black, His-
panic, and Asian), zone type (commercial, residential, and manu-
facturing), population density, median household income, borough,
and neighborhood. Throughout the results, we express police de-
ployments relative to the population-weighted city overall average:
e.g., 1.6x for a group indicates that deployment levels are 1.6 times
the overall average. We compute error bars for all estimates by
bootstrapping; reported errors are 1.96 times the standard deviation
across bootstrapped datasets.

We find significant disparities in police deployments across bor-
oughs (Figure 5) and neighborhoods (Figure 6). The borough with
the highest police deployments (Manhattan) has levels 1.62 + 0.01X
the city average; the borough with the lowest police deployments
(Staten Island) has levels 0.51 + 0.02X the city average, a more than
3-fold difference. Similarly, the neighborhood with the highest po-
lice deployment levels (Gramercy) has levels 4.28 + 0.10X the city
average; the neighborhood with the lowest police deployments (Ar-
den Heights-Rossville) has levels 0.23 + 0.02X the city average, a
nearly 20-fold difference. Examining the neighborhoods with the
highest police levels reveals a striking mixture of two types of neigh-
borhoods: some of the wealthiest areas in New York (Hudson Yards,
once described as a “billionaire’s fantasy city” [18]) and some of the
most heavily policed (Rikers Island, which houses a prison complex).

High police deployment levels in some neighborhoods may be
driven by idiosyncratic neighborhood attributes — for example,
Gramercy is home to a major police training center on two busy
thoroughfares. To more systematically examine spatial disparities,
therefore, we examine correlations with zone and density (Fig-
ure 5). Commercial zones have much higher police deployments

Police deployment
(relative to city average)

O 025x

05 07oudx 2% 3x

Fig. 6. Map of police deployment throughout NYC, expressed relative to
the city average. Grey areas are those with zero population in Census data,
including airports, cemeteries, and parks.

(1.98 + 0.03x the city average) than residential or manufacturing
zones. Police deployments also increase dramatically with popu-
lation density, from 0.65 + 0.01x the city average in areas in the
lowest quartile of density to 1.21 + 0.01X the city average in areas
in the highest quartile of density. Overall, this analysis suggests
that one place high police levels are observed is dense, commercial
regions of downtown Manhattan.

®We compute quartile boundaries at the image level.
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We next analyze disparities in police deployments by race and
socioeconomic status (Figure 7a), restricting the analysis to resi-
dential zones to capture where people actually live. We observe
substantial racial disparities. Black and Hispanic residents face po-
lice deployment levels 1.08 + 0.01X the city average, as compared to
0.95+0.004% for white residents and 0.81+0.01X for Asian residents,
a 34% discrepancy between the highest and lowest race groups. This
is consistent with previously observed disparities in policing in New
York City [27, 36, 52] where Black and Hispanic residents were more
heavily policed. (In Figure S2 we plot racial disparities without re-
stricting to residential zones, yielding consistent results — Black and
Hispanic residents face higher police deployments than white and
Hispanic residents — although the disparities narrow somewhat, to
a 19% gap between the highest and lowest race groups.)

We also observe disparities by Census Block Group (CBG) median
income (Figure 7b). Again restricting to residential zones, police
deployments increase as income decreases: residents of CBGs in
the lowest median household income quartile face police deploy-
ments which are 1.19 + 0.01X the city average, while residents of
CBGs in the highest median household income quartile face police
deployments only 0.91 +0.01X the city average. Interestingly, the re-
lationship between income and deployment becomes U-shaped if we
do not restrict to residential zones (Figure S2 ): neighborhoods in the
top quartile of median income, and the bottom quartile of median
income, both experience higher police deployments than neigh-
borhoods in the middle two quartiles. In other words, top-quartile
income areas go from having the lowest police deployments (when
we analyze only residential zones) to the highest (when we analyze
all areas). The difference likely occurs because of higher-income
commercial zones which are heavily policed.

