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ABSTRACT
Statistical measures for group fairness in machine learning reflect
the gap in performance of algorithms across different groups. These
measures, however, exhibit a high variance between different train-
ing instances, which makes them unreliable for empirical evalua-
tion of fairness. What causes this high variance? We investigate
the impact on group fairness of different sources of randomness
in training neural networks. We show that the variance in group
fairness measures is rooted in the high volatility of the learning
process on under-represented groups. Further, we recognize the dom-
inant source of randomness as the stochasticity of data order during
training. Based on these findings, we show how one can control
group-level accuracy (i.e., model fairness), with high efficiency and
negligible impact on the model’s overall performance, by simply
changing the data order for a single epoch.
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1 INTRODUCTION
Machine learning models are shown to manifest and escalate histor-
ical biases present in their training data [1, 4, 16, 59]. Understanding
these biases and the resulting ethical obligations have led to the rise
of fair machine learning research [13, 15, 37]. However, recent work
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has observed high variance in fairness measures across multiple
training runs, usually attributed to non-determinism in training
(e.g., weight initialization, data reshuffling, etc.). These findings
challenge the effectiveness of many bias mitigation algorithms
[3, 48], and even the legitimacy of several fairness trends present
in literature [51]. Thus, a reliable extraction of fairness measures
requires accounting for the high variance due to randomness in the
learning process to avoid lottery winners (see Fig. 1).

The standard solution to this concern is executing a large num-
ber of training runs with different randomness. However, such a
solution creates huge computational demands when examining
biases in neural networks. For instance, it costs about $450𝐾 to
train a model of similar quality as GPT-3 [57], and thus executing
multiple training runs of such a model is not practical. But, are
multiple identical runs essential? Can we instead find an efficient
alternative to measure this variance? Our paper answers this critical
yet unsolved question.

In this work, we perform an empirical investigation into the
high fairness variance due to randomness in neural network train-
ing, with a diverse set of experiments on a multitude of settings,
including different datasets across modalities, various fairness met-
rics, and changing hyperparameters and model architecture. More
specifically, our empirical analysis answers the following questions

• Is there a dominant source of randomness? We show that
the fairness variance observed in the literature is dominated
by randomness due to data reshuffling during training. Reshuf-
fling causes large changes in fairness even between consecutive
epochs within a single run, while other forms of randomness
have minimal influence.
• Why are fairness measures highly sensitive to data reshuf-
fling? We show a higher vulnerability of minorities to changing
model behavior, i.e., a higher prediction uncertainty for under-
represented groups. This disparate prediction uncertainty be-
tween groups is reflected in any statistical fairness measure de-
fined on model predictions.
• How does data order impact fairness? We demonstrate an
immediate impact of the data order on fairness. That is, we show
that a model’s fairness score is heavily influenced by the most
recent gradient updates, irrespective of the preceding training.
We also demonstrate how to create custom data orders that can
efficiently control group-level performances (and thus in turn,
model fairness), with a minor impact on the overall accuracy.
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Figure 1: Variance of fairness and accuracy: (a) Fairness (average odds) has a high variance across multiple runs due to non-
determinism in training. This variance persists evenwith state-of-the-art biasmitigation algorithms (Reweighing [30]; Equalized
Odds Loss [22]; FairBatch [46]) (b) The overall performance (𝐹1 score), however, has a significantly smaller range of variance.

• What are the practical implications?
– Given the immediate impact of data order on model fairness
and the nature of data order reshuffling in neural network train-
ing, we propose that using fairness variance across epochs in
a single training run is a good proxy to study fairness vari-
ance across multiple runs, thus reducing the computational
requirements by a significant factor.

– We also propose a custom data order that can improve model
fairness within a single training epoch, and compete with
existing bias mitigation algorithms. Interestingly, we show that
similar custom data orders can also be created by adversaries
to freely control fairness gaps in only a single epoch of training,
even under explicit bias mitigation.

2 BACKGROUND AND RELATEDWORK
In this section, we first introduce the relevant background in fair
machine learning and randomness in neural network training. We
then discuss the related work on the impact of randomness on
fairness evaluation in deep learning.

2.1 Fairness in Machine Learning
Fair machine learning can be broadly divided into two categories, (i)
group fairness [15], and (ii) individual fairness [20]. Group fairness
relies on measuring the disparity between the average performance
of protected groups against other privileged groups, and thus fo-
cuses on highlighting systematic bias against certain groups. Indi-
vidual fairness instead relies on some form of similarity between
individuals and requires consistency in the decision-making, i.e.,
similar individuals should be treated similarly.

In this work, we focus specifically on group fairness. Group
fairness has a diverse set of definitions in the literature, usually
chosen based on the stakeholders involved, known even to have
opposing behavior in specific settings [40, 47]. We will rely on three
commonly used group fairness metrics, i.e., demographic parity, av-
erage odds, and equal opportunity [26]. Demographic parity is the
measure of disparity between the percentage of positive outcomes
for each group, i.e., it does not allow model predictions to depend
on sensitive attributes. Average odds (and its relaxed version, equal

opportunity) is instead a measure of disparity between predictions
for each group conditioned on the true labels, i.e., it does allow
overall predictions to depend on sensitive attributes, but does not
allow predictions for certain ground-truth labels to depend on sen-
sitive attributes. Bias calculation and mitigation for group fairness
have accumulated extensive literature in recent years, along with
many open-source benchmarks [5, 8, 22, 45].

2.2 Randomness in Neural Network Training
Deep learning involves various forms of randomness that impact
a neural network’s path to convergence. This randomness during
training can introduce noise into the optimization objective and
works as a regularizer for the learning algorithm [42]. It makes
the model prioritize generalization, avoid overfitting, escape local
minima, and even speed up convergence [12]. Thus, randomness
during training is integral to the success of neural networks, but its
impact on model behavior needs to be carefully examined [7, 10].

Broadly, randomness in neural networks can be studied in the
context of the following categories (see Fig. 2),

• Data Splitting: For any experimental setup in machine learning,
the dataset under consideration is randomly divided into train-
val-test (or just train-test) splits, to avoid information leakage
and perform a fair evaluation.
• Weight Initialization: Weight initialization refers to the initial
parameter vector that is the starting point for the gradient de-
scent. Randomness in weight initialization is crucial for breaking
the symmetry between model parameters and allows the neural
network to learn complex functions [25].
• Random Reshuffling: Neural network training relies on gradi-
ent descent to optimize a chosen objective iteratively. Calculating
the gradient over the entire dataset for every optimization step
is expensive. A commonly adopted alternative is uniformly sam-
pling a subset of the dataset to approximate the gradient, known
as stochastic gradient descent (SGD). In practice, it has been
shown that instead of uniform sampling, SGD can also be im-
plemented by simply traversing a random order, i.e., random
reshuffling, of the training data [12, 38, 41].
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Figure 2: Sources of randomness during training: Randomness is introduced at several points during the training of a neural
network. (a) Data splitting before training is important to avoid information leakage during evaluation, and involves randomness
for the same. (b) Randomness in weight initialization at the start of the training is necessary to break symmetry and learn
complex representations. (c) Random reshuffling at every epoch implements stochastic gradient descent (SGD) in practice.
There are many other forms of randomness in neural network training. Yet, most are only used for certain specific settings.

• Other Sources of Randomness: Several additional components
in the learning algorithm can introduce further randomness.
These components are not standard, but are introduced in special
cases to achieve specific objectives. For example, data augmenta-
tion to increase dataset size [31], dropout to perform regulariza-
tion [58], gradient noise for private training [14], etc.

