
Harms from Increasingly Agentic Algorithmic Systems
Alan Chan∗†‡

alan.chan@mila.quebec
Mila, Université de Montréal

Montréal, Canada

Rebecca Salganik†
Mila, Université de Montréal

Montréal, Canada

Alva Markelius†
University of Cambridge

Cambridge, UK

Chris Pang†
University of Cambridge

Cambridge, UK

Nitarshan Rajkumar†
University of Cambridge

Cambridge, UK

Dmitrii Krasheninnikov†
University of Cambridge

Cambridge, UK

Lauro Langosco†
University of Cambridge

Cambridge, UK

Zhonghao He†
University of Cambridge

Cambridge, UK

Yawen Duan†
University of Cambridge

Cambridge, UK

Micah Carroll†
University of California, Berkeley

Berkeley, USA

Michelle Lin
McGill University
Montréal, Canada

Alex Mayhew
University of Western Ontario

London, Canada

Katherine Collins
University of Cambridge

Cambridge, UK

Maryam Molamohammadi
Mila

Montréal, Canada

John Burden
Center for the Study of Existential
Risk, University of Cambridge

Cambridge, UK

Wanru Zhao
University of Cambridge

Cambridge, UK

Shalaleh Rismani
McGill University, Mila

Montréal, Canada

Konstantinos Voudouris
University of Cambridge

Cambridge, UK

Umang Bhatt
University of Cambridge

Cambridge, UK

Adrian Weller
University of Cambridge

Cambridge, UK

David Krueger∗
University of Cambridge

Cambridge, UK

Tegan Maharaj∗†
University of Toronto

Toronto, Canada

ABSTRACT
Research in Fairness, Accountability, Transparency, and Ethics
(FATE)1 has established many sources and forms of algorithmic
harm, in domains as diverse as health care, finance, policing, and
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recommendations. Much work remains to be done to mitigate the
serious harms of these systems, particularly those disproportion-
ately affecting marginalized communities. Despite these ongoing
harms, new systems are being developed and deployed, typically
without strong regulatory barriers, threatening the perpetuation
of the same harms and the creation of novel ones. In response, the
FATE community has emphasized the importance of anticipating
harms, rather than just responding to them. Anticipation of harms
is especially important given the rapid pace of developments in
machine learning (ML). Our work focuses on the anticipation of
harms from increasingly agentic systems. Rather than providing a
definition of agency as a binary property, we identify 4 key char-
acteristics which, particularly in combination, tend to increase the
agency of a given algorithmic system: underspecification, direct-
ness of impact, goal-directedness, and long-term planning. We also
discuss important harms which arise from increasing agency – no-
tably, these include systemic and/or long-range impacts, often on
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marginalized or unconsidered stakeholders. We emphasize that rec-
ognizing agency of algorithmic systems does not absolve or shift
the human responsibility for algorithmic harms. Rather, we use
the term agency to highlight the increasingly evident fact that ML
systems are not fully under human control. Our work explores
increasingly agentic algorithmic systems in three parts. First, we
explain the notion of an increase in agency for algorithmic systems
in the context of diverse perspectives on agency across disciplines.
Second, we argue for the need to anticipate harms from increasingly
agentic systems. Third, we discuss important harms from increas-
ingly agentic systems and ways forward for addressing them. We
conclude by reflecting on implications of our work for anticipating
algorithmic harms from emerging systems.
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1 INTRODUCTION
The promised benefits of algorithmic systems have not always
borne out, and benefits are often tempered by significant negative
externalities. Although the deployment of algorithmic systems may
result in increased safety or material improvements to human well-
being [6, 102, 118], diverse lines of work in Fairness, Accountability,
Transparency, and Ethics (FATE) have established the roles that
algorithmic systems play in causing harm. Examples include the
perpetuation of existing, unjust power relations [19, 38, 60, 104, 174,
197], the generation of toxic language [7, 76], and informational
harms [42, 99, 119, 193].

Despite the clear evidence of harms from existing systems, new
types of algorithmic systems are continually being developed and
deployed, often without strong regulatory barriers [77]. The pace
of development has been particularly rapid in the machine learning
(ML) community. Just in the last five years, we have witnessed large
improvements in the capabilities of systems to perform a variety of
real-world tasks, including search [133], drug discovery [102, 175],
and dialogue [138].

Researchers in the FATE community have responded to the rapid
pace of ML developments by emphasizing the need to anticipate
harms, rather than just react to them. In particular, many have iden-
tified the impact of computational modeling and development in
social change [5, 95, 163] and scoped numerous taxonomies of risks,
harms, and failures of algorithmic systems [153, 167, 193]. While
it is crucial not to idealize or over-hype a model’s performance
by ignoring model failures [23, 24, 28, 47, 120, 153, 187], it is also
important not to understate (and thus fail to anticipate negative

consequences of) what these models can do and may be capable
of doing in the near future [31, 90, 103], especially given growing
investments in the field [78].

In this paper, we continue the work of anticipating harms by
drawing attention to increasingly agentic algorithmic systems. We
use agency and agentic in a narrow sense for our work as applied
to algorithmic systems, particularly ML systems. While recogniz-
ing the many meanings of agency, as well as the need not to
absolve humans of responsibility pertaining to algorithmic harms
[48, 134, 196], we use the term agency consciously to counter the
somewhat prevalent view that the developers of an algorithmic sys-
tem have full control over its behaviour. E.g. Johnson and Verdicchio
[100] claim that “the behaviour of computational artefacts is in the
control of the humans that design them.” And in a systematic review
on algorithmic accountability, Wieringa [196] defines algorithms
as “basically instructions fed to a computer”. While this descrip-
tion is accurate for many purposes, we argue that, particularly for
ML-based algorithmic systems, it elides autonomous, responsive,
and interactive qualities of these systems which can so easily lead
to unforeseen outcomes. Cooper et al. [48], Nissenbaum [134] do
identify bugs – including faulty modeling premises and bad model
performance – as one way in which humans may not have total
control of the operation of an algorithmic system. However, we
view agency as distinct from mistakes or bugs and demonstrate
the unique and important harms that can result. We note there
are significant economic and military incentives to build increas-
ingly agentic systems. Indeed, many in the ML community are
explicitly building such systems as a research goal [44, 155, 179].
In summary, our contributions are:

(1) We identify characteristics that tend to increase agency of
algorithmic systems, and situate our characterization in the
context of diverse perspectives on agency across disciplines.
We articulate that even when recognizing agency in algo-
rithmic systems, we can and should emphasize the human
responsibility to prevent harms.

