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ABSTRACT
Previous literature on ‘fair’ machine learning has appealed to legal
frameworks of discrimination law to motivate a variety of discrimi-
nation and fairness metrics and de-biasing measures. Such work
typically applies the US doctrine of disparate impact rather than
the alternative of disparate treatment, and scholars of EU law have
largely followed along similar lines, addressing algorithmic bias as
a form of indirect rather than direct discrimination. In recent work,
we have argued that such focus is unduly narrow in the context
of European law: certain forms of algorithmic bias will constitute
direct discrimination [1]. In this paper, we explore the ramifications
of this argument for existing taxonomies of machine bias and al-
gorithmic fairness, how existing fairness metrics might need to be
adapted, and potentially new measures may need to be introduced.
We outline how the mappings between fairness measures and dis-
crimination definitions implied hitherto may need to be revised
and revisited.
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1 INTRODUCTION
In response to extensive research documenting the ways in which
algorithmic decision-making systems can generate outputs which
systematically favour some protected groups over others, a range
of measures for detecting and correcting them have been developed
within the computer science literature. These often draw inspira-
tion and motivation from the law, in particular, discrimination law.
Commonly, these metrics are presented as operationalizations of
disparate impact, one of two types of discrimination defined in US
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anti-discrimination law. Unlike disparate treatment, which focuses
on a person being treated differently because of their protected
characteristic (e.g. gender, race, or religion) and is near-universally
illegal, disparate impact covers policies which, while facially neu-
tral, result in worse outcomes for members of a protected class. 1
Similar taxonomies exist in other jurisdictions. In EU law,2 there is a
prima facie equivalent distinction between direct discrimination (a
person is treated less favorably than a comparable other person on
grounds of a protected characteristic), and indirect discrimination
(where an apparently neutral provision, criterion, or practice is
applied which would put persons with a protected characteristic at
a particular disadvantage).

A common assumption within this literature (sometimes explic-
itly argued for, but more often implied) is that the concepts of
disparate impact (US) and indirect discrimination (EU) are the more
salient category with which to assess putative cases of algorithmic
discrimination, rather than the alternative concepts of disparate
treatment (US) or direct discrimination (EU). As a result, the vast
majority of algorithmic fairness literature focuses on the problem
of assessing and preventing discrimination from a disparate impact
/ indirect discrimination perspective.

In previous work, we have argued that, at least under EU law, the
category of direct discrimination has a wider legal scope than typi-
cally assumed in the fair machine learning literature [1]. Drawing
on a detailed review of the case law, we argued that direct discrimi-
nation captures various types of algorithmic discrimination, even
in the absence of direct use of protected characteristics or discrimi-
natory intent on the part of the decision-maker. We outlined several
legal implications, in particular the possibility of alternative, poten-
tially more powerful legal challenges to algorithmic systems. We
also raised the prospect that this might trigger a re-appraisal and
potential revision and expansion of existing algorithmic fairness
measures to suit the specificities of direct discrimination under EU
law. Given the focus on detailed legal analysis, however, we were
unable to explore in greater depth the implications of our argument
for technical algorithmic fairness approaches. In this paper, we turn
to that task.

We begin in section 2 by outlining how prior algorithmic fairness
literature has developed according to an implicit legal taxonomy

1Griggs v Duke Power Co 401 US 424 (1971) (Griggs).
2We use this term to cover both European Union (EU) and UK law, as the approach
in both jurisdictions is closely aligned for present purposes. Following the United
Kingdom’s exit from the European Union, UK courts should continue to have regard
to developments in the EU equality acquis: European Union (Withdrawal) Act 2018, s
6. For an example of EU legislation drawing a distinction between direct and indirect
discrimination, see Directive 2006/54/EC of the European Parliament and of the Council
of 5 July 2006 on the implementation of the principle of equal opportunities and equal
treatment of men and women in matters of employment and occupation (recast) (2006)
OJ L204/23 (the Recast Directive), art 2.
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which aligns ‘easy’ cases with disparate treatment / direct discrimi-
nation and the computationally ‘tough’ cases with disparate treat-
ment / indirect discrimination, and diagnosing why the literature
has developed in this way. Section 3 briefly summarizes the legal
arguments of our previous paper, including the crucial differences
between US disparate treatment and European direct discrimina-
tion, and explains how two particular types of direct discrimination
(inherent and subjective direct discrimination) might apply to al-
gorithms. We then address the implications for existing and future
work on technical approaches to algorithmic fairness. Section 4
outlines how data scientists might go about detecting and correct-
ing inherent and subjective discrimination in algorithms. Having
examined how the algorithmic fairness literature may need revising
to account for these different types of direct discrimination, section
5 considers the converse; might existing technical approaches to
discrimination in ML provide a stronger conceptual basis on which
to revise or reinterpret the current, arguably unprincipled, set of
distinctions drawn in EU discrimination law?

2 LEGAL TAXONOMY: SHAPING THE
DEFAULT APPROACH TO FAIR ML

The literature on algorithmic fairness metrics has not generally
sought comprehensively to map various types of machine bias
to specific legal categories. Upon closer inspection, however, the
strong influence of the law’s taxonomy of discriminatory conduct
on prior fair machine learning literature becomes apparent. As
categories of fairness metrics and types of bias have emerged in
line with legal categories which may make sense in the US discrim-
ination law context, however, their transplant into EU equivalents
does not always work [22, 28]. This, in turn, has important implica-
tions for the presumed scope of EU discrimination law as applied
to algorithms. To diagnose how this happened, a very brief, highly
potted history may be helpful.

