
12

Passport: Improving Automated Formal Verification Using
Identifiers

ALEX SANCHEZ-STERN and EMILY FIRST, University of Massachusetts Amherst

TIMOTHY ZHOU, University of Illinois Urbana-Champaign

ZHANNA KAUFMAN and YURIY BRUN, University of Massachusetts Amherst

TALIA RINGER, University of Illinois Urbana-Champaign

Formally verifying system properties is one of the most effective ways of improving system quality, but its

high manual effort requirements often render it prohibitively expensive. Tools that automate formal verifi-

cation by learning from proof corpora to synthesize proofs have just begun to show their promise. These

tools are effective because of the richness of the data the proof corpora contain. This richness comes from

the stylistic conventions followed by communities of proof developers, together with the powerful logical

systems beneath proof assistants. However, this richness remains underexploited, with most work thus far

focusing on architecture rather than on how to make the most of the proof data. This article systematically

explores how to most effectively exploit one aspect of that proof data: identifiers.

We develop the Passport approach, a method for enriching the predictive Coq model used by an exist-

ing proof-synthesis tool with three new encoding mechanisms for identifiers: category vocabulary indexing,

subword sequence modeling, and path elaboration. We evaluate our approach’s enrichment effect on three

existing base tools: ASTactic, Tac, and Tok. In head-to-head comparisons, Passport automatically proves 29%

more theorems than the best-performing of these base tools. Combining the three tools enhanced by the

Passport approach automatically proves 38% more theorems than combining the three base tools. Finally,

together, these base tools and their enhanced versions prove 45% more theorems than the combined base

tools. Overall, our findings suggest that modeling identifiers can play a significant role in improving proof

synthesis, leading to higher-quality software.

CCS Concepts: • Software and its engineering→ Software verification; Formal software verification; • The-

ory of computation→ Automated reasoning;

Additional Key Words and Phrases: Proof assistants, proof engineering, proof synthesis, machine learning

ACM Reference format:

Alex Sanchez-Stern, Emily First, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer. 2023. Pass-

port: Improving Automated Formal Verification Using Identifiers. ACM Trans. Program. Lang. Syst. 45, 2, Ar-

ticle 12 (June 2023), 30 pages.

https://doi.org/10.1145/3593374

This work is supported by the Defense Advanced Research Projects Agency under grant no. HR0011-22-9-006, and by the

National Science Foundation under grant no. CCF-2210243.

Authors’ addresses: A. Sanchez-Stern (corresponding author), E. First (corresponding author), Z. Kaufman, and Y. Brun,

University of Massachusetts Amherst; emails: {sanchezstern, efirst, zhannakaufma, brun}@cs.umass.edu; T. Zhou and

T. Ringer, University of Illinois Urbana-Champaign; emails: {ttz2, tringer}@illinois.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0164-0925/2023/06-ART12 $15.00

https://doi.org/10.1145/3593374

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

https://orcid.org/0000-0003-0600-7898
https://orcid.org/0000-0002-2896-2928
https://orcid.org/0000-0002-5262-0995
https://orcid.org/0000-0002-9135-815X
https://orcid.org/0000-0003-3027-7986
https://orcid.org/0000-0003-1854-3321
https://doi.org/10.1145/3593374
mailto:permissions@acm.org
https://doi.org/10.1145/3593374
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593374&domain=pdf&date_stamp=2023-06-26

12:2 A. Sanchez-Stern et al.

1 INTRODUCTION

Verifying software with proof assistants gives engineers the potential to prove the absence of
costly and possibly dangerous bugs, leading toward more reliable software systems. Teams of
specialized experts have already realized this potential for large and critical systems, such as
operating system microkernels [Klein et al. 2009], distributed systems [Wilcox et al. 2015], and
compilers [Leroy 2009], among hundreds of other formally verified software systems [Ringer et al.
2019]. These advances have already had significant impact on industry. For example, Airbus France
uses the CompCert [Leroy 2009] C compiler to ensure safety and improve performance [Souyris
2014]; Chrome and Android both use cryptographic code formally verified in Coq to secure
communication [Erbsen et al. 2019]. But the full potential of these proof assistants still remains
far from realized, as the costs of verified software development and maintenance remain high,
even for experts [Ringer et al. 2020].

To prove theorems in these proof assistants, proof engineers typically write high-level sequences
of strategies called proof scripts, which guide the proof assistant toward low-level, machine-
checkable representations called proof objects [Ringer et al. 2019]. In recent years, techniques that
use machine learning to synthesize these proof scripts have shown promise in alleviating some of
the effort of verification [First and Brun 2022; First et al. 2020; Paliwal et al. 2020; Sanchez-Stern
et al. 2020; Yang and Deng 2019]. These proof-synthesis tools learn from corpora of existing proof
scripts and theorems to automate the construction of proof scripts for new theorems. In particular,
these tools build predictive models of proof scripts, and then use search to explore the proof-script
space. This process uses the proof assistant to guide the search and evaluate ultimate success.

In this article, we explore ways of improving these predictive models by better exploiting the
richness of the proof data that they learn from. We focus in particular on modeling identifiers:
the names that uniquely identify theorems, datatypes, functions, type constructors, and local vari-
ables. Previous machine-learning-guided proof-synthesis tools have either ignored the names of
individual identifiers completely and only encoded basic categorical information about them, or
given common identifiers unique indices and marked all others as unknown, without category
information. In this article, we develop the Passport approach, which enhances the models used
by existing proof-synthesis tools with three new encoding mechanisms for identifiers: category
vocabulary indexing, subword sequence modeling, and path elaboration. We implement our ap-
proach for tools that synthesize proofs for the Coq proof assistant [Coq Development Team 2021]
and show that all three of these encodings improve performance of the end-to-end tool.

The term “Passport approach” refers to our approach of enhancing the model of an existing
proof-synthesis tool with identifier information. Most of our evaluation focuses on the application
of Passport to a single existing tool, Tok [First et al. 2020]; where unambiguous, we refer to the
resulting tool as Passport. Where necessary for clarity, we make explicit the distinction between
the approach and the tool resulting from enhancing existing the model of Tok with our approach.

Identifiers in Passport. The Passport approach encodes identifiers with three different encoding
mechanisms (described in detail in Sections 3 and 4):

(1) Category Vocabulary Indexing: We encode each identifier with the category it comes
from (global definition, local variable, or type constructor); and for the most common identi-
fiers in each category, we encode indices corresponding to their names. That is, each common
identifier is given a unique tag, associating it with all other uses of that exact identifier.

(2) Subword Sequence Modeling: For all identifiers, we use a subword sequence model to
draw bridges between related names. That is, identifiers are broken down into common
word-pieces and processed with a sequence model.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

Passport: Improving Automated Formal Verification Using Identifiers 12:3

(3) Path Elaboration: For type constructors and global definitions, we encode their fully-

qualified paths —the names of directories, files, and modules within which they are
contained.

While we focus on Coq in this article, similar techniques should apply for other proof assistants,
including Lean [Lean Development Team 2021], Isabelle/HOL [Isabelle Development Team 2021],
and Agda [Agda Development Team 2021].

Results. We evaluate the Passport approach using the CoqGym benchmark [Yang and Deng
2019] of 124 open-source Coq projects. We compare to three existing search-based proof-synthesis
tools, ASTactic [Yang and Deng 2019], Tac, and Tok [First et al. 2020]. We find that all three of our
encoding mechanisms improve tool performance, in terms of being able to prove more theorems
fully automatically. For example, adding path elaboration leads to proving 12.6% more theorems.
We also measure the impact of adding identifier information to each of the categories of identifiers
individually, and find that the Passport approach is useful for each.

Together with the three prior tools, tools enhanced with the Passport approach are able to fully
automatically prove 1,820 of the 10,782 theorems in our benchmark test set, whereas without the
enhancements, these prior tools combined can prove 1,259 theorems. That is an increase of 45%
theorems proven over this prior work.

Contributions. The main contributions of our work are as follows:

(1) The Passport approach (Section 4) consisting of a set of techniques for encoding identifiers
in a proof assistant context.

(2) The Passport implementation of that approach as a standalone tool within an existing proof-
synthesis framework. Passport is open-source: https://github.com/LASER-UMASS/Passport

(3) An evaluation (Section 5) showing that (1) the Passport approach improves proof synthesis
when applied to three prior tools, (2) each mechanism for encoding identifiers helps model
proof scripts more precisely and improves performance of proof synthesis, and (3) encoding
each identifier category alone is still an improvement over not encoding any.

(4) A forward-looking discussion (Section 6) of the challenges that we faced when building Pass-
port (relative to building symbolic proof automation), along with potential solutions to those
challenges. Our evaluation includes an experiment measuring the impact of nondeterminis-
tic training variance (Section 5.6).

2 BACKGROUND ON PROOFS AND PROOF SYNTHESIS

To write proofs in Coq, the proof engineer starts by stating a theorem to prove. They then write a
proof that this theorem holds. Every theorem in Coq is a type definition, described in a rich type
system; writing a proof in Coq amounts to finding a term with the stated theorem type.1

But doing this directly can be challenging, so instead, proof engineers write these proofs inter-
actively with Coq’s help. At each step, proof engineers pass Coq high-level strategies called tactics,
and Coq responds with the current proof obligations after executing each tactic. Each tactic guides
Coq in a search for a term with the stated type, refining the state until no new obligations hold. At
that point, the proof engineer has written a sequence of tactics called a proof script (like the one
in Figure 3(a))—and Coq, for its part, has constructed a proof term or proof object with the stated
type. The language of proof scripts in Coq is called Ltac, and the language of proof terms in Coq,
as well as programs and definitions, is called Gallina.

1This refers to the Curry–Howard correspondence, which shows type systems and proof systems to be equivalent.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

https://github.com/LASER-UMASS/Passport

12:4 A. Sanchez-Stern et al.

Fig. 1. The system architecture of a machine-learning-prediction-guided proof-synthesis tool.

In recent years, machine-learning-guided proof-synthesis tools have been developed which aim
to make the burden of proving easier by automatically generating the proof script, instead of asking
the user to write it. While the approaches of these tools can differ, most share similar components
and structure.

Figure 1 shows the common architecture of most machine-learning-guided proof-synthesis tools.
At the heart of these tools is the prediction model, which guides the proof search by producing
tactic predictions, or candidate next tactics, at every step. Every prediction model takes as input
some set of information about the proof state or proof script, and produces a set of candidate
tactics. The tool uses the prediction model to predict one or more likely first tactics and then uses
the proof assistant to get feedback on those tactics (e.g., rejecting ones that result in an error or fail
to modify the proof state). Then, the tool explores the space of possible proofs by iterating using
the prediction model to predict the next tactic and the proof assistant to get feedback and prune
the search. As a result, the prediction model’s accuracy is critical to the potential success of the
search procedure, and for the model to have a chance of being accurate, it must effectively capture
the current proof state, and use it to make predictions. The Passport approach works by enhancing
the quality of the prediction model, in turn, leading to a better exporation of the proof space.

ASTactic and TacTok. Passport’s tactic model architecture inherits the design choices of ASTac-
tic’s model [Yang and Deng 2019] for encoding the proof obligations and TacTok’s model [First
et al. 2020] for encoding the proof script.

Proof obligations consist of the goals to be proven, local context, and the environment. Each
term of the proof state has an underlying abstract syntax tree (AST) representation. ASTactic
serializes these ASTs and uses a TreeLSTM [Tai et al. 2015] to encode them [Yang and Deng 2019].
TacTok’s model adopts this encoding for the proof state.