(2) We argue for the need to anticipate harms from increasingly
agentic systems. Increasingly agentic systems are being de-
veloped and there exist strong incentives for this work to
continue.

(3) We discuss some harms to be anticipated from increasingly
agentic systems. In so doing, we connect to ongoing lines
of work in the FATE community, including systemic and
delayed effects, an impoverishment of collective decision-
making power, and exacerbation of extreme concentrations
of power in the hands of a few. We also discuss the role of
increasing agency as a source of harms that are yet to be
identified.

This paper is not about the moral agency or consciousness of
algorithms or machines. Instead, we focus on identifying a property
of emerging ML systems, argue for the need to anticipate harms
from systems that increasingly satisfy this property, and discuss
the harms to be anticipated.

2 AGENCY
In colloquial use, agency refers to the ability to take actions or
affect outcomes. A difficulty of having concrete discussions on
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agency is the variety of perspectives through which such a concept
can be defined, making confusion and disagreement common. In
recognition of this variety of perspectives, we do not attempt to
define agency in a binary manner, but instead present a set of
characteristics we take to be associated with increasing agency,
i.e. the more of these characteristics a system has, particularly in
combination, the more agency we can consider it to have. We first
present our characterization, and follow by contextualizing it in
some of the most relevant perspectives and related concepts to our
work.

2.1 Characteristics that are Associated with
Increasing Agency in Algorithmic Systems

When we say that an algorithmic system has a degree of agency,
we mean that it is to some extent an agent or agentic. Agency is
the property, agent is the role, and agentic is the adjective. Our
characterization of agency is specific to algorithmic systems and is
not meant to define agency for humans or arbitrary entities. We will
sometimes use “agentic system” in place of “agentic algorithmic
system” for brevity.

We identify 4 key characteristics associated with increasing
agency in algorithmic systems, especially in combination: under-
specification, directness of impact, goal-directedness, and long-term
planning.

(1) Underspecification: the degree to which the algorithmic
system can accomplish a goal provided by operators or de-
signers, without a concrete specification of how the goal is
to be accomplished [53].

(2) Directness of impact: the degree to which the algorith-
mic system’s actions affect the world without mediation or
intervention by a human, i.e. without a human in the loop.

(3) Goal-directedness: the degree to which the system acts as
if it is designed/trained to achieve a particular quantifiable
objective.

(4) Long-term planning: the degree to which the algorithmic
system is designed/trained to make decisions that are tempo-
rally dependent upon one another to achieve a goal and/or
make predictions over a long time horizon.

To illustrate the notion of increasing agency, consider the task
of compiling a literature review on a certain subject. With a search
engine, the human user must type in queries, click on related works,
read papers, look through bibliographies, record relevant informa-
tion in a document, and edit the text. A system that was more
agentic than the search engine, still for the same task, could simply
be queried with the topic of the desired literature review, and would
automatically look through related works on the internet without
user intervention, like WebGPT can do to some extent [131]. The
user would not need (or be able to) to specify which papers were
relevant nor have to compile papers manually into a document.

2.2 Prior Work on Agency
Agency is a central concept in many fields of academia [159]. Den-
nett [56] provides one of the most popular analyses of when and
how to attribute agency, focusing on the notion that agents be-
have intentionally. Orseau et al. [140] and more recently Kenton
et al. [108] have attempted to formalize this notion of agency in

the context of artificial intelligence. In cognitive science and psy-
chology, agency is conceptualized relatively similarly, as having
intentions, plans, goals, communication, and reasoning [113, 171]
– entities with agency can plan, act, memorize, exert self-control,
and communicate with others. While these notions of agency focus
on individuals making rational choices in pursuit of some goal,
in sociology, agency is often thought of as contextualized within,
constrained by, and/or contrasted with structure [64].

Principal-agent theory [61, 96] provides more intuition for
how we characterize agency. Principal-agent theory concerns it-
self with a principal who delegates tasks to an agent in order to
achieve their goals. The agent acts (directness of impact) on behalf
of the principal to achieve the principal’s goals, which may be long-
horizon (long-term planning). Crucially, the agent and principal
have different incentives2 and information: the principal does not
tell the agent how to complete the tasks (underspecification). In
our context, we view the principal as humans and the agent as
algorithmic systems, as done in prior work [86]. It is in this sense
that we consider algorithmic systems to have agency.

Our notion of increasing agency also takes inspiration from
how the term agent is used in AI research. In the most popular
introductory text on artificial intelligence, Russell and Norvig [158,
p. 58] define a rational agent as follows: “For each possible per-
cept sequence, a rational agent should select an action that is ex-
pected to maximize its performance measure, given the evidence
provided by the percept sequence and whatever built-in knowledge
the agent has.” Russell and Norvig [158, p. 60] further states that
“To the extent that an agent relies on the prior knowledge of its
designer rather than on its own percepts and learning processes,
we say that the agent lacks autonomy. A rational agent should be
autonomous—it should learn what it can to compensate for partial
or incorrect prior knowledge.” While our characterization does not
consider (ir)rationality, goal-directedness and underspecification
are captured in this definition.