Since its inception, fair machine learning literature has typically
recognized two main ways that ‘unfair’ algorithms can arise, with
corresponding types of technical fairness metrics. The first source
of algorithmic unfairness arises where a decision-maker uses a pro-
tected characteristic as an input to an algorithm, thereby favoring
or disfavoring the relevant protected group; these are implicitly
seen as ‘easy’ cases. The second source of algorithmic unfairness
arises where protected characteristics are not explicitly used but
are somehow encoded in other features. This includes cases where
a supposedly benign feature is known to be correlated with a pro-
tected characteristic (e.g. ZIP code and race); as well as cases where
an ML algorithm might extract a high-level feature from the train-
ing data which, unknown to the data scientist building the model,
also happens to be a proxy for a protected characteristic. Take the
infamous example of the Amazon hiring algorithm, which scored
candidates’ résumés in order to select the best applicants for soft-
ware engineering positions.3 Because few previous applicants had
been female, the model learned to give lower scores to resumes
containing words associated with female applicants; these included
the word ‘women’s’ (as in ‘women’s chess club captain’) and the
names of women-only colleges. Such examples are regarded as
‘tough’ cases, and they motivate the adoption of various statistical

3https://perma.cc/328A-UJFM

fairness metrics which focus on the distributions of outcomes and /
or errors between protected groups.

To illustrate how this implicit distinction is made in computer
scientific algorithmic fairness literature, it is useful to broadly char-
acterize the way fairness metrics and typologies of machine bias are
typically defined therein. Fairness metrics are typically discussed in
relation to a machine learning prediction problem. A dataset drawn
from a population X, has a set of protected attributes A (e.g. sex /
gender, race) and other features Z (e.g. income, loan repayments).
A model M is trained using a machine learning algorithm on a
dataset consisting of a sample of X, with features Z and labels Y,
which might represent some outcome (typically a binary one, e.g.
default or repay on a loan). M provides a mapping from features to
predictions (Z→ 𝑌 ) and the values of those predictions are used
to determine the allocation of some benefit (e.g. credit, hiring) for
previously unseen individuals 𝑥𝑖 ∈ X.

Algorithmic fairness approaches typically begin by acknowl-
edging one very simple, but insufficient, fairness definition, which
goes by various terms including: fairness through unawareness
or blindness [9]; treatment parity [32]; and anti-classification [19].
This states that M should make predictions on the basis of Z alone,
not A. This is the fairness definition which is typically taken to de-
scribe the ‘easy’ cases, where a decision maker seeks only to remove
protected characteristics from use as an input to the model. Fair-
ness through unawareness is typically only raised in fair machine
learning discussions in order to be swiftly dismissed as insufficient,
due to the fact that unfairness may still be possible where one or
more of Z are a proxy for A [9].4 Such proxies have typically been
taken as representing those ‘hard’ cases. One simple approach often
noted in this literature involves attempting to determine if any of
Z are proxies for A, and remove them if so. However, this simple
approach is typically rejected on the grounds that it would likely
significantly diminish the available Z, since almost all predictively
valuable variables are correlated to some extent with at least one
of the protected attributes. Instead, various fairness metrics are de-
fined in terms of outcomes and errors, conditional on membership
in the protected group. These allow the underlying attributes Z to
be used even if they may be proxies for A, because fairness can
be applied as a constraint on the model rather than on individual
features. For example, according to one such metric, demographic
parity, predictions 𝑌 should be independent of protected attributes
A (i.e. 𝑃𝑟 (𝑌 | 𝐴) = 𝑃𝑟 (𝑌 ), or simply 𝑌⊥𝐴).

The canonical literature on algorithmic bias usually implies that
this division between fairness-through-unawareness (which focuses
on excluding protected attributes from inputs) and other statistical
metrics (which focus on the outcomes of the model and compare
their impact on different protected groups), maps onto an equivalent
division between two types of discrimination in US law, namely
disparate treatment and disparate impact. Such papers typically
acknowledge that disparate treatment only applies to algorithmic
discrimination in very limited cases, specifically where the decision-
maker deliberately includes protected characteristics as an input to
the algorithm. Feldman et al., for example, focus on disparate impact,
noting that it is “different from disparate treatment, which refers

4For an illuminating discussion of what it means for one variable to proxy another in
this context, see [26]
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to intended or direct discrimination” [11]; (first emphasis original,
second emphasis added). A background assumption here is that
the decision-maker is aware that, by law, they are “not allowed to
use [protected attributes] in making decisions, and claim[s] to use
only [non-protected attributes]”. Assuming such awareness means
we can rule out the direct use of protected attributes which would
indicate disparate treatment. The challenge thus becomes one of
how to demonstrate disparate impact. Barocas and Selbst’s seminal
paper from 2016 similarly argued that most cases of algorithmic bias
will, in US law, fall under the category of disparate impact, rather
than disparate treatment; the exceptions being where protected
attributes are used, or where proxies for them are used deliberately
in order to disguise (‘mask’) discriminatory intent [2]. They point
out that just as errors in data collection, mislabeled examples, or
insufficiently rich features can lead to unintended disparate impact,
those same errors could be made intentionally and would, absent
evidence of the decision-maker’s true intent, appear innocent.

Taking these examples together, we can surmise several rea-
sons for the relative dearth of attention to direct discrimination.
First, there may be an assumption that most decision-makers would
already be aware of their obligation to avoid using protected char-
acteristics directly. Furthermore, it may be assumed that those who
deliberately engage in masking would not be receptive to the honest
implementation of algorithmic fairness in the first place.