The proof script consists of a sequence of tokens in Ltac. Before encoding these tokens, each
proof script is preprocessed to remove high-frequency low-signal tokens, such as punctuation.
TacTok’s model uses a Bidirectional LSTM [Peters et al. 2018] to encode this sequence of
tokens [First et al. 2020].

ASTactic’s and TacTok’s models are trained using supervised learning with a set of human-
written proofs to predict the next proof step (tactic and arguments) of an incomplete proof. A lim-
ited generative tree-grammar tactic model, adopted from ASTactic [Yang and Deng 2019], makes
these downstream predictions. While there may be many valid proofs for a single theorem state-
ment, there is no clear way of determining how appropriate an alternative tactic or proof is, so the
model is taught to imitate human-written proofs.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

Passport: Improving Automated Formal Verification Using Identifiers 12:5

Fig. 2. Definitions related to the posnat type, a type of pairs of natural numbers and proofs that they are
greater than zero. These definitions are found in the Foundational Cryptography Framework,2 retrieved as
part of the Verified Software Toolchain.3

3 OVERVIEW OF THE PASSPORT APPROACH

The proof state is made up of many Gallina terms; modeling these terms well is key to producing
accurate models. However, previous models have left out much of the essential information about
identifiers in terms, when they have encoded identifiers at all. Encoding identifiers well is essential
because proof corpora in Coq are rich with identifier information. One reason that identifiers are
particularly important in Coq is that Coq has no primitive datatypes; every referenced type is an
identifier. These names can carry a lot of meaning—and that meaning can be reflected in the names
of theorems that refer to them. This article describes and evaluates improvements to identifier
encodings in the tactic prediction model.

Categories of Identifiers. To begin to harness the latent information in identifiers, the Passport
approach adds three categories of identifiers to the term model. To understand these identifier
categories, consider the definitions in Figure 2, from a verified cryptography library.

(1) The identifier posnat is a global definition (highlighted in red1), it can be used by data types,
functions, theorems, or proof scripts, to reference the globally defined posnat datatype.

(2) The identifier n is a local variable (highlighted in orange2), as it can be referenced within
the local context of this term, but not outside of it.

(3) The identifier posnatEq_intro is a type constructor (highlighted in yellow3) as it can be refer-
enced in datatypes, functions, theorems, and proof scripts to construct a new posnatEq object.

Appendix A further details these categories of identifiers (global definitions, local variables, and
constructor names) and provides intuition through examples for why each category may be useful
to encode in a tactic prediction model. Appendix A.4 details the implementation effort required
for enriching a model with these three categories of identifiers.

Encodings. Figure 3 shows a proof over these definitions, posnatMult_comm. This proof says that
multiplication of posnats is commutative, meaning you can switch the order of the arguments and
the result will always be the same. Making progress in this proof state requires understanding
several things about the identifiers involved.

(1) The exist type constructor is a common constructor for sigma (existential) types, and there
are specialized tactics (like exists and eexists) for reasoning with those objects.

(2) The goal type, posnatEq is related to posnats and equality.
(3) The Nat.mul function is defined in the Coq’s standard library, whereas mult_gt_0 is a theorem

about it defined in the current project.

3https://github.com/adampetcher/fcf .
3https://vst.cs.princeton.edu/.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

https://github.com/adampetcher/fcf
https://vst.cs.princeton.edu/

12:6 A. Sanchez-Stern et al.

Fig. 3. A proof using the definitions in Figure 2, from the same file.

Fig. 4. The architecture of Passport’s identifier processing.

Understanding these things requires three different approaches: attaching special signifiers to
common identifiers, processing the individual pieces of identifiers to understand where they con-
nect to different concepts, and remembering where the definitions being referenced are defined.

The crux of this article is the enrichment of a proof-synthesis model for Coq with rich infor-
mation about identifiers. Figure 4 shows an overview of how the Passport approach encodes iden-
tifiers. To fully take advantage of the richness of these identifiers, our design employs three key
encoding mechanisms:

(1) Category Vocabulary Indexing (Section 4.1), which separately considers different kinds of
common identifiers in a proof development,

(2) Subword Sequence modeling (Section 4.2), which draws bridges between all identifiers, and
(3) Path Elaboration (Section 4.3), which encodes the location where the object referred to by

each identifier is defined.

Category vocabulary indexing allows us to assign unique labels to common identifiers in the
code. In this case, that means giving a unique label to the exist type constructor, so that we can use
knowledge from previous proofs which used that precise constructor. Subword sequence modeling
allows us to break identifiers up into common pieces, and process those pieces with a sequence
model. In this case, that means breaking the posnatEq identifier into the chunks posnat and Eq, so
that we can use knowledge from previous proofs that had identifiers with similar pieces. Finally,
path elaboration allows us to consider the directories, files, and modules in which the object ref-
erenced by the identifier is defined. Here, that means understanding that the multiply identifier
refers to a function defined within Coq.Init.Nat, but the mult_gt_0 refers to a lemma defined in
the current file.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

Passport: Improving Automated Formal Verification Using Identifiers 12:7

Armed with the knowledge from these three encoding mechanisms, our model has everything
it needs to suggest tactics that the tool can use to complete the proof of posnatMult_comm.

4 PASSPORT ENCODINGS

Identifiers are proxies for semantic information not by accident, but by design. By taking advantage
of the information in identifiers, term models can learn from the design principles the proof engi-
neer has already followed to make proof developments easier to read, understand, and build on. To
extract this information from identifiers, the Passport approach uses three encoding mechanisms:
category vocabulary indexing (Section 4.1), subword sequence modeling (Section 4.2), and
path elaboration (Section 4.3).

In the implementation, Passport uses Coq query commmands to access the full Coq environ-
ment when extracting identifier information, so it is not limited to any particular subset of the
environment.

4.1 Category Vocabulary Indexing

In each identifier category (global definitions, local variables, and type constructors), there are
many common identifiers used across proof developments. These identifiers are so common that
we can learn a significant amount about how to understand them from their previous uses. For
instance, in the example from Figure 3, the exist type constructor is part of the standard library,
and many proofs in our training data reason with it. Even when an identifier is not very common,
we can still understand a lot about it by knowing what category it is in.

To take advantage of these properties of identifiers, we developed category vocabulary index-

ing. This encoding mechanism tags every identifier with the category it comes from and, if the
identifier is commonly used enough, a unique tag for that particular identifier. By giving common
identifiers a unique tag, we can generalize across their many appearances, and predict tactics that
worked well with them in the past. And by marking identifiers with their category, either global
definition, local variable, or type constructor, we can disambiguate identifiers with the same name
from different categories, and learn useful information about even uncommon identifiers.

The models in some previous tools for machine-learning-guided proof-synthesis, such as Prover-
bot9001 [Sanchez-Stern et al. 2020] and Tactician [Blaauwbroek et al. 2020], use vocabulary in-
dexing for common identifiers, but make no category distinctions. This is a reasonable approach,
because in Coq, the names of global definitions, local variables, and type constructors share a com-
mon namespace. However, in the Passport approach, we decided to distinguish between identifiers
of different categories, in part because manual analysis of the training data revealed different nam-
ing conventions for different categories. For example, single-letter identifiers seemed to almost
exclusively represent local variables, with uppercase for types (like A in Figure 10), and lowercase
for terms (like x in Figure 3); longer uppercase identifiers generally refer either to sort names (like
Set or Prop) or type constructors (like Some or None). This means that when human provers see an
identifier, even if they have not seen it before, they often have a sense of what category it belongs to.

The models in other previous tools for machine-learning-guided proof-synthesis, such as ASTac-
tic and TacTok, make category distinctions, but do not index vocabulary. We learned early on that
the possibility of performance regression due to uninformative local variables like x had concerned
the ASTactic authors, and contributed to their decision not to encode identifiers.4 However, upon
closer inspection of the data, we determined that even when a particular name does not always
refer to the same definition, common names can carry information of their own. For instance, vari-
ables named hd and tl consistently refer to the head and tail of a list. These names, too, can benefit

4https://github.com/princeton-vl/CoqGym/discussions/60.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

https://github.com/princeton-vl/CoqGym/discussions/60

12:8 A. Sanchez-Stern et al.

from a unique tag which generalizes across their usages. Our manual inspection determined that
this can often hold even for single-character variable names.

Implementation. To decide which identifiers are common enough to be indexed, we use our
training dataset to create a fixed identifier vocabulary. That is, we count the occurrences of each
identifier, and include in our vocabulary those whose count is above an experimentally chosen,
fixed threshold (see Section 5.7 for an evaluation of different thresholds). Using separate vocabu-
laries for each category of identifier allows us to use different thresholds across different categories;
since type constructors are less common overall than local variables, they might require having a
lower threshold for being included in the vocabulary.

4.2 Subword Sequence Modeling

Identifier information can be useful not just for learning about individual datatypes, theorems, and
functions, but also for drawing bridges between them. Developers often organize development
using parts of names to group theorems and functions which refer to common definitions. It turns
out these naming conventions can be useful to a model, too.

Many variable names are not simply single unique words, but are made up of multiple parts.
These parts could be multiple english words in camel case, such as the case in something like
firstItemInList broken into “first”, “item”, “in”, and “list”. Or they could be components of a
single word that carry individual meaning, like prelocalizations broken into “pre” , “local” ,
“ization” , and “s”. By breaking these identifiers into pieces, a model built using the Passport ap-
proach can learn the meaning of shared pieces and generalize across identifiers.

In the example from Section 3, Passport breaks posnatMult into [pos, nat, Mult]; with a differ-
ent subword vocabulary, from a different set of variable occurrences in the training data, it might
produce [posnat, Mult]. These tokens are processed with a sequence model, so that the identi-
fier’s ultimate feature vector reflects the fact that the identifier relates to the “posnat” type, and
that it primarily relates to the multiplication operation.

To get a sense for this, let us consider another example. The Coq standard library includes
operations about the real numbers R, like addition:

Rplus1 : R → R → R.

The library contains proofs of theorems about Rplus, like this proof (highlighting just one Rplus

for presentation):

Lemma Rplus_eq_compat_l : ∀ (r r1 r2 : R),

r1 = r2 → Rplus1 r r1 = Rplus r r2.

Proof.

intros r r1 r2.

apply f_equal.

Qed.

which proves the theorem that right addition preserves equality.
Suppose we wish to prove the analogous theorem about the natural numbers nat, using the

addition function plus defined over nat. We can do this the same way:

Lemma plus_eq_compat_l : ∀ (n n1 n2 : nat),

n1 = n2 → plus1 n n1 = plus n n2.

Proof.

intros n n1 n2.

apply f_equal.

Qed.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

Passport: Improving Automated Formal Verification Using Identifiers 12:9

simply renaming the local variables for style (though the original proof with r, r1, and r2 also
works with no changes).

The fact that Rplus and plus are related is explicit in the identifier names: Rplus behaves like
plus over R. A model that can draw connections between plus and Rplus can in some cases reuse
proofs about one to derive analogous proofs about the other.

The key here is subword sequence modeling which excels at drawing connections between
related words [Gage 1994; Sennrich et al. 2016]. Subword sequence modeling allows us to break
the identifier Rplus into the chunks R and plus, and index them separately, connecting them to
the identifier plus. By drawing these connections, we expect that a model can suggest intros and
f_equal in the body of plus_eq_compat_l, by connecting the hypothesis plus n n1 = plus n n2

to the hypothesis Rplus n n1 = Rplus n n2. With subword sequence modeling, the model can
learn all of this with no need for semantic information about what each of the reals and naturals
represent, or how their addition functions are related.

