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1. Introduction 
A recen t  p a p e r  of  K e l l e r m a n  [8] discusses  the  

fo l lowing combina to r i a l  op t imiza t i on  p r o b l e m .  Le t  P 
= [p0] be  an n x n mat r ix  of  ze roes  and  ones  such 
t h a t p o  = pj~ a n d p ,  = 1 for  all i a n d / .  W e  say tha t  the  
n x k ze ro -one  mat r ix  Q = [qo] has the  intersection 
property with respec t  to  P p r o v i d e d  that  (qslqtl. qszqt2, 
. . . .  qskqtk) = (0, 0, . . . , 0) if and  only  if Pst = 0 for  
all s and  t.  In  o t h e r  words ,  row s and  row t of  Q have  
no l ' s  in the  same pos i t ion  if and  only if Psl = 0. G iven  
P ,  the  p r o b l e m  is to  f ind such a mat r ix  Q with k as 
smal l  as poss ib le .  Since,  in K e l l e r m a n ' s  case,  P is the  
confl ict  mat r ix  for  a set of  n keywords ,  we re fe r  to this 
p r o b l e m  as the  keyword conflict problem. In [8], a 
heur is t ic  for  cons t ruc t ing  Q with the  in te r sec t ion  p rop -  
e r ty  is g iven,  but  the  heur is t ic  does  not  necessar i ly  
achieve  the  m i n i m u m  k.  See [8] for  fu r the r  discussion 
and  mot iva t ion  of  the  k e y w o r d  confl ict  p r o b l e m .  

This  p r o b l e m  is exac t ly  the  in te rsec t ion  g raph  p rob -  
lem desc r ibed  in [3, 4]: G iven  a g raph  G ,  f ind a set S 
and  a family  F of  n o n e m p t y  subse ts  of  S such tha t  G is 
the  in te r sec t ion  g raph  of  the  family  F;  the  ob jec t ive  is 
to min imize  the  ca rd ina l i ty  of  S. ( G  is the  in te r sec t ion  
g raph  of  the  family  F 1  . . . . .  F ,  C_ S if the  nodes  of  G 
can be  n u m b e r e d  1, 2, 3, . . . , n in such a way that  
node  i and  n o d e ` / ( i  4= `/) a re  connec t ed  by an edge  in 
G if and  only if F~ N Fj 4= q~.) Some  wors t -case  b o u n d s  
on the ca rd ina l i ty  of  S are  given in [3, 4],  but  no 
a lgor i thm for cons t ruc t ing  S and  F is d iscussed.  

The  p u r p o s e  of  the  p r e sen t  p a p e r  is to first show 
that  the  k e y w o r d  confl ict  p r o b l e m  (and  hence  the  
in te r sec t ion  g raph  p r o b l e m )  is equ iva len t  to the  fol low- 
ing edge-clique-cover ( E C C )  p r o b l e m :  G i v e n  a g raph  
G,  f ind a set of  c o m p l e t e  subgraphs  (cl iques)  which 
inc ludes  every  edge  of  G;  the  ob jec t ive  is to  min imize  
the  n u m b e r  of  c l iques .  Hav ing  d e m o n s t r a t e d  this 
equ iva lence ,  we then  in Sect ion  3 inves t iga te  the  
c o m p u t a t i o n a l  complex i ty  of  the  E C C  p r o b l e m .  The  
p r o b l e m  of  cover ing  the  edges  of  a g raph  by the  
m i n i m u m  n u m b e r  of  c l iques  is shown to be  NP-com-  
plete.X 

1 The reader who is unfamiliar with the concept of NP-complete- 
ness is referred to [1,7] for an introduction. The key fact is that 
either all or none of the NP-complete problems can be solved by 
polynomial-time algorithms. (An algorithm runs in polynomial-time 
if it always terminates within a number of steps which is bounded 
above by some polynomial in the size of the input.) Although it is 
not known which of these two possibilities holds, the answer is 
"none" if and only if P --k NP where P (NP) is the class of sets which 
can be recognized by deterministic (nondeterministic) Turing ma- 
chines within polynomial-time. Since the class of NP-complete prob- 
lems is known to include such notoriously difficult problems as the 
traveling salesman problem and 0-I integer programming, it is 
believed that P ~ NP. 
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However,  proving a problem to be NP-complete 
does not preclude the possibility of finding polynomial- 
time approximation algorithms for the problem. Such 
algorithms, while not always producing optimal solu- 
tions, are guaranteed to find solutions "close" to 
optimal (say, within a constant factor of the optimum). 
By using a result of Garey and Johnson [2], we are 
able to bound the performance of polynomial-time 
approximation algorithms for the ECC problem, under 
the assumption that P =/: NP.  If P =b N P  and if c and d 
are constants with c <2 ,  then there is no polynomial- 
time algorithm for the ECC problem which always 
produces cEo + d or fewer cliques, where E0 is the 
number of cliques in an optimal solution. 