Second, even if cases of deliberate use of protected characteris-
tics, or deliberate masking via proxies, were in fact frequent, the
lack of focus on them might also be explained by the perception
that they raise few technically interesting problems. Avoiding dis-
parate impact through fairness-through-unawareness would simply
involve examining the features used by the model to ensure no pro-
tected characteristics are used as inputs to prediction. Similarly,
determining whether a decision-maker has engaged in masking
with discriminatory intent is a matter of fact best established in
individual cases, and in any event not amenable to algorithmic
measures of fairness. As a result, an implicit distinction has thus
been drawn between cases where protected characteristics are ex-
plicitly used as inputs, and cases of unintended discrimination in
the absence of explicit use of protected characteristics. The former
are regarded as technically easy or uninteresting cases, covered by
the simple definition of ‘fairness through unawareness’ and dealt
with through disparate treatment; while the latter are tough cases,
requiring new technical fairness definitions and methods for detec-
tion and mitigation, and to be addressed through the doctrine of
disparate impact (or indirect discrimination in EU law).

Finally, a preference for statistical fairness measures defined
over impacts on groups arguably reflects a broader philosophical
orientation of machine learning as a discipline. As a modelling
paradigm, it is highly open, admitting a wide variety of different
learning algorithms, which are primarily evaluated not based on
their internal logic, complexity, or features used, but rather sim-
ply on how well they perform on the test dataset. This inculcates
a desire for common performance metrics which can be applied
across broadly different model types (e.g. a simple decision tree
model and a complex many-layer deep learning model can both
be evaluated by the same set of metrics, e.g. the F1 score). It is
unsurprising, therefore, that proposed fairness measures should
fit into that paradigm, focusing on the distributions of outcomes

or errors across groups, especially where they can be computed
using existing performance metrics. By contrast, measures which
require focusing on individual variables that might be protected
attributes (whether directly or proxies for them) necessitate a con-
textual, case-by-case analysis more suited to practitioners working
on the ground, rather than abstract and generalizable measures.
As a result, we argue, the fairness literature has overwhelmingly
focused on these statistical measures defined over sub-groups.

In so far as disparate treatment / direct discrimination has en-
tered into debates about algorithmic fairness, it is confined to cases
of a) deliberate direct use of protected characteristics, which are
‘easy’ to solve, or b) deliberate use of masking to conceal discrimina-
tory intent, proof of which lies outside the remit of computational
approaches. These examples raised in the technical literature do
not, however, exhaust the scope of key legal concepts. Are there
other ways in which an algorithm might be directly discriminat-
ing even if protected characteristics (or deliberate proxies) are not
used? The consensus of scholars working within US discrimination
law appears to be ‘no’, because disparate treatment requires intent
[15]. But what about other discrimination law frameworks? At first
glance, the answer is similar. Scholars working within European
discrimination law appear to have largely followed the same direc-
tion, focusing on indirect discrimination as the primary framework
for challenging discriminatory algorithms [13, 29]. The basic tax-
onomy of EU and US anti-discrimination law is beguilingly similar,
both in so far as the direct / indirect distinction appears to map
onto the disparate treatment / disparate impact distinction, and also
in so far as the former will nearly always be illegal, whereas the
latter may be justifiable. Crucially for our purposes, however, there
are some key differences regarding the scope of direct discrimina-
tion compared to disparate treatment, and in particular, the role of
intent.

While these differences between US and EU discrimination law
are long-acknowledged, leading scholars have nonetheless largely
concurred that direct discrimination is rarely applicable to algo-
rithms. Hacker, for example, follows Barocas and Selbst’s approach,
arguing that direct discrimination will be rare, arising when a pro-
tected characteristic is used as an input in a model or where an
algorithm is designed to disadvantage certain protected groups [13].
The possibility that algorithms might directly discriminate even
without direct use of protected characteristics is acknowledged
only in certain exceptional cases. For instance, Hacker notes that
an algorithm trained on data reflecting the decision-maker’s un-
conscious bias might also constitute direct discrimination (since
European case law established implicit bias as a form of direct
discrimination), but nevertheless argues that “[i]n machine learn-
ing contexts, direct discrimination will be rather rare”, excluding
several main categories of algorithmic bias, including: sampling
bias (where different protected groups are sampled from differently,
leading to an unequally performing model); historical bias (where
training data reflects historical prejudice); and unequal ground
truth (where “capacities or risks are unevenly distributed between
protected groups”) [18]( pp. 1151-1152). Similarly, while Wachter
draws on judgments of the Court of Justice of the European Union
(‘CJEU’) to argue that the use of “affinity profiling” – where e.g.
Facebook users can be targeted based not on their race, but rather
on e.g. their “interest in black culture” – might amount to direct
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discrimination, her analysis is limited to the specific category of
discrimination ‘by association’ [27]. These exceptions aside, the
general consensus appeared to be that the concept of direct dis-
crimination is “likely to be less important than that of indirect
discrimination” in the context of algorithms [29].

3 DRAWING THE LINE IN EUROPEAN LAW
This section draws on legal arguments presented in previous work,
which reject the consensus presented above [1]. While the detailed
analysis cannot be reproduced in full, we provide an overview of the
main argument and conclusions in order to illustrate how the im-
plicit division in the algorithmic fairness literature is fundamentally
at odds with EU law.