2.3 High Variance in Fair Deep Learning
There has been a growing awareness of high variance in fair deep
learning, associated with non-determinism in model training or the
underlying implementation [3, 21, 43, 48, 51], and the uncertainty
of existing results in the literature.

Soares et al. [51] investigate the relationship between various
algorithmic choices and the corresponding fairness variance, in
large language models. They study the correlation of fairness with
model size and found no obvious trends, as opposed to various
claims previously made in literature [6, 28]. They also found that
fairness is heavily affected by the random seed, i.e. simply changing
the randomness can cause a huge variance in fairness.

Sellam et al. [48] have trained and released 25 pre-trained BERT
checkpoints, each trained from scratch under identical settings but
with a different random seed. They also analyze the variance of
model fairness and the impact of commonly used bias mitigation
algorithms on downstream tasks when starting with different pre-
trained models. They show significant variance across changing
random seeds and question the value of such mitigation techniques.

Amir et al. [3] revisit bias mitigation techniques in clinical texts
and show a lack of statistically significant improvement after ac-
counting for non-determinism in training. Friedler et al. [21] explore
the stability of fairness under a rarely studied source of randomness,
i.e. data splitting, and show notable impact on fairness evaluation.

While existing literature focuses on exploring the impact of high
fairness variance in bias evaluation, we instead focus on investi-
gating its source. Furthermore, we propose to move away from

the practice of simply executing multiple runs to capture fairness
variance and instead provide a computationally efficient proxy.

3 PROBLEM STATEMENT
We start by formally defining the problem statement and detailing
our experiment setting for the rest of the paper.

3.1 Neural Network Training
Most machine learning algorithms can be abstracted down to an
optimization problem for a given objective, usually a loss function.
More specifically, for a training dataset (𝑥,𝑦) ∈ D, a family of
hypothesis functions F , and a loss function L, the optimization
goal for the learning algorithm can be defined as,

𝑓 ∗ ← argmin
𝑓 ∈F

∑︁
(𝑥,𝑦) ∈D

L(𝑓 (𝑥), 𝑦) (1)

The above formulation of the learning objective is known as
empirical risk minimization (ERM) [56]. However, finding a global
optimum for ERM in deep learning is typically intractable, due to
the high dimensional, non-convex formulation of neural networks.
Neural networks are instead trained iteratively, starting with a
randomly sampled function 𝑓0, refining the model with a learning
algorithm A for 𝑇 epochs, to finally output the trained model 𝑓𝑇 .
The learning algorithm at every epoch 𝑡 takes in the current model,
complete training data D, and a number of hyperparameters 𝜉
(e.g., batch size, learning rate, etc.), to progressively improve the
model by a single epoch of training. The learning algorithm can
contain various sources of randomness, as discussed above. In our
work, we will focus on two standard forms of randomness found in
every neural network training, i.e., weight initialization and random
reshuffling of data order at every epoch. More specifically, neural
network training can be defined as,

𝑓𝑡 := A(𝑓𝑡−1,D, 𝜉, 𝑟𝑠 , 𝑡) 𝑓0 ∼ F ; 𝑟𝑠 ∼ 𝑅 (2)
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The function 𝑓0, i.e., the weight vector initialization in a param-
eterized neural network, is randomly sampled from pre-defined
distribution F , and the random seed for reshuffling 𝑟𝑠 is sampled
from a uniform distribution 𝑅. Note that both random seed 𝑟𝑠 and
epoch number 𝑡 are together responsible for the data shuffling of
epoch 𝑡 . Thus, for fixed reshuffling (i.e., fixed 𝑟𝑠 ), the data order
is still shuffled at every epoch during a single training run but is
the same at any epoch 𝑡 across two different training runs. More
details on the random seed setup can be found in Appendix A.

3.2 Metrics and Variance
A model 𝑓 ’s performance can be evaluated using its outputs on the
test dataset. We will stick to the commonly used binary classifi-
cation and binary sensitive attribute 𝑎 ∈ {0, 1} setting in fairness
literature for the rest of the discussion. In the main paper, we will
rely on 𝐹1 Score and average odds (AO) to measure the model’s
average performance and group fairness respectively. AO can be
empirically interpreted as the average disparity between separately
calculated true positive rates (TPR) and false positive rates (FPR) of
various groups [26]. The metrics are defined as

𝐹1 (𝑓 ,D) :=
2𝑇𝑃
𝑃 + 𝑃𝑃 =

2
∑
D𝑒 1[ 𝑓 (𝑥 )=𝑦∧𝑦=1]∑

D𝑒 1[𝑦=1] +
∑
D𝑒 1[ 𝑓 (𝑥 )=1]

(3)

𝐴𝑂 (𝑓 ,D) := (Δ𝑇𝑃𝑅 + Δ𝐹𝑃𝑅)
2

(4)

=
1
2

∑︁
ℎ={0,1}
𝑦=ℎ

|
∑
D𝑒 1[ 𝑓 (𝑥 )=1∧𝑎=0]∑
D𝑒 1[𝑎=0]

−
∑
D𝑒 1[ 𝑓 (𝑥 )=1∧𝑎=1]∑
D𝑒 1[𝑎=1]

|

where
∑
D𝑒 is the sum over all data points in the test setD𝑒 , i.e.,∑

(𝑥,𝑦,𝑎) ∈D𝑒 , and 1[𝑧 ] is an indicator function which is 1 when the
boolean expression 𝑧 is true, and 0 otherwise. We also include addi-
tional experiments for two more fairness measures, equal opportu-
nity (EOpp) and demographic parity (DP) in Appendix I. Moreover,
we will show that the non-determinism in fairness originates from
high prediction uncertainty for minority (Section 5), and thus will
be reflected in any fairness metric defined on these predictions. We
report all metrics in percentage.

At the heart of our work is the study of fairness variance across
model checkpoints. We define variance across multiple runs and
variance across epochs in a single run as,

𝑉𝑎𝑟𝑟𝑢𝑛𝑠𝐹1
(A,𝑇 ) := 𝑉𝑎𝑟

𝑓0∼F;𝑟𝑠∼𝑅
(𝐹1 (𝑓𝑇 )), (5)

𝑉𝑎𝑟
𝑒𝑝𝑜𝑐ℎ𝑠

𝐹1
(A, 𝑓0, 𝑟𝑠 ,𝑇1,𝑇2) := 𝑉𝑎𝑟

𝑡 ∈[𝑇1,𝑇2 ]
(𝐹1 (𝑓𝑡 )), (6)

𝑉𝑎𝑟𝑟𝑢𝑛𝑠𝐴𝑂 (A,𝑇 ) := 𝑉𝑎𝑟
𝑓0∼F;𝑟𝑠∼𝑅

(𝐴𝑂 (𝑓𝑇 )), (7)

𝑉𝑎𝑟
𝑒𝑝𝑜𝑐ℎ𝑠

𝐴𝑂
(A, 𝑓0, 𝑟𝑠 ,𝑇1,𝑇2) := 𝑉𝑎𝑟

𝑡 ∈[𝑇1,𝑇2 ]
(𝐴𝑂 (𝑓𝑡 )), (8)

Existing work in the literature has shown high variance in fair-
ness scores across multiple runs 𝑉𝑎𝑟𝑟𝑢𝑛𝑠

𝐴𝑂
(A,𝑇 ). In our work, we

first decouple the impact of two standard sources of randomness,
i.e., study 𝑉𝑎𝑟

𝑓0∼F
(𝐹1 (𝑓𝑇 )) and 𝑉𝑎𝑟

𝑟𝑠∼𝑅
(𝐹1 (𝑓𝑇 )) separately. In doing so,

we find high variance in fairness scores even across epochs in a
single training run (Section 4), and thus further study variance
across epochs in fairness scores 𝑉𝑎𝑟𝑒𝑝𝑜𝑐ℎ𝑠

𝐴𝑂
(A, 𝑓0, 𝑟𝑠 ,𝑇1,𝑇2). Note

that for 𝐹1 score, variance across multiple runs 𝑉𝑎𝑟𝑟𝑢𝑛𝑠
𝐹1
(A,𝑇 ) and

across epochs in a single run 𝑉𝑎𝑟𝑒𝑝𝑜𝑐ℎ𝑠
𝐹1

(A, 𝑓0, 𝑟𝑠 ,𝑇1,𝑇2) are both
relatively stable. Unless otherwise specified, we train our models
for a total of 𝑇 = 300 epochs, and we measure variance across
epochs from𝑇1 = 100 to𝑇2 = 300. We make this choice because the
models have converged to stable accuracy before epoch 100 (refer
to the training curve in Appendix C for more details).

