
Learned Spatial Data Partitioning
Keizo Hori

hori.keizo@ist.osaka-u.ac.jp

Osaka University

Suita, Osaka, Japan

Yuya Sasaki

sasaki@ist.osaka-u.ac.jp

Osaka University

Suita, Osaka, Japan

Daichi Amagata

amagata.daichi@ist.osaka-u.ac.jp

Osaka University

Suita, Osaka, Japan

Yuki Murosaki

murosaki.yuki@ist.osaka-u.ac.jp

Osaka University

Suita, Osaka, Japan

Makoto Onizuka

onizuka@ist.osaka-u.ac.jp

Osaka University

Suita, Osaka, Japan

ABSTRACT
Due to the significant increase in the size of spatial data, it is es-

sential to use distributed parallel processing systems to efficiently

analyze spatial data. In this paper, we first study learned spatial data

partitioning, which effectively assigns groups of big spatial data to

computers based on locations of data by using machine learning

techniques. We formalize spatial data partitioning in the context

of reinforcement learning and develop a novel deep reinforcement

learning algorithm. Our learning algorithm leverages features of

spatial data partitioning and prunes ineffective learning processes

to find optimal partitions efficiently. Our experimental study, which

uses Apache Sedona and real-world spatial data, demonstrates that

our method efficiently finds partitions for accelerating distance join

queries and reduces the workload run time by up to 59.4%.

CCS CONCEPTS
• Information systems→MapReduce-based systems; Spatial-
temporal systems; • Computer methodologies→ Reinforce-
ment learning.

KEYWORDS
Reinforcement learning, Spatial data partitioning, Deep Learning.
ACM Reference Format:
Keizo Hori, Yuya Sasaki, Daichi Amagata, Yuki Murosaki, and Makoto
Onizuka. 2023. Learned Spatial Data Partitioning. In Sixth International
Workshop on Exploiting Artificial Intelligence Techniques for Data Manage-
ment (aiDM ’23), June 18, 2023, Seattle, WA, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3593078.3593932

1 INTRODUCTION
A large amount of spatial data, such as temperature data, traffic

logs, and geo-tagged blog posts, is drastically increasing. We of-
ten analyze spatial data in many applications such as traffic con-
trol [35], human mobility analysis [22], disaster surveillance [12],
mobility service [21], and route and point-of-interest recommenda-

tion [17, 26]. For efficient analysis of spatial data, it is essential to

aiDM ’23, June 18, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0193-1/23/06.
https://doi.org/10.1145/3593078.3593932

use distributed parallel processing systems for spatial data such as

Sedona [3], SpatialHadoop [7], and others [1, 25, 28, 29, 36].

Motivation. One of the fundamental functions of such systems

is spatial data partitioning, which divides the whole area into sub-

area (called partitions) and assigns data in the same partitions to

computers for efficient parallel-processing [6]. Existing spatial data

partitioning methods focus only on data distributions to balance

the computation costs among computers. However, it is difficult

to obtain partitions that are optimized for data distributions, user

queries, and computation frameworks.

Deep reinforcement learning (DRL for short) approach is effective

for system optimization, including data partitioning [11]. To our

knowledge, there are no studies on DRL-based spatial data partition-

ing. Since spatial data partitioning directly affects the performance

of data processing, it is worth studying DRL-based spatial data

partitioning to accelerate the processing of big spatial data.

Contribution.We study spatial data partitioning with deep rein-

forcement learning. We have three main contributions; problem

formulation, algorithm, and experiment.

First, we formalize a spatial data partitioning problem in the con-

text of reinforcement learning. The characteristics of our problem

are to consider not only distributions of spatial data but also the

computation environment (e.g., a computing system) and work-

loads (e.g., the set of queries). This problem formulation aims at

pursuing effective spatial data partitioning for each user.

Second, to address our spatial data partitioning problem, we

develop a novel learning algorithm that efficiently explores actions

for finding optimal partitions. Our algorithm has a 2-phase learning

strategy consisting of pre-training and main-training [10]. In the

pre-training phase, our algorithm trains a model by using pre-

collected transitions (i.e., training data) based on existing spatial

partitioning algorithms to avoid selecting less-effective actions

during the main-training. In the main-training phase, it searches

for optimal partitions and trains the model using transitions (i.e.,

sequences of actions). Our framework is extended to (1) improve

the effectiveness by using preparing demos of partitioning-related

transitions and (2) accelerate learning by reducing action space and

pruning run time measurements based on the characteristics of

spatial data processing.

Finally, we evaluate our method using Apache Sedona, the state-

of-the-art distributed parallel processing system for big spatial data,

with real-world datasets. We validate that the DRL-based approach

is highly effective in accelerating big spatial data processing.

This work is licensed under a Creative Commons Attribution-
NonCommercial International 4.0 License.

https://doi.org/10.1145/3593078.3593932
https://doi.org/10.1145/3593078.3593932
https://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593078.3593932&domain=pdf&date_stamp=2023-06-20

aiDM ’23, June 18, 2023, Seattle, WA, USA Trovato et al.

Reproducibility.We open our source codes, datasets, and work-

loads that we used in an experimental study at Github https://github.

com/OnizukaLab/Spatial-Data-Partitioning-using-DRL.

2 PRELIMINARIES
We explain spatial data partitioning and deep reinforcement learn-

ing as preliminaries.

2.1 Spatial data partitioning
Spatial data partitioning is a function that determines how the

area divides into partitions. We define spatial data partitioning as

follows:

Definition 2.1. Given a spatial datasetD, spatial data partitioning

is a task to divide the whole area in D into partitions and then

assign sets of data in the same partitions to computers. We denote

the set of partitions by P. P needs to satisfy that any partitions

𝑃 ∈ P are distinct and it covers the whole area in D.