Reinforcement learning is a field that concentrates on the
construction of agents. In the field’s premier introductory text, Sut-
ton and Barto [178, p. 47-8] states that the “learner and decision
maker is called the agent. The thing it interacts with, comprising
everything outside the agent, is called the environment. These in-
teract continually, the agent selecting actions and the environment
responding to these actions and presenting new situations to the
agent. The environment also gives rise to rewards, special numeri-
cal values that the agent seeks to maximize over time through its
choice of actions.” Note that reinforcement learning is not the only
way of constructing agents, however. For instance, recent work has
shown that foundation models can perform planning tasks [93].
Even simple predictive algorithms, depending on their training
procedure, can follow incentives to affect the world in unexpected
ways – for example by shifting user interests rather than improving
at their predictive task [111], thus increasing their agency.

One of the difficult discussions surrounding agency is interac-
tion of agency and responsibility, for humans and for machines.
Goetze [80] identifies a responsibility gap between engineers

2It is coherent to talk about the incentives of algorithmic systems. See Everitt et al.
[68].
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and the outcomes of their designed systems – people designing au-
tonomous systems are far removed from the consequences of their
deployment. The authors contend that regardless of the system’s
autonomy, human designers must be the ones held accountable.
[176] investigate attitudes toward agency of fictional AI robots, and
find survey respondents do not typically consider AI systems to be
moral agents – they tend to place moral responsibility on develop-
ers, not on AI systems as agents. Similarly, Robinette et al. [157]
examines (over)trust of autonomous systems and find in emergency
situations, people will follow robots into further danger, because
they attribute the agency of the robot to the (assumed capable and
responsible) designers. As people in these situations appear to, we
distinguish agency from responsibility, and emphasize that attri-
bution of agency to an autonomous system in no way shifts moral
responsibility from humans onto that system. Leufer [116], Myths
[130] examine another aspect of this problem, describing AI agency
as a myth which masks human agency (and therefore responsibil-
ity). The authors contend that anthropomorphization of AI systems
contributes to mystification of the underlying technology and so-
ciotechnical blindness [100], wherein people “believe AI systems
got to be the way they are without human intervention”, and ob-
scuring of the (often exploitative) human labour which enables AI
systems to exist [82, 144, 147]. While we strongly agree with all
these points, we reach the opposite conclusion – AI agency (in
the sense of our work) is not a myth, it is a reality of increasing
sociotechnical importance. It is precisely because of the importance
of problems like these (responsibility gap, mystification, sociotech-
nical blindness, masking human agency and labour, etc.) and their
far-ranging implications that we need to carefully examine the
agency of AI systems, not dismiss it out of hand. If we think it is
categorically impossible for AI systems to have agency, we will
never be able to accurately recognize when we are giving up our
agency to them.

A related concept we wish to distinguish from agency is au-
tonomy. In our framework, autonomy corresponds most closely
to directness of impact, with some overlap in the three other cat-
egories. While it is often an intuitive or useful description of a
system, we find it combines distinct phenomena we wish to distin-
guish with our characteristics. Bekey [22] defines autonomy as
“the ability to operate without a human operator for a protracted
period of time.” Many factory robots are highly autonomous, but
they operate strictly within the confines of a factory, and the actions
they take affect only the intended outcome (e.g. the product they’re
making) – they are autonomous but do not have agency. Welsh
[194] presents a series of protocols which can be used to govern
the use of lethal autonomous weapons, emphasizing the need for
human-in-the-loop decision making – i.e. to ensure all agency rests
with human controllers.

In this vein, our focus on agency also shares many commonalities
with work from the FATE community on establishing the harms
of automated decision-making (ADM). ADM involves the use
of algorithms to make decisions or enact policies without human
intervention. Given its applications in recommendations [119, 127],
health-care systems [70, 135, 164], the judicial sector [18, 83, 205],
and public services [27, 122, 173], ADM can often exhibit similar
kinds of diffuse and long-term harms to those we discuss coming
from increased agency. Given the commonalities, many of the harms

of ADM also apply to increasingly agentic systems, as we discuss
in Section 4. But there are two key differences between the body
of work on ADM and our work. First, with the term agency we
emphasize lack of explicit or low-level instructions for behaviour
- we might specify a task, but not how to solve that task. Second,
our work explicitly targets systems that are increasingly agentic,
such as reinforcement-learning systems that are capable of making
decisions in an open-ended environment over long time horizons
without human intervention. Such systems have not been the focus
of work in ADM simply because they have not yet seen widespread
public deployment. We thus consider our focus on agency to be a
continuation of current work on ADM.

Some philosophical work on agency also focuses onmental states
such as consciousness, emotions, and subjective experience [159].
Entities with these mental states have personalities, and feel things
like pleasure, curiosity, pain, embarrassment, fear and joy. Our work
does not address experience or consciousness, only agency.

2.3 Potential Objections to our Use of Agency
One objection against framing algorithmic systems as agents is
that it distracts from the responsibility of humans. As noted above,
we characterize agency as separate from responsiblity. As many
authors suggest, we strongly agree that attention should be directed
towards holding corporations, regulators, developers, etc. (actors
for short in this section) accountable [48, 100, 134, 196]. This claim
is not in contention with the idea that algorithmic systems can
be agentic in our narrow sense. Principals (actors) can be held
responsible on behalf of their agents, such as when employers are
held liable for negligent hiring when employees cause harm [88].

We should also require more than just individual accountability.
In addition to focusing on individual actors, we should also attend
to structural factors that shape their behaviours. A developer is
likely blameworthy at least to some extent when a system causes
harm, but structural factors like economic incentives or company
culture to push forward likely also play significant roles [186, 206].
As we will discuss in Section 4, viewing algorithmic systems as
agents can in fact highlight harms and the collective responsibility
we have to prevent them.