In the Passport approach, identifiers are broken into subwords using a byte-pair encoding

(BPE) algorithm [Gage 1994; Sennrich et al. 2016], an algorithm that has seen success in code
completion models for program synthesis [Karampatsis et al. 2020; Svyatkovskiy et al. 2021]. The
algorithm uses the training corpus to make a list of common subwords by starting with a vocabu-
lary of single characters, and iteratively merging common pairs. Then, each identifier is tokenized
by greedily consuming the longest matching vocabulary element.

The Passport approach incorporates these tokens as embeddings in a syntax model. Program
syntax can generally be modeled in two ways. The simplest way is to model it as an unstructured
sequence of words (or more generally, tokens). The alternative is to parse the syntax into a tree,
and use a tree based model to process it. One of the advantages of the former is that you can
tokenize strings in a number of different ways, including with multiple tokens per identifier (sub-
word tokenization). However, our implementation of Passport builds on a parsed-tree-based model,
so there is no existing string tokenizer that could be used for subword tokenization. Instead, we
embed a sequence model within the leaves of the tree-based syntax model. This means that our
subword sequence model only learns how to combine parts of an identifier into a fixed embedding
for the identifier, and does not need to learn about other parts of program syntax.

With our category vocabulary indexing, we used separate vocabularies for identifiers of different
categories. However, proof developments sometimes demonstrate connections between identifiers
from different categories. These connections are lost in using separate vocabularies, so subword
encoding is used to maintain these connections. The Passport approach uses a single subword
vocabulary, derived from the global variable corpus, to encode identifiers from all categories.

Implementation. There are several subtleties to the implementation of our subword tokenization
algorithm, and the BPE which generates its vocabulary. Sometimes there were several possible
ways to implement the approach; in general, we made our choices based on the performance of
the resulting tool on our benchmarks.

As indicated by the name, byte-pair tokenization often starts with a vocabulary of bytes, not
characters, to allow a reasonable base vocabulary size when working with unicode. However this
has the downside of sometimes indicating that two identifiers are similar because they share bytes
within a unicode character, even if no characters are in common. In our implementation, we use
characters as our base vocabulary. To keep our base vocabulary of a reasonable size, we only in-
clude those characters which are present in the training corpus. Since Coq programmers generally
only use a small subset of possible unicode characters, this works well. However, there are in rare
cases unicode characters present in the test data which are not present in the training data. To ad-
dress this, our subword tokenizer drops characters which are not present at all in the vocabulary;
this behavior can be changed with a flag to instead produce a special <unknown> element.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

12:10 A. Sanchez-Stern et al.

Many different neural architectures have been used to process sequences of tokens. For language
modeling, the most effective models are often those with attention and forgetfulness mechanisms,
to capture the long-range dependencies present in text. However, the identifiers we work with are
generally short, often only a few subwords long, so we instead use the simplest sequence model,
a Recurrent Neural Network, without any attention mechanism.

As with any sequence-based model, there is a question of how to cap the size of sequences so
that their lengths can be normalized. With Passport, we found empirically that capping at four
tokens per identifier during training, but eight tokens per identifier when synthesizing proofs, is
most effective on our evaluation suite. Four subwords is enough to encode the entire name of
98.74% of identifiers in our training data, and eight subwords is enough to encode the entire name
99.97% of the time.

We trained the subword encoder end-to-end alongside the rest of the term encoder and tactic
decoder, so that the encoder is trained to retain information about subwords particularly relevant
to the task of tactic prediction.

4.3 Path Elaboration

The final encoding mechanism in the Passport approach is path elaboration: the encoding of
fully-qualified paths of different identifiers. By paying attention to the fully-qualified paths of
different identifiers, the tools using the Passport approach can take advantage of any grouping of
identifiers into common modules and files already used by Coq developers to organize develop-
ment. Tools using Passport approach can also capitalize on proof development styles that dispatch
proofs for entire classes of related theorems using powerful tactics—a proof development style
recommended by, for example, the popular Coq textbook Certified Programming with Dependent
Types [Chlipala 2013].

To gain some intuition for what this means in action, consider this proof of a theorem from the
Coq standard library:

Theorem not_in_cons A (x a : A) (l : list A):

~ In x (a::l) ↔ x<>a ∧ ~ In x l.

Proof.

simpl. intuition.

Qed.

The proof of not_in_cons goes through by just two tactics: simpl and intuition. The simpl tactic
simplifies the initial goal (no assumptions, with the theorem type as the sole proof obligation) to
make it easier to reason about, producing this proof state:

A : Type

x, a : A

l : list A

______________________________________(1/1)

~ (a = x ∨ In x l) ↔ x <> a ∧ ~ In x l

In this case, the simpl tactic has unfolded the In x (a::l) on the left side of the identifier into
(a = x ∨ In x l).

But the resulting goal is still a bit complex because it chains together a number of logical con-
nectives: if and only if (↔), negation (~), inequality (<>), conjunction (∧), and disjunction (∨). So
the intuition tactic breaks down logical connectives into simpler subgoals, and dispatches each
subgoal automatically.

Taking a step back, it is natural to wonder how the proof engineer could have known to use the
intuition tactic to dispatch the remaining goals. Intuitively, it made sense to use intuition here

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

Passport: Improving Automated Formal Verification Using Identifiers 12:11

Fig. 5. The theorem statement not_in_cons, elaborated with paths. Highlighted using the same conventions
as in Figure 2, with other paths omitted for brevity.

because the goal consisted of simple statements linked by logical connectives, which intuition

excels at. It turns out that the fact that these operators are logical connectives is explicit in the
paths of the identifiers in the goal—they all reside in the Coq.Init.Logic module—so we can pass
it on to our models by encoding paths.

We can see this by expanding the paths of the identifiers in the theorem statement of not_in_cons
(Figure 5). All of the operators in not_in_cons are syntactic sugar for identifiers, which themselves
refer to types defined inductively in Coq. For example, conjunction (∧) refers to the inductive type
and in the path Coq.Init.Logic. Internally, Coq stores the elaborated theorem with all of these
identifiers (like and) and their fully-qualified paths (like Coq.Init.Logic) explicit. Inspecting the
elaborated version of not_in_cons shows that the fact that these are logical connectives requires no
semantic understanding to deduce—it is explicit in the grouping of identifiers in the Logic module.

We determined that a simple way to pass this intuition on to our models was to encode each of
the file and module names inside of fully-qualified paths, taking advantage of the organization of
large proof developments to infer tactics used to dispatch related goals.

Implementation. To implement this, we created a dedicated vocabulary and corresponding <

unknown> token for file and module names inside of fully-qualified paths, much like we did for
each category of identifier. We then used this vocabulary for encoding paths.

As with identifiers, Coq includes fully-qualified paths inside of the ASTs by default, but TacTok
and ASTactic had erased those paths from the AST. For example, in Figure 12, the fully-qualified
path Coq.Init.Datatypes of the option inductive type shows up in the AST as a directory_path

node, with data [Datatypes; Init; Coq].
Elaborating paths was thus similar to adding each of the categories of identifiers: First, we mod-

ified the post-processing code to avoid erasing paths. Then, we built a separate vocabulary for
common files or modules that paths consisted of, like Datatypes, Init, and Coq in Figure 12. We
then encoded each file or module along the path separately, mapping to a dedicated <unknown>

token for files or modules in paths that occurred less frequently than the chosen threshold.

5 PASSPORT EVALUATION

We evaluated Passport’s ability to successfully prove theorems using the CoqGym bench-
mark [Yang and Deng 2019], following the evaluation methodology used by several recent pa-
pers [First and Brun 2022; First et al. 2020; Yang and Deng 2019].

In summary, our results show:

— The Passport approach improves proving power. By comparing to previous tools—
ASTactic and the two base tools, Tac and Tok, that make up TacTok—we measured additional
proving power provided by the Passport approach’s encoding of identifiers. The combined

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

12:12 A. Sanchez-Stern et al.

proving power of the tools enhanced by the Passport approach exceeds that of the original
tools by 38%, and combining both the enhanced and un-enhanced tools outperforms the
combined un-enhanced tools by 45% (Section 5.2).

— Identifiers improve performance. All three categories of identifiers improve performance,
in aggregate proving 64% more theorems than the individual un-enhanced tool (Section 5.3).

— All three encoding mechanisms improve performance. All three categories of iden-
tifiers in the Passport approach improve performance in Passport with each of the three
encoding mechanisms (Sections 5.4 and 5.5).

— Our results are meaningful beyond variance introduced by nondeterminism. Proof
synthesis success rate varies by 0.4% for individual tools, and combining many varying runs
can improve results by 22% (Section 5.6).

— Hyperparameter choices impact performance. We choose our hyperparameters exper-
imentally based on these results (Section 5.7).

All our experiments are affected by nondeterminism, and while the bulk of our experiments
only use a single trial, Section 5.6 explores the effect on nondeterminism on the variance of our
results and argues that that effect is small.

5.1 Experimental Setup

Benchmark. The CoqGym benchmark includes 124 open-source Coq projects, split into three
sets. For our evaluation, we trained on 97 projects (containing a total of 57,719 theorems) and
synthesized proofs for 26 projects (containing a total of 10,782 theorems). We exclude one project,
coq-library-undecidability, from our evaluation because TacTok’s evaluation [First et al. 2020] was
unable to reproduce prior results for ASTactic’s performance [Yang and Deng 2019] on that project
due to internal Coq errors when processing the proof scripts.

Projects in the CoqGym benchmark are a mixture of mathematical formalizations, proven cor-
rect programs, and Coq automation libraries. They include several compilers of varying sizes (such
as CompCert [Leroy 2009]), distributed systems (such as Verdi [Wilcox et al. 2015]), formalizations
of set theory, and more. Some of the projects in CoqGym (such as the automation libraries) do not
contain any proofs, but we included them for completeness.

Machines. We ran this paper’s experiments using two clusters: a GPU cluster for training and a
CPU cluster for synthesizing proofs.

Each node in the GPU cluster has between two and eight NVIDIA GPU cards. There are 4 nodes
with 2 NVIDIA Tesla V100 GPUs, and 33 nodes with 8 NVIDIA RTX 2080ti GPUs. The nodes in the
GPU cluster all run on a shared ZFS file system, run CentOS Linux, and use Slurm for job scheduling
and resource management. We found that training time varied between 12 and 14 hours per epoch,
and did not differ significantly between the Passport implementation and the baseline model.

Each node in the CPU cluster has between 24 and 36 cores, with 4 hyperthreads per core.
There are

— 1 head node with 24 cores of Xeon E5-2680 v4 @ 2.40GHz, 128GB RAM, and 200GB local
SSD disk.

— 50 compute nodes with 28 cores of Xeon E5-2680 v4 @ 2.40GHz, 128GB RAM, and 200GB
local SSD disk.

— 50 compute nodes with 28 cores of Xeon Gold 6240 CPU @ 2.60GHz, 192GB RAM, and 240GB
local SSD disk.

— 5 compute nodes with 56 cores of Xeon E5-2680 v4 @ 2.40GHz, 264GB RAM, and 30TB local
disk.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

Passport: Improving Automated Formal Verification Using Identifiers 12:13

The nodes in the CPU cluster also all run on a shared ZFS file system, run CentOS Linux, and use
Slurm for job scheduling and resource management. The average inference time for a random
sample of generated proofs was 0.4 seconds per tactic for the Passport implementation, compared
to 0.3 seconds for the baseline model.

Experimental Parameters. Passport attempts to synthesize each proof for a preset amount of
time, timing out if it fails to reach Qed in that time. Our evaluation used 10 minutes for this
timeout, following the choice made by ASTactic [Yang and Deng 2019] and TacTok [First et al.
2020]. Following a design decision made by ASTactic, we limited our search to a total of 300
attempted tactics, and restrict solutions to be no longer than 50 tactics long. Our experiments
use 200 as the default category vocabulary threshold (recall Section 4.1) and 4,096 as the default
byte-pair merge threshold (recall Section 4.2). We use 128 as the default vector dimension for term,
grammar, and terminal/non-terminal symbol embeddings, as well as the dimension of the LSTM
controller. For all other parameters, we follow those used by ASTactic [Yang and Deng 2019] and
TacTok [First et al. 2020].

