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ABSTRACT
Across domains such as medicine, employment, and criminal jus-

tice, predictive models often target labels that imperfectly reflect

the outcomes of interest to experts and policymakers. For example,

clinical risk assessments deployed to inform physician decision-

making often predict measures of healthcare utilization (e.g., costs,

hospitalization) as a proxy for patient medical need. These proxies

can be subject to outcome measurement error when they systemat-

ically differ from the target outcome they are intended to measure.

However, prior modeling efforts to characterize and mitigate out-

come measurement error overlook the fact that the decision being

informed by a model often serves as a risk-mitigating interven-

tion that impacts the target outcome of interest and its recorded

proxy. Thus, in these settings, addressing measurement error re-

quires counterfactual modeling of treatment effects on outcomes.

In this work, we study intersectional threats to model reliability

introduced by outcome measurement error, treatment effects, and

selection bias from historical decision-making policies. We develop

an unbiased risk minimization method which, given knowledge

of proxy measurement error properties, corrects for the combined

effects of these challenges. We also develop a method for estimating

treatment-dependent measurement error parameters when these

are unknown in advance. We demonstrate the utility of our ap-

proach theoretically and via experiments on real-world data from

randomized controlled trials conducted in healthcare and employ-

ment domains. As importantly, we demonstrate that models correct-

ing for outcomemeasurement error or treatment effects alone suffer

from considerable reliability limitations. Our work underscores the

importance of considering intersectional threats to model validity

during the design and evaluation of predictive models for decision

support.
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1 INTRODUCTION
Algorithmic risk assessment instruments (RAIs) often target la-

bels that imperfectly reflect the goals of experts and policymakers.

For example, clinical risk assessments used to inform physician

treatment decisions target future utilization of medical resources

(e.g., cost, medical diagnoses) as a proxy for patient medical need

[45, 46, 50]. Predictive models used to inform personalized learn-

ing interventions target student test scores as a proxy for learning

outcomes [29]. Yet, these proxies are subject to outcome measure-
ment error (OME) when they systematically differ from the target

outcome of interest to domain experts. Unaddressed, OME can be

highly consequential: models targeting poor proxies have been

linked to misallocation of medical resources [50], unwarranted

teacher firings [72], and over-policing of minority communities [7].

Given its prevalence and implications, increasing research focus

has shifted to understanding and mitigating sources of statistical

bias impacting proxy outcomes [15, 23, 24, 44, 47, 77].

However, prior work modeling outcome measurement error

makes a critical assumption that the decision informed by the algo-

rithm does not impact downstream outcomes. Yet this assumption

is often unreasonable in decision support applications, where deci-

sions constitute interventions that impact the policy-relevant target

outcome and its recorded proxy [13]. For example, in clinical decision

support, medical treatments act as risk-mitigating interventions

designed to avert adverse health outcomes. However, in the pro-

cess of selecting a treatment option, a physician will also influence
measured proxies (e.g., medical cost, disease diagnoses) [45, 46, 50].

As a result, the measurement error characteristics of proxies can

vary across the treatment options informed by an algorithm.

In this work, we develop a counterfactual prediction method

that corrects for outcome measurement error, treatment effects,

and selection bias in parallel. Our method builds upon unbiased
risk minimization techniques developed in the label noise literature

[11, 47, 52, 73]. Given knowledge of measurement error parameters,
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unbiased risk minimization methods recover an estimator for tar-

get outcomes by minimizing a surrogate loss over proxy outcomes.

However, existing methods are not designed for interventional set-
tings whereby decisions impact outcomes – a limitation that we

show severely limits model reliability. Therefore, we develop an un-

biased risk minimization technique designed for learning counter-

factual models from observational data. We compare our approach

against models that correct for OME or treatment effects in isolation

by conducting experiments on semi-synthetic data from healthcare

and employment domains [21, 40, 71]. Results validate the efficacy

of our risk minimization approach and underscore the need to care-

fully vet measurement-related assumptions in consultation with

domain experts. Our empirical results also surface systematic model

failures introduced by correcting for OME or treatment effects in

isolation. To our knowledge, our holistic evaluation is the first to

examine how outcome measurement error, treatment effects, and

selection bias interact to impact model reliability under controlled

conditions.

We provide the following contributions: 1) We derive a prob-

lem formulation that models interactions between OME, treatment

effects, and selection bias (§ 3); 2) We develop a novel approach

for learning counterfactual models in the presence of OME (§ 4.1).
We provide a flexible approach for estimating measurement error

rates when these are unknown in advance (§ 4.2); 3) We conduct

synthetic and semi-synthetic experiments to validate our approach

and highlight reliability issues introduced by modeling OME or

treatment effects in isolation (§ 5).

2 BACKGROUND AND RELATEDWORK
2.1 AI functionality and validity concerns
Prior work has conducted detailed assessments of specific model-

ing issues [13, 15, 32, 35, 39, 77], which have been synthesized into

broader critiques of AI validity and functionality [14, 55, 76]. Raji

et al. [55] surface AI functionality harms in which models fail to

achieve their purported goal due to systematic design, engineer-

ing, deployment, and communication failures. Coston et al. [14]

highlight challenges related to value alignment, reliability, and va-

lidity that may draw the justifiability of RAIs into question in some

contexts. We build upon this literature by studying intersectional
threats to model reliability arising from outcome measurement error

[30, 77], treatment effects [13, 54], and selection bias [32] in parallel.

2.2 Outcome measurement error
Modeling outcome measurement error is challenging because it

introduces two sources of uncertainty: which error model is rea-

sonable for a given proxy, and which specific error parameters

govern the relationship between target and proxy outcomes un-

der the assumed measurement model [30]. Popular error models

studied in the machine learning literature include uniform [4, 74],

class-conditional [44, 65], and instance-dependent [9, 78] structures

of outcome misclassification. Work in algorithmic fairness has also

studied settings in which measurement error varies across levels of

a protected attribute [77], and proposed sensitivity analysis frame-

works that are model agnostic[23].

Numerous statistical approaches have been developed for mea-

surement error parameter estimation in the quantitative social

A Motivating Example. We illustrate the importance

of considering interactions between OME and treat-

ment effects by revisiting a widely known audit of an

algorithm used to inform screening decisions for a

high-risk medical care program [50]. This audit surfaced

measurement error in a “cost of medical care” outcome

targeted as a proxy for patient medical need. Critically,
the measurement error analysis performed by Obermeyer
et al. [50] assumes that program enrollment status is
independent of downstream cost and medical outcomes.

Sample FPR FNR

Full population 0.37 0.38

Unenrolled 0.37 0.39

Enrolled 0.64 0.13

Yet our re-analysis shows that the “cost of medical care”
proxy has a substantially higher false positive rate and

lower false negative rate among program enrollees as

compared to the full population (see Appendix A.1). This

error rate discrepancy is consistent with enrollees receiv-

ing closer medical supervision (and as a result, greater

costs), even after accounting for their underlying med-

ical need. In this work, we show that failing to model

the interactions between OME and treatment effects can

introduce substantial model reliability challenges.

sciences literature [6, 58]. Application of these approaches is tightly

coupled with domain knowledge of the phenomena under study,

as in biostatistics [28] or psychometrics [69]. To date, data-driven

techniques for error parameter estimation have primarily been

applied in the machine learning literature, which rely on key as-

sumptions relating the target outcome of interest and its proxy

[41, 44, 49, 64, 65, 79]. In this work, we build upon an existing

“anchor assumptions” framework that estimates error parameters

by linking the proxy and target outcome probabilities at specific

instances [79]. In contrast to prior work, we provide a range of

anchoring assumptions, which can be flexibly combined depending

on which are reasonable in a specific algorithmic decision support

(ADS) domain.

Natarajan et al. [47] propose a widely-adopted unbiased risk min-
imization approach for learning under noisy labels given knowledge
of measurement error parameters [11, 52, 73]. This method con-

structs a surrogate loss ℓ̃ such that the ℓ̃-risk over proxy outcomes

is equivalent to the ℓ-risk over target outcomes in expectation. Ad-
ditionally, Natarajan et al. [47] show that the minimizer of ℓ̃-risk

over proxy outcomes is optimal with respect to target outcomes

if ℓ is symmetric (e.g., Huber, logistic, and squared losses). In this

work, we develop a novel variant of this unbiased risk minimization

approach designed for settings with treatment-conditional OME.

2.3 Counterfactual prediction
Recent work has shown that counterfactual modeling is necessary

when the decision informed by a predictive model serves as a risk-

mitigating intervention [13]. Building off of this result, we argue
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Factual (          )

Counterfactual (          )

Target Proxy 

Observational

Screen-in

Screen-outExample scenario

Figure 1: An illustration of treatment-conditional OME in heart attack prediction. Under the factual decision to screen-out
from a high-risk care management program (𝑇 = 0), heart attack occurred (𝑌 ∗

0
= 1) but went undiagnosed (𝑌0 = 0). Under the

counterfactual decision to screen in (𝑇 = 1), heart attack would have been averted (𝑌 ∗
1
= 0) but would have been incorrectly

diagnosed (𝑌1 = 1). The observed outcome in medical records reflects the proxy value under factual decision to screen-out
(𝑌 = 0).

that it is necessary to account for treatment effects on target out-
comes of interest and their observed proxy while modeling OME. Our

methods build upon conditional average treatment effect (CATE) es-

timation techniques from the causal inference literature [1, 31, 66].

Subject to identification conditions [53, 62], these approaches pre-

dict the difference between the expected outcome under treatment

(e.g., high-risk program enrollment) versus control (e.g., no pro-

gram enrollment) conditional on covariates. One family of outcome
regression estimators predicts the CATE by directly estimating the

expected outcome under treatment or control conditional on covari-

ates [10, 27, 38]. However, these methods suffer from statistical bias

when prior decisions were non-randomized (i.e., due to distribution

shift induced by selection bias) [4, 68]. Therefore, we leverage a

re-weighting strategy proposed by [31] to correct for this selection

bias during risk minimization. Our re-weighting method performs

a similar bias correction as inverse probability weighting (IPW)

methods [60, 68].