Even though the direct / indirect discrimination distinction is
structurally similar to the categories of disparate treatment / impact,
the dividing lines are drawn in fundamentally different way. The
concept of direct discrimination is broader than disparate treatment:
it applies to a wider range of algorithmic systems. Disparate treat-
ment under US law is generally understood to require either explicit
classification or evidence of discriminatory intent [41]. By contrast,
EU law focuses on the reasons or grounds for a decision, rather than
the purported discriminator’s intention or motive: “the existence
of prejudice, or an intention to discriminate, are not actually of
relevance to determining whether the legal test for discrimination
has been satisfied” [10]. Indeed, “[t]he dividing line between direct
and indirect discrimination is emphatically not to be determined
by some sort of mens rea on the part of one or more individual
discriminators” [33] (70). Since unintentional discrimination can
thus be ‘direct’ in EU law, behaviour which does not amount to
disparate treatment in the US may well constitute direct discrimina-
tion in Europe. This is particularly salient for present purposes, as
intentionality is often hard, if not impossible, to attribute in cases
of algorithmic decision making, whereas much of human conduct
is perceived through the lens of intentionality.

If not intentionality, what does distinguish direct discrimination
from indirect discrimination? Two factors emerge from the case
law. First, while the prohibition on direct discrimination is intended
to achieve formal equality, the rules on indirect discrimination seek
to advance substantive equality. Secondly, direct discrimination is
reason-focussed, whereas indirect discrimination is effects-focussed.
In James v Eastleigh BC, for example, a local council in the UK
offered free swimming pool access to individuals eligible to receive
the state pension. Since the pensionable age at the time was 60
for women but 65 for men, this meant that a 60 to 64-year-old
woman could enter for free, while a man of the same age would
have to pay. This constituted direct discrimination: there was formal
inequality of treatment; the term ‘pensionable age’ was “no more
than a convenient shorthand expression which refer[red] to the
age of 60 in a woman and to the age of 65 in a man” [James, 780].
In other words, the reason for the differential treatment was sex,
even if the Council had no intention to discriminate on that basis.
The fact that the caselaw thus severs direct discrimination from
moral blame has been criticised by leading scholars [12](pp. 39-46),
but remains the position in law.

Direct discrimination can subdivided further into two categories:
decisions made using an inherently discriminatory criterion, and de-
cisions made through subjectively discriminatory mental processes
[34](78).5 Inherent discrimination occurs when a criterion used by
a decision-maker is ‘inextricably linked’ to a protected character-
istic. As the CJEU has recently found, even though a universally
applied rule prohibiting any visible sign of political, philosophical,
or religious belief in the workplace was not liable to constitute
direct discrimination, a prohibition on “conspicuous, large-sized
signs” could nonetheless constitute direct discrimination [35] (55,
78). The Court reiterated that “unequal treatment resulting from a
rule or practice which is based on a criterion that is inextricably
linked to a protected ground, in the present case religion or belief,
must be regarded as being directly based on that ground” [35] (73),
emphasis added).

Our previous analysis also identified how inherently discrimina-
tory criteria can arise from the interaction between various rules
and contingent historical facts, which may not individually pick
out protected characteristics, but do so only when combined. We
raised the hypothetical example of a formerly boys-only high school
which began admitting girls in 2010. Imagine that an employer will
only hire a job applicant if they are (i) a graduate of that school
and (ii) were born before the year 1990. Neither of those criteria
are inherently discriminatory when taken individually: some of
the graduates of the school are women, and so are about half of
the people born before 1990. But no woman meets both criteria
when applied together. The employer’s rule is therefore inherently
discriminatory.

Three concrete examples demonstrate how this type of direct
discrimination might arise in algorithmic systems in practice.

1) In a jurisdiction where same-sex couples cannot marry, and
only same-sex couples can obtain civil partnerships, the features
‘married’ or ‘in a civil partnership’ are inextricably linked to sexual
orientation [40]. Even if being married or in or civil partnership
are not themselves protected characteristics (which is the case in
some EU jurisdictions), these features would in this case be proxies
for the protected characteristic of sexual orientation. If a credit
scoring model positively or negatively correlates marriage or civil
partnership with creditworthiness, this could therefore constitute
direct discrimination via an inherently discriminatory criterion.

2) In natural language processing, a feature which is indissociable
from a protected characteristic might be automatically extracted.
Take, for example, the case of Amazon’s recruitment algorithm,
which gave lower scores to members of women’s extra-curricular
clubs and to applicants fromwomen-only colleges. No human chose
to use these features, and without the bias detection efforts on
part of the data scientists involved, it is likely that no-one would
have even been aware that the features were being used by the
model. Even if a data scientist had examined all the features, they
might not have been able to tell which were indissociable from
gender without further domain knowledge (e.g. knowing whether
a particular college is co-educational). Despite this, such features
are indissociable proxies for gender.

5While the relevance of UK case law to the EU is diminished post-Brexit, these cases
remain valid case law in the UK. Following the United Kingdom’s exit from the
European Union, UK courts should continue to have regard to developments in the EU
equality acquis: European Union (Withdrawal) Act 2018, s 6.

1853



Legal Taxonomies of Machine Bias: Revisiting Direct Discrimination FAccT ’23, June 12–15, 2023, Chicago, IL, USA

3) More generally, machine learning methods in which features
are constructed automatically out of high-dimensional, non-human
interpretable data, may create features which are proxies for pro-
tected characteristics in ways which are not easily detectable. An
inferred latent variable which is inextricably linked to a protected
characteristic would be an example of an inherently discriminatory
criterion. The link between the criterion and the protected charac-
teristic need not be facially obvious, well-established, or enduring.
If it can be shown that there is a sufficient degree of correspondence
between the criterion and the protected characteristic, this in itself
can be highly persuasive or even decisive in proving the criterion
to be inherently discriminatory. As such, even if the decision-maker
had no intention to use a protected characteristic, and was entirely
unaware that a latent variable inferred by the model correlated one-
to-one with a protected characteristic, they could still be engaging
in direct discrimination. Since the supposed benefit of many mod-
ern ML methods is their ability to infer latent features not explicitly
represented in their training data, which may include protected
characteristics, such methods are more likely to result in models
which could inadvertently directly discriminate in this way.