Implementation. Overall, the Passport approach implementation is 1.5K lines of code and took
four developers about a year to build. While the conceptual and design aspects of the Passport
approach can extend to all prediction-model-driven, search-based, proof-synthesis tools, the cur-
rent implementation is straightforwardly applicable to all such tools built within the CoqGym
environment [Yang and Deng 2019].

This implementation adds three embeddings for category indexes and one for paths, with 428,
136, 27, and 262 items for global definitions, locals, constructors, and paths, respectively. This
results in a corresponding increase to the first layer of Tok’s term encoder. The new subword
embedding contains 4,164 items and is encoded with an RNN using a hidden size of 32. When
implementing these new model components, we optimized for simplicity over model size, so we
believe that the model size could be decreased further without significantly impacting accuracy.

The original ASTactic, Tok, and Tac models used a 256-float symbol embedding size. However,
we observed no significant difference between those models using a 256-float symbol embedding,
and using a 128-float symbol embedding. As a result, our model uses 128-float symbol embed-
dings, and, where appropriate, we compared to versions of other models with a 128-float symbol
embedding. Overall, these changes to model size had no significant impact on training time, as
described above.

5.2 The Passport Approach’s Effect on Proof-Synthesis Tools

In this section, we show that the addition of our identifier information improves the end-to-end
performance of proof search tools. Since Passport is implemented in the ASTactic/TacTok frame-
work, we were able to evaluate our changes against three base tools: an ASTactic-like5 tool, Tac,
and Tok. ASTactic was developed as part of the CoqGym project [Yang and Deng 2019] and uses
only proof contexts as input to their prediction model. By contrast, the models in Tac and Tok
(developed as part of the TacTok project [First et al. 2020]) additionally model the proof script up
to the current point, with Tac’s model encoding the tactics in the proof script, and the Tok’s model
encoding all the tokens except punctuation in the proof script.

Figure 6 shows the results of adding identifier information to all three of these tools. Adding
identifiers to each of the three tools significantly improves their ability to prove theorems. Adding

5We were not able to replicate the original results of ASTactic [Yang and Deng 2019], so for our evaluations we trained a

model with the same embedding vector dimensions as our own models. For this reason, we are using the term ASTactic-like

when we describe our results.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

12:14 A. Sanchez-Stern et al.

Fig. 6. The effect of adding all of the three encodings for three identifier types to several proof-synthesis
tools. The purple crosshatch bars represent baseline tools based on ASTactic, Tok, and Tac. The orange bars
represent our new contributions. The rightmost crosshatch bar, labeled “Combined”, is the number of the-
orems successfully proven by at least one of the baseline tools. The orange bar next to that, labeled “*+P
Combined”, is the number of theorems successfully proven by at least one of the tools enhanced by the Pass-
port approach. Finally, the orange and crosshatched bar on the far right is the number of theorems proven
by at least one of all the presented tools.

identifier information improves our ASTactic-like tool by 29% (304 additional theorems proved),
Tac by 14% (136 additional theorems proved), and Tok by 33% (318 additional theorems proved).

Following TacTok’s [First et al. 2020] and Diva’s [First and Brun 2022] evaluations, we also
explore how the differences in theorems proven by multiple tools lead to more theorems proven
overall, and how adding identifier information increases that improvement. When we compute the
union of the theorems proven by all our tools enhanced by the Passport approach, and compare
that set to the union of the theorems proven by the base tools, we find an improvement of 38%.
Comparing the union of theorems proven by all the tools to the union of theorems proven by the
three base tools, we find an improvement of 45%.

Next, we examine the complexity of the proofs that Passport generated. Using human-written
proof-script length as a rough proxy for complexity, we note that Passport successfully synthe-
sized proof scripts for 351 theorems for which the human-written proof scripts were at least 5
tactics long. For 54 of those theorems, the human-written proof scripts were at least 10 tactics long.
This observation suggests that Passport is able to synthesize a significant number of nontrivial
proofs. For 280 theorems, Passport was able to synthesize proof scripts that were shorter than
the human-written ones. In one particular case, the human-written script was 139 tactics long,
while Passport’s script was only 2 tactics long. The baseline tool produced 239 proofs for which
the human-written proof scripts were at least 5 tactics long, so Passport proved 46.9% more
theorems with human-written proofs of that length. For theorems with human-written proofs
of length 10 or more, the baseline tool produced 37 proofs, so Passport proved 45.9% more such

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

Passport: Improving Automated Formal Verification Using Identifiers 12:15

Fig. 7. The impact of various encoding techniques on theorems proven.

theorems. Finally, the baseline model produced proofs shorter than the human-written proofs for
171 theorems, so Passport did so for 63.7% more theorems.

Examining the time it takes Passport to synthesize a proof script, the successfully generated
proof scripts took between 0.08 and 86.6 seconds to generate, with the mean of 2.9 seconds.

5.3 Identifier Categories

In the Passport approach, we model three categories of identifiers. While the experiment in Sec-
tion 5.2 showed that modeling identifiers from these categories are effective together, we also want
to show the utility of the identifier categories individually.

Figure 7(a) shows the individual results of just adding local variables, type constructors, and
global definitions. For consistency, this experiment compares to a Tok-like tool with a model with
smaller embedding sizes, as Passport uses that model to add identifier information to.

Each of the identifier types added individually increases the number of theorems proven, though
the increase from local variables alone is marginal. Adding type constructors alone proves 8% more
theorems than the baseline, adding global definitions alone proves 16% more theorems, and adding
local variables alone proves 0.5% more theorems.

However, no identifier category added individually is close to the impact of adding all three.
Adding all three identifier types, without subword information, proves 33% more theorems.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

12:16 A. Sanchez-Stern et al.

Finally, though none of the tools with individual identifier types prove as many theorems as the
one with all of them together, some of these individual identifier-enriched tools prove theorems
that the all-identifiers-enriched tool does not. The union of the theorems proven by the individual
identifier-enriched tools and the all-identifiers-enriched tool contains 64% more theorems than the
baseline tool.

These experiments show that each identifier category is useful for producing a more effective
proof-synthesis tool, and that the identifier categories help with a diverse set of theorems, so
combining the results of adding different subsets of identifiers helps further.

5.4 Subwords

Figure 7(b) shows the impact of adding subword encodings to our identifier-enriched tools (Sec-
tion 4.2). Adding the subword encoding does not benefit all types of identifiers individually. In
fact, it makes two (type constructors and global definitions) out of the three identifier categories
perform worse than when those identifiers are used individually, possibly due to overfitting.

However, when subwords are added to the full tool with all the identifier categories, they im-
prove results by 7%. This improvement is greater than what the cumulative impact of adding
subwords to individual identifier-enriched tools, suggesting that subwords particularly help with
making connections between multiple identifier types. In fact, even though subword sequence
modeling does not help global definitions alone, when global definitions are combined with the
other identifier types, removing subword encoding significantly hurts results.

The most likely explanation for these results is that for subwords to be effective, a sufficiently
large number of identifiers is necessary to encounter a non-trivial number of repeated subwords,
allowed for learning semantics of those subwords. Adding subwords to only a single type of identi-
fier likely does not meet that threshold, but using all identifiers leads to a significant improvement
in the tool’s proving power.

5.5 Paths

Figure 7(c) shows the impact of removing path elaboration (Section 4.3) from various identifier
types in the Passport model. Since local variables do not have paths, there is no impact of removing
path elaboration. Subwords were not included in this experiment, as we wanted to isolate the
impact of paths.

Path elaboration benefits both type constructors and global definitions: increasing theorems
proven for type constructors alone by 10% and increasing theorems proven for global definitions
alone by 9%. The union of the theorems proven using these categories alone and the theorems
proven with local variables alone (for which the paths improvement is 0%) is 7% larger than with-
out path elaboration. However, when we add path elaboration to Passport’s model with all three

identifier categories, it increases the number of theorems proven by 12.6%.
These results indicate that the impact of adding path elaboration to a model that implements

local variables, type constructors, and global definitions is greater than the combined effect on in-
dividual models. Similarly to the subword experiment above, these results suggest that encoding
fully-qualified paths helps connect identifiers across categories; learning about how type construc-
tors from a particular module behave helps in dealing with global definitions from that module,
and visa versa. However, unlike the subword experiment, paths seem to benefit all identifiers for
which they are implemented individually as well as in combination.

5.6 Nondeterministic Model Variance

During the course of our evaluation, we found that models trained in the ASTactic framework had
significant variance in their downstream proof-synthesis success rate, even when the model code

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

Passport: Improving Automated Formal Verification Using Identifiers 12:17

and training data were identical. While part of this variance could be attributed to different hard-
ware and other hard-to-control factors (see Section 6), even when controlling for all those factors,
there was still variance. After months of investigation, we found that the cause was nondetermin-
ism at the hardware and framework level, some of it undocumented [Gao 2022; Reichel 2022].

Nondeterminism in model training is not specific to proof search, and has in fact been docu-
mented in the ML community at large [Pham et al. 2020a; Qian et al. 2021; Shamir and Lin 2022].
However, it is not immediately obvious how these effects would impact proof search, since they are
usually measured as inaccuracy in the top prediction of a model, while proof-search tools generally
use multiple model predictions, smoothing out some inaccuracy.

To measure the impact of nondeterministic training variance on proof search, we trained our
model with identifiers added to Tok’s model 20 times. On average, the tool using one of these
models proved 11.9% (1,279 theorems), with the maximum proving 12.0% (1,294 theorems) and
the minimum proving 11.6% (1,256 theorems). The 0.4% spread (38 theorems) shows that training
the same model can lead to small differences in overall success rates. Our result for adding local
variables alone (with no other identifiers) and without subword encoding is within this variance
range. However, the impact of local variables is better captured with the addition of subwords and
together with other identifiers, which yields results significantly outside of this range.

Interestingly, the union of the theorems proven by the tool using these 20 models is 14.5% (1,564
theorems), an improvement of 22% over the average. This demonstrates that the scale of the dif-
ferences in which theorems model-based tools can prove as a result of nondeterministic training
variance is much larger than the scale of the differences in how many they prove. Thus, the vari-
ance from training nondeterminism serves as a dimension for model diversity, which can be used
to improve proof synthesis, similarly to the approach taken by Diva [First and Brun 2022].

5.7 Hyperparameters

As discussed in Section 4.1, each of the identifier types we add has a vocabulary of the most com-
mon identifiers of that type, giving a fixed encoding of those identifiers in addition to the sub-
word encoding. We count the occurrences of the identifiers in the training set to determine which
identifiers occur more than a specified threshold, and then only include those identifiers in our
vocabulary. For example, if we have a threshold of 100, then all the identifiers that occur at least
100 times in the training set will be included in the vocabulary. That threshold is a hyperparameter
that we can vary for each type of identifier, and it determines the size of the vocabulary.

Figure 8 shows the performance impact of different values of that hyperparameter for different
identifiers. As you can see, the performance of various vocabulary sizes for global definitions, local
variables, and type constructors is all fairly jagged, though they all peak at around 200 occurrences,
which we set as the default in the rest of our experiments.

It is interesting to note that, while the thresholds which produce the best results are the same for
the different identifier categories, this results in drastically different vocabulary sizes: 427 global
definitions meet the threshold, but only 135 local variables and 26 type constructors do. This jus-
tifies our decision to use a fixed occurrence threshold to pick vocabulary rather than using the n
most common identifiers from each category.