3.3 Datasets and Models
We will conduct our investigation on ACSIncome and ACSEmploy-
ment tasks of the Folktables dataset [17], and binary classification
of the ’smiling’ label in CelebA dataset [33], with perceived gen-
der (Female vs. Male) as the sensitive attribute for all datasets. For
CelebA, input features are obtained by passing the image through a
pre-trained ResNet-50 backbone and extracting the output feature
vector. More details on the datasets are provided in Appendix B.

We train a feed-forward network with a single hidden layer of 64
neurons and ReLU activation, and train themodel with cross-entropy
(CE) loss for𝑇 = 300 epochs at batch size 128 and learning rate 1𝑒−3,
in all our experiments unless specified otherwise. Note that while
we measure fairness scores in our experiments, we do not explicitly
train the models with any fairness constraints (except in Section 7.2
when training baseline bias mitigation algorithms). We also include
additional experiments by changing training hyperparameters, i.e.,
batch size, learning rate, and model architecture, in Section 4.2 (and
Appendix G). We use a train-val-test split of 0.7 : 0.1 : 0.2, and
maintain the same split throughout all our experiments, i.e. we do
not consider potential randomness due to data splitting. All our
experiments and evaluations are performed only on the test split.
We will focus primarily on the ACSIncome task in the main text,
while additional experiments on CelebA and the ACSEmployment
task are included in Appendix F.

4 THE DOMINANT SOURCE OF RANDOMNESS
In this section, we move past the observation that different training
runs lead to different outcomes, and investigate the high fairness
variance by studying and contrasting the two canonical sources of
randomness.

4.1 Impact of Weight Initialization and Random
Reshuffling on Fairness Variance

We start by decoupling the two sources of randomness inherent
to the widely adapted SGD, i.e., weight initialization and random
reshuffling, and study their impact on fairness variance separately
in Fig. 3. We collect average odds (AO) and 𝐹1 score at epoch 300
for 50 unique training runs each while, (i) allowing for both sources
of randomness, (ii) changing only the weight initialization while
keeping the random reshuffling fixed, and (iii) changing only the
random reshuffling while keeping the weight initialization fixed,
respectively. The large range of fairness scores reported by allowing
for both sources of randomness in Fig. 3(a) represents the variance
observed in the existing literature. Interestingly, when these sources
are examined separately, the variance under fixed initialization in
Fig. 3(c) is equivalently large but the variance under fixed reshuffling
in Fig. 3(b) drops significantly. It is clear that fairness variance
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Figure 3: Decoupling the effect of randomness in weight initialization and reshuffling: (a) Variance in average odds (AO)
by allowing both sources of randomness simultaneously represents the fairness variance in existing literature. (b) We see a
significant drop in variance if we change only the weight initialization while keeping the reshuffling fixed. (c) However, we
observe high range of variance by changing only the reshuffling, even for a fixed weight initialization. These results suggest
reshuffling of the data order as the dominant source of fairness variance, with little influence from weight initialization.
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(a) Fixed Data Reshuffling

100 150 200 250 300

Epoch

(b) Fixed Weight Initialization

Median
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Figure 4: Training dynamics under fixed weight initialization and reshuffling: Median, inter-quartile range, and overall range
of average odds across 50 training runs while keeping the data reshuffling or the weight initialization fixed respectively. (a)
Despite different initializations, models with fixed data reshuffling have very little variance across training runs, but high
variance across epochs. This highlights the dominant impact of random reshuffling on model fairness. (b) High variance even
across training runs at the same epoch under fixed weight initialization further supports our claim.

originates from data order shuffling, while randomness in weight
initialization has minimal impact.

To further probe the difference between these two sources of
randomness, we study the training dynamics of the previous set of
models across epochs, instead of just the final model checkpoint, in
Fig. 4. We plot the median, inter-quartile range, and overall range
of average odds (AO) across the complete set of 50 training runs
from epoch 100 to 300 in the two isolated settings from the previous
experiment. We find a high correlation in fairness scores across
training runs with fixed data reshuffling (average pairwise pearson
coefficient≈ 0.94), which supports our observations of low variance
in fairness scores at the final epoch in Fig. 3(b). Furthermore, there
is a lack of any reasonable correlation between fairness scores of
training runs with fixed weight initialization (average pairwise
pearson coefficient ≈ 0.04). Interestingly, the high fairness variance
across epochs inside a single training run in Fig. 4(a) closelymatches
the variance that we observe across multiple training runs in Fig.
4(b). In other words, for fixed data reshuffling the average odds
value at any epoch is almost the same between different training
runs, but the average change even between consecutive epochs

is large, while for fixed weight initialization, even the variance
between runs is quite high.

4.2 Dominance of Random Reshuffling across
Datasets, Metrics and Hyperparameters

We extend our previous experiment and calculate correlation across
multiple runs for additional datasets, fairness measures, as well as
hyperparameter choices of batch size, learning rate, model archi-
tecture, and dropout regularization with different dropout rates in
Table 1. Here we measure the correlation (i.e., average pairwise
pearson coefficient) across 50 training runs in each setting for fixed
data shuffling and fixed weight initialization. It is clear from the
results that even under diverse settings, the correlation between
multiple runs with fixed data reshuffling is significantly high, while
the correlation with fixed weight initialization is close to zero.

In addition to the overall trends supporting our initial claim,
individual trends in Table 1 under various settings are also quite
interesting. The correlation score for fixed weight initialization
under hyperparameters that induce noisier training (i.e., smaller
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Table 1: Average pairwise pearson coefficient for correlation across multiple runs: Fixed random reshuffling (RR) (i.e., changing
only the weight initialization) has a high correlation score across multiple runs, while fixed weight initialization (WI) (i.e.,
changing only the random reshuffling) has a correlation score close to zero, which establishes the dominance of data reshuffling
on fairness. These trends exist across different datasets, fairness metrics, and hyperparameter choices.

(a) Different Datasets

Fixed RR Fixed WI

ACSIncome .94 .04
ACSEmployment aa .89 .01
CelebA .92 .01

(b) Different Fairness Metrics

Fixed RR Fixed WI

Average Odds .94 .04
Equal Opportunity .94 .05
Demographic Parity .96 .03

(c) Changing Hyperparameters

Fixed RR Fixed WI

Default Hyperparameters .94 .04
Batch Size = 16 .95 .00
Learning Rate = 0.01 .93 .00
Arch = {2048, 64} .92 .00

No Dropout .94 .04
Dropout Rate = 10% .88 .03
Dropout Rate = 20% .85 .04
Dropout Rate = 30% .80 .13

batch size, larger learning rate, etc.) drops even lower than the
default setup. Note that we do not report results for a bigger batch
size or a smaller learning rate, as these models face issues with
convergence even after 300 epoch of training (see Appendix G
for more details), which further indicates the need of randomness
and noise in the learning algorithm to facilitate better and faster
convergence. However, this randomness will also create a dominant
dependence of model fairness on data reshuffling, as we study
in our work. We also see the trends diminishing (although still
clear) with higher dropout rates. This suggests that appropriate
regularization during training can indeed, to some extent, reduce
the impact of randomness in training (or more specifically, data
reshuffling) on fairness scores. We also provide detailed results for
each hyperparameter setting above in Appendix G, H.