Subjectively discriminatory decision-making, on the other hand,
arises when a person’s protected characteristic influences the
decision-maker’s conscious or subconscious mental processes, such
that a different outcome is reached [34](64). It was established early
on that the subjective mental processes which constitute direct
discrimination need not be conscious [37]. The protected charac-
teristic does not have to have been the only or even the main cause
of the result complained of; it is enough that it was a cause, that
it “had a significant influence on the outcome” [37, 38]. Take the
example of a recruiter who, on receiving a job application from
a woman, subconsciously takes a dimmer view of it. He does not
object to anything specific in the application, but multiple indica-
tors of gender (e.g. playing a feminine-coded sport) cumulatively
affect his overall impression. A female applicant who misses out on
the job to a similarly qualified man would, in these circumstances,
have a claim for direct discrimination. We previously argued that
this translates readily into the algorithmic context. For example,
the Amazon algorithm learned not only to mark down applicants
from women’s colleges (which would be inherent discrimination,
as argued above), but also to preference applications using active
verbs—words which are more commonly used by men. Like the
human recruiter, the algorithm was not ‘aware’ that its outputs
were influenced by gender, yet they were. The legal position cannot
be any different because unfavourable treatment is meted out by an
algorithm, rather than a human. Therefore, while not an inherently
discriminatory criterion, the preferencing of active verbs is a mani-
festation of implicit bias, and therefore subjective discrimination.6

4 FAIRNESS MEASURES AND UNINTENDED
DIRECT DISCRIMINATION

Based on our previous legal analysis, we argue that certain canoni-
cal cases of algorithmic fairness should, in the EU and UK context,
be considered as examples of direct discrimination. This includes

6This raises difficult legal issues of causation, i.e. the scope of ‘because of’ when
considering upstream discrimination; see section 5.2 below.

many of the ‘tough’ cases of algorithmic fairness. The implica-
tions of treating them as direct rather than indirect discrimination
are hard to overstate: direct discrimination can only be justified
in a strictly limited number of circumstances. 7 While we origi-
nally raised these legal arguments with the hope of influencing
how lawyers address discriminatory algorithms, they also raise
potentially novel challenges for computer scientists engaged with
algorithmic fairness to apply their metrics and techniques to the
‘tough’ cases of potential direct discrimination. Counter to the
implied division in extant algorithmic fairness literature, a num-
ber of examples from the algorithmic discrimination literature fall
squarely into the existing categories of direct discrimination. In this
section, we outline how the mappings between fairness metrics and
discrimination law categories that have been implicitly assumed
hitherto may need to be updated in light of this.

As discussed in section 2, there has been an implicit mapping in
existing fair ML literature between disparate treatment (or direct
discrimination in EU law terminology), and disparate impact (or
indirect discrimination), to a set of mutually exclusive fairness
measures. In the EU law context, this existing mapping implies that
anti-classification is necessary and sufficient for avoiding direct
discrimination (with the exception of deliberate masking). Various
group fairness measures have been proposed as at least prima facie
evidence of indirect discrimination. In particular, Wachter et al.
propose ‘conditional demographic disparity’ (CDD) as a standard
baseline statistical measurement that aligns with the European
Court of Justice’s ‘gold standard’ for assessment of prima facie
(indirect) discrimination [28].

However, the various examples of directly discriminatory algo-
rithms described above suggest the need for more nuance in this
implicit mapping. Can existing fairness metrics, hitherto deployed
to address indirect discrimination, be re-used for direct discrimina-
tion? What other technical approaches might need to be developed
or applied? In this section we begin by examining these questions in
light of the two categories of direct discrimination outlined above:
inherent and subjective direct discrimination, before moving on
to consider how other types of unintended direct discrimination,
beyond the inherent and subjective, might be dealt with in terms
of algorithmic fairness.

4.1 ‘Inherently Discriminatory’ Algorithms
How might a data scientist assess whether a model is inherently
discriminatory? The possibility of indissociable proxies suggest
the need for different kinds of metrics and analysis to detect them.
Consider a hypothetical example which is similar to the context of
James v Eastleigh BC [36]. As part of a public health campaign, a
local government is attempting to select members of the public to
receive free entry to sports leisure facilities. They use a machine
learning model designed to identify those whose health will benefit
most from the intervention. They use (what they believe to be) non-
protected features Z, including a ‘receives_state_pension’ variable,
and a ‘m_health_clinic’ variable which records if they are registered
at a particular type of health clinic. How might they uncover any

7For more discussion of this and the prospects for legal challenges against directly
discriminating algorithms, see [1].
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variables (or combinations of variables) which may be indissociable
from a protected characteristic?

To address the simplest cases of indissociable proxies, the data
scientist might take each of the Z variables and test if they are
correlated with any of the protected characteristics. They might
produce a correlation matrix comparing the Z variables against
each of the protected attributes A. Looking at the various cells
in the ‘m_health_clinic’ matrix, the data scientist observes a per-
fect correlation with the protected characteristic of pregnancy
status. Unknown to the data scientist prior to the analysis, the
‘m_health_clinic’ variable refers specifically to maternal health
centres which only serve birthing people. Therefore, the data sci-
entist can now conclude that the model is directly discriminating,
because ‘m_health_clinic’ is indissociable from pregnancy status.
While this is a simple example, which a data scientist with better
knowledge of the meaning of the variable in question might have
been able to anticipate without even conducting the analysis, it at
least demonstrates how other less obvious indissociable proxies
might be identified.