Distributed parallel processing systems compose of multiple

computers. The sets of data in partitions are assigned to comput-

ers and each computer parallelly processes its assigned data. If

computers need to access data that are held by other computers,

they transfer their data (which is called shuffle), and finally, the

processing results are aggregated to answer users.

Spatial data partitioning has two main objectives. First, since a

set of data that are spatially close to each other is often accessed

together, the partitions should reduce the communication costs

between computers. Second, since computers parallelly process

their data, partitions should have an equal amount of data to balance

the burden of data processing. These requirements are essential to

scale out to multiple computers.

2.2 Deep reinforcement learning
Reinforcement learning [13] is a process in which an agent repeat-

edly interacts with a Markov decision process to autonomously

acquire information that serves as a supervisory signal while de-

riving optimal strategies. The agent selects action 𝑎𝑖 on state 𝑠𝑖 by
policy 𝜋 (𝑠𝑖 , 𝑎𝑖), and then observes reward 𝑟 (𝑠𝑖 , 𝑎𝑖) and obtains the

next state 𝑠𝑖+1 caused by 𝑎𝑖 . It repeats this process by selecting 𝑎1
on 𝑠0 until the state 𝑠𝑛 satisfies given conditions. We define A and

S as the action and state spaces, respectively. A block of processes

from 𝑎1 to 𝑎𝑛 is called episode, and a four-pair (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in an

episode at step 𝑡 is called transition.
The goal of reinforcement learning is to maximize the cumu-

lative reward Σ𝑛
𝑘=0

𝑟 (𝑠𝑡+𝑘 , 𝑎𝑡+𝑘) at state 𝑠𝑡 . It considers the action-
value function 𝑄𝜋 (𝑠, 𝑎) = 𝐸 [Σ∞

𝑘=0
𝛾𝑘𝑟𝑡+𝑘 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎], which is

the expected cumulative reward when the agent follows policy

𝜋 . If we find the optimal function 𝑄∗ to maximize the expected

cumulative reward, we can derive the optimal policy as 𝜋∗ (𝑠) =
arg max𝑎∈A𝑄∗ (𝑠, 𝑎) for ∀𝑠 ∈ S.

Deep reinforcement learning aims at approximating the action-

value function by using deep neural networks. It is often difficult

to maintain the function for any pairs of actions and states if their

patterns are tremendous. When we train the deep neural network

models with tremendous patterns, the agent can select an optimal

action on each state following these models.

Q-learning and Deep Q-network. Q-learning [34], a typical re-
inforcement learning method, selects a high-value action in terms

of the action-value function 𝑄 . By repeatedly observing the state

and reward, the optimal action-value function is updated using

the temporal difference error between the outputs of 𝑄 , which are

called 𝑄-values, in the next and current states.

𝑄 (𝑠𝑡 , 𝑎𝑡)←𝑄 (𝑠𝑡 , 𝑎𝑡)+
𝛼{𝑟𝑡+1 + 𝛾 max

𝑎∈A
𝑄 (𝑠𝑡+1, 𝑎𝑡+1) −𝑄 (𝑠𝑡 , 𝑎𝑡)} (1)

If the action and/or state spaces are large or continuous, the number

of combinations becomes very large, making it difficult to maintain

𝑄-values in the table.

Deep Q-Network (DQN), which is an extension of Q-learning,

approximates the function 𝑄 and the policy function in Q-network.

Similar to Q-learning, DQN aims to make 𝑄 (𝑠𝑡 , 𝑎𝑡) close to 𝑟𝑡 +
𝛾 max𝑄 (𝑠𝑡+1, 𝑎𝑡+1), so the Q-network is trained using the error

function 𝐿 and the current 𝑄-value as follows:

𝐿 =
∑︁

(𝑠𝑡 ,𝑎𝑡 ,𝑟𝑡 ,𝑠𝑡+1) ∈𝐵
(𝑟𝑡 + 𝛾 max𝑄 (𝑠𝑡+1, 𝑎𝑡+1;𝜃) −𝑄 (𝑠𝑡 , 𝑎𝑡 ;𝜃))2, (2)

where 𝜃 and 𝐵 are a deep neural network model and a set of past

transitions, respectively.

3 RELATEDWORK
We review existing works related to spatial data partitioning and

system optimization with deep learning. To the best of our knowl-

edge, there are no deep learning-based methods for computing

spatial data partitioning.

Spatial data partitioning We review some typical algorithms

for spatial data partitioning. Uniform grid is the simplest method

that divides the area into equal-sized partitions. Quad-tree [8] and

KDB-tree [24] are methods that repeatedly divide the partition that

includes the largest number of data (initially starts a single partition

covering the whole area). Quad-tree divides the partition into equal-

sized four partitions, while KDB-tree divides the partition into

two partitions so that the two partitions have the same amount of

data. Vu [33] proposes a method for incremental updates of spatial

partitions which utilize estimation of query execution time. Vu et

al. [32] proposed a method that selects optimal spatial partitioning

methods (e.g., KDB-tree and Quad-tree) by using DRL. This method

just selects methods among the given ones, instead that it does

not aim at computing partitions. Aly et al. [2] proposed a spatial

partitioning method that uses a given set of range and kNN queries.

This aims to reduce the communication between computers, but it

can use only range and kNN queries instead of spatial join, so it is

not applicable to general settings that include many query types.

Hilprecht et al. [11] proposed a DRL-based hash partitioning,

but it does not focus on spatial partitioning. It is well known that

hash partitioning is not effective for spatial queries.