However, there are signs that our method of picking vocabulary to index could be improved.
Sometimes, adding identifiers with fewer occurrences, such as the global definitions with between
180 and 200 occurrences, helps; while adding those with more occurrences, such as the global
definitions with between 200 and 220 occurrences, hurts. This suggests that the number of
occurrences does not monotonically predict the usefulness of indexing a particular identifier, even
though it is the most common approach. Future systems should investigate new metrics to pick
vocabulary for indexing. Finally, these experiments indicate that the model—and therefore the

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

12:18 A. Sanchez-Stern et al.

Fig. 8. The impact of different vocabulary thresholds for the various categories of identifiers. A smaller thresh-
old means the vocabulary is larger.

proof-search tool—is sensitive to small changes in hyperparameters, similar to how model-based
tool performance varies greatly from nondeterminism at the hardware level in model training.

The subword encoding we use also has several hyperparameters which can be varied; principle
among these is the number of byte-pair merges, which determines the size of the subword vocabu-
lary. Figure 8(d) shows the effect of different subword vocabulary sizes on success rate. The default
byte-pair merge threshold of 4,096 is represented as the highest point on the graph.

6 DISCUSSION

We believe that it is prudent to broaden the discourse around machine learning for proofs to con-
sider not just the tool produced, but also the development processes in building these tools. It is for
this reason that we step back and discuss our experiences, centering challenges that we encoun-
tered in three areas: the feedback cycle, reproducibility, and debugging.

Feedback Cycle. The feedback cycle for developing Passport was slow. Every time we changed
an encoding, we had to retrain the model, a process that took around two days. Mistakes in the
code or in the training parameters would often not manifest until evaluation, at which point we
would need to retrain once more. This slow feedback cycle quickly added up, so that even a small
change could take weeks.

In traditional supervised learning, training dominates development time, as evaluating a model
means running it just once on the test set. However, in the context of proof search, evaluation on
a large benchmark set often takes as many or more computational resources as training, though
it is usually more parallelizable across machines.

In the machine learning literature, techniques have been proposed to make training faster [Lep-
ikhin et al. 2020; Li et al. 2022b; Popel and Bojar 2018; Rajbhandari et al. 2020], which could be

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

Passport: Improving Automated Formal Verification Using Identifiers 12:19

directly applied in proof search. And more tooling like data trackers [Biewald 2020], data valida-
tion, and static types can help catch bugs sooner, resulting in fewer training runs needed during
development. Finally, some work in combining multiple models [First and Brun 2022] has shown
an ability to speed up proof search, and other search optimizations could also shorten that part of
the feedback cycle.

Reproducibility. As discussed and measured in our evaluation (Section 5.6), many current learn-
ing frameworks and APIs behave nondeterministically, resulting in nondeterministic variance in
our end-to-end proof results. Much of the nondeterminism we encountered is difficult but possi-
ble to control, when it stems from hardware differences, random seeds, or OS-level file ordering.
However, even when controlling for those factors and all documented nondeterminism, we found
our model training was still nondeterministic. During the course of our development, we discov-
ered some PyTorch APIs that were documented as deterministic behaved nondeterministically; we
reported that bug, and the developers marked it as high-priority.6

A recent paper found this variance in performance across identical training runs to be perva-
sive in an evaluation of six popular neural networks on three datasets [Pham et al. 2020b]. This
article found that very few of the researchers or practitioners surveyed in were aware of possible
nondeterminism in these systems. We recommend that future researchers using machine learning
for proof search document the hardware and software used to train, and report some measure of
the variance in their models results.

Debugging. The debugging of systems that mix machine learning and symbolic manipulation,
such as Passport, inherits the challenges of both. Instead of failing to compile or throwing a runtime
error, bugs in Passport often manifested solely as drops in evaluation numbers. It was challenging
to identify whether these drops were caused by bugs to begin with, let alone in which part of the
system the bug occurred when there was one.

We are unable to find any work on debugging machine learning systems outside of (potentially
very useful) folk knowledge encoded in blog posts7 and other informal sources. Perhaps a more for-
mal exploration of debugging machine learning systems is warranted. Both better practices [Popel
and Bojar 2018] and techniques for improved stability [Liu et al. 2020] may improve the debugging
experience. We suspect that improvements to the challenges surrounding the feedback cycle and
reproducibility will be not just helpful for but in fact essential to improving debugging, as many
debugging difficulties are consequences of these challenges.

Other Difficulties. These were only a few of the difficulties we faced as researchers applying
machine learning to proof search. These systems are also known to have poor modularity [Sculley
et al. 2014] (modifying one component can significantly affect the performance of others); poor
explainability [Barredo Arrieta et al. 2020; Gilpin et al. 2018; Guidotti et al. 2018; Lebese et al.
2021] (trained models do not lend themselves to high-level interpretation); and large hardware
costs [Heim 2022] (expensive hardware is required to train these models, limiting who can develop
them, and often requiring the use of shared clusters which can slow development).

None of these weaknesses are shared by purely symbolic approaches to proof tasks such as proof
repair [Ringer et al. 2021], or first-order theorem proving [Czajka and Kaliszyk 2018]. However,
current work indicates that tools using these machine learning models can sometimes overcome
limitations that current existing purely symbolic tools cannot [First et al. 2020], especially when
the solution space is large.

6https://github.com/pytorch/pytorch/issues/75240.
7http://karpathy.github.io/2019/04/25/recipe/.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

https://github.com/pytorch/pytorch/issues/75240
http://karpathy.github.io/2019/04/25/recipe/

12:20 A. Sanchez-Stern et al.

Fig. 9. A comparison of the features of several proof-synthesis tools.

7 RELATED WORK

We discuss related work in neural proof synthesis, proof corpora, and neural program synthesis.

Neural Proof Synthesis

There have been several other neural proof-synthesis tools for the Coq proof assistant. Figure 9
compares Passport’s features to those of prior work. Our work directly enriches the TacTok [First
et al. 2020] proof-synthesis tool for Coq (which is, in turn, an enrichment of ASTactic [Yang and
Deng 2019]), and evaluates the enriched tool on the CoqGym benchmark suite. TacTok models both
proof scripts and proof states to predict tactics. In doing so, however, it erases all tokens from the
AST—effectively erasing all syntactic identifier information, including path and file names, local
variables, theorem names, type names, and type constructor names. We add these tokens back and
explore different design decisions in encoding them, revealing meaningful information about their
contributions, and improving over TacTok on the CoqGym benchmark suite. Our insights about
syntactic information may provide ideas for dealing with variables used as arguments to tactics in
future iterations of TacTok.

Other machine learning tools for Coq include Tactician [Blaauwbroek et al. 2020],
Gamepad [Huang et al. 2019], ML4PG [Komendantskaya et al. 2012], and Proverbot9001 [Sanchez-
Stern et al. 2020] (which has a web-based frontend, Proofster [Agrawal et al. 2023]). To the best
of our knowledge, none of the models in these tools explicitly encode the category a particular
identifier belongs to (one of local variable, global definition, or type constructor), none of them
encode the path that an identifier comes from, and none of them apply sub-word tokenization.
Our insights may help further improve performance of these tools.

We enrich an existing model to explore the impacts of different design decisions for includ-
ing syntactic information. While the particular architecture of the model we enriched is not the
focus of our work, these design decisions may have different impacts depending on the archi-
tecture. The model we enriched uses a Tree-LSTM architecture; other models in this space use
sequences [Bansal et al. 2019; Blaauwbroek et al. 2020; Sanchez-Stern et al. 2020], other tree archi-
tectures [Huang et al. 2019], and graph architectures [Paliwal et al. 2020], with the latter showing
significant improvement over previous tree architectures.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

Passport: Improving Automated Formal Verification Using Identifiers 12:21

Proof-synthesis tools using transformer-based large language models have also begun to
emerge [Polu and Sutskever 2020], recently showing promising capabilities for benchmarks in
Isabelle/HOL [Jiang et al. 2021; Wu et al. 2022] and Lean [Polu et al. 2023]. These techniques can
be used both in a search-based tool [Jiang et al. 2022] (like Passport), and for whole-proof gener-
ation [First et al. 2023]. Transformer models that only use the local proof context, such as GPT-
f [Polu and Sutskever 2020], cannot derive the identifier information Passport encodes. Capturing
that information requires either considering much larger samples of text to process the definitions
of each variable (as well as understanding directory structure to derive paths), or running queries
against the Coq proof engine, as Passport does. However, future work could enhance transformer
models with identifier information, similarly to our approach. Exploring the tradeoffs of different
encodings of syntactic information in all of these models may provide interesting insights.

Recent work shows that the decision of whether or not to encode variable names has a signif-
icant impact on the performance of a graph neural network for proof synthesis in HOL on the
HOList benchmark suite [Paliwal et al. 2020]. Our work explores this tradeoff at a higher level of
granularity, looking at the impacts of including different kinds of variables and other syntactic in-
formation like paths, and exploring different tokenization decisions and vocabulary sizes. Running
a similar experiment on that tool may also prove enlightening.

Proof Corpora

A recent study of proof corpora [Hellendoorn et al. 2018] applying language models found high
degrees of naturalness in proofs, and discussed implications for proof engineering tools that could
capitalize on that naturalness. The study also found higher degrees of locality than in other pro-
gramming languages, suggesting that cache-based approaches already helpful in neural program
synthesis [Tu et al. 2014] (especially when used in combination with BPE [Karampatsis et al. 2020])
may prove particularly useful for synthesizing proofs. Building a cache on top of BPE is a promis-
ing path toward further improving our model performance.

The importance of identifiers is also consistent with recent findings from the REPLica user
study of Coq proof engineers [Ringer et al. 2020], which showed a pattern of proof engineers
refactoring the names of definitions in predictable and repetitive ways. Furthermore, several of
the REPLica benchmarks include syntactic changes in proofs that correspond to semantic changes
made alongside them, which points toward syntactic changes possibly revealing useful semantic
information that a machine learning tool may be able to pick up on. The REPLica benchmarks may
also motivate BPE: One benchmark, for example, shows a change in a type constructor name, along
with a change of a substring of the name of a broken lemma that referred to that type constructor
name in a way that corresponded to the change. Exploring the performance of Passport on those
benchmarks may prove interesting.

Nie et al. [2020a] developed a model for auto-formatting Coq code by encoding spacing informa-
tion in proof scripts and incorporating techniques from Natural Language Processing. Their work
on Roosterize, a toolchain for generation of lemma names [Nie et al. 2020b, 2021], leverages both
syntactic and semantic information by combining data from multiple phases of the Coq compiler—
tokens, parse trees, and fully elaborated terms. Similar multi-representation approaches may prove
an effective means of encoding syntactic information for proof-synthesis models as well.

Specification-mutation analysis can help demonstrate weak specifications, when mutating
the definitions does not break the proofs [Celik et al. 2019; Jain et al. 2020]. iCoq [Celik et al.
2017, 2018] and its parallelized version, PiCoq [Palmskog et al. 2018], find failing proof scripts
in evolving projects by prioritizing proof scripts affected by a revision. These tools track fine-
grained dependencies between Coq definitions, propositions, and proof scripts, to narrow down
the potentially affected proof scripts.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

12:22 A. Sanchez-Stern et al.

Neural Program Synthesis

Neural proof synthesis is similar to neural program synthesis, but adapted to the world of proofs.
Neural program synthesis has seen a renaissance of sorts in recent years. The model beneath
Github’s Copilot code auto-complete tool—Codex—is trained on a large corpus of Github projects,
and treats all programs and proofs as text, regardless of the language [Chen et al. 2021]. Another
work by DeepMind, AlphaCode, solves a similar task [Li et al. 2022a], as does PaLM-Coder from
Google [Chowdhery et al. 2022]. Work at Google [Austin et al. 2021] showed that large language
models of this flavor are promising, but struggle to understand the semantics of programs.