Outcome measurement error has also been studied in causal

inference literature. Finkelstein et al. [22] bound the average treat-

ment effect (ATE) under multiple plausible OME models. Shu and

Yi [70] propose a doubly robust method which accounts for mea-

surement error during ATE estimation, while Díaz and van der

Laan [18] provide a sensitivity analysis framework for examining

robustness of ATE estimates to OME. This work is primarily con-

cerned with estimating population statistics rather than predicting

outcomes conditional on measured covariates (i.e., the CATE).

3 PRELIMINARIES
Let 𝑝∗ (𝑋,𝑇 ,𝑌 ∗

0
, 𝑌 ∗

1
, 𝑌0, 𝑌1) be a fixed joint distribution over covari-

ates 𝑋 ∈ X ⊆ R𝑑 , past decisions1 𝑇 ∈ {0, 1}, target potential
outcomes {𝑌 ∗

0
, 𝑌 ∗

1
} ∈ Y ⊆ {0, 1}, and proxy potential outcomes

{𝑌0, 𝑌1} ∈ Y ⊆ {0, 1}. Under the potential outcomes framework

[62], {𝑌 ∗
0
, 𝑌0} and {𝑌 ∗

1
, 𝑌1} are the target and proxy outcomes that

would occur under𝑇 = 0 and𝑇 = 1, respectively (Figure 1). Building

1
Wealso use theword treatments to refer to binary decisions. This draws upon historical
applications of causal inference to medical settings.

upon the class-conditional model studied in observational settings

[44, 47], we propose a treatment-conditional outcome measurement

error model, whereby the class probability of the proxy potential

outcome is given by

𝜂𝑡 (𝑥) = (1 − 𝛽𝑡 ) · 𝜂∗𝑡 (𝑥) + 𝛼𝑡 · (1 − 𝜂∗𝑡 (𝑥)), ∀𝑥 ∈ 𝑋 (1)

where 𝛼𝑡 B 𝑝 (𝑌𝑡 = 1 | 𝑌 ∗𝑡 = 0), 𝛽𝑡 B 𝑝 (𝑌𝑡 = 0 | 𝑌 ∗𝑡 = 1) are
the proxy false positive and false negative rates under treatment

𝑡 ∈ {0, 1} such that 𝛼𝑡 + 𝛽𝑡 < 1. This model imposes the following

assumption on the structure of measurement error.

Assumption 1 (Measurement error). Measurement error rates are

fixed across covariates: 𝑌 ⊥⊥ 𝑋 | 𝑌 ∗,𝑇 .

While we make this assumption to foreground study of treat-

ment effects, our methods are also compatible with approaches

designed for error rates that vary across covariates [77] (see §
6.1 for discussion). Given the joint 𝑝∗, we would like to estimate

𝜂∗𝑡 (𝑥) B 𝑝 (𝑌 ∗𝑡 = 1 | 𝑋 = 𝑥), for any target covariates 𝑥 ∈ 𝑋 , which

is the probability of the target potential outcome under intervention

𝑡 ∈ {0, 1}. However, rather than observing 𝑌 ∗𝑡 directly, we sample

from an observational distribution 𝑝 (𝑋,𝑇 ,𝑌 ), where 𝑌 ∈ Y ⊆ {0, 1}
is an observed proxy outcome. By consistency, the unobserved tar-

get potential outcome and observed proxy potential outcome is

determined by the treatment assignment.

Assumption 2 (Consistency). 𝑌 ∗ = 𝑇 · 𝑌 ∗
1
+ (1 − 𝑇 ) · 𝑌 ∗

0
; 𝑌 =

𝑇 · 𝑌1 + (1 −𝑇 ) · 𝑌0.

This assumption holds that the target and proxy potential out-

comes 𝑌 ∗𝑡 , 𝑌𝑡 are observed among instances assigned to treatment 𝑡

[53, 61, 62]. To identify observational proxy outcomes 𝑌 , we also

require the following additional causal assumptions.

Assumption 3 (Ignorability). {𝑌 ∗
0
, 𝑌 ∗

1
, 𝑌0, 𝑌1} ⊥⊥ 𝑇 | 𝑋 . This holds

that target and proxy potential outcomes are unconfounded given

measured covariates 𝑋 .

Ignorability can be violated in decision support applications

when unobservables impact both the treatment and outcome [15,
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𝑋

𝑇

𝑌 ∗ 𝑌

Figure 2: A causal diagram of treatment-conditional outcome
measurement error.

35, 39]. Understanding and addressing limitations introduced by

ignorability is a major ongoing research focus [13, 18, 56]. We

provide follow-up discussion of this assumption in § 6.2.

Assumption 4 (Positivity). ∀𝑥 ∈ 𝑋, 0 > 𝑝 (𝑇 = 1|𝑋 = 𝑥) > 1.

This holds that each instance 𝑥 ∈ 𝑋 has some chance of receiving

each decision 𝑡 ∈ {0, 1}.

Positivity is often reasonable in decision support applications be-

cause instances 𝑥 ∈ 𝑋 that require support from predictive models

are subject to discretionary judgement due to uncertainty. Instances

that are certain to receive a given treatment (i.e., 𝑝 (𝑇 = 1|𝑋 = 𝑥) =
0 or 𝑝 (𝑇 = 1|𝑋 = 𝑥) = 1) would normally be routed via a dif-

ferent administrative procedure. Figure 2 shows a causal diagram

representing the data generating process we study in this work.

4 METHODOLOGY
We begin by developing an unbiased risk minimization approach

which recovers an estimator for 𝜂∗𝑡 given knowledge of error pa-

rameters (§ 4.1). We then provide a method for estimating 𝛼𝑡 and

𝛽𝑡 when error parameters are unknown in advance (§ 4.2).

4.1 Unbiased risk minimization
In this section, we develop an approach for estimating 𝜂∗𝑡 given

observational data drawn from 𝑝 (𝑋,𝑇 ,𝑌 ) and measurement error

parameters 𝛼𝑡 , 𝛽𝑡 . Let 𝑓𝑡 ∈ H for H ⊂ {𝑓𝑡 : X → [0, 1]} be a

probabilistic decision function targeting 𝑌 ∗𝑡 and let ℓ : Y× [0, 1] →
R+ be a loss function. If we observed target potential outcomes

𝑌 ∗𝑡 ∼ 𝑝∗, we could directly apply supervised learning techniques to

minimize the expected ℓ-risk of 𝑓𝑡 over target potential outcomes

𝑅∗ℓ (𝑓𝑡 ) B E𝑝∗ [ℓ (𝑓𝑡 (𝑋 ), 𝑌
∗
𝑡 )] (2)

and learn an estimator for 𝜂∗𝑡 via standard empirical risk minimiza-

tion approaches. Given a strongly proper composite loss such that

argmin𝑓𝑡
𝑅∗
ℓ
(𝑓𝑡 ) is a monotone transform𝜓 of 𝜂∗𝑡 (e.g., the logistic

and exponential loss), this would enable recovering class proba-

bilities from the optimal prediction via the link function𝜓 [2, 44].

However, directly minimizing (2) is not possible in our setting be-

cause we sample observational proxies instead of target potential

outcomes. We address this challenge by constructing a re-weighted
surrogate risk 𝑅𝑤

𝑡,ℓ̃
such that evaluating this risk over observed proxy

outcomes is equivalent to 𝑅∗
ℓ
in expectation.

In particular, let𝑤 : X → R+ be a weighting function satisfying

E𝑋 [𝑤 (𝑋 ) |𝑇 = 𝑡] = 1 and let ℓ : Y × [0, 1] → R+ be a surrogate
loss function. We construct a re-weighted surrogate risk

𝑅𝑤
𝑡,ℓ̃
(𝑓𝑡 ) := E𝑝

[
𝑤 (𝑋 )ℓ̃ (𝑓𝑡 (𝑋 ), 𝑌 ) | 𝑇 = 𝑡

]
(3)

such that 𝑅∗
ℓ
(𝑓𝑡 ) = 𝑅𝑡,ℓ̃ (𝑓𝑡 ) in expectation. Theorem 4.1 shows

that we can recover a surrogate risk satisfying this property by

constructing𝑤 (𝑥) as in (4) and ℓ̃ as in (5). Note that this surrogate

risk requires knowledge of 𝛼𝑡 , 𝛽𝑡 .

Theorem 4.1. Assume treatment-conditional error (1), consistency
(2), ignorability (3) and positivity (4). Then under target intervention
𝑡 ∈ {0, 1}, 𝑅∗

ℓ
(𝑓𝑡 ) = 𝑅𝑤

𝑡,ℓ̃
(𝑓𝑡 ) for the weighting function𝑤 : X → R+

given by

𝑤 (𝑥) B 𝑝 (𝑇 = 𝑡)
(2𝑡 − 1) · 𝜋 (𝑥) + 1 − 𝑡 (4)

and surrogate loss ℓ̃ : Y × [0, 1] → R+ given by

ℓ̃ (𝑓𝑡 (𝑥), 1) B
(1 − 𝛼𝑡 ) · ℓ (𝑓𝑡 (𝑥), 1) − 𝛽𝑡 · ℓ (𝑓𝑡 (𝑥), 0)

1 − 𝛽𝑡 − 𝛼𝑡

ℓ̃ (𝑓𝑡 (𝑥), 0) B
(1 − 𝛽𝑡 ) · ℓ (𝑓𝑡 (𝑥), 0) − 𝛼𝑡 · ℓ (𝑓𝑡 (𝑥), 1)

1 − 𝛽𝑡 − 𝛼𝑡

(5)

where in (4), 𝜋 (𝑥) B 𝑝 (𝑇 = 1|𝑋 = 𝑥) is the propensity score function.