System optimization with deep learning. Spatial data partition-
ing is one of the tasks in system optimization, so we review system

optimization techniques using deep learning [16]. Spatial partition-

ing is similar to indexing techniques on spatial/multi-dimensional

data, and many learning indexing techniques are developed, such

as Flood [20], Tsunami [5], LISA [15], Qd-tree [37], RLR-tree [9],

https://github.com/OnizukaLab/Spatial-Data-Partitioning-using-DRL
https://github.com/OnizukaLab/Spatial-Data-Partitioning-using-DRL

Learned Spatial Data Partitioning aiDM ’23, June 18, 2023, Seattle, WA, USA

and RSMI [23]. They build data blocks (i.e., the set of data) and

construct index structures to accelerate spatial query processing

on a single machine. Since they do not assume spatial partitioning,

their blocks are either unsophisticated or inapplicable for spatial

partitioning, for example, Flood divides data into blocks based on

the data distribution on a single axis and the blocks of Qd-tree are

not distinct. Lan et al. [14] proposed a DRL-based index recom-

mendation. Vu et al.[31] develop a query optimizer for spatial join

based on neural networks, which aims to estimate the cardinality

and select join algorithms. These works do not aim to divide the

dataset into data blocks

4 PROBLEM FORMULATION
We formulate spatial data partitioning as a new reinforcement

learning problem. First, we define our problem as follows:

Problem: Given a spatial dataset D, a workload𝑊 (i.e., the set

of queries and their frequencies), and a computation environment

(i.e., system and the number of computers), the goal is to find the

set of partitions P that minimizes the run time of the workload for

D on the computation environment.

In the following, we define the initial setup, state, action, and

reward for this problem, respectively.

Initial setup. We form a map that covers the locations of the

given data in a two-dimensional space as an environment for a DRL

agent. We divide this map into a set of uniform grid cells. The agent

constructs partitions by adding new boundaries on each grid line.

State: The state is obtained from the current partitions and data

distribution. We define that state 𝑠 is a set of status 𝑠 (𝑖, 𝑗) for each
grid cell (𝑖, 𝑗) as follows:

𝑠 (𝑖, 𝑗) = (ℎ (i,j) , 𝑣 (i,j) , 𝑝 (i,j)), (3)

where 𝑖 and 𝑗 specify the upper-left coordinate of the grid cell.

ℎ ∈ {0, 1} and 𝑣 ∈ {0, 1} denote the absence/presence of horizontal
and vertical boundaries on the top and left sides of the cell, respec-

tively. 𝑝 (i,j) denotes the ratio of the numbers of data in the cell and

partition. We define 𝑝 (i,j) =
|D(i,j) | · |𝑃 (i,j) |
|D |2 , where |D|, |D(i,j) |, and

|𝑃 (i,j) | are the numbers of data in the given dataset D, in a cell

(𝑖, 𝑗), and in a partition that covers (𝑖, 𝑗), respectively.
Action. The action 𝑎 ∈ A is an operation to add a new boundary

line. We define the action as follows:

𝑎 = (𝑖, 𝑗, dir), (4)

where 𝑖 and 𝑗 are the coordinates of the starting point of the action

and dir ∈ {right, down} specifies the direction of the boundary

from (𝑖, 𝑗), i.e., rightward or downward. To avoid invalid actions,

the starting points need to be satisfied either of conditions; (1)

dir = right, ℎ(𝑖, 𝑗) = 0, and 𝑣 (𝑖, 𝑗) = 1 or (2) dir = down, ℎ(𝑖, 𝑗) = 1,

and 𝑣 (𝑖, 𝑗) = 0.

Reward. The reward 𝑟 is computed based on the run time𝐶 (P,𝑤)
for an operator 𝑤 on a set of partition P to the spatial dataset in

the computation environment. It enables to maximizing the reward

𝑟 to optimize execution in the given computing environment. The

reward 𝑟 is evaluated as follows:

𝑟 =
©­«
∑︁

𝑤𝑖 ∈𝑊
𝑓𝑖 ·

𝐶 (Pb,𝑤𝑖)
𝐶 (Pe,𝑤𝑖)

ª®¬
2

, (5)

where 𝑤𝑖 , 𝑓𝑖 , Pe , and P𝑏 indicate a query in the workload, a fre-

quency of operator𝑤𝑖 , a set of partitions at the end of the episode,

and the best set of partitions we found during training, respectively.

This equation evaluates a relative to the best run time up to that

on the partitions at the current episode. The value is squared to

emphasize the difference between the run time on P𝑏 and P𝑒 . If
𝑟 > 1, P𝑒 is better than P𝑏 . Note that computing all queries in the

workload is costly compared with other procedures such as training

deep neural networks.

Example. Figure 1 illustrates an example of states and actions for

obtaining three partitions. Initially, there are no boundaries (i.e., a

single partition). In this example, the agent takes 𝑎1 = (0, 3, 𝑑𝑜𝑤𝑛)
and 𝑎2 = (2, 3, 𝑟𝑖𝑔ℎ𝑡). The status of cell 𝑠 (2,3) changes by adding

boundary lines. 𝑝 (2,3) becomes smaller because the percentage of

the number of data in the partition becomes smaller instead of that

in the cell is constant. We run the workload and obtain the reward

for the episode after computing three partitions.

5 LEARNING ALGORITHM
This section proposes a learning algorithm for our problem formu-

lated in Section 4. We have two challenges to solve our problem.