Turning to the P column in the correlation matrix, the data
scientist would find that P is correlated with the age variable A.
Age is a protected characteristic, so a model which uses P is likely
to present prima facie evidence of indirect discrimination by age
(which might be justifiable as a proportionate means of a legitimate
aim in the context of public health). However, since the correlation
is not perfect, the data scientist might conclude that this is at most
indirect discrimination, but is not direct discrimination. However,
this would be a mistake. As shown in the example of James men-
tioned above, indissociable proxies need not perfectly correlate to
the protected characteristic in all cases. The state pension in that
context was given to men from age 65 and women from age 60;
on this ground, the court found that free entry to the swimming
pool for people of state pension age was held to be inherently dis-
criminatory. The court did not conclude that because some men do
receive the state pension, and some women do not, that P is not
inherently discriminatory. As Campbell and Smith point out, there
was no exact correlation between the adverse treatment (having to
pay) and the protected group (men), because some women did have
to pay to enter the swimming pool [7](pp. 269-270). Rather, the cri-
terion in question only discriminated against men of a certain age
(namely, those between 60-65). In other words, it is not necessary
that a criterion perfectly captures all members of a certain group;
it is enough that there is some subset, defined in terms of other
characteristics, within which one protected group is treated worse
than the other.

It would therefore be sufficient for indissociability if a proxy is
perfect for only a particular range of values within that proxy. A
correlation matrix which only compares the whole distribution of
A against Z will therefore not be sufficient for this purpose, since it
presents the correlation between A and the putative indissociable
proxy Z overall; the range-specific indissociability of the proxy will
thus be ‘hidden’ behind the overall figure. A simple remedy would
be to split the dataset by the values of each attribute A, and produce
a correlation matrix for each value. For instance, one correlation
matrix would be produced for each sex / gender; another for each
sexual orientation; etc. This would reveal to the data scientist that

when disaggregated by sex / gender, P andA are perfectly correlated,
showing that P is an indissociable proxy for sex / gender.

There are likelymany alternative, potentially more efficient ways
of detecting indissociability within a set of protected attributes (and
sub-ranges within them). However, any such approach would face
additional challenges. First, the number of comparisons might need
to be quite extensive. There are nine protected characteristics in EU
equality law; each of them can take multiple values. Some have a
relatively limited number of values, e.g. ‘marital status’ but others
have an indeterminate and potentially large set of possible values,
e.g. ‘religion or belief’. Each of these values would need to be com-
pared against one another for every feature in Z. Second, only some
of the protected characteristics can be modelled as categorical vari-
ables: age, for example, is continuous. Such cases raise questions
about how to partition and compare different values against each
other (a more general problem for fairness metrics which assume
protected classes to be categorical). Finally, correlation analysis
would need to account for cases where the relationship is not linear.
There may also be a need for model-specific measures to capture
how inherent discrimination may arise for particular non-linear
model types. For instance, in decision tree models, any sub-node,
or multiple sub-nodes within a decision path, which splits perfectly
between values of A, would arguably constitute an inherently dis-
criminatory decision tree model.

Putting these difficulties to one side, there is a further compli-
cation relating to an ambiguity in the law, namely: how strong
does the relation between the proxy and the protected characteris-
tic need to be? The case law has given rise to divergent answers.
UK courts have held that the correspondence has to be 100%, i.e.
all individuals who fail to meet the criterion share the particular
protected characteristic, while the CJEU has taken a more flexi-
ble approach, holding that the harms of the criterion need not fall
exactly along lines of protected characteristics. 8 This ‘indissocia-
bility’ has been more qualitative in nature; it might be enough that
a model only uses an imperfect (but highly correlated) proxy for
a protected characteristic. The UK approach, on the other hand,
suggests that a criterion which acts as a proxy for sex may be used
by a decision-maker if 99% of those impacted by it are women; but
if the proportion rises to 100%, then the rule is unjustifiable direct
discrimination. On the other hand, as illustrated in James, UK courts
have held inherent discrimination can occur even when a proxy is
only perfectly correlated with a protected characteristic within a
limited range (i.e. being a state pensioner within the age of 60-65 is
perfectly correlated with sex, even though being a state pensioner
in general is imperfectly correlated with sex). Wherever the line is
drawn between inherent direct discrimination and mere indirect
discrimination, if it is based merely on a degree of correlation, then
it may seem arbitrary; as Collins & Khaitan argue, this is hardly a
principled distinction [8] (p 20). While such legal ambiguities can-
not be resolved here, either interpretation is in principle amenable
to statistical analysis of the kind described above; either enforcing
the 100% correlation constraint, or relaxing it to whatever threshold
may be legally applicable in a given context.

8For further discussion of these doctrinal differences, see [1].
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Furthermore, there is a related question of how many examples
would need to be observed before we conclude that a given vari-
able or sub-range of a variable is indissociable from a protected
characteristic. Are observations of the distributions of protected
characteristics of individuals from the training data sufficient evi-
dence, or do we need unbiased figures for the entire population (e.g.
from census data)? What if there are differences between training /
test data and deployment? How could we distinguish a subspace
which is robustly indissociable from one which only spuriously ap-
pears to be so due to unrepresentative training data? The examples
raised earlier are plausibly robust in the appropriate ways; in James,
the proxy variable of statutory retirement perfectly predicts sex /
gender because of a government policy; in the previously boys-only
school example, the interaction between age and graduation are
reliably associated with gender because of the school’s history. But
if there are many subspaces to test and many different protected
groups (including some with relatively few members), some ap-
parently exclusive subspaces will eventually be found by chance,
prompting the potential need for multiple-comparison correction
measures. Such questions are similar to those raised in relation to
robustness of fairness measures under covariate drift [23], and will
be particularly acute under a strict one-to-one interpretation of
inherent discrimination as implied by some UK case law; under
the more relaxed interpretation developed by the CJEU, a subspace
would not have to be guaranteed to exclude people with a given
protected characteristic entirely to qualify as inherently discrimi-
natory.