We prove Theorem 4.1 in Appendix A.2. Intuitively, 𝑅𝑤
𝑡,ℓ̃
(𝑓𝑡 )

applies a joint bias correction for OME and distribution shift intro-

duced by historical decision-making policies (i.e., selection bias).

The unbiased risk minimization framework dating back to Natara-

jan et al. [47] corrects for OME by minimizing a surrogate loss

ℓ̃ on proxies 𝑌 observed over the full population unconditional on
treatment. Yet this approach is untenable when decisions impact out-

comes (𝑇 ⊥̸⊥ {𝑌 ∗, 𝑌 }) and error rates differ across treatments. One

possible extension of unbiased risk minimizers to the treatment-

conditional setting involves minimizing ℓ̃ over the treatment popu-

lation 𝑝 (𝑋 |𝑇 = 𝑡)

𝑅𝑡,ℓ̃ (𝑓𝑡 ) := E𝑝
[
ℓ̃ (𝑓𝑡 (𝑋 ), 𝑌 ) | 𝑇 = 𝑡

]
. (6)

However, 𝑅𝑡,ℓ̃ ≠ 𝑅∗
ℓ
in observational settings because the treat-

ment population 𝑝 (𝑋 |𝑇 = 𝑡) can differ from the marginal popula-

tion 𝑝 (𝑋 ) under historical selection policies when 𝑋 ⊥̸⊥ 𝑇 . There-

fore, our re-weighting procedure applies a second bias correction

that adjusts 𝑝 (𝑋 |𝑇 = 𝑡) to resemble 𝑝 (𝑋 ).
Learning algorithm. As a result of Theorem 4.1, we can learn

a predictor 𝜂∗𝑡 by minimizing the re-weighted surrogate risk over

observed samples (𝑋1,𝑇1, 𝑌1), ..., (𝑋𝑛,𝑇𝑛, 𝑌𝑛) ∼ 𝑝 . First, we estimate

the weighting function 𝑤̂ (𝑥) through a finite sample, which boils

down to learning propensity scores 𝜋 (𝑥) (as shown in (4)). Esti-

mating the propensity scores can be done by applying supervised

learning algorithms to learn a predictor from 𝑋 to 𝑇 . Then for any

treatment 𝑡 , weighting function 𝑤̂ , and predictor 𝑓𝑡 , we can approx-

imate 𝑅𝑤
𝑡,ℓ̃
(𝑓𝑡 ) by taking the sample average over the treatment

population

𝑅𝑤̂
𝑡,ℓ̃
(𝑓𝑡 ) B

1

𝑛𝑡

∑︁
𝑖:𝑇𝑖=𝑡

𝑤̂ (𝑋𝑖 )ℓ̃ (𝑓𝑡 (𝑋𝑖 ), 𝑌𝑖 ) (7)

for𝑛𝑡 =
∑𝑛
𝑖=1 1[𝑇𝑖 = 𝑡]. Therefore, given 𝑤̂ we can learn a predictor

from observational data by minimizing the empirical risk

ˆ𝑓𝑡 ← argmin

𝑓𝑡 ∈H
𝑅𝑤̂
𝑡,ℓ̃
(𝑓𝑡 ) . (8)

We refer to solving (8) as re-weighted risk minimization with a
surrogate loss (Algorithm 1).
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Algorithm 1: Re-weighted risk minimization with surro-

gate loss (RW-SL)

Input: DataW = {(𝑋𝑖 ,𝑇𝑖 , 𝑌𝑖 )}𝑛𝑖=1 ∼ 𝑝

Output: Learned estimator 𝜂∗𝑡 (𝑥)
PartitionW intoW1,W2,W3

OnW1, estimate parameters 𝛼𝑡 , ˆ𝛽𝑡 ← CCPE(W1)
OnW2, learn 𝜋 (𝑥) by regressing 𝑇 ∼ 𝑋

OnW3, use 𝜋 (𝑥), 𝛼𝑡 , ˆ𝛽𝑡 to solve

𝜂∗𝑡 (𝑥) ← argmin𝑓𝑡 ∈H 𝑅𝑤̂
𝑡,ℓ̃
(𝑓𝑡 )

Algorithm 2: Conditional class probability estimation

(CCPE)

Input: DataV ∼ 𝑝

Output: Parameter estimates 𝛼𝑡 , ˆ𝛽𝑡
PartitionV intoV1,V2

OnV1, learn 𝜂𝑡 (𝑥) by regressing 𝑌 ∼ 𝑋 | 𝑇 = 𝑡

OnV2, estimate error parameters:

𝛼𝑡 = min

𝑥∈𝑋
{𝜂𝑡 (𝑥)}, ˆ𝛽𝑡 = 1 −max

𝑥∈𝑋
{𝜂𝑡 (𝑥)}

4.2 Error parameter identification and
estimation

Because our risk minimization approach requires knowledge of

OME parameters, we develop a method for estimating 𝛼𝑡 , 𝛽𝑡 from

observational data. Error parameter estimation is challenging in

decision support applications because target outcomes often result

from nuanced social and organizational processes. Understanding

the measurement error properties of proxies targeted in criminal

justice, medicine, and hiring domains remains an ongoing focus of

domain-specific research [3, 8, 24, 46, 50, 80]. Therefore, we develop
an approach compatible with multiple sources of domain knowledge
about proxies, which can be flexibly combined depending on which
assumptions are deemed reasonable in a specific context.

Error parameters are identifiable if they can be uniquely com-

puted from observational data. Because our error model (e.q. 1)

expresses the proxy class probability as a linear equation with

two unknowns, 𝛼𝑡 , 𝛽𝑡 are identifiable if the target class probability

𝑐∗
𝑡,𝑖

= 𝜂∗𝑡 (𝑥𝑖 ) and proxy class probability 𝑐𝑡,𝑖 = 𝜂𝑡 (𝑥𝑖 ) are known
at two distinct points (𝑐∗

𝑡,𝑖
, 𝑐𝑡,𝑖 ) and (𝑐∗𝑡, 𝑗 , 𝑐𝑡, 𝑗 ) such that 𝑐∗

𝑡,𝑖
≠ 𝑐∗

𝑡, 𝑗
.

Following prior literature [26], we refer to knowledge of (𝑐∗
𝑡,𝑖
, 𝑐𝑡,𝑖 )

as an anchor assumption because it requires knowledge of the unob-

served quantity 𝜂∗𝑡 . We now introduce several anchor assumptions

that are practical in ADS, before showing that these can be flexibly

combined to identify 𝛼𝑡 , 𝛽𝑡 in Theorem 4.2.

Min anchor. A min anchor assumption holds if there is an in-

stance at no risk of the target potential outcome under intervention

𝑡 : 𝑐∗
𝑡,𝑖

= inf𝑥𝑖 ∈X {𝜂∗𝑡 (𝑥𝑖 )} = 0. Because 𝜂𝑡 is a strictly monotone

increasing transform of 𝜂∗𝑡 , the corresponding value of 𝜂𝑡 can be

recovered via 𝑐𝑡,𝑖 = inf𝑥𝑖 ∈X{𝜂𝑡 (𝑥𝑖 )} [44]. Min anchors are rea-

sonable when there are cases that are confirmed to be at no risk

based on domain knowledge of the data generating process. For

example, a min anchor may be reasonable in diagnostic testing if a

patient is confirmed to be negative for a medical condition based

on a high-precision gold standard medical test [19].

Know 𝛼𝑡 Min Base rate Max Know 𝛽𝑡

Know 𝛼𝑡 ✕ ✕ ✓ ✓ ✓
Min ✕ ✕ ✓ ✓ ✓
Base rate ✓ ✓ ✕ ✓ ✓
Max ✓ ✓ ✓ ✕ ✕

Know 𝛽𝑡 ✓ ✓ ✓ ✕ ✕

Table 1: Multiple combinations of min, max, and base rate
anchor assumptions (shown via ✓) enable identification of
𝛼𝑡 , 𝛽𝑡 .

Max anchor. A max anchor assumption holds if there is an

instance at certain risk of the target outcome under intervention

𝑡 : 𝑐∗
𝑡,𝑖

= sup𝑥𝑖 ∈X{𝜂
∗
𝑡 (𝑥𝑖 )} = 1. The corresponding value of 𝜂𝑡 can

be recovered via 𝑐𝑡,𝑖 = sup𝑥𝑖 ∈X{𝜂𝑡 (𝑥𝑖 )} because 𝜂𝑡 is a strictly

monotone increasing transform of 𝜂∗𝑡 . Max anchors are reasonable

when there are confirmed instances of a positive target potential

outcome based on domain knowledge of the data generating process.

For example, a max anchor may be justified in a medical setting

if a subset of patients have confirmed disease diagnoses based on

biopsy results [5], or if a disease prognosis (and resulting health

outcomes) are known from pathology.

Base rate anchor. A base rate anchor assumption holds if the

expected value of𝜂∗𝑡 is known under intervention 𝑡 : 𝑐
∗
𝑡,𝑖

= E[𝜂∗𝑡 (𝑋 )].
The corresponding value of 𝜂𝑡 can be recovered by taking the expec-

tation over the proxy class probability 𝑐𝑡,𝑖 = E[𝜂𝑡 (𝑋 )]. Base rate
anchors are practical because the prevalence of unobservable tar-

get outcomes (e.g., medical conditions [75], crime [37, 42], student

performance [17, 63]) is routinely estimated via domain-specific

analyses of measurement error. For instance, studies have been

conducted to estimate the base rate of undiagnosed heart attacks

(i.e., accounting for measurement error in diagnosis proxy out-

comes) [51]. Additionally, the conditional average treatment effect

E[𝜂∗
1
(𝑋 )] − E[𝜂∗

0
(𝑋 )] is commonly estimated in randomized con-

trolled trials (RCTs) while assessing treatment effect heterogeneity

[27]. While the conditional average treatment effect is normally

estimated via proxies 𝑌0 and 𝑌1, measurement error analysis is a

routine component of RCT design and evaluation [25].