First, the action and state spaces are very large to find optimal

partitions. Common DRL algorithms start the random selection

of actions. We should efficiently explore actions by capturing the

characteristics of spatial data partitioning. Second, our problem

takes a large training time because of measuring the run time of

workload at the end of each episode to compute rewards. For effi-

cient training, we should reduce the run time while keeping the

effectiveness of training.

To address the above challenges, we design a learning strategy

consisting of (1) pre-training using demo data which is a set of pre-

collected transitions and (2) main-training. Our learning framework

trains our model by effectively combining DQN with imitation

learning based on our strategy. Sections 5.1 and 5.2 present our

learning strategy and learning framework, respectively. Section 5.3

presents our algorithm.

5.1 Learning strategy
Our algorithm is based on the following ideas:

• Pre-training by effective demo data: Our algorithm builds a

model that follows existing algorithms for spatial data parti-

tioning. This model avoids selecting less-effective actions at

early episodes of the main-training phase.

• Effective new action choice: We add a new action that makes

a boundary close to the best partitions. It supports exploring

effective actions.

• Pruning run time measurement: Our algorithm prunes in-

effective executions of the workload to reduce the training

time.

These ideas are specialized for our problem formulation, and thus

all of them are not applied to the DRL approach yet. We explain

pre-training and main-training phases.

aiDM ’23, June 18, 2023, Seattle, WA, USA Trovato et al.

Figure 1: Example of actions and states: the agent selects actions 𝑎𝑡 to add new boundaries depending on the state 𝑠𝑡 .

Pre-training. In the pre-training phase, we train our model using

only demo data so that the agent similarly selects actions in demo

data. We first collect transitions from actions based on existing

partitioning algorithms and then use the transitions as demo data.

It makes the initial values of the agent’s actions appropriate for the

distribution of a given dataset before the main-training. Therefore,

this pre-training phase drastically reduces random actions in the

early episodes of the learning processes, which is essentially an

exhaustive trial-and-error process.

The selection of demo data may not obtain exactly the same

partition computed from existing methods because the boundaries

of our partitions are limited on pre-defined grid cells. We select

the closest boundaries to those of existing methods. Our strategy

guarantees that the run time on the best partitions obtained by our

algorithm is at least the (almost) best performance among existing

methods by choosing the most effective method for generating

demo data.

Main-training. In the main-training phase, we search for actions

that construct a set of partitions better than those generated by the

pre-collected demo data. The basic procedures of the main-training

phase are that the agent repeatedly selects its actions probabilisti-

cally by using an 𝜖-greedy method [30], and then when the number

of partitions reaches the number of machines, it distributes data

into computers according to the partitions, executes the workload,

and computes a reward. Our algorithm repeatedly runs these pro-

cedures until reaching the given number of episodes.

Our algorithm adds new action choices to the 𝜖-greedy method.

In the common 𝜖-greedy method, the agent selects the best action

approximated by a model or a random action. We add actions of one

grid-shift from the best action to the 𝜖-greedy method. In spatial

data partitioning, better partitions than the current best ones are

often to be found near the current best partitions, and thus such one

grid-shift actions help to search for the optimal partitions effectively.

We can find effective partitions efficiently by intensively exploring

actions near the approximated best action.

We reduce the training time by terminating the workload exe-

cution for partitions that are clearly less-effective. Specifically, the

workload execution stops whenever the execution time of one of

the queries in the workload exceeds a certain level compared with

that on P𝑏 . In this case, its reward 𝑟 is set to a predefined small

value.

5.2 Learning framework
Our learning framework consists of an agent, a learner of the net-

work that approximates the action values of the agent, and two

replay memories. These replay memories are called demo and agent

memories, storing the demo data and other transitions, respectively.

The demo memory is used for imitation learning. We note that

it uses only demo memory to train deep neural networks in the

pre-training phase.

In the main-training phase, our framework adds transitions that

construct better partitions than P𝑏 to demo data. This contributes

to exploring better actions by imitating the current best actions

instead of the pre-collected actions. More concretely, if 𝑟 > 1, it adds

the transitions to the demo data. In addition, we add transitions

with 𝑟 ≤ 1 to another memory because such data is effective to

learn the wide variety of action values.

We use two Q-networks, main network 𝜃 and target network 𝜃 ′,
following existing works [18, 19]. The target network is used for

stable learning. The learner trains the main network and period-

ically overwrites 𝜃 ′ by 𝜃 . It also updates priorities for transitions
in memories using prioritized experience replay [27], which is ef-

fective to sample data for training the Q-network. The input and

output dimensions of the Q-network are the size of the state and

action spaces, respectively. Mini-batch data sampled from both

memories according to the priorities and the ratio 𝜌 that controls

the importance of memories. The imitation learning guarantees

that the mini-batch data include effective transitions sampled from

the demo memory, resulting in Q-networks that are trained to find

better partitions.

For the loss function, we use three losses. First, loss 𝐿𝑁 (𝜃) is the
temporal difference error considering the rewards of 𝑛 steps ahead

using multi-step learning [4] as follows:

𝐿𝑁 (𝜃) =
∑︁

(𝑠𝑖 ,𝑎𝑖 ,𝑟𝑖 ,𝑠𝑖+𝑛) ∈𝐵
(𝑟𝑖 + 𝛾1𝑟𝑖+1 + ... + 𝛾𝑛+1𝑟𝑖+𝑛−1

+𝑎𝑟𝑔 𝑚𝑎𝑥𝑎∈A𝑄𝜃 ′ (𝑠𝑖+𝑛, 𝑎𝑖+𝑛) −𝑄𝜃 (𝑠𝑖 , 𝑎𝑖))2
(6)

This loss accelerates the propagation of the reward, which is ob-

tained only at the end of the episode, thereby improving learning

efficiency.