Takeaway 1: Random reshuffling of data order during training is
the dominant cause of high fairness variance as seen in the literature,
while randomness in weight initialization has minimal influence.

5 WHY IS FAIRNESS HIGHLY SENSITIVE TO
RANDOMNESS?

In the previous section, we showed the dominant impact of data
reshuffling onmodel fairness. In this section, we show that its in fact
the imbalance in the underlying data distribution for training which
creates high volatility in predictions for the minority. Thus, groups
with smaller representations are more significantly influenced by
the randomness in reshuffling, resulting in high fairness variance.

5.1 Changing Predictions Across Epochs
We observed high variance in model fairness even between consec-
utive epochs during training (see Fig. 4). The changing predictive
behavior of neural networks beyond training loss convergence
is not surprising, and has been studied extensively in literature
[29, 32, 54, 55]. As we are concerned with the fairness of the final
decisions made by the model, we will focus on a change in the
model’s discrete output class when discussing changing predic-
tions. More specifically, a model is said to have undergone a change

in prediction for some input 𝑥 during epoch 𝑡 , if 𝑓𝑡 (𝑥) ≠ 𝑓𝑡−1 (𝑥),
where 𝑓𝑡 (𝑥) is the output class when passing the input 𝑥 through
the model checkpoint at the end of epoch 𝑡 . While these changing
predictions maintain an overall stable average performance, they
can still have a disparate impact on individual groups, the exact
characteristics of which are less known.

We study this instability by investigating individual data points
which change their predictions. We plot the dataset distribution
across groups in Fig. 5(a) and the percentage of data points from
each group that changed their prediction at least once between
epochs 100 and 𝑘 , where we gradually increase the value of 𝑘 ,
in Fig. 5(b). Clearly, the trends in the percentage of unique data
points with changing predictions mirror the representation of each
group in the original dataset, i.e. the groups which are represented
the least are the most vulnerable to changing model behavior. For
example, positive labels from the group Female are severely under-
represented and consequently have almost twice the percentage of
unique examples with changing predictions than any other groups.

5.2 Disparate Prediction Uncertainty
Higher vulnerability to changing discrete predictions for minorities
can be interpreted as an indication of higher uncertainty in the
underlying model predictions. To further probe the disparate model
behavior across different groups, we record the cumulative distri-
bution of prediction uncertainty for each group separately in Fig.
6. We rely on two commonly used methods to measure prediction
uncertainty, i.e., (i) monte-carlo dropout [23], and (ii) training a
bayesian neural network [11]. We execute 1000 forward passes for
each method and record the standard deviation in outputs as the
prediction uncertainty. Despite different distribution trends, both
methods highlight the higher prediction uncertainty of minorities.
As expected, the order of prediction uncertainty across groups fol-
lows the training data distribution (Fig. 5(a)), i.e. groups with a
larger representation in the training data have smaller number of
examples with large prediction uncertainty, which is quite intuitive.
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Figure 6: Normalized cumulative distribution of prediction uncertainty for various groups: The distribution of the minority
group (Female with Salary ≥ 50𝐾) is significantly more skewed towards higher uncertainty than any other group, i.e. the
minority contains far more percentage of data points with high prediction uncertainty than the majority.

As the model has skewed cumulative distribution towards uncer-
tainty for the minority, any fairness metric defined on the output
of such a model will also reflect this instability, and thus manifests
as fairness variance in existing literature [3, 48, 51].

Takeaway 2: Under-represnted groups have higher prediction
uncertainty in the final trained model, and thus predictions for data
points from such minorities are more sensitive to the randomness.

6 IMPACT OF DATA ORDER ON FAIRNESS
In Section 4, we observed the dominance of reshuffling on fairness
variance. Data order during training governs gradient updates and
thus its impact on fairness is unsurprising [34, 39, 44, 49, 50, 52].
Even under randomly shuffled data order, neural networks are
known to undergo changes in predictive behavior during training
[29, 32, 54, 55]. However, its the immediacy of the impact of data
order that is surprising and a novel observation of our work. We
now study the impact of data order in a single epoch on fairness.

6.1 Data Order’s Immediate Impact
To study the immediacy and characteristics of the impact of data
order on model fairness, we fine-tune a set of already converged

model checkpoints for a common sequence of 𝑏 batches and record
the fairness variance across checkpoints for different values of 𝑏 in
Fig. 7. This allows us to measure fairness variance across models
which have experienced the same most recent 𝑏 gradient updates.
The choice of the common sequence of 𝑏 batches fed to the model
was done by separately training a model and choosing the suffix
of data order corresponding to epochs with the best and worst
fairness scores on the validation set. As the number of fixed batches
𝑏 increases, the fairness variance decreases, and it is clear from the
results that the impact of data order on fairness is quite immediate
(an epoch of ACSIncome dataset is 𝑏 = 1070 batches). Moreover,
the resulting fairness is also characteristically stable for a specific
data order, i.e. batches taken from the suffix of the data order corre-
sponding to the best fairness epoch of an individual training run
also helps fine-tune all other checkpoints towards the same best
fairness, and vice-versa for the worst fairness epoch.

The set of checkpoints were chosen by sampling 1000 different
checkpoints from epochs 100 to 300 of 50 different training runs
while allowing for both forms of randomness simultaneously. The
checkpoints were chosen in this manner to create a diverse train-
ing history, and show that these models achieve the same fairness
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Figure 7: Fairness variance under common 𝑏most recent gradients: Average odds stabilize as the number of most recent common
training batches 𝑏 increases, highlighting the immediate impact of these gradient updates on model fairness. Moreover, it even
predictably stabilizes to low or high fairness based on the corresponding data order from the epoch with best or worst fairness.
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Figure 8: Manipulating group level accuracy with data order: We show how to control group level accuracy by changing data
distribution of the most recent gradient updates, tested separately for ratio between positive and negative labels for group
Female, and group Male, respectively, while keeping other ratios fixed. In only a single epoch of training, we are able to
manipulate the group level accuracy trade-off, with relatively small impact on overall accuracy.

scores when fine-tuned on a common set of batches, irrespective
of training prior to those updates. We also extend our experiment
to show the same behavior even for batches from any random data
order, instead of deliberately chosen data orders as above, in Ap-
pendix D. One possible explanation of this immediate impact is
the presence of no energy valleys in deep learning loss landscape
between minima of separately trained models [18, 24]. Another
possible explanation can be built on a recent line of work that
shows there is only one functionally unique minima in loss land-
scape of neural networks, while all other minima simply contain
permutation or scale symmetries of the same set of models [2].

6.2 Manipulating Group Accuracy Distribution
with Data Order

In the previous section, we saw a stable relationship between data
order and the resulting fairness score. However, the data orders
in the experiment above were sampled from a set of random data
orders. We now show that it is possible to create our own custom
data order to achieve any target fairness score. We hypothesize
that since the data order in the most recent batches has an imme-
diate impact on model fairness, the distribution in these batches
must be temporarily changing the loss landscape and nudging the

group-level accuracy. This could allow us to manipulate group-level
accuracy in only a single epoch of fine-tuning.