4.2 Subjectively Discriminatory Algorithms
Subjective discrimination seems less amenable to any form of fair-
ness measure based solely on analysis of the model or the training
set alone. This is because no amount of data or model analysis al-
lows one to see into the minds of the potentially subjectively biased
human labellers who generated the labels in the training data to
see what was in fact influencing them subconsciously.

This doesn’t mean that subjectively discriminatory algorithms
are entirely undetectable; after all, in purely human cases of subjec-
tive discrimination, the courts could not see inside the humanminds
of those responsible. Appropriate evidentiary standards would
therefore have to be developed and adapted to the algorithmic
context. One could imagine that the statistical fairness methods
developed hitherto might be useful as prima facie evidence of po-
tential subjective discrimination (similar to the proposal to use
conditional demographic disparity as prima facie evidence of in-
direct discrimination [28]), although further evidence would be
needed to distinguish between cases where the labelling process is
driven by unconscious biases from those in which broader upstream
social structures are the cause of disparities in the training data.

5 COULD TECHNICAL DEFINITIONS
CHALLENGE LEGAL DISTINCTIONS?

Thus far, we have argued that the mapping of the EU legal concepts
of direct and indirect discrimination onto measures of algorithmic
fairness has become somewhat misguided as a result of the focus on
US law in technical fairness definitions. In this section, we consider
the converse: might debates about fair machine learning provide

a stronger conceptual basis on which to revise or reinterpret the
current, arguably unprincipled, set of distinctions drawn in EU
discrimination law?

5.1 Challenges to the Legal Taxonomy of Direct
Discrimination

Previous sections examined how two specific types of direct dis-
crimination – inherent and subjective direct discrimination – might
apply to algorithmic bias. However, there are some cases of algo-
rithmic discrimination which do not appear to fit well with either
category, but for which it may seem intuitively correct to say that
some individuals are treated worse ‘because of’ their protected
characteristics. 9 One prominent example is facial recognition sys-
tems which perform worse on darker-skinned women, as studied in
the Gender Shades project [6]. Do they fail black women ‘because
of’ their protected characteristics, in the sense required for a direct
discrimination case?

Note first that, on the face of it, neither subjective nor inherent
discrimination applies here. Unlike the sexist human recruiter case,
we cannot point to biased mental processes of human labellers of
the training data used to build the facial recognition system, so sub-
jective discrimination seems inapplicable. Inherent discrimination
also seems an unlikely fit, as it is unclear what features would be
acting as proxies indissociable from the intersection of race and
gender. There would be no feature or combination of features in
the model that could be straightforwardly identified as a proxy for
race. Indeed, to attempt to identify such features could be seen as
implying a problematic conception of race as a set of physiognomic
features [24, 31]. As such, it would be hard to make out an inherent
discrimination case.

However, despite not fitting either of the extant categories of
direct discrimination, it still seems correct to say that in some
sense, these facial recognition systems treated darker-skinned black
women worse at least in part because of their race and gender.
Such a claim need not imply that protected characteristics like race
provide a singular causal explanation, nor even that they can be
causally modelled as such, although they may be. We note here
that there is debate within the causal inference literature, and the
philosophy of social science, as to whether categories like race
and gender can be meaningfully captured in causal models [5, 14,
16]. We do not aim to comment on this debate here; suffice to
say that whatever ontological status the law affords or assumes
about protected characteristics, we contend that it ought to be able
to capture the straightforward intuition that the relatively poor
performance of the systems evaluated in the Gender Shades project
is in the relevant sense because of the intersection of race and
gender.

One might object that those systems treated darker-skinned
women worse not because of the intersection of race and gender
but rather because of the unrepresentative training data. This latter
kind of explanation – which appeals not to the protected character-
istic of the subject of the decision, but rather to the unrepresentative

9While we use here the phrase ‘because of’, found in UK legislation implementing EU
law, the alternative phrase ‘on the grounds of’ often appears in the latter; see e.g. the
EU The Race Equality Directive 2000/43/EC.
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distribution of protected groups in the training data – might be mar-
shalled as a defence against an accusation of direct discrimination.
But the latter explanation is not a mutually exclusive alternative to
the former. Indeed both factors are necessary to explain the worse
treatment faced by darker-skinned women; it is the combination of
the unrepresentative training data and the protected characteristics
of those receiving worse treatment which cause these particular
outcomes. This suggests that facial recognition systems exhibiting
gender and racial biases in this way therefore ought to fall within
the scope of direct discrimination.

This outcome would require the judicial recognition of a new,
additional category of direct discrimination – an option open to
courts in their interpretation of broadly worded statutes, the mean-
ing of which can develop long after their initial framing [3](section
14.1). A new type of direct discrimination better suited to particu-
lar kinds of algorithmic discrimination, such as those exhibited in
facial recognition models, might also give rise to the need for a set
of robust and established technical measures for proving it.