3 THE NEED TO ANTICIPATE HARMS FROM
INCREASINGLY AGENTIC SYSTEMS

We argue for the need to anticipate harms from increasingly agentic
systems. Anticipation is about two things: (1) the development of
systems with increasing agency and (2) the deployment of systems
with more agency than those already deployed. We touch upon
trends in ML development and deployment as well as some reasons
to expect these trends to continue. In Section 3.3 we respond to
some potential objections.

3.1 Trends in Development and Deployment
We aim to show two things in this section. First: development of
increasingly agentic systems has proceeded by consistently over-
coming technical challenges. Second: deployment of increasingly
agentic systems has occurred because these systems have increas-
ingly practical skills that are useful for real-world applications.
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3.1.1 Overcoming Technical Challenges to Build Increasingly Agentic
Systems. Reinforcement learning (RL), as one of themajor paradigms
of machine learning, has a major focus on the construction of agents
[178, 179]. In particular, RL is about designing systems to learn,
without human intervention, to achieve a goal encoded in a re-
ward function. Prior to 2013, RL systems were developed mainly
for a restricted set of simple domains [49]. The introduction of
deep learning to RL systems produced superhuman performance
on a wider variety of narrow tasks with limited to no human su-
pervision, including but not limited to increasingly complex board
games [35, 146, 168, 169] and video games [129, 161, 199]. Subse-
quent work has greatly improved the performance of RL systems
on more complex, open-ended environments. For instance, Dream-
erV3 [87] collected diamonds from scratch without human data or
curricula in MineCraft, which has been a longstanding challenge
because the task is extremely complex and open-ended. Another
striking example comes from Diplomacy, a complex, multiplayer
board game involving tactical coordination and natural language
negotiation. The recent Cicero [17], integrating a language model
with planning and RL algorithms, is the first AI to achieve human-
level performance in Diplomacy. Such systems have demonstrated
strong capabilities to interact with complex environments and hu-
mans to accomplish their goals that require long-horizon planning.

We emphasize that for all the systems we have mentioned in this
section so far, designers do not specify how the tasks were to be
completed. In the current scientific paradigm of large-scale deep-
learning, one instead provides high-level learning algorithms that
tend to be task-agnostic or adapt to new tasks efficiently [21, 57].
One particular example to highlight is AdA [181], which adapts to
open-ended, novel, embodied 3D problems as quickly as humans,
without human specification of how to solve problems.

3.1.2 The Increasing Deployment of Increasingly Agentic Systems.
The practicality of systems has increased along with their agency.
Increasing practicality means that increasingly agentic systems are
more likely to be found making decisions in the real world. Major
companies have been deploying increasingly agentic systems to
control parts of their operation. For example, DeepMind and Google
use RL for controlling commercial cooling systems and data centers
[67, 105]. Amazon has applied RL to supply chain optimization
problems [160]. Additionally, there has been an increasing amount
of research in recommender systems to optimize long-term met-
rics such as engagement via reinforcement learning [10]. Major
recommendation companies such as Meta [74], YouTube [16], and
Spotify [65] have already deployed RL-based recommender systems
on their live products.

Systems that can competently operate across different datamodal-
ities and tasks are plausibly more useful than more narrow systems,
regardless of how agentic they are. Before the current era of large
language models (LLMs) [30, 36, 150, 172], few systems competently
performed out-of-the-box on a range of natural language tasks [36].
Recent models [12, 155, 202] can even handle multiple data modali-
ties simultaneously. GATO [155] can complete tasks using the same
model and weights in vastly different domains, such as Atari, image
captioning, dialogue, and robotics. As systems become increasingly
agentic, the systems that are increasingly domain general seem
likely to see more practical application.

Increasingly agentic systems are also becoming more available
to the general public. Although language models are only trained
on next-token prediction, they can be leveraged to interact with
APIs and accomplish a wide variety of multi-step digital tasks with
increasingly less explicit human intervention [43, 125, 131]. Adept’s
ACT-1 [9] is a system in development which purportedly can per-
form an arbitrary task on your computer, such as searching for and
buying an item online, through a single text command. OpenAI’s
ChatGPT [139] has plug-ins that can interface with a wideo variety
of web-apps, including Gmail and a web browser. AutoGPT [3]
chains together an arbitrary number of GPT-4 calls to accomplish
a high-level task on one’s computer without one’s intervention.

Despite the progress so far, systems still have limitations and
there are still barriers to the deployment of more agentic systems.
For example, the raw task performance of generalist systems [155,
202] is still limited to tasks where expert data is available and has
not achieved human level on all tasks. In the realm of language
models, recent studies [98, 185] have shown that large language
models can perform poorly on planning and reasoning tasks, and
such systems are prone to hallucinate unintended text, which fails
to meet users’ intents on many real-world scenarios. However,
we note the pace of development and deployment are still rapidly
increasing, not decreasing. We anticipate that current limitations
and barriers will be surpassed or ignored in the pressure to deploy.

3.2 Factors in the Continued Development and
Deployment of Increasingly Agentic
Systems

For current AI models, there are strong incentives for continued
investment and development despite uncertainty around how their
future capabilities will emerge [72]. Similarly, a number of reasons
suggest the potential for development and deployment of increas-
ingly agentic algorithmic systems. These factors are the economic
and military advantages afforded by increasingly agentic systems,
scientific curiosity and prestige, a lack of regulatory barriers, and
emergent agency. The first three reasons are sociopolitical, while
the last reason concerns potentially surprising technical proper-
ties of ML systems. Taken together, these increase our subjective
likelihood that systems will become increasingly agentic.