To test this hypothesis, we fine-tune a set of 50 already converged
models for exactly a single epoch on custom data orders with chosen
distributions and record group-level accuracy in each setting in
Fig. 8. To create this custom data order, we start by fixing the ratio
between different groups and then form batches for the data order
suffix in this exact ratio until we run out of data points (which will
happen for any ratio that is not the dataset distribution). The excess
data points are then shuffled randomly and placed at the prefix of
data order. We do two sets of isolated experiments, by changing the
ratio between positive and negative labels for group Female (Fig.
8(a)) and group Male (Fig. 8(b)) respectively, while keeping other
ratios fixed. It is clear that by manipulating the data distribution in
the most recent gradient updates, we can control the group-level
accuracy of the model. While the overall accuracy drops noticeably
for extreme ratios, it does not change much in the middle despite
significant variance in group-level performances.

Note that our custom data order still has the same distribution
as the original dataset, i.e., we have not changed the distribution of
the complete data order, but only moved around the data points to
change the distribution of the data order suffix. These results further
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Figure 9: Fairness variance across multiple runs vs across epochs in a single run: (a) Fairness scores (average odds) across
multiple training runs and across epochs in a single training run have similar empirical distributions. (b) Quality of black
swans (i.e. extremely rare checkpoints) improves with more checkpoints collected, either in terms of fairness (the lowest
achievable average odds score) or the trade-off between overall performance and fairness (the Hausdorff distance to the best
pareto front). This improvement occurs at the same rate, irrespective of sampling checkpoints across multiple random seeds
(x-axis) or multiple epochs in a single seed (y-axis). But, sampling across epochs is significantly cheaper, providing a highly
efficient alternative to executing multiple runs.

strengthen our claim on the immediate impact of the most recent
gradient updates on model fairness and group-level accuracy. Fair-
batch [46], a recently proposed bias mitigation algorithm, follows a
similar formulation (although it additionally changes the overall
distribution). Fairbatch creates batches with a fixed ratio between
groups, and this ratio is continuously optimized to counter the ex-
isting bias in the model. Our results not only explain their success,
but also state that instead of regularly adapting the distribution to
compensate for the model bias (and oversampling/undersampling
certain groups), one can directly use the desired distribution to cre-
ate a custom data order and the model will adapt to it immediately.

Takeaway 3: The training data order has an immediate impact on
the model’s fairness scores. That is, the data distribution in the most
recent gradient updates can control the model’s group level accuracy
in only a single epoch of fine-tuning.

7 APPLICATIONS OF THE IMPACT OF DATA
ORDER ON FAIRNESS

With a better understanding of the impact of data order on model
fairness and how to control it, we now explore some practical
applications of our observations.

7.1 Capturing Fairness Variance in a Single Run
We now return to our original problem of capturing fairness vari-
ance without wasting computing resources on a large number of
training runs. We saw an immediate impact of data order on model
fairness, which shows that fairness variance across multiple train-
ing runs can instead be studied as simply the randomness in data
order at their last epochs. As these orders randomly reshuffled,
their distribution across multiple trainings should be the same as
their distribution across epochs in a single training run. Thus, we
propose evaluating fairness of intermediate checkpoints in a single
training run as a proxy for multiple runs.

To test the similarity in both distributions, we simply plot the
distribution of fairness scores for checkpoints across 200 training
runs (for three different stopping epochs) and across epochs 100
to 300 in a single training run (for three different training runs)

in Fig. 9(a). Clearly, the empirical distribution of fairness across
multiple training runs closely matches the distribution across a
single training run. We also perform the Kolmogorov–Smirnov (KS)
test [35] to match sampling across multiple runs (at epoch 300)
and sampling across epochs (for a single training run with seed 0).
The maximum difference in empirical CDF of the two distributions
was only 0.07, and the KS test gave the p-value of 0.712, i.e. the
probability of the hypothesis that both set of fairness scores were
sampled from the same underlying distribution.

Furthermore, we also test the quality of black swans, i.e. the best
models under certain quality measure, as a function of number of
unique training runs and number of epochs evaluated per training
run, in Fig. 9(b). For all (𝑡, 𝑠) ∈ [1, 50], we perform 𝑠 unique train-
ing runs (while changing both forms of randomness, i.e., weight
initialization and random reshuffling), and evaluate the model for
last 𝑡 epochs in each training run, thus accumulating a total of 𝑡 ∗ 𝑠
checkpoints. We then calculate two different quality measures for
these set of checkpoints, i.e., (i) the best fairness achieved across all
checkpoints, and (ii) the Hausdorff distance [9] of the Pareto-front
(including both fairness and 𝐹1 scores) from the best achievable
Pareto-front, i.e., for 𝑡 = 50; 𝑠 = 50. Finally, the experiment is re-
peated and averaged 50 times to compensate for randomness in
the 𝑠 training runs. Interestingly, the black swans for both quality
measures show no significant distinction between increasing the
number of training runs or evaluating multiple epochs per training
run, i.e., sampling more checkpoints in either direction gives us
similar improvements.

It is clear from our results that the commonly used method
to capture fairness variance in literature (𝑡 = 1; 𝑠 = 50) is highly
inefficient use of computing resources, and one can extract the same
quality of black swans (and overall fairness variance) by simply
observing fairness across multiple checkpoints in a single training
run (𝑡 = 50; 𝑠 = 1), which would require 50 times less computation.
With these experiments, we showed direct benefits of evaluating
multiple epochs in a single training run, saving huge amounts of
resources and time in capturing the overall fairness variance.

Takeaway 4: Fairness distribution across multiple runs is empiri-
cally the same as that across epochs within a single run.
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Figure 10: Comparing data order manipulation with other bias mitigation algorithms: Under baseline training setup, by
changing the data order for just a single epoch of fine-tuning, EqualOrder gets competitive performance to commonly used
bias mitigation methods. Similarly, AdvOrder gets significantly worse fairness than even the baseline. For Reweighing, we see
an increase in bias even with EqualOrder, as the beneficial weighing of minority creates bias towards the majority. On the other
hand, even reweighing is not enough to counter the effects of AdvOrder. Finally, equalized odds loss is capable of dynamically
adapting to the model’s changing predictive behavior, yet we still observe increase in bias under AdvOrder.

7.2 Bias Mitigation via Data Order Manipulation
To measure the effectiveness of our group accuracy manipulation,
we extend the discussion from Section 6.2 for two special ratios,
1 : 1 and 1 : 3 between positive and negative labels of group Female
(for ACSIncome dataset), and call them EqualOrder and AdvOrder
respectively. More specifically, we fine-tune converged models with
a single epoch of EqualOrder (and AdvOrder), and record 𝐹1 score
and average odds in Fig. 10. We perform experiments with three
unique setups, (i) Baseline training, (ii) Reweighing [30], a data
pre-processing which weighs every label-group pair based on its
representation in the overall dataset, and (iii) Equalized Odds Loss
[22], an in-processing loss function to nudge the model towards
fair predictions. By training with EqualOrder for a single epoch,
the baseline model achieves competitive fairness scores to other
bias mitigation algorithms. On the other hand, using AdvOrder can
further push the model bias, emphasizing the adversarial power of
data ordering, even in presence of explicit mitigation algorithms.