5.2 Defining the Scope of ‘Because of’
Examples of implicit bias leading to a discriminatory model raise
further questions about how to interpret the scope of the ‘because
of’ / ‘on the grounds of’ language key to the concept of direct
discrimination. If we grant, for the purposes of applying the legal
category, that a model directly discriminates when it treats people
with a protected characteristic worse because it was trained on data
labelled by an implicitly biased human, what other sources of bias
might also count as direct discrimination? It seems plausible that
a similar account of the influence of protected characteristics on
model outputs could in theory be applied to additional examples
of historic bias. For instance, gender or racial stereotypes may be
reproduced in search engine results in part because of the impact
of gender and race on the behaviours of those who upload and
search for content on search engines. If we can attribute at least
a significant part of a model’s biased outputs to the impact of
protected characteristics on the social processes which reproduce
those characteristics, can we say that direct discrimination arises,
whether through an implicitly biased labeller or via historic societal
interactions with search engines? Put differently, how far back in a
causal chain must a protected characteristic be to be too remote to
be attributed as a significant cause of the algorithmic bias?

As outlined in our prior work [1], the courts have sought to
avoid overly legalistic approaches to answering this question [Na-
garajan], but some limits can be identified. Take, for example, a
reference provided by a discriminatory previous employer, which
has been tainted by the ex-employer’s bias against its employee.
The recipient prospective employer decides not to hire the appli-
cant on the basis of the bad reference. In some sense, the failure to
hire is ‘because of’ the applicant’s protected characteristic, but the
courts have held that the prospective employer will not be liable for
direct discrimination in these circumstances [39]. Still, it is unclear
under what circumstances a third party breaks the causal chain that
would otherwise make a decision-maker liable. While the source
of the bias in Reynolds [39](i.e. the previous employer) is one step
removed from the decision-maker (the prospective employer), the
same was arguably true in James [36]: age only operated via the

definition of pensionable age, and that definition (like the bad ref-
erence) was provided by a ‘third party’ of sorts (in this case, the
legislature). Imagine a workforce evaluation model trained on a
biased sample which doesn’t include sufficient representation of a
protected group due to historical exclusion from the industry. In
this case, the cause of the sampling bias is arguably the explicit or
implicit bias of previous decision-makers, which has in turn caused
the model to treat new workers from the protected group worse. An
‘upstream’ process, in which members of a protected class were dis-
criminated against, has led to a downstream process in which other
members of that same class are discriminated against. If we grant (as
argued above) that training data labelled by biased hiring managers
can result in directly discriminatory recruitment algorithms, why
wouldn’t direct discrimination also apply where labelling decisions
were made further upstream, for example by a third-party vendor
of AI services for recruitment? The disadvantage experienced by
applicants would be no less ‘because of’ the protected characteristic
in these circumstances, and as we argued in section 4.2, automat-
ing a biased process should not insulate the decision-maker from
liability. On the Reynolds approach, however, it might appear that
a biased algorithmic output which originates from external bias –
like the bad reference – is merely ‘tainted information’, the use of
which cannot create liability. The law therefore lacks a clear means
of measuring the degree of distance in a causal chain, and a means
for deciding where along that chain a cause ceases to qualify as
‘direct enough’ for a case of direct discrimination.

These ambiguities can only be satisfactorily resolved in the
courts or through new law. However, some technical and empirical
work in fair machine learningmight provide a useful guide in the ab-
sence of legal certainty. First, the field has already provided various
taxonomies of algorithmic bias which carefully distinguish different
sources of bias at different stages upstream of the decision-making
process. For instance, Mitchell et. al characterise various forms of
bias, including ‘societal bias’ which concerns objectionable social
structures and past injustices (which may lie entirely upstream of
the decision maker), nonrepresentative sampling and measurement
error (which occur around the point of data collection), model bias
and evaluation bias (which are located around the choice of model)
[21]. Such typologies of bias could provide a useful heuristic for
courts seeking to understand where to draw the line between direct
and indirect discrimination.

Second, there is a burgeoning literature which seeks to measure
algorithmic fairness not in terms of a single decision-making point,
but rather in terms of sequential interactions, interventions, and
causal processes which led up to a final decision outcome. For in-
stance, work on ‘fairness in pipelines’ examines how compound
decision-making processes can result in unfairness [4]. Similarly,
causal models of fairness attempt to create graphs which model the
causal relationships between variables that account for disparities
between protected classes [17, 18, 30]. 10 Empirically modelling
pipelines and causal relationships in this way could help trace and
measure the contribution of upstream decisions to downstream

10As mentioned above, there are debates as to whether protected characteristics can
themselves meaningfully be represented as nodes in such graphs [5, 14, 16]; but even
if they cannot, it may still be possible to causally model the social structures which
give rise to disparities between protected groups [20], in ways that are informative for
litigators seeking to establish a case of direct discrimination.
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unfairness, enabling litigators to more clearly attribute direct dis-
crimination, whether it arises from biased labellers of training data,
historical exclusion, modelling decisions, or some other process.
In other areas of law, the issue of causation has received signifi-
cant academic and judicial attention [25]. The question of upstream
causal impact is not new—but the algorithmic context brings re-
newed urgency to finding coherent solutions when it comes to
discrimination.

6 CONCLUSION
Given the inherently interdisciplinary nature of research on fairness
and discrimination in algorithmic decision-making, and the signifi-
cant challenges of translating between law and computer science,
it would be understandable for computer scientists to focus their
efforts on implementing a select range of key legal definitions. But
to date, this selection has been almost exclusively focused on one
legal framework and sub-type of discrimination within it, namely
the US disparate impact doctrine. This has in our view skewed the
development of algorithmic discrimination research in computer
science and law in an unhelpfully narrow direction, and perhaps
also had a similarly narrowing effect on approaches to litigation and
compliance in practice. A wider view, adopting direct discrimina-
tion as an additional lens through which to understand algorithmic
discrimination, would have serious practical reverberations, as a
range of existing practices could no longer be legally deployed.
More fundamentally, it opens up opportunities in both computer
science and legal research to question existing taxonomies and
justificatory regimes in working towards a coherent understanding
of the legal treatment of machine bias.
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