3.2.1 Economic Incentives. Actors who deploy more agentic sys-
tems than their competitors would likely generate more profit be-
cause of increased automation. First, more agentic systems might
be able to perform tasks much more cheaply than a less agentic
systems. A less agentic system by definition would require more
human intervention, whether to make decisions or specify explicit
procedures for task completion. Second, more agentic systems will
often be more effective at performing tasks than less agentic sys-
tems. Part of an increase of agency is the degree to which a system
achieves a goal without operators or designers to specify how. The
upshot is that the search space of solutions to a problem is larger for
a more agentic system, which could result in solutions that would
be much more efficient than those a human could have found. That
AlphaGo [168] beat Lee Sedol, the world Go champion, with the
apparently confusing move 37 is evidence of this possibility.
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3.2.2 Military Incentives. Militaries may perceive that increasingly
agentic systems could provide capability advantages over adver-
saries that are constrained by human decision-making. The intro-
duction by any one military of a more agentic system could upset a
balance of power and force others to pursue similar developments
in an unsafe race to the bottom, mirroring other races for technolo-
gies such as nuclear weapons, and ballistic and hypersonic missiles
[51]. The UK’s defence AI strategy [1] frames advances in AI as
being an area of “geostrategic competition” and “a battleground for
competing ideologies”, but also imposes no governance or oversight
mechanisms on increasingly agentic systems, focusing such efforts
“on effects rather than the nature of any particular technology.”
Total bans on developments for such highly autonomous systems
may be difficult to introduce and maintain, and it may be easier
to pursue nonproliferation of such advances beyond a small set of
technologically advanced users [183].

3.2.3 Scientific Curiosity and Prestige. Developing increasingly
agentic systems is an object of scientific curiosity and also confers
status, a motivation that contributes to a prestige race at varying
levels between actors in the AI research system. For individual
researchers this emerges through standard metrics such as paper
publications and grant awards that support climbing the academic
career ladder, but for many leading figures the ambitions tran-
scend these: Geoffrey Hinton – a pioneer deep learning research
– has stated that “the prospect of discovery is too sweet” in spite
of his beliefs that “political systems will use [AI] to terrorize peo-
ple” [109], and Rich Sutton – a pioneer in reinforcement learning
– has stated that creating “beings of far greater intelligence than
current humans” (that would necessarily be agentic) will be “the
greatest intellectual achievement of all time” and “a great and glo-
rious goal” [177]. For companies, developing increasingly agentic
systems could drive the most impactful research and development
outputs, increasing attractiveness to the best scientific talent in a
competitive hiring pool. For nations, highly visible scientific demon-
strations may act as demonstrations of broader state capacity, and
prestige may be as motivating a force as security for competitive
races with peers and adversaries [20]

3.2.4 Lack of Regulatory Barriers. Regulatory efforts for AI have
focused largely on salient risks, rather than on anticipatory gov-
ernance mechanisms that are proactive to future advances in AI
capabilities [77]. For example, the EU AI act currently proposes
to target regulation according to tiers of risk determined by type
of data use and deployment setting, and efforts in the UK take a
sectoral focus on regulating only the applications of AI, but neither
covers development of agentic AI systems that could both be in-
trinsically high-risk and could underlie progress and use across a
variety of sectors and domains [2, 59]. Accordingly, development
and deployment in this space is effectively unregulated and without
any clear possibility of regulation in the near future.

3.2.5 Emergent Agency. Even if designers do not explicitly build
more agency into their systems, it may emerge from general capa-
bility improvements. Recent works discuss emergent behaviors of
large language models. Bommasani et al. [30] introduce emergence
as a “behavior of a system [that] is implicitly induced rather than
explicitly constructed; it is both the source of scientific excitement

and anxiety about unintended consequences.” For example, LLMs
are trained to model a distribution of internet text; this training
leads to emergent behavior such as learning from very few exam-
ples [136], or arithmetic [36], or even the ability itself to perform
sequential reasoning [192]. Many of these abilities only emerge at
a certain scale, or after a certain point in the training process [191].

When emergent behavior increases the agency of a system we
can speak of emergent agency. One particularly striking example
is the ability of LLMs to simulate the human agents who are
the sources of the training data. For example, maraoz [124] uses
GPT-3 to write a transcript of a conversation between themselves
and Albert Einstein, and others have used LLMs to retroactively
simulate user studies from psychology and economics [11]. The
seeming fidelity of such texts has motivated some to argue that
LLMs have a general ability to simulate human agents [14].

Some emergent capabilities relate directly to our characterization
of agency. Wei et al. [192] show that adding “let’s think step-by-
step” vastly improves sequential reasoning capabilities in LLMs, a
capability which is useful for performing tasks over long time hori-
zons. Team et al. [181] show that scaling up a particular approach
leads to RL systems that capably adapt to open-ended, novel 3D
problems as well as humans can, without human intervention on
how to solve the problem.

3.3 Potential Objections to our Characterization
of ML Progress

3.3.1 The Need for Anticipation of Increasingly Agentic Systems is
Small. Earlier, we distinguished between two things to anticipate:
(1) the increasing agency of developed systems and (2) the deploy-
ment of systems with more agency than those already deployed.
We respond to objections against both points.

One could accept the need for attention to (1), but maintain that
the need is small given that technical improvements to increase
agency occurmuchmore slowly thanwe have characterized. Indeed,
past beliefs in rapid pace of artificial intelligence research have
been overoptimistic [58]. Barriers to increasing agency include
acting capably over long time horizons [185] and with an accurate
understanding of the world [24]. These challenges are real and there
is by no means any certainty that the ML research community
will overcome them. Even the perceived agency of algorithmic
systems depends heavily on (sometimes exploitative) human labor
and data extraction [82, 144]. Moreover, it can be difficult tomeasure
the rate of progress towards agentic systems. Dehghani et al. [55]
provide evidence that factors other than “fundamental algorithmic
superiority” may lead to the perception that a particular method is
superior. Raji et al. [151] discuss several issues with benchmarking,
including construct invalidity and limitations in scope.