Anchor assumptions can be flexibly combined to identify error

parameters based on which set of assumptions are reasonable in a

given ADS domain. In particular, Theorem 4.2 shows that combi-

nations of anchor assumptions listed in Table 1 are sufficient for

identifying error parameters under our causal assumptions.

Theorem 4.2. Assume treatment-conditional error (1), consistency
(2), ignorability (3) and positivity (4). Then 𝛼𝑡 , 𝛽𝑡 are identifiable from
observational data 𝑝 (𝑋,𝑇 ,𝑌 ) given any identifying pair of anchor
assumptions provided in Table 1.

We prove Theorem 4.2 in Appendix A.2. In practice, we esti-

mate the error rates on finite samples (𝑋𝑖 ,𝑇𝑖 , 𝑌𝑖 ) ∼ 𝑝 , which gives

an approximation 𝜂𝑡 . Therefore, we propose a conditional class

probability estimation (CCPE) method for parameter estimation

which estimates 𝛼𝑡 , ˆ𝛽𝑡 by fitting 𝜂𝑡 on observational data then ap-

plying the relevant pair of anchor assumptions to estimate error

rates. Algorithm 2 provides pseudocode for this approach with min

and max anchors, which can easily be extended to other pairs of

identifying assumptions shown in Table 1. The combination of min
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and max anchors is known as weak separability [44] or mutual
irreducibility [64, 65] in the observational label noise literature.

Prior results in the observational setting show that unconditional

class probability estimation (i.e., fitting 𝜂 (𝑥) = 𝑝 (𝑌 = 1|𝑋 = 𝑥))

yields a consistent estimator for observational error rates under

weak seperability [57, 65]. Statistical consistency results extend

to the treatment-conditional setting under positivity (4) because

𝑝 (𝑇 = 𝑡 |𝑋 = 𝑥) > 0, ∀𝑡 ∈ {0, 1}, 𝑥 ∈ X. However, asymptotic

convergence rates may be slower under strong selection bias if

𝑝 (𝑇 = 𝑡 |𝑋 = 𝑥) is near 0.

5 EXPERIMENTS
Experimental evaluation under treatment-conditional OME is chal-

lenging due to compounding sources of uncertainty. We do not

observe counterfactual outcomes in historical data, making it chal-

lenging to estimate the quality of newmodels via observational data.

Further, because the target outcome is not observed directly, we

rely on measurement assumptions when studying proxy outcomes

in naturalistic data. We address this challenge by conducting a con-

trolled evaluation with synthetic data where ground truth potential

outcomes are fully observed. To better reflect the ecological settings

of real-world deployments, we also conduct a semi-synthetic evalu-

ation with real data collected through randomized controlled trials

(RCTs) in healthcare and employment domains. Our evaluation (1)

validates our proposed risk minimization approach, (2) underscores

the need to carefully consider measurement assumptions during

error rate estimation, and (3) shows that correcting for OME or

treatment effects in isolation is insufficient.
2

5.1 Models
We compare several modeling approaches in our evaluation to ex-

amine how existing modeling practices are impacted by treatment-

conditional outcome measurement error:

• Unconditional proxy (UP). Predict the observed outcome

unconditional on treatment: 𝑋 → 𝑌 . This model does not
adjust for OME or treatment effects., and reflects model per-

formance in a scenario in which practitioners overlook all

challenges examined in this work.
3

• Unconditional target (UT). Predict the target outcome

unconditional on treatment:𝑋 → 𝑌 ∗. Here, we determine𝑌 ∗

by applying consistency:𝑌 ∗ = (1−𝑇 )·𝑌 ∗
0
+𝑇 ·𝑌 ∗

1
. This method

reflects a setting in which no OME is present but modeling

does not account for treatment effects [44, 47, 50, 77].

• Conditional proxy (CP). Predict the proxy outcome con-

ditional on treatment: 𝑋,𝑇 → 𝑌 . This is a counterfactual

model that estimates a conditional expectation without cor-
recting for OME [13, 38, 66].

4

• Re-weighted surrogate loss (RW-SL). Our proposed risk

minimization approach, as defined in equation (8). Thismethod

corrects for both OME and treatment effects in parallel. Ad-

ditionally, this method corrects for distribution shift due

2
Code for all experiments can be found at: https://github.com/lguerdan/CP_OME.

3
This baseline is also called an observational risk assessment in experiments reported

by Coston et al. [13].

4
This model is known by different names in the causal inference literature, including

the backdoor adjustment (G-computation) formula [53, 59], T-learner [38], and plug-in

estimator [34].

to selection bias in the prior decision-making policy via re-

weighting.

• Target Potential Outcome (TPO). Directly predict the

target potential outcome: 𝑋 → 𝑌 ∗𝑡 . This model is an oracle
that provides an upper-bound on model performance under

no OME or treatment effects.

We also perform an ablation of our proposed RW-SL method by

including a model that applies a surrogate loss correction ℓ̃ over

the treatment population without re-weighting (SL).

5.2 Experiments on synthetic data
We begin by experimentally manipulating treatment effects and

measurement error via a synthetic evaluation. Because this pro-

vides full control over the data generating process, we can evaluate

methods against target potential outcomes. This evaluation would

not possible with real-world data because counterfactual target out-

comes are unobserved. Our experiment design is consistent with

prior synthetic evaluations of counterfactual risk assessments [13]

and causal inference methods [48, 67]. In our evaluation, we sample

outcomes via the following data generating process:

(1) 𝑌 ∗𝑡 := ∼ Bern(𝜂∗𝑡 (𝑋 )), ∀𝑡 ∈ {0, 1}

(2) 𝑌𝑡 :=

{
1 − 𝜖+ if 𝑌 ∗𝑡 = 1, where 𝜖+ ∼ Bern(𝛽𝑡 )
𝜖− if 𝑌 ∗𝑡 = 0, where 𝜖− ∼ Bern(𝛼𝑡 )

,∀𝑡 ∈ {0, 1}

(3) 𝑇 := ∼ Bern(𝜋 (𝑋 ))
(4) 𝑌 ∗ := (1 −𝑇 ) · 𝑌 ∗

0
+𝑇 · 𝑌 ∗

1
; 𝑌 := (1 −𝑇 ) · 𝑌0 +𝑇 · 𝑌1

As shown in Figure 3, we draw 𝑋 ∼ 𝑈 (−1, 1) and sample target

potential outcomes from sinusoidal class probability functions (see

Appendix A.4 for details). Note that our choice of 𝜂∗
0
(𝑥), 𝜂∗

1
(𝑥)

satisfies min andmax anchor assumptions. Because𝜂∗
0
(𝑥) and𝜂∗

1
(𝑥)

differ, models that do not condition on treatment (i.e., UP, UT) will

learn an average of the two class probability functions. Under our

choice of 𝜋 (𝑥), fewer samples are drawn from 𝜂∗
1
(𝑥) in the region

where 𝜋 (𝑥) is small (near 𝑥 = −1), and fewer samples are drawn

from 𝜂∗
0
(𝑥) in the region where 1 − 𝜋 (𝑥) is small (near 𝑥 = 1). This

introduces selection bias when sampling from 𝜋 (𝑥).

5.2.1 Setup details. We train each model in § 5.1 to predict risk

under no intervention (𝑡 = 0) and vary (𝛼0, 𝛽0). We keep (𝛼1, 𝛽1)
fixed at (0, 0) across settings. When estimating OME parameters,

we run CCPE with sample splitting and cross-fitting (Algorithm

4) with min and max anchor assumptions for identification. These

assumptions hold precisely under this controlled evaluation (Fig-

ure 3). We run all methods with sample splitting and cross-fitting

(Algorithm A.3) and report performance on 𝑌 ∗
0
.

5.2.2 Results. Figure 4 shows the performance of each model as a

function of sample size. TPO provides an upper bound on perfor-

mance because it learns directly from target potential outcomes.

RW-SLwith oracle parameters (𝛼, 𝛽) outperforms all other methods

trained on observational data across across the full range of sample

sizes. Thus, while Thm. 4.1 shows that RW-SL recovers an unbiased

risk estimator in expectation, this method also demonstrates fa-

vorable finite-sample performance characteristics in practice. This

finding is inline with prior experimental evaluations of unbiased

risk estimators reported in the standard supervised learning setting
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Figure 3: Synthetic setup.
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Figure 4: Accuracy on𝑌 ∗
0
as a function of sample size. RW-SL and SLwith oracle parameters

plotted with solid lines. RW-SL and SL with learned parameters plotted with dashed lines.
Results averaged over asymmetric error settings reported in Table 2.

(𝛼0, 𝛽0) (0.0, 0.4) (0.1, 0.3) (0.2, 0.2) (0.3, 0.1) (0.4, 0.0)

UP 54.18 (0.09) 53.00 (0.39) 54.89 (1.09) 55.81 (0.74) 46.76 (0.33)

UT 61.57 (0.63) 60.95 (0.50) 60.49 (0.41) 61.00 (0.49) 60.54 (0.70)

CP 51.36 (1.83) 68.24 (2.61) 75.05 (0.92) 67.77 (1.33) 61.88 (0.28)

SL (𝛼, ˆ𝛽) 72.38 (1.65) 65.45 (0.66) 67.43 (1.64) 68.01 (0.99) 65.92 (1.34)

RW-SL (𝛼, ˆ𝛽) 69.08 (1.55) 65.96 (1.18) 66.57 (1.32) 68.39 (1.33) 64.56 (0.52)

SL (𝛼, 𝛽) 67.09 (1.24) 67.58 (1.19) 67.75 (1.08) 69.11 (1.17) 68.59 (1.41)

RW-SL (𝛼, 𝛽) 73.68 (1.49) 73.39 (1.60) 72.52 (1.66) 74.34 (1.15) 75.01 (1.24)

TPO 77.08 (0.11) 77.09 (0.20) 76.98 (0.08) 76.84 (0.18) 76.90 (0.16)

Table 2: Model accuracy (s.e.) across error parameter settings (𝛼0, 𝛽0) at 𝑁 = 60𝑘 samples over 10 runs. Top-2 performance across
each (𝛼0, 𝛽0) setting shown in bold.