We note that we report racial and socioeconomic disparities with-
out attempting to control for other covariates for two reasons. First,
if New York City residents of different races face different levels
of police deployments, that disparate impact is itself important; it
can also bias algorithms trained on downstream policing data irre-
spective of the true causal mechanism. Second, controlling for other
factors in policing data can be difficult to interpret, introducing
concerns about omitted variable bias and model misspecification
which make it difficult to identify which factor is truly the “cause”
of higher police deployments. For the sake of transparency and
simplicity, therefore, we report results by stratifying each variable
separately, noting that these disparities are themselves important
but that multiple causal mechanisms may underlie them.

6 DISCUSSION

We present a novel methodology for studying disparities in police
deployments. We show that a deep learning model can be applied
to tens of millions of dashcam images to identify police vehicles
with high accuracy, and introduce a principled framework for es-
timating disparities in a way that mitigates data and model biases.
We find substantial spatial inequality in where police vehicles are
deployed. Residential areas with higher proportions of Black and
Hispanic residents, or lower-income residents, have significantly
higher police deployments. But so, too, do dense, wealthy commer-
cial areas in downtown Manhattan like Hudson Yards; this finding
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that police deployments can be high in wealthy neighborhoods is
consistent with past work showing that gentrification correlates
with increased police presence [5]. Overall, our analysis speaks to a
complex, multifaceted picture of police deployment in New York.

We employ a number of techniques to reduce bias in our pipeline,
providing a template for future computational social science re-
search on non-representative dashcam data. However, two unavoid-
able limitations are important to acknowledge. First, while we
reweight the sample such that each Census area is weighted propor-
tional to its population, it is possible that the sample of images we
have within each Census area is biased. In other words, the police
vehicle frequency within our Nexar data sample for each Census
area may not accurately represent the true police vehicle frequency
within that Census area. News articles document, for example, how
protests after George Floyd’s death blocked traffic throughout New
York City [23], which would obviously preclude getting dashcam
images from some areas; it is also plausible that ride-share drivers
would seek to avoid areas with protest activity. Since protest activity
likely correlates both with our data availability and with police ve-
hicle presence, this could plausibly bias our estimates. We mitigate
the specific concern about protests by conducting our analysis of
disparities using data only from October 2020 onward, when protest
activity was reduced. Nonetheless, the sampling process for the
Nexar dataset is somewhat opaque and the time period analyzed was
full of dramatic changes in social distancing policy and responses
to policing so it would be unwise to assume that no other biases
remain. Similarly, it is possible the time period sampled captures
trends specific to the COVID-19 pandemic. At the same time, that
time period itself is of interest because it is known that there were
racial disparities in policing through the pandemic. Kajeepeta et al.
[37] find that from March to May 2020, a one standard deviation
increase in percentage of Black residents was associated with a 73%
increase in the COVID-19-specific summons rate and a 34% increase
in the public health and nuisance arrest rate. Finally, we assume
that people in the same Census area have the same probability of
seeing a police vehicle irrespective of their group; while the Census
areas we analyze (Census Block Groups) are quite small, rendering
this assumption more plausible, it is possible there is additional
variation correlated with group within Census areas.

A second important limitation is that identifiable police vehicles
are only a partial proxy for all policing activity. They do not capture,
for example, officers on foot or unmarked vehicles. We did attempt
to train a computer vision model to identify officers on foot; how-
ever, we found that the annotations we obtained were considerably
lower quality than annotations for police vehicles, with annotators
frequently confusing police officers with construction workers, cy-
clists with reflective vests, and other individuals in dark clothing.
Given this, we opted to focus our analysis on police vehicles to
ensure we could train a classifier with high accuracy. The high per-
formance of the classifier likely stems in part from the iconic and
unique branding of NYPD vehicles, which makes them very easy to
spot and label in training images. While it is important to be aware
that our analysis captures only one dimension of police activity,
police vehicles are, themselves, an important indicator of policing
activity: for example, they carry out traffic stops, which are one of
the most common ways that Americans interact with police [53].
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Fig. 7. Disparities in police deployments by race group (a) and median household income (b). Plots are made using data from Census Block Groups in
residential zones. Figure S2 shows the corresponding plots without filtering for residential zones; results for race are qualitatively similar, but results for

income show a U-shaped trend, for reasons we discuss in the main text.