We have no disagreements on the technical challenges of de-
veloping systems of increased agency. We are also not claiming
that systems of significantly greater agency than those in devel-
opment already (e.g., compared to ACT-1 [9], GATO [155]) will be
coming soon. Rather, our view is that even absent significant tech-
nical breakthroughs, continued work within the current scientific
paradigm [112] of scaling deep-learning seems likely to generate
systems that are appreciably more agentic than current systems.
Scaling laws provide predictable relationships between the amount
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of compute and data used to train model of a given size, and the
performance of a model on some metric. Of particular interest for
increasing agency is that scaling laws have been derived for rein-
forcement learning [73, 89, 181] and generative modeling [90, 103].
There is also initial work into developing scaling laws for robotics
[40]. The upshot is that continued training of larger models with
more compute and data seems likely to increase the ability of sys-
tems to act in environments of increasing scope, over longer time
horizons, to achieve goals without significant designer/operator
intervention.

One could also object to the need for attention to (2). Even if
a system that is more agentic than those currently deployed has
been developed, there might still be strong reasons against deploy-
ment, despite the incentives in Section 3.2.1. Raji et al. [153] argues
that deployed AI systems often simply do not work, suffering from
issues such as robustness failures, missing safety features, or be-
ing set to perform impossible tasks (such as inferring criminality
from appearance). Given that increasingly agentic systems would
be more capable of achieving goals without human specification
of how, the failures that Raji et al. [153] highlight could disincen-
tivize adoption of increasingly agentic systems, even if they were
developed.

The likely failures of a more agentic system (relative to what has
been deployed already) are certainly a barrier to deployment – given
the disproportionate impact of these failures on already marginal-
ized groups, we would hope and advocate for restrictions on de-
ployment [37]. However, we think that this barrier is unfortunately
weak relative to countervailing forces. Hype around the (claimed)
functionalities of ML systems is strong [34, 132, 162], which is un-
surprising given massive financial investments [78]. Continued
cycles of deployment and failure [18, 38, 135, 148, 156, 190, 197]
suggest that increasingly agentic systems will likely be deployed
according to industry interests, and not the interest of those most
likely to be harmed.

3.3.2 Techno-Determinism. An objection against our characteriza-
tion of increasingly agentic systems is that it is techno-deterministic
– it assumes that AI development is inevitable and determines the di-
rection of sociocultural development [198]. This objection comes in
two parts. Firstly, the perceived inevitability of ML progress nullifies
accountability of those developing the systems and removes reason
to regulate or stop development. Secondly, techno-determinism ne-
glects social and cultural structures and implies a reductionist view
of the harms caused by ML systems. Related to this is the adoption
of discourse around ML systems that their capabilities are both
scientifically impossible to explain, and yet deterministic in their
societal impact [41]. Some who study the harms of more agentic
systems have also been accused of techno-optimism – optimism
about the potential of technology to solve major social problems –
and techno-determinism [50]. The problems include a dispropor-
tionately high reliance on technological solutions and neglect of
insights from structural aspects of risk-analysis.

We do not dispute the dangers of techno-determinism or techno-
optimism. However, careful work on identifying and mitigating
harms of increasingly agentic systems need not rely on or con-
tribute to either. For example, one can be engaged in activism to
ban specific uses or developments of increasingly agentic AI, while

concurrently pursuing sociotechnical research to mitigate those sys-
tems’ potential harms. In this framing, the sociotechnical work can
be seen as an attempt to reduce harm in the case that one’s broader
attempts to change the field’s course of action are not successful.
While it can be argued that working on such harm reduction con-
tributes to perceptions of inevitability or deployment incentives,
being thoughtful in the framing of one’s work can significantly
contribute to avoiding this issue.

4 ANTICIPATED HARMS FROM
INCREASINGLY AGENTIC SYSTEMS

The previous section argued for the need to anticipate the harms
of increasingly agentic systems. We now delve into some of these
harms and why they are of especial importance for the FATE com-
munity.

4.1 Systemic, Delayed Harms
A systemic harm is a harm that is pervasively embedded in soci-
ety. A delayed harm is a harm whose cause has a non-immediate
impact. Systemic, delayed harms from algorithmic systems nega-
tively influence groups of people in non-immediate ways. While
harder to analyze than immediate harms, systemic and delayed
harms might also be more insidious, as they can be caused even by
low-stakes decision making systems. Each action might not seem
consequential on its own, but, in aggregate, the outcomes can be
destructive, long-lasting, and hard to fix. For example, there has
recently been evidence that a single rent-setting algorithm might
have significantly contributed to an increase in housing rental costs
across the US [188].

The FATE community has studied systemic and delayed harms in
the past, such as environmental risks [23], concentration of power
[4, 149], unfair algorithmic hiring decisions [180], and privacy in-
fringements [62]. Another line of work focusing on the long-term
fairness implications of decisions [25, 54, 94, 101, 121, 203]. More
broadly, many have identified the systemic nature of general classes
of harms, such as financial risk [15], racism [33], and misogyny
[123].

Social media is speculated to be a contributing factor to many
systemic and delayed harms, including mental health issues [91,
200], the amplification of political polarisation [195], and the spread
of fake news [13]. There is evidence on both sides for many of these
issues [32, 106, 117], but caution seems warranted due to the sheer
scale of these platforms (e.g., Facebook has almost three-billion
users [126]).

While many of these harms do not involve the use of algorithms
that are trained to act over long time horizons [99], the application
of reinforcement-learning based recommendation systems (RLRS)
in today’s social media platforms warrant additional reason for
concern. In particular, Carroll et al. [42], Evans and Kasirzadeh
[66], Krueger et al. [111] show that long time-horizon systems,
such as RLRS, will have incentives to change or manipulate users’
internal states (e.g. preferences, beliefs, and psychology) for the
purposes of increasing the metrics the RLRS systems are optimizing.
While some work has also investigated potential solutions [42, 69],
how to practically measure and address these issues in real-world
RLRS remains an open problem. Notably, such systems are not
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speculative: RLRS are now increasingly applied by major social
media providers (such as YouTube or Facebook), as discussed in
Section 3.1.2.