Notably, reweighing suffers from an unexpected high bias even
under EqualOrder, as the combination of ideally distributed data
order suffix along with increase in the minority data weights pushes
the model towards significant unfair behavior against the majority
(as opposed to against the minority in all other results). Moreover,
equalized odds loss shows controlled damage under AdvOrder due
to the loss function regularly adapting to the degrading behavior,
but the unfairness still increases. AdvOrder is dangerous as it still
maintains the overall accuracy, but favors the majority. We can
force even worse fairness gaps by pushing the ratio to its extreme,
however that will impact the model’s overall accuracy. These results
cement the effectiveness of manipulating group level accuracy by
controlling the data order for just a single epoch of fine-tuning.

Takeaway 5: A data order with a balanced suffix can significantly
improve in fairness scores. Similarly, even bias mitigation algorithms
can fail when trained with an adversarial data order.

8 CONCLUSION
Fairness variance due to changing randomness in deep learning
has raised concerns regarding the reliability of existing results in

literature [3, 48, 51]. In our work, we took a close look at various
sources of randomness, and found a dominant impact of data order
on model fairness, which we showed was in turn due to a higher
prediction uncertainty of the trained model on under-represented
groups in the dataset. We further demonstrated that the distribution
seen by the model in the most recent gradient updates can be easily
exploited to achieve desirable group-level accuracy behavior, and
proposed several practical applications of this immediate impact of
data order on model fairness, including a highly efficient alternative
to executing multiple training runs when studying fairness variance
due to randomness in training.

In our work, we focused only on the discrete decisions made by
the model, as we were investigating the impact of non-determinism
inmodel training on its fairness. However, further extensions of this
discussion to trends in the internal state of the learned model can
reveal even granular characteristics, and has potential application
in similar fields of research, for example, understanding high vari-
ance in out-of-distribution generalization [36], exploiting model
multiplicity under various settings [10], and many more.
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A NON-DETERMINISM IN MODEL TRAINING
In our paper, we focus on fairness variance due to randomness
in the training algorithm (i.e., weight initialization and random
reshuffling). To control the randomness, we set manual seeds at
various intermediate locations in our code. We refer to the seed set
right before building the neural network as the weight initialization
seed, which influences the randomness in sampling the weight
values. Similarly, we refer to the seed set right before the first
training data shuffling as random reshuffling seed, which influences
the data order that will be used as reference for the rest of the
training. During training, we simply set the epoch number as seed
right before reshuffling the reference data order at every epoch. As
we can change the reference data order by changing the random
reshuffling seed, this setup allows us to control non-determinism
in data order throughout training with a single random seed.

We also perform experiments with dropout regularization during
training. The epoch number seed set at the start of every epoch
serves dual functionality, and also controls the randomness from
dropout regularization. That is, fixing both weight initialization and
random reshuffling seeds allows us to deterministically replicate
model training, while changing both seeds simultaneously is similar
to the discussion of non-determinism currently present in fair deep
learning literature.

B DATASETS
ACSIncome. ACSIncome is one of the five pre-defined tasks in

the Folktables dataset [17], which was recently collected to improve
the older and commonly used UCI Adult Income dataset [19]. More
specifically, we use the subset of Folktables dataset from the state
of California, USA for 2018. The dataset contains a total of 195, 665
data points with 10 features each, where each data points represents
an individual. The task is a binary classification to predict whether
the individual’s income is above $50, 000. For fairness measures, we
use perceived gender (Sex) as the sensitive attribute, which is also
one of the 10 input features.

List of features : Age, Class of worker, Educational attainment,
Marital status, Occupation, Place of birth, Relationship, Usual hours
worked per week in past 12 months, Sex, Recoded detailed race code

ACSEmployment. ACSEmployment is another one of the five
pre-defined tasks in the Folktables dataset [17]. We use the same
subset from the state of California, USA for 2018 as above. The
dataset contains a total of 378, 817 data points with 16 features
each, and the task is a binary classification to predict whether the
individual is employed or not. For fairness measures, same as above,
we use perceived gender (Sex) as the sensitive attribute.

List of features : Age, Educational attainment, Marital status,
Sex, Disability recode, Employment status of parents, Mobility sta-
tus, Citizenship status, Military service, Ancestry recode, Nativity,
Relationship, Hearing difficulty, Vision difficulty, Cognitive difficulty,
Recoded detailed race code, Grandparents living with grandchildren

CelebA. CelebA dataset is a large scale celebrity face attributes
dataset [33], which contains a total of 202, 599 images of celebri-
ties with 40 different binary labels each. We focus on the binary
classification task of the ’smiling’ label in the dataset, while we use
the ’gender’ label as the sensitive attribute for fairness evaluation.

Moreover, we do not directly use the images of CelebA dataset,
but instead pass them through a pre-trained and frozen ResNet-50
backbone [27] to extract image representations, which are treated
as inputs to our model.

C TRAINING CURVE AND CONVERGENCE
To understand why we choose to study the model behavior between
epochs 100 and 300, we point the reader towards the overall training
curve of the model plotted in Fig. 11. It is clear that the model has
converged by epoch 100, and maintains stable accuracy scores for
the last 200 epochs.

Even though the accuracy scores have converged, we still find
high variance in fairness scores as discussed in the main text of
the paper. One might suspect this implies that fairness scores could
take longer to converge. To check this, we allow a single training
to run for a total of 3000 epochs (as opposed to the standard 300
epochs used in all other experiments in our paper) and collect the
fairness scores in Fig. 12. It is clear that the model fairness does not
stabilize by simply increasing the number of epochs, which further
supports our hypothesis of never-ending local oscillations due to
SGD noise that cause high fairness variance.

D RANDOM ORDER FOR IMMEDIATE IMPACT
We used carefully chosen data order to show the immediate impact
of data order in Section 6. Here, we provide additional results on
randomly chosen data order to show that the property does hold
even for a random data order. Sae=me as in the original experiment,
we sample 1000 unique checkpoints randomly from last 200 epochs
of 50 different training runs while allowing both forms of train-
ing non-determinism simultaneously. We then fine-tune each of
these checkpoints for exactly one epoch on a common, ad this time
randomly chosen, data order. We collect fairness variance across
checkpoints before and after this single epoch of training in Fig. 13.

Before training on the same data order for a single epoch, these
checkpoints represent the complete range of fairness variance pre-
viously noted. However, after only a single epoch of training on a
common data order, these models have all moved towards the same
fairness score with significantly lower variance. This highlights the
immediate impact of data order on model fairness, which is stable
based on only the data order of the most recent epoch.

E SANITY CHECK FOR DATA ORDER SUFFIX
We showed that the fairness scores are dominated by the most
recent gradient updates as seen by the model. As a sanity check,
we also provide ablation study for experiments in Fig. 7, but choose
the 𝑏 batches randomly instead of from the suffix. The results are
collected in Fig. 14. The results show while the fairness variance
does get smaller with more common batches (as expected, see
also Fig. 13), its predictability is lost when choosing the 𝑏 batches
randomly. Thus, it is indeed the batches from data order suffix that
govern the predictability of model fairness.
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Figure 11: (Left) Aggregated training curve for all 50 training runs with both changing weight initialization and random
reshuffling. (Right) Example of two individual training runs.
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Figure 12: A single training run extended to 3000 epochs.
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Figure 13: (Before) Multiple checkpoints taken from training runs with changing weight initialization, training data order,
and even number of training epochs, show a high range of fairness variance (i.e., average odds variance), as expected. (After)
However, these fairness scores are stabilized significantly by training these checkpoints for only a single epoch on a common
randomly chosen data order. This shows the immediate impact of data order on model fairness.
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Figure 14: Additional experiments by choosing 𝑏 batches, similar to the experiments in Figure 7, but choosing batches randomly
instead of the suffix. The results still maintain stability as 𝑏 increases but now they stabilize to random fairness scores instead
of best and worst fairness scores as seen in Figure 7. Clearly, its the most recent batches in that order which truly governs the
model fairness.