[47, 77], and is further supported by reliable performance charac-

teristics we observe in small sample regimes (see Appendix A.4).

In contrast, both models that do not condition on treatment (UP

and UT), and the conditional regression trained on proxy outcomes

(CP), reach a performance plateau by 50k samples and do not benefit

from additional data. This indicates that (1) learning a counterfac-

tual model and (2) correcting for measurement error is necessary

to learn 𝜂∗𝑡 in this evaluation. We likely observe a sharper plateau

in UP and UT above 20k samples because these approaches fit a

weighted average of 𝜂∗
0
and 𝜂∗

1
(where 𝜂∗

1
differs from 𝜂∗

0
consid-

erably). We observe that RW-SL and SL performance deteriorates

with learned parameters (𝛼, ˆ𝛽) across all sample size settings due

to misspecification in learned parameter estimates and weights.

Table 2 shows a breakdown across error rates (𝛼0, 𝛽0) at 60𝑘 sam-

ples. RW-SL outperforms SL when oracle parameters are known.

However, RW-SL and SL perform comparably when weights and

parameters are learned. This may be because RW-SL relies on es-

timates 𝑤̂ in addition to 𝛼0, ˆ𝛽0, which could introduce instability

given misspecification in 𝑤̂ . CP performs notably well under high

error parameter symmetry (i.e., 𝛼0 = 𝛽0 = .2). This is consistent

with prior results from the class-conditional label noise literature

[44, 47], which show that the optimal classifier threshold for mis-

classification risk does not change under symmetric label noise. CP

performs worse under high error asymmetry. We do not observe a

similar performance improvement in UP and UT in the symmetric

error setting because these baselines learn a weighted combina-

tion of 𝜂0 and 𝜂1, which differs from the target function 𝜂∗
0
at all

classification thresholds.

5.3 Semi-synthetic experiments on healthcare
and employment data

In addition to our synthetic evaluation, we conduct experiments

using real-world data collected as part of randomized controlled

trials (RCTs) in healthcare and employment domains. While this

evaluation affords less control over the data generating process,

it provides a more realistic sample of data likely to be encoun-

tered in real-world model deployments. Evaluation via data from
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randomized or partially randomized experimental studies is use-

ful for validating counterfactual prediction approaches because

random assignment ensures that causal assumptions are satisfied

[12, 31, 66].

5.3.1 Randomized Controlled Trial (RCT) Datasets. In 2008, the

U.S. state of Oregon expanded access to its Medicare program via a

lottery system [21]. This lottery provided an opportunity to study

the effects of Medicare enrollment on healthcare utilization and

medical outcomes via an experimental design, commonly referred

to as the Oregon Health Insurance Experiment (OHIE). Lottery

enrollees completed a pre-randomization survey recording demo-

graphic factors and baseline health status and were given a one-year

follow-up assessment of health status and medical care utilization.

We refer the reader to Finkelstein et al. [21] for details. We use the

OHIE dataset to construct an evaluation task that parallels the label

choice bias analysis of Obermeyer et al. [50]. We use this dataset

rather than synthetic data released by Obermeyer et al. [50] be-

cause (1) treatment was randomly assigned, ruling out positivity

and ignorability violations possible in observational data, and (2)

OHIE data contains covariates necessary for predictive modeling.

We predict diagnosis with an active chronic medical condition over

the one-year follow-up period given 𝐷 = 58 covariates, including

health history, prior emergency room visits, and public services use.

We predict chronic health conditions because findings from Ober-

meyer et al. [50] indicate that this outcome variable is a reasonable

choice of proxy for patient medical need. We adopt the randomized

lottery draw as the treatment.
5

We conduct a second real-world evaluation using the JOBS

dataset, which investigates the effect of job retraining on employ-

ment status [66]. This dataset includes an experimental sample

collected by LaLonde [40] via the National Supported Work (NSW)

program (297 treated, 425 control) consisting primarily of low-

income individuals seeking job retraining. Smith and Todd [71]

combine this sample with a “PSID” comparison group (2,490 con-

trol) collected from the general population, which resulted in a final

sample with 297 treated and 2,915 control. This dataset includes

𝐷 = 17 covariates including age, education, prior earnings, and

interaction terms. 482 (15%) of subjects were unemployed at the

end of the study. Following Johansson et al. [31], we construct an

evaluation task predicting unemployment under enrollment (𝑡 = 1)

and no enrollment (𝑡 = 0) in a job retraining program conditional

on covariates.

5.3.2 Synthetic OME and selection bias. We experimentally manip-

ulate OME to examine how outcome regressions perform under

treatment-conditional error of known magnitude. We adopt diag-

nosis with a new chronic condition and future unemployment as a

target outcome for OHIE and JOBS, respectively. We observe proxy

outcomes by flipping target outcomes with probability (𝛼0, 𝛽0). We

keep (𝛼1, 𝛽1) fixed at (0, 0). This procedure of generating proxy

outcomes by flipping available labels is a common approach for vet-

ting the feasibility of new methodologies designed to address OME

5
The OHIE experiment had imperfect compliance (≈ 30 percent of selected individuals

successfully enrolled [21]). Therefore, we predict diagnosis with a new chronic health

condition given the opportunity to enroll in Medicare. This evaluation is consistent

with many high-stakes decision-support settings granting opportunities to individuals,

which they have a choice to pursue if desired.

[44, 47, 77]. This approach offers precise control over the magni-

tude of OME but suffers from less ecological validity than studying

multiple naturalistic proxies [50]. We opt for this semi-synthetic

evaluation because (1) the precise measurement relationship be-

tween naturally occurring proxies may not be fully known, (2)

the measurement relationship between naturally occurring prox-

ies cannot be manipulated experimentally, and (3) there are few

RCT datasets (i.e., required to guarantee causal assumptions) that

contain multiple proxies of the same target outcome.

Models used for decision support are typically trained using

data gathered under a historical decision-making policy. When

prior decisions were made non-randomly, this introduces selection

bias (𝑇 ⊥̸⊥ 𝑋 ) and causes distribution shift between the popula-

tion that received treatment 𝑡 in training data, and the full pop-

ulation encountered at deployment time. Therefore, we emulate

selection bias in the training dataset, and evaluate models over a

held-out test set of randomized data. We insert selection bias in

OHIE data by removing individuals from the treatment (lottery

winning) arm with household income above the federal poverty

line (10% of the treatment sample). This resembles an observational

setting in which low-income individuals are more likely to receive

an opportunity to enroll in a health insurance program (e.g., Medi-

caid, which determines eligibility based on household income in

relation to the federal poverty line). We restrict our analysis to

single-person households, yielding 𝑁 = 12, 994 total samples (6, 189

treatment, 6, 805 control).

We model selection bias in JOBS data by including samples from

the observational and experimental cohorts in the training data.

Because the PSID comparison group consists of individuals with

higher income and education than the NSW group, there is consider-

able distribution shift across the NSW and PSID cohorts [31, 40, 71].

Therefore, a model predicting unemployment over the control pop-

ulation (consisting of NSW and PSID samples) may suffer from

bias when evaluated against test data that only includes samples

from the NSW experimental arm. Thus we split data from the NSW

experimental cohort 50-50 across training and test dataset, and only

include PSID data in the training dataset.

5.3.3 Experimental setup. We include a Conditional Target (CT)

model in place of a TPO model because counterfactual outcomes

are not available in experimental data. CT provides a reasonable

upper-bound on performance because identifiability conditions are

satisfied in an experimental setting [53]. However, it is not possible

to report accuracy over potential outcomes because counterfac-

tual outcomes are unobserved. Therefore, we report error in ATE

estimates 𝜏 − 𝜏 , for

𝜏 := E[𝑌 ∗ | 𝑇 = 1] − E[𝑌 ∗ | 𝑇 = 0], 𝜏 := E[𝜂1 (𝑋 )] − E[𝜂0 (𝑋 )]

where 𝜏 corresponds to the ground-truth treatment effect reported

by prior work [16, 31] and 𝜂𝑡 is a learned model discussed in § 5.1.
One subtlety of this comparison is that our outcome regressions

target the conditional average treatment effect, while 𝜏 reflects the

ATE across the full population. Following prior evaluations [31],

we compare all methods against the ATE because the ground-truth

CATE is not available for JOBS or OHIE data.
6
We report results

6
While our insertion of synthetic selection bias (§5.3.2) introduces distribution shift

such that 𝑝 (𝑋 |𝑇 = 1) differs from 𝑝 (𝑋 |𝑇 = 0) , it does not alter ground-truth
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Figure 5: Bias in ATE estimates on OHIE and JOBS data. Error bars indicate standard error over ten runs. CT is a model with
oracle access to target outcomes and RW-SL is our proposed approach.

over a test fold of randomized data that does not contain flipped

outcomes or selection bias. Appendix A.4 contains additional setup

details.

5.3.4 Results. Figure 5 shows bias in ATE estimates 𝜏 − 𝜏 over 10

runs on JOBS and OHIE data. The left panel compares CP, UT, UP,

and the oracle CT model against RW-SL/SL with oracle parameters

(𝛼0, 𝛽0), (𝛼1, 𝛽1). We show performance of RW-SL with learned pa-

rameters (𝛼0, ˆ𝛽0), (𝛼1, ˆ𝛽1) on the right panel. The left panel shows

that CP is highly sensitive to measurement error. This is because

measurement error introduces bias in estimates of the conditional

expectations, which propagates to treatment effect estimates. Be-

cause UT and UP do not condition on treatment, they estimate an

average of the outcome functions 𝜂∗
0
and 𝜂∗

1
, and generate predic-

tions near 0. Therefore, while UT and UP perform well on OHIE

data due to a small ground-truth ATE (𝜏 = 0.015), they perform

poorly on JOBS (𝜏 = −0.077). SL and RW-SL with oracle parameters

𝛼𝑡 , 𝛽𝑡 perform comparably to the CT model with oracle access to

target outcomes across all measurement error settings.