Second, to imitate the actions in demo data, we use large margin

classification loss 𝐿𝐶 (𝜃) [10], which is applied only to the demo

data. 𝐿𝐶 (𝜃) is computed as follows:

𝐿𝐶 (𝜃) = max

𝑎∈A
[𝑄 (𝑠, 𝑎) + 𝑙 (𝑎𝐶 , 𝑎)] −𝑄 (𝑠, 𝑎𝐶), (7)

Learned Spatial Data Partitioning aiDM ’23, June 18, 2023, Seattle, WA, USA

where 𝑎𝐶 and 𝑙 (𝑎𝐶 , 𝑎) are an action in demo data and a function that

outputs 0 when 𝑎 = 𝑎𝐶 and positive otherwise, respectively. 𝐿𝐶 (𝜃)
becomes zero if 𝑎𝐶 is selected as the best action, otherwise the

loss becomes larger to imitate the demo data. This loss effectively

accelerates imitations.

Finally, we use the L2 regularization loss, 𝐿𝑙2 (𝜃), for parameters

𝛾𝑖 of main-network 𝜃 to suppress overfitting to a small number of

demo data.

𝐿𝑙2 (𝜃) =
∑︁
𝛾𝑖 ∈𝜃
|𝛾𝑖 |2 (8)

We apply the three losses to loss 𝐿(𝜃) as follows:

𝐿(𝜃) = 𝜆1𝐿𝑁 (𝜃) + 𝜆2𝐿𝐶 (𝜃) + 𝜆3𝐿𝑙2 (𝜃), (9)

where 𝜆1, 𝜆2, and 𝜆3 are the weights for the corresponding losses.

5.3 Algorithm
Algorithm 1 shows a pseudo-code of our learning algorithm. In

the pre-training phase, we store the pre-collected demo data to the

demo memory 𝐵demo (line 3) and then train the main network 𝜃

using the mini-batch data sampled from demo data (lines 4–9). We

repeat the training until the partition P𝑒 constructed by the agent

is the same as the partitions P𝑑 that demo data constructs.

In the main-training phase, the agent repeatedly collects transi-

tions. We set the reward 𝑟𝑡 for each step 𝑡 in the episode to zero (line

18) and measure the run time of the workload when the number of

steps reaches𝑀 − 1 (i.e., the numbers of partitions and computers

are the same) to compute the reward (lines 20–22). All transitions

during the episode are stored in a temporary memory 𝐵tmp (line 23)

and allocated to the demo memory 𝐵demo or agent memory 𝐵agent
according to the reward 𝑟𝑀−1 (lines 24–28). We use mini-batch

data sampled at a rate 𝜌 specified from 𝐵demo and 𝐵agent to train

𝜃 (lines 29–30). 𝜃 overwrites the target network 𝜃 ′ follows update
frequency𝑈 (line 32). Our algorithm outputs the best partitions P𝑏
found during training after finishing 𝑒𝑚𝑎𝑥 episodes.

6 EXPERIMENTAL STUDY
We designed the experiments to clarify the following questions: (1)

Is our method effective compared with existing methods? (2) Does

our method find partitions efficiently?

6.1 Experimental setting
Computation environment.We used Apache Sedona, the state-

of-the-art distributed and parallel processing system for big spatial

data [3]. We used nine computers with a Linux server with 32GB

of memory and an Intel Celeron G4930T CPU@3.00GHz processor.

One computer was a master server and the others were workers

(i.e., eight computers processed a given workload). Sedona provides

spatial queries, such as kNN, range, and distance join, and partition

methods, such as KDB-tree and R-tree. We evaluated two cases

with and without a local index, which supports efficient data access

from the workers to their own local data.

To design our setting, we consider the limitations of Sedona;

(a) range and kNN queries use hash partitioning instead of spatial

partitioning, (b) R-tree partitioning cannot control the number of

partitions, and (c) Polygon data is not handled on spatial join. The

design of our experimental study is following to these limitations.

Algorithm 1: Learning algorithm
input :Dataset D, workload𝑊 , the number of

computers𝑀 , demo data 𝐵d , demo partitions

P𝑑
parameter :Update weight frequency 𝑈 , demo ratio 𝜌 , the

number of episodes 𝑒𝑚𝑎𝑥

output :Best partitions P𝑏
1 procedure Pre-training
2 Initialize the main network 𝜃 and target network 𝜃 ′

3 𝐵demo ← 𝐵d
4 for 𝑒 = 1, . . . , 𝑒𝑚𝑎𝑥 do
5 Sample mini-batch 𝐵 from 𝐵demo
6 Train main network 𝜃 with 𝐵

7 if (𝑒 mod 𝑈) = 0 then 𝜃 ′ ← 𝜃

8 Generate partitions P𝑒 by agent actions

9 if P𝑒 = P𝑑 then break

10 procedure Main-training

11 step← 0, P𝑏 ← P𝑑 , 𝐵agent ← ∅
12 for 𝑒 = 1, . . . , 𝑒𝑚𝑎𝑥 do
13 Reset state 𝑠0, 𝐵tmp ← ∅
14 for 𝑡 = 1, . . . , 𝑀 − 1 do
15 Choose action 𝑎𝑡 with our 𝜖-greedy method by 𝜃

16 Execute action 𝑎𝑡 and observe state 𝑠𝑡

17 if 𝑡 ≠ 𝑀 − 1 then
18 𝐵tmp ← 𝐵tmp ∪ {(𝑠𝑡 , 𝑎𝑡 , 0, 𝑠𝑡+𝑛)}
19 else
20 Distribute partitions P𝑒 to computers