A recent YouTube video [Ringer and Cutler 2021] explores the applications of Copilot to proofs,
suggesting that even a model trained on raw syntax may suggest helpful hints for small proofs
in repetitive files in the CompCert [Leroy 2009] verified C compiler. However, it appears to have
limited value for larger, more original proofs with the current data available.

There is a lot we can learn about variable representations and tokenization decisions in neu-
ral program synthesis, some of which may be applicable for proofs. Recent work [Tu et al. 2014]
shows the benefits of a cache-based model for code completion that exploits locality properties of
programs. More recent work [Karampatsis et al. 2020] demonstrates the benefits of BPE tokeniza-
tion for code completion, especially in combination with cache-based models. Another recent pa-
per [Svyatkovskiy et al. 2021] introduces a framework for evaluating different design decisions
for integrating the structure within identifiers within a code completion model, and shows similar
benefits for BPE, plus additional benefits from integrating a static analysis to limit the search space.
We find similar benefits to BPE in the context of a neural proof-synthesis model, and furthermore
show the benefits of tagging different kinds of identifiers and paths differently depending on what
kind of information they encode.

Several different models have also been proposed for modeling code, such as AST-like trees [Mou
et al. 2014], long-term language models [Dam et al. 2016], and probabilistic grammars [Bielik et al.
2016]. Program synthesis is also widely studied using non-learning based methods, both from types
alone [Gvero et al. 2013] and examples and types [Frankle et al. 2016; Osera and Zdancewic 2015].

Identifiers in Code Models

Previous work has been done on providing semantic information for identifiers in code, outside
of the context of proof-synthesis. The VarCLR paper explored using contrastive learning to learn
which identifiers have similar meanings, in contrast to simply being related [Chen et al. 2022]. It
does this by mining variable renamings from GitHub edits, and enables effective use of general pur-
pose language models. Another paper [Karampatsis et al. 2020] explored extensively the tradeoffs
of various techniques for dealing with the large vocabulary issues that come from modeling iden-
tifiers in code. Several of our design decisions, such as case-sensitivity, and not attempting to split
words based on common conventions, are inspired by the results of this article. This article also ex-
plores the use of subword tokenizing to handle identifiers in code, and finds it effective. However,
their subword architecture is significantly different than ours, since it uses a flat sequence model
to model unstructured subword units, while we instead embed a subword model for identifiers
inside of a parsed-tree model of the code structure.

8 CONTRIBUTIONS

Our Passport approach enriches a model used for proof synthesis with three different identifier
encoding mechanisms: category vocabulary indexing, subword sequence modeling, and path
elaboration. We empirically demonstrate that each encoding mechanism improves proof-synthesis
performance on the CoqGym benchmark suite. Furthermore, we measured the impact of adding

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

Passport: Improving Automated Formal Verification Using Identifiers 12:23

information for each individual category of identifier: global definitions, local variables, and type
constructors. Again, empirically, each category improved performance.

These results are consistent with our intuition that identifiers matter for proofs, that the cat-
egory of an identifier is useful information, and that drawing connections between identifiers is
useful for proof synthesis. Passport automatically proves 12.7% of the theorems in CoqGym, an
improvement of 38% over Tok (an example proof-synthesis tool), without changing the core archi-
tecture beyond the encoding of identifiers. Combining the new tools developed using the Passport
approach with three baseline tools automatically proves 17.2% of the theorems in CoqGym, an im-
provement of 45% over the baseline tools combined. This intuition and these results will help devel-
opers of other tools for program and proof synthesis in other languages beyond Coq, and is a fruit-
ful step toward better tools for engineering robust and reliable formally verified software systems.

APPENDIX

A CATEGORIES OF IDENTIFIERS

Before we implemented Passport, we manually inspected the proof corpora in our training dataset,
walking through proofs and analyzing the kinds of information needed to make decisions about
which tactic to apply next in a proof. The choice to include identifiers was a product of realizing
how much proof engineers rely on naming information to reason about these decisions. But the
choice of which identifiers to include was less clear. Consider, for example, local variables: Many
common local variable names are used in a variety of contexts which may have little relation with
one another. A variable named x can carry a totally different meaning than the x from Figure 3
in Section 3. Without empirical evidence, it was unclear whether an enriched model could poten-
tially suffer performance degradation from drawing fallacious connections like this. As a result,
experimental data was an important factor in our selection of which identifiers to include.

Our experiments in Section 5 show that all three categories of identifiers help. In particular,
search using the Tok model Passport-enriched with any one of the three categories of identifiers
alone outperforms search using that model with no identifier information. Furthermore, a search
using the Tok model Passport-enriched with all three categories of identifiers at once outperforms a
search using a Passport-enriched Tok model with just one category of identifiers, for all categories.

The remainder of this Appendix details each of these three categories—global definitions (Appen-
dix A.1), local variables (Appendix A.2), and type constructors (Appendix A.3)—and gives intuition
for why each of them may be useful for a tactic prediction model. Finally, Appendix A.4 discusses
Passport implementation details.

A.1 Global Definitions

The most straightforward of our categories to include was identifiers referencing global defini-
tions. These identifiers refer to objects defined globally directly by the user, using the keywords
Definition, Theorem, Inductive, or one of their variants. Global definitions are generally either an
inductive type name, or a name given to some Gallina term (function, constant value, etc.). Cru-
cially, since proof objects themselves are terms, theorems are global definitions with their names
bound to their proof objects.

In Coq, most code amounts to creating new global definitions, through a variety of means. The
simplest is by writing the term which corresponds to the name explicitly, and using a vernacular
command to bind it to the name, as in Definition n := 5.. This is commonly how the Definition

keyword is used, both in defining constant values and in defining functions. When a definition
needs to refer to its own name within its body, that is done either using a fix in the term, or using
the special vernacular keyword Fixpoint, which is essentially syntactic sugar for the former.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

12:24 A. Sanchez-Stern et al.

Global definitions can also be defined interactively, using Coq’s tactic system. For example, the
proof script in Figure 3 specifies a sequence of tactics which produce a Gallina term referred to by
its identifier posnatMult_comm. In Gallina, this is indistinguishable from a plain definition—in fact,
any term in Coq can be defined using tactics, though this is most common for proofs of lemmas
and theorems.

Finally, inductive types can be created using Coq’s Inductive command. This command creates
a new inductive type or type family, given a set of “type constructors,” or ways to build objects of
the type. When complete, this command defines several objects, including the type itself, its type
constructors, and recursion and induction principles for the type. Type constructors are explored
in more detail in Appendix A.3.

Encoding the usage of global definitions in terms is extremely useful for predicting tactics. Often,
a particular common identifier will signify that certain lemmas will be useful. For instance, in the
proof context:

n : nat

============================

le (div2 n) n

the presence of the div2 and le identifiers indicates that lemmas involving those operators will be
useful; in fact, the correct next step is to apply a lemma named div2_decr, which applies to goals
of the form le (div2 _)_. Both div2 and le identifiers correspond to global definitions.

A.2 Local Variables

Besides global definitions, local variables are the most common type of identifier in Coq terms.
Local variables can be bound to an explicit term, as in a let definition, but in many cases (function
parameters, for all bindings, and existential pairs) are given only a type binding. This is in contrast
to global definitions, which are always bound directly to terms.

Encoding local variables is often critical to determining the correct next step in a proof, or even
understanding its basic structure. Even when the local variable’s name is not particularly infor-
mative, knowing when local variables repeat is often critical. For example, consider the following
proof context (from VST [Appel 2011]):

n : nat

============================

n >= div2 n + div2 n

If the n variable were not the same in all three occurrences, this goal would be impossible to prove
without more information. However, because the n variable is repeated, this goal holds by the
definition of div2, which is round-down division by 2.

While local variable names often provide useful information, as mentioned above, common
names are often overloaded in their usage. We learned early on that the possibility of performance
regression due to uninformative local variables like x had concerned the ASTactic authors, and
contributed to their decision not to encode identifiers.8 However, upon closer inspection of the
data, we determined that even single-letter identifier names often carry consistent semantic mean-
ing across proofs. The identifier names hd and tl, for instance, seemed to uniformly refer to the
head and tail of a list; because they carried consistent semantic meaning, these identifiers were
treated similarly within proofs.

Because of these consistencies in naming, we decided to include local variables.

8https://github.com/princeton-vl/CoqGym/discussions/60.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

https://github.com/princeton-vl/CoqGym/discussions/60

Passport: Improving Automated Formal Verification Using Identifiers 12:25

A.3 Type Constructors

Unlike global definitions and local variables, type constructors are not bound on their own, but
are instead defined as part of inductive type definitions. As an example of how type constructors
are defined, Figure 10 shows the definition of the option type.

Fig. 10. The polymorphic option datatype in Coq, found in the fully-qualified path Coq.Init.Datatypes.
Given a type parameter A, an option A in Coq is one of two things: either it is Some a given an element a of
type A, or it is None. For consistency, identifiers are highlighted using the same conventions from Figure 2.

The type definition for option has two type constructors: Some, which creates an option A for
any object of type A, and None, which is a constant value of type option A for any A. There are
many examples of such type constructors in common inductive types: S and O for natural num-
bers, cons and nil for lists, and others. Logically, just as type definitions correspond to theorems,
type constructors are analogous to introduction rules for types. In the option type in Figure 10,
Some and None encode all possible ways of introducing terms of type option. Because of this, type
constructors play a special role in deconstructing types—in particular, they appear inside match
statements, which act on the structure of a type by having one branch per type constructor. Simi-
larly, proofs by induction in Coq prove propositions about inductive types by having one case per
type constructor.

Knowledge of type constructors can be incredibly useful in determining the next proof step in
a proof. In the example from Figure 11, the goal states that S (S (n + m)) is even, where m and n

are natural numbers. The context shows (n + m) is even, but does not include information about
S. The knowledge that S is a successor type constructor of nat, and that there exists an ev type
constructor ev_SS of type ev n -> ev (S (S n)), is necessary to solve the goal. Here, running the
constructor tactic results in the goal ev (n + m), which matches one of the hypotheses (IH1).

Fig. 11. A mid-proof context from the first volume of the logical foundations series [Pierce et al. 2021].

A.4 Passport Enrichment Implementation

Enriching the data with these three categories of identifiers amounted to modifying inherited data
processing code from TacTok and ASTactic that had erased all information about those identifiers
from the data. The inherited code had used the SerAPI [Arias 2016] library to serialize Coq proof
objects (terms) as well as proof states and theorems (types), then processed the serialized ASTs
returned by SerAPI to erase all identifier information. Enriching the data with two of the three
categories of identifiers—definition and local variable names—was a straightforward modification
of the post-processing code.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

12:26 A. Sanchez-Stern et al.

By contrast, adding type constructor names was a more involved process, as Gallina ASTs do
not directly store type constructor names. Instead, like its parent type theory, the calculus of in-
ductive constructions [Coquand and Huet 1986; Coquand and Paulin 1990], Coq represents each
type constructor in the AST as a tuple consisting of the name of its inductive type together with
the index of the particular type constructor.

Fig. 12. An unprocessed AST representing a use of the Some type constructor for the option inductive type
from Figure 10, simplified for the sake of presentation. For consistency, identifiers are highlighted using the
same conventions from Figure 2, and the index 1 of the Some type constructor is highlighted in yellow3. Note
that the identifier of the Some type constructor itself is not present.