While we observe that re-weighting improves performance in

our synthetic evaluation (given oracle parameters), we do not ob-

serve a similar advantage of RW-SL over SL in this experiment.

Our results parallel other empirical evaluations of re-weighting

for counterfactual modeling tasks on real-world data (e.g., see §
3.4.2 in [13]). One potential explanation for this finding is that our

predictive model class (multi-layer MLPs) is large enough to learn

the target regressions 𝜂∗
0
and 𝜂∗

1
for OHIE and JOBS data, even after

our insertion of synthetic selection bias. As a result, re-weighting

may not be required to learn a reasonable estimate of 𝜂∗
0
and 𝜂∗

1

𝜏 because the conditional outcome distribution 𝑝 (𝑌 ∗ |𝑇 ) remains unchanged. This

setup recreates the unconfounded observational setting in which causal identification

assumptions are satisfied [61].

given available data. This interpretation is supported by strong

performance of the oracle CT model.

As shown on the right panel of Figure 5, RW-SL performance

is highly sensitive to the choice of anchor assumption used to

estimate parameters (𝛼0, ˆ𝛽0), (𝛼1, ˆ𝛽1) as indicated by increased bias

in 𝜏 and greater variability over runs. In particular, RW-SL performs

poorly when Min/Max and Br/Max pairs of anchor assumptions are

used to estimate error rates because the max anchor assumption

is violated on OHIE and JOBS data. We shed further light on this

finding by fitting the CT model to estimate 𝜂∗
0
, 𝜂∗

1
on OHIE data,

then computing inferences over a validation fold𝑋𝑣𝑎𝑙 . This analysis

reveals that

min

𝑥∈𝑋𝑣𝑎𝑙

𝜂∗
0
≈ 2.23 · 𝑒−6, max

𝑥∈𝑋𝑣𝑎𝑙

𝜂∗
0
≈ 0.85

min

𝑥∈𝑋𝑣𝑎𝑙

𝜂∗
1
≈ 1.02 · 𝑒−5, max

𝑥∈𝑋𝑣𝑎𝑙

·𝜂∗
1
≈ 0.81

which suggests that themin anchor assumption thatmin𝑥∈𝑋𝑣𝑎𝑙
𝜂∗𝑡 =

0 is reasonable for 𝑡 ∈ {0, 1}, while the max anchor assumption that

max𝑥∈𝑋𝑣𝑎𝑙
𝜂∗𝑡 = 1 is violated for both 𝑡 ∈ {0, 1}. Therefore, because

the min anchor assumption is satisfied for these choices of target

outcome, and the ground-truth base rate is known in this experi-

mental setting, RW-SL demonstrates strong performance given the

Br/Min combination of anchor assumptions. In contrast, because

the max anchor is violated, estimating 𝛽𝑡 by taking the supremium

of 𝜂𝑡 (𝑥) introduces bias in ˆ𝛽𝑡 , which results in poor performance

of RW-SL with Min/Max and Br/Max anchors. Applying this same

procedure to the unemployment outcome targeted in JOBS data

also reveals a violation of the max anchor assumption. These results

underscore the importance of selecting anchor assumptions in close

consultation with domain experts because it is not possible to verify

1592



FAccT ’23, June 12–15, 2023, Chicago, IL, USA Luke Guerdan, Amanda Coston, Kenneth Holstein, Zhiwei Steven Wu

anchor assumptions by learning 𝜂∗𝑡 when the target outcome of

interest is unobserved.

6 DISCUSSION
In this work, we show the importance of carefully addressing in-

tersectional threats to model reliability during the development

and evaluation of predictive models for decision support. Our theo-

retical and empirical results validate the efficacy of our unbiased

risk minimization approach. When OME parameters are known,

our method performs comparably to a model with oracle access to

target potential outcomes. However, our results underscore the im-

portance of vetting anchoring assumptions used for error parameter

estimation before using error rate estimates for risk minimization.

Critically, our experimental results also demonstrate that correcting

for a single threat to model reliability in isolation is insufficient

to address model validity concerns [55], and risks promoting false

confidence in corrected models. Below, we expand upon key con-

siderations surfaced by our work.

6.1 Decision points and complexities in
measurement error modeling

Our work speaks to key complexities faced by domain experts,

model developers, and other stakeholders while examining proxies

in ADS. One decision surfaced by our work entails which mea-
surement error model best describes the relationship between the

unobserved outcome of policy interest and its recorded proxy. We

open this work by highlighting a measurement model decision

made by Obermeyer et al. [50] during their audit of a clinical risk

assessment: that error rates are fixed across treatments. Our work

suggests that failing to account for treatment-conditional error in

OME models may exacerbate reliability concerns. However, at the

same time, the error model we adopt in this work intentionally

abstracts over other factors known to impact proxies in decision

support tasks, including error rates that vary across covariates. Al-

though this simplifying assumption can be unreasonable in some

settings [3, 24], including the one studied by Obermeyer et al. [50],

it is helpful in foregrounding previously-overlooked challenges

involving treatment effects and selection bias. In practice, model de-

velopers correcting formeasurement errormaywish to combine our

methods with existing unbiased risk minimization approaches de-

signed for group-dependent error where appropriate [77]. Further,

analyses of measurement error should not overlook more funda-

mental conceptual differences between target outcomes and proxies

readily available for modeling (e.g., when long-term child welfare

related outcomes targeted by a risk assessment differ from imme-
diate threats to child safety weighted by social workers [33, 33]).

This underscores the need to carefully weigh the validity of proxies

in consultation with multiple stakeholders (e.g., domain experts,

data scientists, and decision-makers) while deciding whether OME

correction is warranted.

A second decision point highlighted in this work entails the

specific measurement error parameters that govern the relationship

between target and proxy outcomes. In particular, our work under-

scores the need for a tighter coupling between domain expertise

and data-driven approaches for error parameter estimation. Cur-

rent techniques designed to address OME in the machine learning

literature – which typically examine settings with “label noise” –

rely heavily upon data-driven approaches without close consider-

ation of whether the underlying measurement assumptions hold

[44, 49, 77, 79]. While application of these assumptions may be

practical for methodological evaluations and theoretical analysis

[57, 64, 65], these assumptions should be carefully vetted when ap-

plying OME correction to real-world proxies. This is supported by

our findings in Figure 5, which show that RW-SL performs poorly

when the anchor assumptions used for error parameter estima-

tion are violated. Our flexible set of anchor assumptions provides

a step towards a tighter coupling between domain expertise and

data-driven approaches in measurement parameter estimation.

6.2 Challenges of linking causal and statistical
estimands

Our counterfactual modeling approach requires several causal iden-

tifiability assumptions [53], which may not be satisfied in all deci-

sion support contexts. Of our assumptions, the most stringent is

likely ignorability, which requires that no unobserved confounders

influenced past decisions and outcomes. While recent modeling

developments may ease ignorability-related concerns in some cases

[13, 56], model developers should carefully evaluate whether con-

founders are likely to impact a model in a given deployment context.

At the same time, our results show that formulating algorithmic

decision support as a “pure prediction problem” that optimizes pre-

dictive performance without estimating causal effects [36] imposes

equally serious limitations. If the policy-relevant target outcome

of interest is risk conditional on intervention (as is often the case in

decision support applications), an observational model will gener-

ate invalid predictions for cases that historically responded most to

treatment [13]. Our results, which empirically demonstrate poor

performance of observational PU and TU models that overlook

treatment-effects, corroborate prior findings indicating that coun-

terfactual modeling is required to ensure the reliability of RAIs in

decision support settings [13]. Taken together, our work suggests

that domain experts and model developers should exercise consid-

erable caution while mapping the causal estimand of policy interest

to the statistical estimand targeted by a predictive model [43].
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A APPENDIX
This appendix contains the following subsections:

• A.1 provides a discussion of our re-analysis of audit data

released by Obermeyer et al. [50].

• A.2 contains omitted proofs for theorems introduced in § 4.
• A.3 contains omitted algorithm pseudocode.

• A.4 contains additional details and results for experiments

reported in Section 5.

Sample FPR FNR N

Full population 0.37 0.38 48,784

Unenrolled 0.37 0.39 48,332

Enrolled 0.64 0.13 452

Table 3: Treatment-conditional OME parameters computed
using synthetic data released by Obermeyer et al. [50].

Sample FPR FNR N

Full population 0.36 0.39 48,784

Unenrolled 0.36 0.39 48,360

Enrolled 0.65 0.14 424

Table 4: Treatment-conditional OME parameters computed
after re-applying synthpop on released synthetic data.

A.1 Re-analysis of data published by
Obermeyer et al. [50]

Obermeyer et al. [50] release publicly available synthetic dataset

corresponding to their audit of a clinical risk assessment.
7
Synthetic

data was generated via the R package synthpop, which preserves

moments and covariances of the original dataset. The synthetic

data release is sufficient to replicate the main analyses reported

over the raw (unmodified dataset) reported in [50]. This makes it

likely that our analysis closely preserves the true statistics reported

on raw data, as our only analysis step involves thresholding raw

scores and computing conditional probabilities.

We probe the implications of naively estimating population OME

parameters by reanalyzing public synthetic data published as part

of the audit study. Our analysis estimates proxy error parameters

by binarizing continuous cost (𝑌 ) and chronic active condition (𝑌 ∗)
outcomes at the 55th risk percentile: the threshold used in practice

to drive enrollment recommendations. While this choice of target

outcome is itself imperfect [20], we use chronic active conditions as

a reference outcome to match the original comparison conducted

by Obermeyer et al. [50].