21 Run operators in𝑊

22 𝑟𝑡 = (
∑

𝑤𝑖 ∈𝑊 𝑓𝑖 · 𝐶 (P𝑏 ,𝑤𝑖)
𝐶 (P𝑒 ,𝑤𝑖))

2

23 𝐵tmp ← 𝐵tmp ∪ {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+𝑛)}
24 if 𝑟 > 1 then
25 𝐵demo ← 𝐵demo ∪ 𝐵tmp
26 P𝑏 ← P𝑒
27 else
28 𝐵agent ← 𝐵agent ∪ 𝐵tmp

29 Sample mini-batch 𝐵 from 𝐵demo and 𝐵agent
30 Train main network 𝜃 with 𝐵

31 step← step + 1
32 if (step mod 𝑈) = 0 then 𝜃 ′ ← 𝜃

Datasets.We used point-of-interest data in two different areas, the

United States (US) and South America (SA), extracted from Open-

StreetMap
1
, and Integrated Marine Information System (Imis)

2
,

which is. For each dataset, we randomly sampled 100,000 point-of-

interest from the original datasets. Figure 2 shows data distributions.

They have different area sizes and distributions.

Workload. Our workload was a set of distance joins, each of which

finds all pairs of data within a given distance threshold. Our work-

load included three distance thresholds, 500, 1000, and 5000 [meter]

1
http://osm.db.in.tum.de/

2
https://chorochronos.datastories.org/?q=content/imis-3months

aiDM ’23, June 18, 2023, Seattle, WA, USA Trovato et al.

(a) OSM-US (b) OSM-SA (c) Imis

Figure 2: Data distributions

for US and SA, and 50, 100, and 500 [meters] for Imis, and we as-

sumed two types of their frequencies; small skew and large skew.

The small skew has 25, 50, and 25 [%] for the corresponding thresh-

olds, respectively, while the large skew has 2, 3, and 95 [%].

Competitor. We used three spatial data partitioning methods;

uniform grid, Quad-tree, and KDB-tree, which are originally imple-

mented in Sedona.

Hyper-parameter tuning.We divided the entire map into 30× 30
grid cells. In our 𝜖-greedy method, the selection probabilities of ran-

dom and grid shift actions were 𝜖𝑟 = 0.1 and 𝜖𝑠 = 0.2, respectively.

We set the agent memory size to 10,000 and the demo memory size

to 100. The mini-batch size for training was 32, and the percentage

𝜌 of demo data was 0.25. Furthermore, we set the number of steps

for multi-step learning to 3 and the reward discount rate to 𝛾 = 0.99.

The Q-network consists of two hidden layers that have 1200 and

600 nodes, respectively, from the input side. The input and output

dimensions depend on the grid size. In the case of our experimental

setting, the input and output dimensions were 2833 (i.e., 31× 31× 3)
and 1800 (i.e., 30 × 30 × 2), respectively. As parameters during

training, the learning rate 𝜂 was 0.001, and we used Adam as the

optimizer. The weights for the loss function were 𝜆1 = 1.0, 𝜆2 = 1.0,

and 𝜆3 = 10
−5

according to the settings in the literature [10].

In the pruning execution of operators, when the run time of an

operator was two times larger than that of 𝑃𝑏 , we stopped running

the workload and its reward was 0.2. We ran each operator in the

given workload three times to mitigate the fluctuation of run time,

and the median of these measurements was used for computing

rewards.

6.2 Experimental result
6.2.1 Example of partitions. Figures 3 show the set of partitions

constructed by each method on OSM-US. Uniform grid and Quad-

tree have a large bias in the number of data in each partition because

they ignore the number of data. On the other hand, KDB-tree has a

small bias, because it always divides the area so that each partition

has (almost) the same number of data. Demowas computed by KDB-

tree, but there is a slight difference in the partitions because the

boundaries are selected from the grid lines. Ours is slightly different

from Demo to achieve a better workload run time. From this result,

we can see that our algorithm imitates demo data and explores

actions close to them. These examples show that our method can

find effective partitions based on demo data.

Table 1: Workload run time [sec]: The average run time of
distance joins with each distance weighted by their frequen-
cies. Bold and underline indicate the best and second best,
respectively.

Data idx skew Uniform Quad KDB Demo Ours

US

w/o

small 11.22 8.931 4.67 4.90 4.56
large 15.83 13.29 8.65 8.95 6.71

w/

small 3.35 3.82 3.00 3.00 1.78
large 7.93 7.68 7.32 7.08 3.58

SA

w/o

small 11.72 11.91 6.92 7.22 6.90
large 17.82 18.21 13.21 13.37 13.60

w/

small 4.66 5.21 4.86 5.09 3.52
large 11.29 11.12 11.19 11.97 8.34

Imis

w/o

small 16.74 12.69 8.77 8.93 9.49

large 22.24 19.81 17.43 17.49 15.57

w/

small 4.75 5.03 7.11 7.12 3.60
large 11.18 11.84 16.21 15.87 7.84

6.2.2 Effectiveness. We evaluate the effectiveness of our method

by the workload run time. Table 1 shows the run time needed

for running the workload. We evaluated three cases: small skew

without local index, large skew without local index, and small skew

with local index.

Our method achieves the best performance among all the meth-

ods in all cases. This indicates that our method can adaptively divide

datasets into partitions according to workloads and computational

environments. When workloads have large skews, the difference

between run times of ours and other methods becomes large, be-

cause our method optimizes partitions for workloads. Our method

reduced the workload run time up to 59.4% compared with the

second-best method.