Figure 12 shows the AST for Some, which is the first (type constructors are 1-indexed) type
constructor of the option datatype. Notably, the AST by default stores the fully-qualified path and
name of the inductive type that the type constructor constructs. Thus, the only remaining step is
to look up the type constructor from the global environment by passing the fully-qualified name
of the inductive type and the index of the type constructor—here, Coq.Init.Datatypes.option and
1 —then place it back into the AST where the index is.

To do this, between parsing and encoding, the Passport implementation unparses subterms that
correspond to type constructor nodes into string representations of the ASTs of the subterms. It
then feeds those string representations back through SerAPI, which performs an environment
lookup to recover the type constructor name. As with the other identifiers, Passport then inserts
a child node containing the identifier into the AST before encoding.

Overall, the Passport approach implementation is 1.5K lines of code and took four developers
about a year to build. While the conceptual and design aspects of the Passport approach can extend
to all prediction-model-driven, search-based, proof-synthesis tools, the current implementation
is straightforwardly applicable to all such tools built within the CoqGym environment [Yang and
Deng 2019].

REFERENCES

Agda Development Team. 2007–2021. The Agda Wiki. Retrieved from http://wiki.portal.chalmers.se/agda/pmwiki.php. Ac-

cessed 1 August 2022.

Arpan Agrawal, Emily First, Zhanna Kaufman, Tom Reichel, Shizhuo Zhang, Timothy Zhou, Alex Sanchez-Stern, Talia

Ringer, and Yuriy Brun. 2023. Proofster: Automated formal verification. In Proceedings of the Demonstrations Track at

the 45th International Conference on Software Engineering .

Andrew W. Appel. 2011. Verified software toolchain. In Programming Languages and Systems. Gilles Barthe (Ed.). Springer

Berlin Heidelberg, Berlin, 1–17.

Emilio Jesús Gallego Arias. 2016. SerAPI: Machine-friendly, data-centric serialization for COQ. TechnicalReport. 2016. hal-

01384408.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie J. Cai,

Michael Terry, Quoc V. Le, and Charles Sutton. 2021. Program synthesis with large language models. arXiv:2108.07732.

Retrieved from https://arxiv.org/abs/2108.07732.

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart Wilcox. 2019. HOList: An environment

for machine learning of higher-order theorem proving (extended version). Proceedings of Machine Learning Research

(ICML’19, 9-15 June 2019, Long Beach, California, USA), Vol. 97.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

http://wiki.portal.chalmers.se/agda/pmwiki.php
https://arxiv.org/abs/2108.07732

Passport: Improving Automated Formal Verification Using Identifiers 12:27

Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado,

Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. 2020.

Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI.

Information Fusion 58 (2020), 82–115. DOI:https://doi.org/10.1016/j.inffus.2019.12.012

Pavol Bielik, Veselin Raychev, and Martin Vechev. 2016. PHOG: Probabilistic model for code. In Proceedings of the 33rd

International Conference on Machine Learning . Maria Florina Balcan and Kilian Q. Weinberger (Eds.), Proceedings of

Machine Learning Research, Vol. 48, PMLR, New York, NY, 2933–2942. Retrieved from http://proceedings.mlr.press/v48/

bielik16.html.

Lukas Biewald. 2020. Experiment Tracking with Weights and Biases. Retrieved from https://www.wandb.com/. Accessed 1

August 2022.

Lasse Blaauwbroek, Josef Urban, and Herman Geuvers. 2020. Tactic learning and proving for the Coq proof assistant. In

Proceedings of the International Conference on Logic for Programming, Artificial Intelligence and Reasoning . Elvira Albert

and Laura Kovacs (Eds.), EPiC Series in Computing, Vol. 73, Easy Chair, 138–150. DOI:https://doi.org/10.29007/wg1q

Ahmet Celik, Karl Palmskog, and Milos Gligoric. 2017. ICoq: Regression proof selection for large-scale verification projects.

In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering. 171–182. DOI:https://doi.

org/10.1109/ASE.2017.8115630

Ahmet Celik, Karl Palmskog, and Milos Gligoric. 2018. A regression proof selection tool for Coq. In Proceedings of the

International Conference on Software Engineering Demonstrations Track. 117–120. DOI:https://doi.org/10.1145/3183440.

3183493

Ahmet Celik, Karl Palmskog, Marinela Parovic, Emilio Jesús Gallego Arias, and Milos Gligoric. 2019. Mutation analysis for

Coq. In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering. 539–551. DOI:https:

//doi.org/10.1109/ASE.2019.00057

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards,

Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,

Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser,

Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios

Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang,

Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh

Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter

Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating large

language models trained on code. arXiv:2107.03374. Retrieved from https://arxiv.org/abs/2107.03374.

Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Graham Neubig, Bogdan Vasilescu, and Claire Le Goues. 2022. VarCLR:

Variable semantic representation pre-training via contrastive learning. In Proceedings of the 44th International Conference

on Software Engineering . ACM, New York, NY, 2327–2339. DOI:https://doi.org/10.1145/3510003.3510162

Adam Chlipala. 2013. Certified Programming with Dependent Types: A Pragmatic Introduction to the Coq Proof Assistant. The

MIT Press.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham,

Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua

Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben

Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm

Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fe-

dus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi,

David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pel-

lat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,

Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,

Slav Petrov, and Noah Fiedel. 2022. PaLM: Scaling language modeling with pathways. arXiv:2204.02311. Retrieved from

https://arxiv.org/abs/2204.02311.

Coq Development Team. 1989–2021. The Coq Proof Assistant. Retrieved from http://coq.inria.fr. Accessed 1 August 2022.

Thierry Coquand and Gérard Huet. 1986. The Calculus of Constructions. Technical Report RR-0530. INRIA. Retrieved from

https://hal.inria.fr/inria-00076024.

Thierry Coquand and Christine Paulin. 1990. Inductively defined types. In COLOG-88. Per Martin-Löf and Grigori Mints

(Eds.). Springer Berlin Heidelberg, Berlin, 50–66.

Łukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq: Automation for dependent type theory. Journal of Automated

Reasoning 61, 1 (01 Jun 2018), 423–453. DOI:https://doi.org/10.1007/s10817-018-9458-4

Hoa Khanh Dam, Truyen Tran, and Trang Pham. 2016. A deep language model for software code. arXiv:1608.02715. Re-

trieved from http://arxiv.org/abs/1608.02715.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

https://doi.org/10.1016/j.inffus.2019.12.012
http://proceedings.mlr.press/v48/bielik16.html
https://www.wandb.com/
https://doi.org/10.29007/wg1q
https://doi.org/10.1109/ASE.2017.8115630
https://doi.org/10.1145/3183440.3183493
https://doi.org/10.1109/ASE.2019.00057
http://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3510003.3510162
https://arxiv.org/abs/2204.02311
http://coq.inria.fr
https://hal.inria.fr/inria-00076024
https://doi.org/10.1007/s10817-018-9458-4
http://arxiv.org/abs/1608.02715
http://arxiv.org/abs/1608.02715

12:28 A. Sanchez-Stern et al.

Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala. 2019. Simple high-level code for crypto-

graphic arithmetic—with proofs, without compromises. In Proceedings of the IEEE Symposium on Security and Privacy.

1202–1219. DOI:https://doi.org/10.1109/SP.2019.00005

Emily First and Yuriy Brun. 2022. Diversity-driven automated formal verification. In Proceedings of the 44th International

Conference on Software Engineering . DOI:https://doi.org/10.1145/3510003.3510138

Emily First, Yuriy Brun, and Arjun Guha. 2020. TacTok: Semantics-aware proof synthesis. Proceedings of the ACM on Pro-

gramming Languages (PACMPL) Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA) 4 (No-

vember 2020), 231:1–231:31. DOI:https://doi.org/10.1145/3428299

Emily First, Markus Rabe, Talia Ringer, and Baldur Yuriy Brun. 2023. Whole-Proof generation and repair with large lan-

guage models. In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE23).

Jonathan Frankle, Peter-Michael Osera, David Walker, and S. Zdancewic. 2016. Example-directed synthesis: A type-

theoretic interpretation. ACM SIGPLAN Notices 51, 1 (01 2016), 802–815. DOI:https://doi.org/10.1145/2914770.2837629

Philip Gage. 1994. A new algorithm for data compression. The C Users Journal 12, 2 (Feb 1994), 23–38.

Xiang Gao. 2022. Cub Device Scan is Not Deterministic as Described in the Documentation #454. Retrieved from https:

//github.com/NVIDIA/cub/issues/454. Accessed 1 August 2022.

Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael A. Specter, and Lalana Kagal. 2018. Explaining ex-

planations: An approach to evaluating interpretability of machine learning. arXiv:1806.00069. Retrieved from http:

//arxiv.org/abs/1806.00069.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino Pedreschi. 2018. A survey

of methods for explaining black box models. ACM Computing Surveys 51, 5, Article 93 (Aug 2018), 42 pages. DOI:https:

//doi.org/10.1145/3236009

Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. 2013. Complete completion using types and weights. In

Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation . 27–38. Retrieved

from http://infoscience.epfl.ch/record/188990.

Lennart Heim. 2022. Estimating PaLM’s Training Cost. Retrieved from https://blog.heim.xyz/author/lennart/. Accessed 1

August 2022.

Vincent J. Hellendoorn, Premkumar T. Devanbu, and Mohammad Amin Alipour. 2018. On the naturalness of proofs. In

Proceedings of the ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations

of Software Engineering (ESEC/FSE) New Ideas and Emerging Results Track. 724–728.

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. 2019. GamePad: A learning environment for theorem

proving. In Proceedings of the International Conference on Learning Representations. Retrieved from https://openreview.

net/forum?id=r1xwKoR9Y7.

Isabelle Development Team. 1994–2021. Isabelle. Retrieved from http://isabelle.in.tum.de. Accessed 1 August 2022.

Kush Jain, Karl Palmskog, Ahmet Celik, Emilio Jesús Gallego Arias, and Milos Gligoric. 2020. MCoq: Mutation analysis for

Coq verification projects. In Proceedings of the International Conference on Software Engineering Demonstrations Track.

89–92. DOI:https://doi.org/10.1145/3377812.3382156

Albert Jiang, Konrad Czechowski, Mateja Jamnik, Piotr Milos, Szymon Tworkowski, Wenda Li, and Yuhuai Tony Wu. 2022.

Thor: Wielding hammers to integrate language models and automated theorem provers. In Proceedings of the Conference

on Neural Information Processing Systems.

Albert Qiaochu Jiang, Wenda Li, Jesse Michael Han, and Yuhuai Wu. 2021. LISA: Language models of ISAbelle proofs. In

Proceedings of the Conference on Artificial Intelligence and Theorem Proving. 17.1–17.3.

Rafael Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and Andrea Janes. 2020. Big code != Big vocabulary:

Open-vocabulary models for source code. In Proceedings of the 42nd International Conference on Software Engineering .

ACM. DOI:https://doi.org/10.1145/3377811.3380342

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai

Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: Formal

verification of an OS kernel. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles . ACM,

New York, NY, 207–220. DOI:https://doi.org/10.1145/1629575.1629596

Ekaterina Komendantskaya, Jónathan Heras, and Gudmund Grov. 2012. Machine learning in proof general: Interfacing

interfaces. In Proceedings of the 10th International Workshop on User Interfaces for Theorem Provers, Cezary Kaliszyk and

Christoph Lüth (Eds.). EPTCS, OPA, Vol. 118, 15–41. DOI:https://doi.org/10.4204/EPTCS.118.2

Lean Development Team. 2014–2021. Theorem Proving in Lean. Retrieved from http://leanprover.github.io/tutorial/. Ac-

cessed 1 August 2022.