4.2 Collective Disempowerment
We take collective self-governance to be the capacity and ongo-
ing act of deciding collectively how to govern one’s community,
whether it be a small, local community, a state, or human societies
at large [45]. Collective self-governance is about power, which is a
core theme in FATE work [4, 18, 26, 29, 104, 201]. Indeed, the FATE
community has extensively studied the ways in which automated
decision-making can disempower individuals, by impairing human
decision-making [84, 85] or subjecting individuals to oppressive
institutions [18, 19, 83, 205]. We extend this ongoing discussion by
pointing to some ways in which increasingly agentic systems can
result in collective disempowerment. A key underlying point will
be that increasingly agentic systems will likely seem more capable
of handling more important societal functions without significant
operator or designer intervention, as we discussed in Section 3.2.1.
We discuss two possibilities: a situation in which power diffuses
away from all humans, and a situation in which power concentrates
in the hands of a few.

4.2.1 Diffusion of Power Away from Humans. As systems become
increasingly agentic, they have increasing control of societal func-
tions in many ways. At one end, humans in a particular social
structure may decide to cede decision-making power to an par-
ticular system, such as one that decides taxation policy [204]. At
the other end, power may gradually be ceded, as separate groups
are incentivized to delegate more central functions to increasingly
agentic systems per Section 3.2.1. Cooper et al. [48], Nissenbaum
[134] examine the erosion of accountability that externalizes algo-
rithmic harms. Even if collective disempowerment is a risk, it might
not be a large enough risk for a single party to be concerned. In
either case, ceding decision-making power to such systems is not
inevitable; it would be a result of collective human decisions.

Regardless of how power is ceded, any group might have increas-
ing difficulty in controlling increasingly agentic systems. Specify-
ing a correct objective function is quite difficult [110, 170]. Even a
system successfully trained under a correctly specified objective
function may do something completely different in a different envi-
ronment [114, 165]. Additional problems remain in understanding
how to manage the interests of multiple stakeholders [52]. As well,
it would likely be extremely difficult to understand the decisions
of the controlling system(s). Analysis of a single decision is likely
insufficient for understanding the reasons for a series of long-term
decisions (i.e., the overall plan). Collective self-governance requires
not just having decisions be made, but understanding why those
decisions are made, which Lazar [115] terms the publicity require-
ment. Lazar [115] argues that failure to satisfy this requirement
delegitimizes the exercise of political authority, by nullifying the
moral effectiveness of consent.

4.2.2 Exacerbating the Extreme Concentration of Power Amongst
the “Coding Elite”. The FATE community has highlighted the con-
cerning ways in which the deployment of algorithmic systems has
concentrated power in the hands of designers and/or operators.

Kasy and Abebe [104] argues that common notions of fairness le-
gitimize hierarchies that are the result of historical injustice. They
also provide a framework to reason about the impact of algorithmic
decisions on the distribution of power. Burrell and Fourcade [39,
p. 217] identifies the coding elite – a nebula of software develop-
ers, tech CEOs, investors, and computer science and engineering
professors, among others, often circulating effortlessly between
these influential roles – as a main beneficiary of the concentration
of power. According to Burrell and Fourcade [39], the coding elite
concentrates power by controlling the algorithms underlying the
modern digital world, using that power to affect politics for their
own gains. The amount of control exerted is already substantial
with existing algorithmic systems, considering the centrality of the
products of a handful of tech companies in our daily lives.

Increasingly agentic systems threaten to exacerbate an already
extreme concentration of power. First, Ganguli et al. [72, p. 11]
show that the proportion of large-scale ML results from industry
has dominated in the past few years. The importance of large-scale
results for increasing agency is that, as we discussed in Section 3,
scaling up the compute, data, and parameters of a system provides
a significant way to increase its agency, and is in some sense easier
than deriving fundamental algorithmic insights. It therefore seems
plausible that large industrial labs will continue to be the ones
who deploy and profit the most from increasingly agentic systems.
Second, increasingly agentic systemswould likely enable the coding
elite to integrate algorithms into more of society. There are many
tasks now that are yet outside the reach of algorithmic systems,
such as deciding national economic policy or running a business.
Increasingly agentic systems seem more likely to be able to assume
many of those tasks than current systems.

4.3 Harms Yet To Be Identified
In Section 3.2.5, we identified emergent behaviours as a possible
cause of increasingly agentic algorithmic systems. Here, we explain
some emergent behaviours that could be the source of harms that
have yet to be identified and the link of those behaviours with
increasing agency.

4.3.1 Reward Hacking. An RL system trained to maximize its score
in the video game CoastRunners will drive off-track and keep turn-
ing in circles forever, thus achieving a high score despite not com-
pleting the race-track as intended by the programmers [46]. This
kind of failure is called reward hacking [110, 170], which is when
a system exploits a reward signal to achieve a goal in an unfore-
seen, perhaps undesirable way. As an instance of Goodhart’s law
[81], reward hacking is a common problem in ML systems that
involve elements associated with increasing agency, in particular
goal-directedness.3 Increased model size or training time can re-
sult in abrupt increases in reward hacking, because a more capable
model is better able find unforeseen maxima of its reward function
[141].

If increasingly agentic systems are deployed in consequential
domains like finance, health care, and law, reward hacking could
result in extremely negative outcomes. Even with knowledge of the
possibility of reward hacking, designers might still deploy systems

3A large number of examples of reward hacking are compiled in this online spreadsheet.
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anyway if the harms from their systems are externalized, or if they
judge the immediate likelihood of reward hacking to be low.

4.3.2 Instrumental Goals. An instrumental goal is a goal that is
useful as a subobjective in pursuit of a specified goal. A convergent
instrumental goal is a goal that would be useful in pursuit of a
wide range of possible goals. For example, acquiring money is
a convergent instrumental goal since money increases economic
power and optionality. Many convergent instrumental goals involve
gaining some sort of power over the environment and other actors
within it [137].