Compared to the difference between run times without and with

local index, run times with local index are smaller than those with-

out local index in all methods. Our method achieves the smallest

run time in both datasets, while KDB tree does not work well as uni-

form grid works in SA. In US, our method reduces the run time by

41 % compared to the second-best. The reason why the local index

largely benefits our method is that our method uses computational

environments (i.e., including local index) to optimize partitions,

while other methods do not. This result shows that spatial parti-

tioning should be taken not only in data distribution but also in

computational environments such as local index. We validate that

DRL-based spatial data partitioning improves the performance of

workloads and computational environments.

6.2.3 Efficiency. We evaluated the learning time and learning effi-

ciency of our method. For verifying the contribution of our learning

strategy in Section 5.1 to the learning performance, we conducted

an ablation study using the following five patterns: no optimization,

w/o pre-training, w/o grid-shift action, w/o execution stop, and all

optimization.

Figure 4 shows the search efficiency and the learning time. The

search efficiency indicates the relationship between the number of

episodes (x-axis) and the best run time during the training (y-axis);

Learned Spatial Data Partitioning aiDM ’23, June 18, 2023, Seattle, WA, USA

(a) Uniform grid (b) Quad-tree

(c) KDB-tree (d) Demo (e) Ours

Figure 3: Comparison of partitions in OSM-US

 4

 6

 8

 10

 12

 14

0 1000 2000 3000 4000 5000

B
e

s
t

ru
n

ti
m

e
 [

s
e

c
]

Episode

No optimizations
w/o pre-training

w/o grid-shift action
w/o execution stop

All optimizations

(a) Search efficiency

Methods Learning time [hour]

No optimization 120 (Done 924 episodes)

w/o pre-training 98.4

w/o grid-shift action 72.5

w/o execution stop 120 (Done 2107 episodes)

All optimization 65.5

(b) Learning time

Figure 4: Ablation study on the US dataset. We stopped train-
ing if amethod did not finish 5,000 episodeswithin 120 hours.

the shorter the run time during a small number of episodes, the

more efficiently our method finds effective partitions.

All optimization significantly outperforms no optimizations in

both learning time and search efficiency. This result indicates that

our learning strategy is effective. In w/o pre-training, the initial per-

formance depends on random partitions, so it takes many episodes

to find effective partitions. We can confirm that the pre-training

largely affects search efficiency. In w/o grid-shift action, the search

efficiency is similar to all optimization. However, it often constructs

less-effective partitions due to random actions, though the searches

by random action have the potential to find better actions. This

causes increasing the training time because less-effective partitions

often take a large run time. In w/o execution stop, the learning

time significantly increases. By comparing all optimization with

w/o execution stop, we can confirm that our method sufficiently

trains our models without computing strict rewards.

These results show that our learning strategy significantly con-

tributes to efficient learning in our problem formulation.

7 CONCLUSION AND OPEN CHALLENGES
We studied deep reinforcement learning for spatial partitioning.

We first formalized the spatial partitioning problem as deep rein-

forcement learning, and we developed a learning algorithm for the

problem. Our algorithm combines Deep Q-network with imitation

learning to explore actions effectively and efficiently. It includes

three optimization techniques: pre-training by effective demo data

partitioning, effective new action choice, and pruning run time mea-

surement. Through our experiment using Apache Sedona and two

real datasets, we validated that (i) our method is effective and accel-

erates spatial join processing and (ii) our optimization techniques

reduce its learning time.

There are many open challenges to extending our work because

we first studied learned spatial data partitioning. Promising chal-

lenges are to reduce learning time, select the optimal number of

partitions instead of using the number of computers, and develop

further optimal learning frameworks. Furthermore, it is interest-

ing to investigate the performance of other distributed parallel

processing systems and spatial queries.

ACKNOWLEDGEMENT
Thisworkwas supported by JSPS KAKENHIGrant Numbers JP20H00584

and JP22H03700.

REFERENCES
[1] Ablimit Aji, FushengWang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,

and Joel Saltz. 2013. Hadoop-GIS: a high performance spatial data warehousing

system over mapreduce. PVLDB 6, 11 (2013), 1009–1020.

[2] Ahmed M Aly, Ahmed R Mahmood, Mohamed S Hassan, Walid G Aref, Mourad

Ouzzani, Hazem Elmeleegy, and Thamir Qadah. 2015. Aqwa: adaptive query

workload aware partitioning of big spatial data. PVLDB 8, 13 (2015), 2062–2073.

aiDM ’23, June 18, 2023, Seattle, WA, USA Trovato et al.

[3] Apache Sedona. 2021. https://sedona.apache.org/.

[4] Kristopher De Asis, J. Fernando Hernandez-Garcia, G. Zacharias Holland, and

Richard S. Sutton. 2018. Multi-step Reinforcement Learning: A Unifying Algo-

rithm. arXiv (2018).

[5] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020.

Tsunami: A learned multi-dimensional index for correlated data and skewed

workloads. PVLDB (2020), 74–86.

[6] Ahmed Eldawy, Louai Alarabi, and Mohamed FMokbel. 2015. Spatial partitioning

techniques in SpatialHadoop. PVLDB 8, 12 (2015), 1602–1605.

[7] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce

framework for spatial data. In ICDE. 1352–1363.
[8] R. A. Finkel and J. L. Bentley. 1974. Quad Trees a Data Structure for Retrieval on

Composite Keys. The Acta Informatica 4, 1 (1974), 1–9.
[9] Tu Gu, Kaiyu Feng, Gao Cong, Cheng Long, Zheng Wang, and Sheng Wang. 2021.

A Reinforcement Learning Based R-Tree for Spatial Data Indexing in Dynamic

Environments.