Thabang Lebese, Ndivhuwo Makondo, Cristina Cornelio, and Naweed Khan. 2021. Proof extraction for logical neural net-

works. In Proceedings of the Advances in Programming Languages and Neurosymbolic Systems Workshop. Retrieved from

https://openreview.net/forum?id=Xw3kb6UyA31.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

https://doi.org/10.1109/SP.2019.00005
https://doi.org/10.1145/3510003.3510138
https://doi.org/10.1145/3428299
https://doi.org/10.1145/2914770.2837629
https://github.com/NVIDIA/cub/issues/454
http://arxiv.org/abs/1806.00069
https://doi.org/10.1145/3236009
http://infoscience.epfl.ch/record/188990
https://blog.heim.xyz/author/lennart/
https://openreview.net/forum?id=r1xwKoR9Y7
http://isabelle.in.tum.de
https://doi.org/10.1145/3377812.3382156
https://doi.org/10.1145/3377811.3380342
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.4204/EPTCS.118.2
http://leanprover.github.io/tutorial/
https://openreview.net/forum?id=Xw3kb6UyA31

Passport: Improving Automated Formal Verification Using Identifiers 12:29

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun, Noam

Shazeer, and Zhifeng Chen. 2020. GShard: Scaling giant models with conditional computation and automatic sharding.

In Proceedings of the International Conference on Learning Representations.

Xavier Leroy. 2009. Formal verification of a realistic compiler. Communications of the ACM 52, 7 (2009), 107–115. DOI:https:

//doi.org/10.1145/1538788.1538814

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling, Felix

Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen,

Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Suther-

land Robson, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 2022a. Competition-Level code

generation with AlphaCode. Science 378 (2022), 1092–1097. DOI:10.1126/science.abq1158

Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao, Fengwei Yu, and Junjie Yan. 2022b. Su-

pervision exists everywhere: A data efficient contrastive language-image pre-training paradigm. In Proceedings of the

International Conference on Learning Representations. Retrieved from https://openreview.net/forum?id=zq1iJkNk3uN.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. 2020. Understanding the difficulty of training

transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Association

for Computational Linguistics, Online, 5747–5763. DOI:https://doi.org/10.18653/v1/2020.emnlp-main.463

Lili Mou, Ge Li, Zhi Jin, Lu Zhang, and Tao Wang. 2014. TBCNN: A tree-based convolutional neural network for program-

ming language processing. arXiv:1409.5718. Retrieved from http://arxiv.org/abs/1409.5718.

Pengyu Nie, Karl Palmskog, Junyi Jessy Li, and Milos Gligoric. 2020b. Deep generation of Coq lemma names using elabo-

rated terms. In Proceedings of the International Joint Conference on Automated Reasoning. 97–118.

Pengyu Nie, Karl Palmskog, Junyi Jessy Li, and Milos Gligoric. 2020a. Learning to format Coq code using language models.

In Proceedings of the Coq Workshop.

Pengyu Nie, Karl Palmskog, Junyi Jessy Li, and Milos Gligoric. 2021. Roosterize: Suggesting lemma names for Coq verifica-

tion projects using deep learning. In Proceedings of the International Conference on Software Engineering Demonstrations

Track. 21–24. DOI:https://doi.org/10.1109/ICSE-Companion52605.2021.00026

Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed program synthesis. ACM SIGPLAN Notices 50,

6 (June 2015), 619–630. DOI:https://doi.org/10.1145/2813885.2738007

Aditya Paliwal, Sarah Loos, Markus Rabe, Kshitij Bansal, and Christian Szegedy. 2020. Graph representations for higher-

order logic and theorem proving. In Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34, 2967–2974.

Karl Palmskog, Ahmet Celik, and Milos Gligoric. 2018. PiCoq: Parallel regression proving for large-scale verification

projects. In Proceedings of the ACM SIGSOFT International Symposium on Software Testing and Analysis. 344–355.

DOI:https://doi.org/10.1145/3213846.3213877

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018.

Deep contextualized word representations. In Proceedings of the Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics: Human Language Technologies. Vol. 1, Association for Computational Linguistics,

New Orleans, LA, 2227–2237. DOI:https://doi.org/10.18653/v1/N18-1202

Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan Rosenthal, Lin Tan, Yaoliang Yu, and Nachiap-

pan Nagappan. 2020a. Problems and opportunities in training deep learning software systems: An analysis of variance.

In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering . ACM, New York, NY,

771–783. DOI:https://doi.org/10.1145/3324884.3416545

Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan Rosenthal, Lin Tan, Yaoliang Yu, and Nachiap-

pan Nagappan. 2020b. Problems and opportunities in training deep learning software systems: An analysis of variance.

In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering . ACM, New York, NY,

771–783. DOI:https://doi.org/10.1145/3324884.3416545

Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Cătălin Hriţcu,

Vilhelm Sjöberg, and Brent Yorgey. 2021. Software Foundations. Vol. 1: Logical Foundations. Retrieved from https://

softwarefoundations.cis.upenn.edu/lf-current/index.html.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya Sutskever. 2023. Formal math-

ematics statement curriculum learning. ICLR. Retrieved from https://arxiv.org/abs/2202.01344.

Stanislas Polu and Ilya Sutskever. 2020. Generative language modeling for automated theorem proving. arXiv:2009.03393.

Retrieved from https://arxiv.org/abs/2009.03393.

Martin Popel and Ondřej Bojar. 2018. Training tips for the transformer model. The Prague Bulletin of Mathematical Linguis-

tics 110, 1 (2018), 43–70.

Shangshu Qian, Viet Hung Pham, Thibaud Lutellier, Zeou Hu, Jungwon Kim, Lin Tan, Yaoliang Yu, Jiahao Chen, and

Sameena Shah. 2021. Are my deep learning systems fair? An empirical study of fixed-seed training. In Advances in

Neural Information Processing Systems. M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. Wortman Vaughan

(Eds.), Vol. 34, Curran Associates, Inc., 30211–30227. Retrieved from https://proceedings.neurips.cc/paper/2021/file/

fdda6e957f1e5ee2f3b311fe4f145ae1-Paper.pdf.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1126/science.abq1158
https://openreview.net/forum?id=zq1iJkNk3uN
https://doi.org/10.18653/v1/2020.emnlp-main.463
http://arxiv.org/abs/1409.5718
http://arxiv.org/abs/1409.5718
https://doi.org/10.1109/ICSE-Companion52605.2021.00026
https://doi.org/10.1145/2813885.2738007
https://doi.org/10.1145/3213846.3213877
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.1145/3324884.3416545
https://doi.org/10.1145/3324884.3416545
https://softwarefoundations.cis.upenn.edu/lf-current/index.html
https://arxiv.org/abs/2202.01344
https://arxiv.org/abs/2009.03393
https://proceedings.neurips.cc/paper/2021/file/fdda6e957f1e5ee2f3b311fe4f145ae1-Paper.pdf

12:30 A. Sanchez-Stern et al.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. ZeRO: Memory optimizations toward training

trillion parameter models. In Proceedings of the International Conference for High Performance Computing, Networking,

Storage and Analysis . IEEE, Article 20, 16 pages.

Tom P. Reichel. 2022. Large Cumulative Sums Appear to be Nondeterministic. #75240. Retrieved from https://github.com/

pytorch/pytorch/issues/75240. Accessed 1 August 2022.

Talia Ringer and Joe Cutler. 2021. Talia and Joe Chat about Proof Engineering with Copilot. Retrieved from https://youtu.

be/jFL-ftywPiM. Accessed 1 August 2022.

Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and Zachary Tatlock. 2019. QED at large: A survey of engineering

of formally verified software. Foundations and Trends®in Programming Languages 5, 2–3 (2019), 102–281. DOI:https:

//doi.org/10.1561/2500000045

Talia Ringer, RanDair Porter, Nathaniel Yazdani, John Leo, and Dan Grossman. 2021. Proof repair across type equivalences.

In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation.

ACM. DOI:https://doi.org/10.1145/3453483.3454033

Talia Ringer, Alex Sanchez-Stern, Dan Grossman, and Sorin Lerner. 2020. REPLica: REPL instrumentation for Coq analysis.

In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs . ACM, New York, NY,

99–113. DOI:https://doi.org/10.1145/3372885.3373823

Alex Sanchez-Stern, Yousef Alhessi, Lawrence Saul, and Sorin Lerner. 2020. Generating correctness proofs with neural net-

works. In Proceedings of the 4th ACM SIGPLAN International Workshop on Machine Learning and Programming Languages.

ACM SIGPLAN.

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, and Michael

Young. 2014. Machine learning: The high interest credit card of technical debt. In Proceedings of the NIPS 2014 Workshop

on Software Engineering for Machine Learning.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words with subword units.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Asso-

ciation for Computational Linguistics, Berlin, 1715–1725. DOI:https://doi.org/10.18653/v1/P16-1162

Gil Shamir and Dong Lin. 2022. Reproducibility in Deep Learning and Smooth Activations. Retrieved from https://ai.

googleblog.com/2022/04/reproducibility-in-deep-learning-and.html?m=1. Accessed 1 August 2022.

Jean Souyris. 2014. Industrial Use of CompCert on a Safety-Critical Software Product. Retrieved from http://projects.laas.

fr/IFSE/FMF/J3/slides/P05_Jean_Souyiris.pdf. Accessed 1 August 2022.

Alexey Svyatkovskiy, Sebastian Lee, Anna Hadjitofi, Maik Riechert, Juliana Franco, and Miltiadis Allamanis. 2021. Fast and

memory-efficient neural code completion. MSR 18 (2021), 329–340. https://doi.org/10.1109/MSR52588.2021.00045

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved semantic representations from tree-structured

long short-term memory networks. In Proceedings of the Annual Meeting of the Association for Computational Linguistics.

Vol. 1, 1556–1566. DOI:https://doi.org/10.3115/v1/P15-1150

Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. 2014. On the localness of software. In Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software Engineering . ACM, New York, NY, 269–280. DOI:https:

//doi.org/10.1145/2635868.2635875

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas Anderson.

2015. Verdi: A framework for implementing and formally verifying distributed systems. In Proceedings of the 36th ACM

SIGPLAN Conference on Programming Language Design and Implementation . ACM, New York, NY, 357–368. DOI:https:

//doi.org/10.1145/2737924.2737958

Yuhuai Wu, Markus Norman Rabe, DeLesley Hutchins, and Christian Szegedy. 2022. Memorizing transformers. In Pro-

ceedings of the International Conference on Learning Representations. Retrieved from https://openreview.net/forum?id=

TrjbxzRcnf-.

Kaiyu Yang and Jia Deng. 2019. Learning to prove theorems via interacting with proof assistants. In Proceedings of the

International Conference on Machine Learning. Retrieved from http://proceedings.mlr.press/v97/yang19a/yang19a.pdf.

Received 1 August 2022; revised 1 February 2023; accepted 24 March 2023

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 12. Publication date: June 2023.

https://github.com/pytorch/pytorch/issues/75240
https://youtu.be/jFL-ftywPiM
https://doi.org/10.1561/2500000045
https://doi.org/10.1145/3453483.3454033
https://doi.org/10.1145/3372885.3373823
https://doi.org/10.18653/v1/P16-1162
https://ai.googleblog.com/2022/04/reproducibility-in-deep-learning-and.html?m=1
http://projects.laas.fr/IFSE/FMF/J3/slides/P05_Jean_Souyiris.pdf
https://doi.org/10.1109/MSR52588.2021.00045
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.1145/2635868.2635875
https://doi.org/10.1145/2737924.2737958
https://openreview.net/forum?id=TrjbxzRcnf-
http://proceedings.mlr.press/v97/yang19a/yang19a.pdf