An algorithmic system that sought to gain power over other
actors, such as through manipulation or threats [107], would be
concerning. An additional concern would be if the same thing
were to happen without explicit, malicious instructions from their
designer(s) or operator(s) to perform such behaviour. While this
possibility remains uncertain, some initial evidence does not dismiss
it. Perez et al. [145] show that increased training of a LLM with
RL techniques can increase the proportion of the time that the
LLM expresses the pursuit of convergent instrumental goals, such
as gaining wealth and persuading the operator not to shut it off,
without any apparent designer or operator instruction to do so. To
recall, RL is about the construction of agents, by training systems
to act over long time horizons to achieve goals without explicit
human intervention. Training LLMs with RL techniques plausibly
increases their agency; therefore, Perez et al. [145] provides some
evidence that increasing the agency of LLMs can be associated with
an increase in the expression of convergent instrumental goals. It is
important not to overstate this early evidence; expressing a desire
to pursue a goal is different from actually pursuing the goal in the
world. Yet, this evidence should be taken as an additional reason
for caution regarding increasingly agentic systems.

5 PATHS TO PREVENTING HARMS
Much work remains in figuring out how to address the present
need we have highlighted throughout our piece. We provide a
preliminary discussion of some directions and tie them to existing
work from the FATE community.

5.1 Investigating the Sociotechnical Attributes
of Increasingly Agentic Systems

Several landmark works in the FATE community have involved
audits [154] of algorithmic systems [27, 38, 135, 156]. Audits have
motivated action from designers to reduce the harms of their sys-
tems [152].

Since one typically audits a deployed system, it will be diffi-
cult to perform thorough audits of increasingly agentic systems
before they are widely deployed. Nevertheless, there are a variety
of ways to reason about the potential impacts of a system’s de-
ployment. Assuming either that we have the system in question
or that we can simulate it faithfully [11, 63, 143], we can formulate
and test hypotheses in simple experiments or simulation. Small-
scale studies and simulations will almost certainly fail to capture
perfectly what would happen if the system was actually deployed
on a large. Nevertheless, such investigations can also highlight po-
tentially concerning phenomena for further investigation. Failing
to observe harm should not necessarily be taken to mean that a

system is safe; on the other hand, observation of a potential harm
in a pre-deployment study should motivate further research into
understanding to what extent the harm would appear in practice.

More broadly, it might be possible to take inspiration from policy-
making techniques such as scenario planning [189], which involve
thinking ahead about how to make effective policy decisions when
uncertain about what the world will look like in the future. The
emerging science of forecasting [182] may also provide insights
into anticipating the impacts of emerging systems.

Other tools from the FATE community may be helpful for char-
acterizing the sociotechnical attributes of increasingly agentic sys-
tems, even before widespread deployment. For example, datasheets
[75] and model cards [128] can highlight sources of harm, such as
accountability gaps [134], in a way that does not depend upon a
particular application. In the same vein, Gilbert et al. [79] intro-
duces reward reports to document what it appears that systems
are optimizing for, which may help to reduce the likelihood of
unintended negative consequences from system operation. Inter-
pretability work may also help us understand how a system is
achieving a goal [8, 136].

Another promising line of work is to propose both quantitative
and qualitative metrics that build upon our characterization of
agency. For instance, we could have metrics for measuring the
degree to which an AI system is capable of accomplishing tasks in
the real world. Having metrics for agency would facilitate the study
of when agency causes or is correlated with observed negative
impacts. Some existing work already measures aspects of agency,
such as long-term planning [185] and goal-directedness [142].

5.2 Regulatory and Institutional Interventions
Stronger regulations could prevent some harms of increasingly
agentic systems from occurring. Compute limits enforced by com-
pute usage tracking [37, 166], while a source of serious privacy
risks, could help to control the pace at which systems become in-
creasingly agentic and permit more time to develop mitigations.
Along this line, it might be collectively beneficial to decide upon a
threshold of agency as a deployment bar. If an AI system surpassed
this level of agency, it could be forbidden from application in cer-
tain consequential sectors, like energy, the military, finance, health
care, and criminal justice. The FATE community has previously
rallied around deeming certain applications off-limits for particular
technologies, such as the use of deep learning to predict criminality
[71].

Efforts to improve democratic control and oversight over AI de-
velopment could help to address the incentives for the development
of increasingly agentic systems that we highlighted in Section 3.2.1.
Tutt [184] proposes an “FDA for algorithms”, which would scruti-
nize each algorithmic system before permitting its deployment, just
as drugs are regulated in the United States. Huang and Siddarth
[92], Jernite et al. [97] highlight the imbalance of power between
AI developers and the rest of society, and propose frameworks and
vehicles for collective data governance. Given the importance of
data for training state-of-the-art systems [90], democratic control
over data usage could be an important check on the development
of increasingly agentic systems.
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6 CONCLUSION
Ourwork focused on the increasing prevalence of agency inmachine-
learning systems and associated harms. We situated our characteri-
zation of increasing agency in the context of diverse work on the
meaning of agency. We argued that there is a need to anticipate
the harms from increasingly agentic systems, given a strong track
record of, and incentives for, technical developments and increasing
deployment. We described some anticipated harms from increas-
ingly agentic systems, namely that they could cause systemic and
delayed harms, disempower human decision-making, exacerbate
extreme concentrations of power, and be a source of additional
unknown threats through emergent capabilities.

Addressing the harms of increasingly agentic systems shares
commonalities with central lines of work in the FATE community on
anticipating the harms of algorithmic decision-making systems. Fu-
ture work, such as investigations into the sociotechnical attributes
of increasingly agentic systems and interventions upon the struc-
tural factors underlying their harms, readily follows from ongoing
efforts. Immense pressure to develop and deploy emerging tech-
nologies should be met with similarly strong attempts to guide and
constrain their impact.
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