[10] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot,

Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold,

John Agapiou, Joel Leibo, and Audrunas Gruslys. 2018. Deep Q-learning From

Demonstrations. In AAAI. 3223–3230.
[11] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. 2020. Learning a Partition-

ing Advisor for Cloud Databases. In SIGMOD. 143–157.
[12] Kyle D Julian and Mykel J Kochenderfer. 2019. Distributed wildfire surveillance

with autonomous aircraft using deep reinforcement learning. Journal of Guidance,
Control, and Dynamics 42, 8 (2019), 1768–1778.

[13] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. 1996. Rein-

forcement learning: A survey. JAIR 4 (1996), 237–285.

[14] Hai Lan, Zhifeng Bao, and Yuwei Peng. 2020. An Index Advisor Using Deep

Reinforcement Learning. In CIKM. 2105–2108.

[15] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA: A learned

index structure for spatial data. In SIGMOD. 2119–2133.
[16] Yuxi Li. 2017. Deep reinforcement learning: An overview. arXiv (2017).

[17] Wei Liu, Zhi-Jie Wang, Bin Yao, and Jian Yin. 2019. Geo-ALM: POI Recommenda-

tion by Fusing Geographical Information and Adversarial Learning Mechanism..

In IJCAI, Vol. 7. 1807–1813.
[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen

King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.

Human-level control through deep reinforcement learning. Nature 518, 7540
(2015), 529–533.

[19] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon,

Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles

Beattie, Stig Petersen, Shane Legg, Volodymyr Mnih, Koray Kavukcuoglu, and

David Silver. 2015. Massively Parallel Methods for Deep Reinforcement Learning.

arXiv (2015).

[20] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learn-

ing multi-dimensional indexes. In SIGMOD. 985–1000.
[21] Ling Pan, Qingpeng Cai, Zhixuan Fang, Pingzhong Tang, and Longbo Huang.

2019. A deep reinforcement learning framework for rebalancing dockless bike

sharing systems. In AAAI, Vol. 33. 1393–1400.
[22] Yanbo Pang, Kota Tsubouchi, Takahiro Yabe, and Yoshihide Sekimoto. 2020. Inter-

city Simulation of Human Mobility at Rare Events via Reinforcement Learning.

In SIGSPATIAL. 293–302.
[23] Jianzhong Qi, Guanli Liu, Christian S Jensen, and Lars Kulik. 2020. Effectively

learning spatial indices. PVLDB (2020), 2341–2354.

[24] John T. Robinson. 1981. The K-D-B-Tree: A Search Structure for Large Multidi-

mensional Dynamic Indexes. In SIGMOD. 10–18.
[25] Yuya Sasaki. 2021. A Survey on IoT Big Data Analytic Systems: Current and

Future. IEEE Internet of Things Journal (2021).
[26] Yuya Sasaki, Yoshiharu Ishikawa, Yasuhiro Fujiwara, and Makoto Onizuka. 2018.

Sequenced route query with semantic hierarchy. In EDBT. 37–48.
[27] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2016. Prioritized

Experience Replay. arXiv (2016). arXiv:1511.05952

[28] Akil Sevim, Mehnaz Tabassum Mahin, Tin Vu, Ian Maxon, Ahmed Eldawy,

Michael Carey, and Vassilis Tsotras. 2021. A brief introduction to geospatial big

data analytics with apache AsterixDB. In International Workshop on APIs and
Libraries for Geospatial Data Science. 1–2.

[29] Mingjie Tang, Yongyang Yu, Qutaibah M Malluhi, Mourad Ouzzani, and Walid G

Aref. 2016. Locationspark: A distributed in-memory data management system

for big spatial data. PVLDB 9, 13 (2016), 1565–1568.

[30] Sebastian Thrun and Michael L Littman. 2000. Reinforcement learning: an

introduction. AI Magazine 21, 1 (2000), 103–103.
[31] Tin Vu, Alberto Belussi, Sara Migliorini, and Ahmed Eldawy. 2021. A Learned

Query Optimizer for Spatial Join. In SIGSPATIAL. 458–467.
[32] Tin Vu, Alberto Belussi, Sara Migliorini, and Ahmed Eldway. 2020. Using Deep

Learning for Big Spatial Data Partitioning. TSAS 7 (08 2020), 1–37.

[33] Tin Vu, Ahmed Eldawy, Vagelis Hristidis, and Vassilis Tsotras. 2021. Incremental

partitioning for efficient spatial data analytics. PVLDB 15, 3 (2021), 713–726.

[34] Christopher JCH Watkins and Peter Dayan. 2004. Technical Note: Q-Learning.

The Machine Learning 8 (2004), 279–292.

[35] Hua Wei, Guanjie Zheng, Huaxiu Yao, and Zhenhui Li. 2018. Intellilight: A

reinforcement learning approach for intelligent traffic light control. In SIGKDD.
2496–2505.

[36] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo. 2016. Simba:

Efficient in-memory spatial analytics. In Proceedings of the SIGMOD. 1071–1085.
[37] Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke, Yinan Li,

Umar Farooq Minhas, Per-Åke Larson, Donald Kossmann, and Rajeev Acharya.

2020. Qd-tree: Learning data layouts for big data analytics. In SIGMOD. 193–208.

https://arxiv.org/abs/1511.05952

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Spatial data partitioning
	2.2 Deep reinforcement learning

	3 Related work
	4 Problem Formulation
	5 Learning Algorithm
	5.1 Learning strategy
	5.2 Learning framework
	5.3 Algorithm

	6 Experimental study
	6.1 Experimental setting
	6.2 Experimental result

	7 Conclusion and Open Challenges
	References