We assert our approach and results constitute a key step towards
transparency in policing, proving it is possible to derive deployment
patterns from dashcam data. Our results have several implications
for equity and algorithmic fairness. First, our work reveals substan-
tial inequality in police vehicle deployments. Police vehicles are
more heavily deployed in neighborhoods with larger Black and
Hispanic populations, recapitulating historic patterns of inequality
in New York policing [27, 28, 52]. These disparities are themselves
of concern, and could also propagate into algorithms which made
use of data from outcomes downstream of deployments, including
arrests [15, 16, 20, 42, 45, 54, 58, 62].

Second, our work highlights the potential of dashcam data for
auditing government agencies for efficiency and equity, including
but not limited to the police, as well as for computational social sci-
ence more broadly. For example, similar methodology could also be
used to identify double parking issues, dynamic obstacles to accessi-
bility, or weather-induced hazards, and then to study disparities in
government service response times, following previous work [41].
Dashcam data is becoming increasingly available [47, 51], and dash-
cam is being postulated as a medium for future work [43, 44]. Our
methods could easily be extended to other cities or detection tasks.

Finally, our work serves as a call for the police themselves to
release better deployment data. In the past police have resisted
this [48] on the grounds that it would undermine public safety. But
this claim stretches plausibility on multiple grounds: even aggre-
gated deployment data would be very useful for detecting disparities,
as we show and past work has also found [49, 50]. And far more
granular data on many measures of policing activity is already pub-
licly available — including stops, searches, arrests, citations, and
shootings [34, 53] — making it unclear how aggregated deployment
data uniquely compromises police operations. The benefits would be

substantial: public release of aggregated deployment data would de-
mocratize the ability to audit the police. This project was performed
using highly specialized resources — terabytes of data, a customized
annotation pipeline and computer hardware, and hundreds of hours
of model training — and even then incurred unavoidable biases. This
pipeline is not, in short, a realistic way for the average citizen to
monitor the police. Quis custodiet ipsos custodes? The answer cannot
be “only those with 25 million dashcam images.”

Code availability: Code used in this analysis is available at this
GitHub repository: https://github.com/mattwfranchi/police-
deployment-patterns.

Dataset availability: It is our intent to share the data from this
paper with other researchers, with protections to prevent abuse. To
learn how to access to data from the study, see https://github.com/
mattwfranchi/police-deployment-patterns/wiki/Dataset-Access.
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(a) Calendar heatmap that shows data availability by day of month.
The heatmap is colored based on percentiles rather than raw values.
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(b) Calendar heatmap that shows sampling density by hour and day of coverage.

Fig. S1. Temporal data availability.
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(a) Deployments by race group. (b) Deployments by income quartile.

Fig. S2. Disparities in police deployments by race group (a) and median household income (b) without restricting to residential zones. Race group results are
similar to the results restricting to residential zones. For income quartile, the relationship becomes U-shaped when not restricting to residential zones, with
the highest police deployments in the top and bottom income quartiles.
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AUC  Average

Precision
Above Median? True False True False
Subgroup
Manhattan 0.99 0.98 0.83 0.81

Distance From Nearest Police Station > Median 0.98 0.99 0.83 0.82
Distance From Nearest Crime [6hr] > Median  0.99 0.99 0.78 0.84
Distance From Nearest Crime [3hr] > Median  0.99 0.99 0.82 0.82
Distance From Nearest Crime [1hr] > Median  0.99 0.99 0.82 0.82

Population Density > Median 0.99 0.98 0.82 0.81
Median Household Income > Median 0.99 0.99 0.81 0.83
Percent Hispanic > Median 0.99 0.98 0.84 0.80
Percent Asian > Median 0.99 0.99 0.84 0.79
Percent Black > Median 0.99 0.98 0.86 0.77
Percent White > Median 0.99 0.99 0.81 0.82
Daytime 0.98 0.99 0.81 0.82
Weekend 0.98 0.99 0.77 0.83
Phase 1 0.99 0.98 0.82 0.81

Table S1. AUC (i.e., area under the ROC curve) and average precision by subgroup.

Precision Recall AUC AP

Validation Set 0.78 0.83 0.980.82
Test Set 0.81 0.77 0.990.82

Table S2. Overall classifier performance statistics for the validation and test sets.
Precision and recall are computed at a positive classification threshold of 0.77.
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