F ADDITIONAL EXPERIMENTS FOR ALL
DATASETS

F.1 Weight Initialization and Random
Reshuffling

We provide additional results in Fig. 15, 16 on CelebA and ACSEm-
ployment to show the dominance of reshuffling.

F.2 Changing Predictions and Data Distribution
We show the relationship between data distribution and changing
predictions for CelebA and ACSEmployment in Fig. 17. The group
with least representation maintains being the most vulnerable to
changing predictions.

F.3 Capturing Variance in a Single Training Run
We show the empirical similarity of distribution across multiple
training runs and multiple epochs in a single training run for addi-
tional datasets CelebA and ACSEmployment in Fig. 18.
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Figure 15: Additional experiments on CelebA and ACSEmployment datasets reveal similar trends as seen in Figure 3. Random
reshuffling of data order is the dominant source of variance in fairness scores, with very little influence from the weight
initialization.

F.4 Manipulating Group Level Accuracy with
Data Order

We provide additional results in Figure 19, 20, highlighting the
predictability of model fairness based on the data order.

G ADDITIONAL EXPERIMENTS FOR
CHANGING HYPERPARAMETERS

We provide additional experiments for (i) batch size 16 and 1024,
deviating from the default batch size of 128 in the main text, (ii)
learning rate 0.01 and 0.0001, deviating from the default learning
rate of 0.001 in the main text, and (iii) model architecture with
two hidden layers containing 2048 and 64 neurons respectively,
deviating from the single hidden layer architecture used in the
main text.

G.1 Training Curves and Convergence
We first observe the training curve in all the settings described
above, along with the original setting, in Fig. 21. It is clear that
models with a bigger batch size (or a smaller learning rate) do not
converge to the same F1 scores as other models. This further indi-
cates the need of randomness and noise in the learning algorithm
to give neural networks more ’exploration energy’ and facilitate
better and faster convergence. On the other hand, a smaller batch
size (or a larger learning rate) comes with excessive variance in the
model’s F1 score, which highlights the importance of achieving an
appropriate balance between several hyperparameter choices.

To better understand the difficulty of reaching convergence,
we continue training a single instance with batch size 1024 (and
separately with learning rate 0.0001) for a total of 1000 epochs and
compare it against the standard training setup (i.e., with batch size
128 and learning rate 0.001). The results are collected in Fig. 22,
23. It is clear that a larger batch size (or lower learning rate) slows
down the convergence speed. Moreover, it also does not achieve the
same F1 scores previously seen, possibly due to not being able to
take complete advantage of the noisy nature of mini-batch gradient
descent. Thus, training a model with hyperparameters that enforces
stability (i.e. large batch size or lower learning rate) is an inefficient
solution to solving the problem of fairness variance.
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Figure 16: Additional experiments on CelebA and ACSEmployment datasets reveal similar trends as in Figure 4. These results
further highlight the dominant impact of random reshuffling on fairness.

G.2 Weight Initialization and Random
Reshuffling

We provide results in Fig. 24, 25 for changing batch size, learning
rate, and architecture onACSIncome dataset to show the dominance
of random reshuffling on model fairness. With a decrease in batch
size, the range of fairness variance increases significantly, but the
overall expected trends follow the same behavior as noted in the
main text, i.e. a sharp change in fairness scores across epochs under
fixed data reshuffling, and high variance even for a single epoch
across multiple runs under changing data reshuffling (fixed weight
initialization). Similar trends can be observed when we increase
the learning rate, or provide the training algorithm with a bigger
neural model. The increase in variance suggests high instability
with smaller batch size, higher learning rate, and bigger neural
models, all of which is expected.

On the other hand, one would expect more stable model behavior
with a bigger batch size or a smaller learning rate. While this is
indeed the case, the comparison here is not fair because as noted
earlier (Fig. 21, these models have not yet converged, also evident by
the clear downward trend of fairness scores. It is clear that certain
hyperparameter settings are not conducive to efficient convergence,
even though they might eventually provide more stable fairness
scores.

G.3 Changing Predictions and Data Distribution
We note changing predictions for all 5 settings described above
in Fig. 26. Note that since we are focusing on changing training
hyperparameters for ACSIncome, the data distribution remains the
same as in Fig. 5(a) (also copied here in Fig. 26 for reference).

Same as before, model instability has increased with smaller
batch size, higher learning rate, or bigger model architecture, but
the trends of vulnerability for various subgroups remains the same.
Even though we see same trends of higher vulnerability for a higher
batch size or smaller learning rate, we know that these models
have not converged and thus would recommend not making any
inference from these two set of results.
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Figure 17: Additional experiments on CelebA and ACSEmployment datasets reveal similar trends as seen in Figure 5. These
results highlight subgroups with least representation being the most vulnerable to changing predictions.

G.4 Manipulating Group Level Accuracy with
Data Order

We provide additional results in Fig. 27, highlighting the predictabil-
ity of model fairness based on the data order. Note that the hyper-
parameter setting for an additional epoch of fine-tuning during
group accuracy manipulation is the same as the setup used for
training that particular model. For example, when manipulating
models which were trained with batch size 16, the single epoch of
fine-tuning is also done with batch size 16.

We also provide results for models with high batch size and low
learning rate separately in Fig. 28. Again, note that not only are
these models not converged, but they are also fine-tuned on the
same inefficient hyperparameter settings. Thus, the trends here are
not comparable, but added for completeness.

H ADDITIONAL EXPERIMENTS FOR
DROPOUT REGULARIZATION

Another notable hyperparameter in neuralmodel training is dropout
regularization [53]. Dropout regularization randomly drops a cer-
tain percentage (known as dropout rate) of connections between
consecutive layers in the model at every forward pass during train-
ing. We extend our discussion from Section 4 to study the impact of
dropout on the trends of random reshuffling seen in Figure 4. More
specifically, we repeat the experiments while introducing various
rates of dropout in the training setup. The results are collected in
Fig. 29.

Even with dropout regularization, the impact of data reshuffling
on model fairness clearly dominates weight initialization. That is,
the trends of high correlation between multiple runs with the same
data order, despite starting from different initializations, and lack
of any correlation between multiple runs with different data order,
even after starting from the same initialization, are still evident
even in presence of other sources of randomness.
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Figure 18: Additional experiments on CelebA and ACSEmployment datasets reveal similar trends as seen in Figure 9. Fairness
scores (average odds) acrossmultiple training runs and across epochs in a single training run have similar empirical distributions.
Thus, studying this distribution across epochs provides a highly efficient alternative to executing multiple training runs.
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Figure 19: Additional experiments on CelebA and ACSEmployment datasets reveal similar trends as seen in Figure 8. In only a
single epoch of training, we are able to manipulate the group level accuracy trade-off, with relatively small impact on overall
accuracy.
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Figure 20: Additional experiments on CelebA and ACSEmployment reveal similar trends as seen in Figure 10. EqualOrder gets
competitive performance to commonly used bias mitigation methods. Similarly, AdvOrder gets significantly worse fairness
than even the baseline.
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Figure 21: Training curve under changing batch size, learning rate, and model architecture. It is clear that decreasing the batch
size, increasing the learning rate, or using a bigger model architecture results in a faster model convergence but with higher
variance even in accuracy scores. On the other hand, models with high batch size or low learning rates tend to not achieve the
same accuracy scores and have not reached convergence even at 300 epochs.
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Figure 22: Using a higher batch size can over time achieve stable fairness scores, however the convergence speed is significantly
slower. Moreover, it looses a noticeable margin of F1 score.
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Figure 23: Using a lower learning rate can over time achieve stable fairness scores, however the convergence speed is significantly
slower. Moreover, it looses a noticeable margin of F1 score.