Our analysis (Table 3) finds that the false positive and false

negative rates of the cost of care proxy varies substantially across

program enrollment status. In particular, the false negative rate is

65.8% lower among patients enrolled in the program as compared

to the full population, while the FPR is 72.9% higher. This difference

is consistent with closer medical supervision: under enrollment,

patients may incur greater costs due to expanded care, even after

7
https://gitlab.com/labsysmed/dissecting-bias

controlling for the number of underlying active chronic conditions.

In contrast, OME parameters among the unenrolled resemble the

population average because the vast majority of patients (≈ 99%)

are turned away from the program.We verify that this finding is not

an artifact of synthetic data generation by re-applying synthpop

on data provided by [50] and re-computing error parameters via

the same procedure described above (Table 4). While we observe

minor variations in error parameters after re-applying synthpop,

the large difference in error rates across the full population and

enrollment conditions persists.

Triangulating the downstream impacts of this error parameter

discrepancy is challenging. To preserve privacy, the research team

did not release covariates needed to re-train an algorithm. Prior

program enrollment decisions were also non-randomized, meaning

that differences in error parameters could be attributed to unmea-

sured confounders. Nevertheless, the difference in error parameters

across enrolled and unenrolled carries serious implications for the

diagnosis and mitigation of outcome measurement error.
8

A.2 Omitted results and proofs
We begin by providing a roof of Theorem 4.1. This proof follows

from unbiased risk minimization results from the label noise [11,

47, 52, 73] and counterfactual prediction [31] literature.

Proof. Wewill show that𝑅𝑤
𝑡,ℓ̃
(𝑓𝑡 ) = 𝑅ℓ̃ (𝑓𝑡 ) = 𝑅∗

ℓ
(𝑓𝑡 ),∀𝑡 = {0, 1}.

We begin by showing the first equality. We have that

𝑅𝑤
𝑡,ℓ̃
(𝑓𝑡 ) := E𝑝

[
𝑤 (𝑋 )ℓ̃ (𝑓𝑡 (𝑋 ), 𝑌 ) | 𝑇 = 𝑡

]
= E𝑝∗

[
𝑤 (𝑋 )ℓ̃ (𝑓𝑡 (𝑋 ), 𝑌𝑡 ) | 𝑇 = 𝑡

]
= E𝑝∗

[
𝑤 (𝑋 )ℓ̃ (𝑓𝑡 (𝑋 ), 𝑌𝑡 )

]
where the first equality holds by consistency (2) and the second

by ignorability (3). As a result, we can express both equalities over

potential outcomes 𝑌𝑡 , 𝑌
∗
𝑡 ∼ 𝑝∗. Next, let 𝑝𝑡 (𝑋 ) B 𝑝 (𝑋 |𝑇 = 𝑡) and

let ℓ̃𝑓𝑡 (𝑥) B E𝑌𝑡 [ℓ̃ (𝑓𝑡 (𝑥), 𝑌𝑡 ) | 𝑋 = 𝑥] be the expected pointwise
surrogate loss of 𝑓𝑡 evaluated at 𝑥 . Then by Lemma 2 of [31], we

have

𝑅𝑤
𝑡,ℓ̃
(𝑓𝑡 ) =

∫
𝑥∈𝑋

𝑤 (𝑥)ℓ̃𝑓𝑡 (𝑥)𝑝𝑡 (𝑥)𝑑𝑥

=

∫
𝑥∈𝑋

𝑝𝑡 (𝑥)
𝑝 (𝑥) 𝑤 (𝑥)ℓ̃𝑓𝑡 (𝑥)𝑝 (𝑥)𝑑𝑥

= 𝑅ℓ̃ (𝑓𝑡 )
for𝑤 (𝑥) = 𝑝 (𝑥)/𝑝𝑡 (𝑥). The second equality assumes positivity

(4) and ignorability (3). Applying Bayes’ to 𝑝 (𝑥)/𝑝𝑡 (𝑥) and rear-

ranging

𝑤 (𝑥) = 𝑝 (𝑥)
𝑝 (𝑋 = 𝑥 |𝑇 = 𝑡) =

𝑝 (𝑇 = 𝑡)
𝑝 (𝑇 = 𝑡 |𝑋 = 𝑥) =

𝑝 (𝑇 = 𝑡)
(2𝑡 − 1) · 𝜋 (𝑥) + 1 − 𝑡

which is the weighting function in (4). Next, we show that

𝑅ℓ̃ (𝑓𝑡 ) = 𝑅∗
ℓ
(𝑓𝑡 ), which follows from Lemma 1 of [47]. Given

8
Obermeyer et al. [50] report robustness checks examining whether differential pro-

gram effects by race could impact their study of label bias. The authors found no such

differential effects by race. As a result, their main analyses are not likely to be impacted

by the findings of our re-analysis. Nevertheless, the model reliability challenges we

study in this work could impact all individuals in the study population, if unaddressed.
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𝜼𝒕 (𝑥) =
(
1 − 𝜂𝑡 (𝑥)
𝜂𝑡 (𝑥)

)
, 𝑻 =

(
1 − 𝛼𝑡 𝛼𝑡
𝛽𝑡 1 − 𝛽𝑡

)
we can express (1) as 𝜼𝒕 (𝑥) = 𝑻𝜼∗𝒕 (𝑥) by assumption 1. This

error model is invertable via 𝜼∗𝒕 (𝑥) = 𝑻−1𝜼𝒕 (𝑥) for

𝑻−1 =
1

1 − 𝛼𝑡 − 𝛽𝑡

(
1 − 𝛽𝑡 −𝛼𝑡
−𝛽𝑡 1 − 𝛼𝑡

)
.

Let ℓ (𝑓𝑡 (𝑥)) = (ℓ (𝑓𝑡 (𝑥), 0), ℓ (𝑓𝑡 (𝑥), 1))⊤ be a vectorized loss cor-

responding to labels 𝒆 ∈ {0, 1}2. Then we have that

𝑅∗ℓ (𝑓𝑡 ) = E𝑋E𝑌 ∗𝑡 ∼ 𝜼∗𝑡 (𝑋 ) [ℓ (𝑓𝑡 (𝑋 ), 𝑌
∗
𝑡 )] = E𝑋 [𝜼∗𝑡 (𝑋 )⊤ℓ (𝑓𝑡 (𝑋 ))]

= E𝑋 [𝜼𝑡 (𝑋 )⊤ (T−1)ℓ (𝑓𝑡 (𝑋 ))] = E𝑋 [e⊤ (T−1)ℓ (𝑓𝑡 (𝑋 ))]
= E𝑋,𝑌𝑡 [ℓ̃ (𝑓𝑡 (𝑋 ), 𝑌𝑡 )] = 𝑅ℓ̃ (𝑓𝑡 )

Therefore, 𝑅ℓ̃ (𝑓𝑡 ) = 𝑅∗
ℓ
(𝑓𝑡 ) for a surrogate loss constructed via

ℓ̃ = (T−1)ℓ (𝑓𝑡 (𝑋 )). Multiplying ℓ (𝑓𝑡 (𝑋 )) by T−1 and rearranging

yields (5). □

Next, we prove Theorem 4.2 showing that error parameters are

identifiable under combinations of assumptions stated in Table 1.

Proof. To begin, observe that the error model (1) expresses the

conditional proxy class probability 𝜂𝑡 as a linear function of 𝜂∗𝑡
with two unknowns. Therefore, given knowledge of the target class

probability 𝑐∗
𝑡,𝑖

= 𝜂∗𝑡 (𝑥𝑖 ) and proxy class probability 𝑐𝑡,𝑖 = 𝜂𝑡 (𝑥𝑖 ) at
two distinct points (𝑐∗

𝑡,𝑖
, 𝑐𝑡,𝑖 ) and (𝑐∗𝑡, 𝑗 , 𝑐𝑡, 𝑗 ), we can set up a linear

equation

𝑐𝑡,𝑖 = (1 − 𝛽𝑡 ) · 𝑐∗𝑡,𝑖 + 𝛼𝑡 · (1 − 𝑐
∗
𝑡,𝑖 )

𝑐𝑡, 𝑗 = (1 − 𝛽𝑡 ) · 𝑐∗𝑡, 𝑗 + 𝛼𝑡 · (1 − 𝑐
∗
𝑡, 𝑗 )

(9)

and solve for error parameters

𝛼𝑡 =
𝑐∗
𝑡,𝑖
· 𝑐𝑡, 𝑗 − 𝑐𝑡,𝑖 · 𝑐∗𝑡, 𝑗
𝑐∗
𝑡,𝑖
− 𝑐∗

𝑡, 𝑗

(10)

𝛽𝑡 =
𝑐𝑡,𝑖 · 𝑐∗𝑡, 𝑗 − 𝑐𝑡,𝑖 + 𝑐

∗
𝑡,𝑖
− 𝑐∗

𝑡, 𝑗
+ 𝑐𝑡, 𝑗 − 𝑐∗𝑡,𝑖 · 𝑐𝑡, 𝑗

𝑐∗
𝑡,𝑖
− 𝑐∗

𝑡, 𝑗

(11)

provided that 𝑐∗
𝑡,𝑖

≠ 𝑐∗
𝑡, 𝑗
. Identification of the specific cases in

Table 1 follows from application of (10). When 𝛼𝑡 and 𝛽𝑡 are both

known, identification is not required. When one of 𝛽𝑡 (𝛼𝑡 ) is known,

the corresponding 𝛼𝑡 (𝛽𝑡 ) can be given by

𝛼𝑡 =
𝑐𝑡,𝑖 − (1 − 𝛽𝑡 ) · 𝑐∗𝑡,𝑖

(1 − 𝑐∗
𝑡,𝑖
) , 𝛽𝑡 =

𝑐∗
𝑡,𝑖
− 𝑐𝑡,𝑖 + 𝛼𝑡 · (1 − 𝑐∗𝑡,𝑖 )