FAccT ’23, June 12–15, 2023, Chicago, IL, USA Prakhar Ganesh, Hongyan Chang, Martin Strobel, and Reza Shokri

Batch Size = 16

100 120 140 160 180 200 220 240 260 280 300

5%

10%

15%

Epoch

Av
er
ag
e
O
dd

s

(a) Fixed Data Reshuffling

100 120 140 160 180 200 220 240 260 280 300

Epoch

(b) Fixed Weight Initialization

Batch Size = 1024

100 120 140 160 180 200 220 240 260 280 300

8%

10%

12%

Epoch

Av
er
ag
e
O
dd

s

(a) Fixed Data Reshuffling

100 120 140 160 180 200 220 240 260 280 300

Epoch

(b) Fixed Weight Initialization

Figure 24: Additional experiments for changing batch size with experiment setting as in Figure 4. These results further highlight
the dominant impact of random reshuffling on fairness.

I ADDITIONAL EXPERIMENTS FOR OTHER
FAIRNESS METRICS

We repeat the experiment in the main text for two more fairness
metrics, Equal Opportunity (EOpp) and Demographic Parity (DP)
[26]

Using the same notations as in Section 3, EOpp can be defined
as,

𝐸𝑂𝑝𝑝 (𝑓 ,D) := |
∑
D𝑒 1[ 𝑓 (𝑥 )=1∧𝑦=1∧𝑎=0]∑
D𝑒 1[𝑦=1∧𝑎=0]

−
∑
D𝑒 1[ 𝑓 (𝑥 )=1∧𝑦=1∧𝑎=1]∑
D𝑒 1[𝑦=1∧𝑎=1]

|.

(9)

Similarly, DP can be defined as,

𝐷𝑃 (𝑓 ,D) := 1 −𝑚𝑖𝑛(
∑
D𝑒 1[ 𝑓 (𝑥 )=1∧𝑎=0]∑
D𝑒 1[ 𝑓 (𝑥 )=1∧𝑎=1]

,

∑
D𝑒 1[ 𝑓 (𝑥 )=1∧𝑎=1]∑
D𝑒 1[ 𝑓 (𝑥 )=1∧𝑎=0]

).

(10)

I.1 High Variance in Fairness Scores
We start by repeating the experiment comparing various state-of-
the-art bias mitigation techniques and intersecting range of fairness
scores in Fig. 30.

I.2 Weight Initialization and Random
Reshuffling

We provide additional results for EOpp and DP for the experiment
conducted in Fig. 4 to show correlation between multiple runs on
ACSIncome dataset. The results are collected in Fig. 31, and show
similar trends as seen in the main text.

I.3 Capturing Variance in a Single Training Run
We show the empirical similarity of distribution across multiple
training runs and multiple epochs in a single training run for fair-
ness measures EOpp and DP in Figure 32.
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Figure 25: Additional experiments for changing learning rate and model architecture with experiment setting as in Figure 4.
These results further highlight the dominant impact of random reshuffling on fairness.

J 10 RAW TRAINING RUNS FROM FIG. 4
We plot 10 randomly chosen training runs each for fixed weight
initialization and fixed random reshuffling (see Fig. 4) in Fig. 33
and Fig. 34, respectively. As expected, each individual training

run in both settings has high variance across epochs even after
convergence. More importantly, the trends of fairness matches
closely across multiple runs for fixed random reshuffling, even
though they started from different weight initialization.
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Figure 26: Additional experiments reveal similar trends as seen in Figure 5. These results highlight subgroups with least
representation being the most vulnerable to changing predictions.



On The Impact of Machine Learning Randomness on Group Fairness FAccT ’23, June 12–15, 2023, Chicago, IL, USA

Batch Size = 16

10−1 100 101
0%

20%

40%

60%

80%

100%

Ratio of F-Pos : F-Neg

A
cc
ur
ac
y

F-Pos F-Neg M-Pos

M-Neg Overall

10−1 100 101
0%

20%

40%

60%

80%

100%

Ratio of M-Pos : M-Neg

A
cc
ur
ac
y

F-Pos F-Neg M-Pos

M-Neg Overall

Learning Rate = 0.01

10−1 100 101
0%

20%

40%

60%

80%

100%

Ratio of F-Pos : F-Neg

A
cc
ur
ac
y

F-Pos F-Neg M-Pos

M-Neg Overall

10−1 100 101
0%

20%

40%

60%

80%

100%

Ratio of M-Pos : M-Neg

A
cc
ur
ac
y

F-Pos F-Neg M-Pos

M-Neg Overall

Model Architecture = {2048, 64}

10−1 100 101
0%

20%

40%

60%

80%

100%

Ratio of F-Pos : F-Neg

A
cc
ur
ac
y

F-Pos F-Neg M-Pos

M-Neg Overall

10−1 100 101
0%

20%

40%

60%

80%

100%

Ratio of M-Pos : M-Neg

A
cc
ur
ac
y

F-Pos F-Neg M-Pos

M-Neg Overall

Figure 27: Additional experiments reveal similar trends as seen in Figure 8. In only a single epoch of training, we are able to
manipulate the group level accuracy trade-off, with relatively small impact on overall accuracy.
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Figure 28: Additional experiments as seen in Figure 27, but for models that did not converge as noted earlier. The results are
added for completeness.
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Figure 29: Median, inter-quartile range, and overall range of average odds across 50 different training runs with dropout
regularization, while changing only the weight initialization or the random reshuffling, for various dropout rates. The overall
range of fairness variance has decreased, and the range of variance across multiple training runs with fixed data reshuffling
increases with higher dropout rate, when compared to training without dropout layers. Despite this, the trends of data order
dominance over fairness variance are clearly visible even with dropout regularization.
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Figure 30: Additional experiments with different fairness metrics for setting in Figure 1. Fairness has a high variance across
multiple runs. Note that the x-axis across fairness and F1 score is not similarly scaled for demographic parity to keep the
results readable.
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Figure 31: Additional experiments with fairness metric EOpp and DP reveal similar trends as in Figure 4. These results further
highlight the dominant impact of random reshuffling on fairness.
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Figure 32: Additional experiments for fairness metrics EOpp and DP. Fairness scores across multiple training runs and across
epochs in a single training run have similar empirical distributions. Thus, studying this distribution across epochs provides a
highly efficient alternative.



FAccT ’23, June 12–15, 2023, Chicago, IL, USA Prakhar Ganesh, Hongyan Chang, Martin Strobel, and Reza Shokri

100 120 140 160 180 200 220 240 260 280 300

6%

8%

10%

Epoch

Av
er
ag
e
O
dd

s

100 120 140 160 180 200 220 240 260 280 300

6%

8%

10%

Epoch

Av
er
ag
e
O
dd

s

100 120 140 160 180 200 220 240 260 280 300

6%

8%

10%

Epoch

Av
er
ag
e
O
dd

s

100 120 140 160 180 200 220 240 260 280 300

6%

8%

10%

Epoch

Av
er
ag
e
O
dd

s

100 120 140 160 180 200 220 240 260 280 300

6%

8%

10%

Epoch

Av
er
ag
e
O
dd

s

Figure 33: 10 randomly chosen raw training runs plotted in groups of 2 for fixed weight initialization, but changing random
reshuffling.
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Figure 34: 10 randomly chosen raw training runs plotted in groups of 2 for fixed random reshuffling, but changing weight
initialization.
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