𝑐∗
𝑡,𝑖

(12)

Therefore, only one anchor assumption (𝑐∗
𝑡,𝑖
, 𝑐𝑡,𝑖 ) is required

given knowledge of 𝛼𝑡 or 𝛽𝑡 . However, by (12), note that 𝑐∗
𝑡,𝑖

≠ 1

is required for identification of 𝛼𝑡 and 𝑐∗
𝑡, 𝑗

≠ 0 is required for

identification of 𝛽𝑡 . This rules out combinations denoted by (✕) in

Table 1. Error parameters can be derived directly from (10) if 𝛼𝑡
and 𝛽𝑡 are both unknown so long as 𝑐∗

𝑡,𝑖
≠ 𝑐∗

𝑡, 𝑗
. The specific values

of (𝑐𝑡,𝑖 , 𝑐∗𝑡,𝑖 ) corresponding to min, max, and base rate anchors can

be computed via

𝑐∗𝑡,𝑖 = inf

𝑥𝑖 ∈𝑋
{𝜂∗𝑡 (𝑥𝑖 )}, 𝑐𝑡,𝑖 = inf

𝑥𝑖 ∈X
{𝜂𝑡 (𝑥𝑖 )} (Min anchor)

𝑐∗𝑡,𝑖 = sup

𝑥𝑖 ∈𝑋
{𝜂∗𝑡 (𝑥𝑖 )}, 𝑐𝑡,𝑖 = sup

𝑥𝑖 ∈X
{𝜂𝑡 (𝑥𝑖 )} (Max anchor)

𝑐∗𝑡,𝑖 = E[𝜂
∗
𝑡 (𝑋 )], 𝑐𝑡,𝑖 = E[𝜂𝑡 (𝑋 )] (Base rate anchor)

Above, the min anchor holds because 𝜂𝑡 is a strictly monotone in-

creasing transform of 𝜂∗𝑡 by 1 such that 𝑐𝑡,𝑖 = arg inf𝑥𝑖 ∈𝑋 {𝜂𝑡 (𝑥)} =
arg inf𝑥𝑖 ∈𝑋 {𝜂

∗
𝑡 (𝑥)}. The max anchor holds by the same argument.

The base rate anchor holds because E𝑋 [𝜂𝑡 (𝑥)] = E𝑋 [𝜂∗𝑡 (𝑥) · (1 −
𝛽𝑡 − 𝛼𝑡 ) + 𝛼𝑡 ].

Finally, observe that 𝜂𝑡 (𝑥) is defined over potential outcomes

𝑌𝑡 ∼ 𝑝∗ rather than observational proxies 𝑌 ∼ 𝑝 . Identification of

𝜂𝑡 from observational data follows from

𝜂𝑡 (𝑥) := 𝑝 (𝑌𝑡 = 1|𝑋 = 𝑥) = 𝑝 (𝑌 = 1|𝑋 = 𝑥,𝑇 = 𝑡) (13)

where the equality holds by ignorability (3) and consistency (2). By

positivity (4), we have that the support of 𝜂𝑡 (𝑥) is defined ∀𝑥 ∈ 𝑋 ,

which guarantees that the min and max anchor will be defined.

□

A.3 Algorithms
The RW-SL and CCPE algorithms presented in § 4 partition train-

ing data into disjoint folds to learn 𝛼𝑡 , ˆ𝛽𝑡 , 𝜋 , and minimize the

re-weighted surrogate risk. We also provide a version of these algo-

rithms with cross-fitting to improve data efficiency. Cross-fitting is

useful when using limited data to fit multiple nuisance functions

and improves data efficiency while limiting over-fitting [34].

Algorithm 3: Re-weighted risk minimization with surro-

gate loss (cross fitting)

Input: DataW = {(𝑋𝑖 ,𝑇𝑖 , 𝑌𝑖 )}𝑛𝑖=1 ∼ 𝑝

Output: Learned estimator 𝜂∗𝑡 (𝑥)
PartitionW intoW1,W2,W3

for (𝑚,𝑛, 𝑝) ∈ {(1, 2, 3), (3, 1, 2), (2, 3, 1)} do
OnW𝑚 , estimate parameters 𝛼𝑚𝑡 , ˆ𝛽𝑚𝑡 ← CCPE(W𝑚)
OnW𝑛 , learn 𝜋𝑛 (𝑥) by regressing 𝑇 ∼ 𝑋

OnW𝑝 , use 𝜋𝑛 (𝑥), 𝛼𝑚𝑡 , ˆ𝛽𝑚𝑡 to solve

𝜂∗𝑡,𝑝 (𝑥) ← argmin𝑓𝑡 ∈H 𝑅𝑤̂
𝑡,ℓ̃
(𝑓𝑡 )

end
Return combined predictions 𝜂∗𝑡 (𝑥) = 1

3

∑
3

𝑝=1 𝜂
∗
𝑡,𝑝 (𝑥)

Algorithm 4: Conditional class probability estimation

(cross fitting)

Input: DataV ∼ 𝑝

Output: Parameter estimates 𝛼𝑡 , ˆ𝛽𝑡
PartitionV intoV1,V2

for (𝑚,𝑛) ∈ {(1, 2), (2, 1)} do
OnV𝑚 , learn 𝜂𝑚𝑡 (𝑥) by regressing 𝑌 ∼ 𝑋 | 𝑇 = 𝑡

OnV𝑛 , estimate error parameters:

𝛼𝑛𝑡 = min

𝑥∈𝑋
{𝜂𝑚𝑡 (𝑥)}, ˆ𝛽𝑛𝑡 = 1 −max

𝑥∈𝑋
{𝜂𝑚𝑡 (𝑥)}

end
Return averaged parameters 𝛼𝑡 =

1

2

∑
2

𝑛=1 𝛼
𝑛
𝑡 ,

ˆ𝛽𝑡 =
1

2

∑
2

𝑛=1
ˆ𝛽𝑛𝑡
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Figure 6: Comparison of models across small sample size
regimes. SL and RW-SL with oracle parameters maintain per-
formance parity with TPO across settings with 1k+ samples,
but demonstrate worse performance than TPO in the most
data scarce setting with 250 samples.

A.4 Additional experimental details and results
A.4.1 Setup details. In our synthetic evaluation, we sample from

target class probability functions 𝜂∗
0
(𝑥) = .4 + .4 cos(9𝑥 + 5.5),∀𝑥 ∈

[−1,−.237]; .5 + .3 sin(8𝑥 + .9) + .15 sin(10𝑥 + .2) + .05 sin(30𝑥 +
.2),∀𝑥 ∈ (−.237, 1] and 𝜂∗

1
(𝑥) = .5 − .5 sin(2.9𝑥 + .1) and sample

treatments from the linear function 𝜋 (𝑥) = .35𝑥 + .5 (Figure 3).
We train all models with a binary-cross entropy loss. We use

the same 4-layer MLP implemented via PyTorch with hidden layer

sizes (40, 30, 10) for all models discussed in § 5.1. Where relevant,

we also fit 𝜋 (𝑥) and 𝜂𝑡 (𝑥) (used in CCPE) via the same architecture.

We train all models for 10 each epochs each at learning rate 𝜂 =

.5𝑒−3. Hyperparameters were selected via a hyperparameter sweep

optimizing accuracy on 𝑌 ∗
0
with respect to the TPO model.

In our semi-synthetic experiments, we run all models in the

synthetic experiment without sample splitting and cross-fitting.

While cross-fitting improves data efficiency and typically performs

better in low sample settings, the treatment group in JOBS data

had very few positive (unemployment) outcomes. As a result, we

observed poor convergence of our MLP models across folds when

performing sample splitting on this dataset. Therefore we run JOBS

without sample splitting and cross-fitting, and maintain the same

setting with OHIE data for consistency. We use a 4-layer MLP with

layer sizes (30, 20, 10) for JOBS data and a 4-layer MLP with layer

sizes (40, 30, 10) for OHIE data. We use 𝜂 = 1𝑒 − 3 for JOBS data

and 𝜂 = 5𝑒 − 3 for OHIE data. We train JOBS and OHIE models for

15 and 20 epochs respectively. We with the synthetic experiment,

we select hyperparamters by optimizing model performance with

respect to the oracle TC model and use the same settings across

all models. Note that 𝜏 = 0.015 and 𝜏 = −0.077 for the outcomes

targeted in OHIE and JOBS, respectively.

A.4.2 Additional results. Theorem 4.1 shows that the re-weighted

surrogate loss recovers the loss with respect to target potential

outcomes in expectation. Because we do not provide a finite sample

convergence rate for our method, we extend our synthetic evalua-

tion to a low sample size regime to empirically test the performance

of RW-SL on finite samples of limited size. Figure 6 shows a con-

vergence plot for this experiment. We perform this analysis with

the same set of hyperparameters used in the main experimental

results reported in § 5. This plot indicates that the performance of

all methods deteriorates as sample availability decreases, with per-

formance upper bounded by the oracle TPO model. SL and RW-SL

with oracle parameters achieve performance at near parity with

TPO in sample settings above 500 samples, and begin to show rapid

performance deterioration at 250 samples. This indicates that both

SL and RW-SL tend to perform reliably in small sample settings

when parameters and weights are known. However, SL and RW-SL

with learned parameters performs poorly across all sample settings.

This is likely due to cascading errors arising from bias in error

parameter estimates. UT and UP both learn a function predicting

the average outcome response 𝜂 (𝑥) ≈ .61,∀𝑥 ∈ 𝑋 in the setting

with 250 and 500 samples. As a result, these methods demonstrate

accuracy lower than 50% in the small sample settings.
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