In Section 4 the heuristic proposed in [8] is slightly 
improved. It is easily seen to be still polynomial-time. 
Finally, we construct a family of graphs to demonstrate 
that E/Eo  is arbitrarily large, where E is the number 
of cliques produced by the improved heuristic and E0 
is the optimal number. Of course the exhibition of this 
possibly anomalous behavior is not intended as a 
comment on the performance of the algorithm in 
practice. In light of the results of Section 3, however, 
the paper would not be complete without a demonstra- 
tion that the ratio E/Eo  for this existing heuristic 
algorithm is bounded by no constant (in particular, by 
no constant less than 2). 

2. Equivalence of the Keyword Conflict Problem and 
the Edge-Clique-Cover Problem 

The edge-clique-cover (ECC) problem can be 
stated as follows: Given a graph G, find a set of 
cliques which includes every edge of G (i.e. find a set 
of complete subgraphs such that every pair of con- 
nected nodes belongs to some complete subgraph in 
the set). Note that the usual clique cover problem is to 
find a set of cliques which covers the nodes; this 
problem will be referred to as the node-clique-cover 
(NCC) problem. If G is a graph, we let ECC(G) 
(NCC(G)) denote the minimum number of cliques 
which are sufficient to cover the edges (nodes) of G. If 
A is an algorithm which solves the ECC (NCC) prob- 
lem, then A(G)  denotes the number of cliques pro- 
duced by A when applied to the graph G. 

We first show that the keyword conflict problem 
and the ECC problem are equivalent in the strong 
sense that, if we view the matrix P as the incidence 
matrix of a graph G where each keyword corresponds 
to a node, then a solution Q to the keyword conflict 
problem immediately yields a solution to the ECC 
problem, and vice versa. For the sake of simplicity in 
what follows, we assume that zero-one matrices P 
contain no isolated keywords; that is, for each i there 
is a`/ with i :~ j and po = 1. Similarly, we assume that 
graphs contain no isolated nodes; that is, every node is 
connected to some other node. Isolated keywords 
(isolated nodes) can easily be detected and eliminated 

from further consideration. If P is an n x n matrix as 
described in the Introduction, then we let G(P) denote 
that graph whose incidence matrix is P (i.e. G has 
nodes {1, 2, . . . , n} and, for all i and j with i :k j ,  
there is an edge connecting node i to node j iff po = 
1). If Q is an n x k zero-one matrix, then we let C(Q) 
denote the family of sets {C1 . . . . .  , Ck} where Cj = 
{ilq~ j = 1} fo r /  _<j -< k. 

PROPOSITION 1. Let P be an n x n zero-one matrix 
and let Q be an n × k zero-one matrix. Q has the 
intersection property with respect to P i f  and only i f  
C(Q) is an edge-clique-cover o f  G(P). 

PROOF. If. Say that C(Q) is an edge-clique-cover of 

G(P). Let (qsl, qs2 . . . . .  qsk) and (qtl, qr2 . . . . .  qtk) be 
row s and t of Q. Then (q~lqt~, • • • , q~h.qtk) = (0, O, 
. . . .  0) iff node s and node t do not belong to the 
same clique in C(Q). Moreover,  it follows from defini- 
tions that node s and node t do not belong to the same 
clique iff s and t are not connected in G(P) iff Psi = O. 
Therefore Q has the intersection property. 

Only if. Say that Q has the intersection property 
and let C(Q) = {C1, • • • , Ck}. For an arbitrary ] with 
1 <-- ] -< k, say that Cj = { s 1 ,  s 2 . . . . .  Sl). By the 
intersection property of Q, the (s~, s~) = entry in P is 
1 for all 1 - a ,  /3 -< l. Thus C~ is a clique in G(P). 
Suppose that node s and node t are connected in G(P); 
thenp~t = 1. Consequently q~ qtj = 1 for some/ .  So qs~ 
= qtj = 1, and hence node s and node t belong to the 
same clique Cj. Therefore {C~, . . . , Ck} is an edge- 
clique-cover of G. [] 

3. Complexity of the ECC Problem 

It is well known that the NCC problem is merely a 
restatement of the graph coloring problem (by consid- 
ering the complementary graph). 2 Garey and Johnson 
[2] have bounded the performance of polynomial-time 
graph coloring algorithms, under the assumption that 
P =b NP.  Translating their result to the NCC problem, 
it states that if P 4: N P  and if there are constants c and 
d and a polynomial-time algorithm A '  for the NCC 
problem such that A' (G)  <-- c .NCC(G)  + d for all 
graphs G, then c --- 2. A similar result for the ECC 
problem will follow from Proposition 2, which estab- 
lishes a relationship between heuristic algorithms for 
the NCC and ECC problems. 

PROPOSITION 2. Let c be a nonnegative constant. 
There is a polynomial time algorithm A for the ECC 
problem such that A(G)  <- c .ECC(G) + d for all G i f  
and only i f  there is a polynomial-time algorithm A '  for 
the NCC problem such that A ' (G)  <- c .NCC(G)  + d' 
for all G. 

z If G is a graph, its complement t~ is defined to have the same 
set of nodes as G, and two nodes are connected in t~ iff they are not 
connected in G. Note that if S is a subset of the nodes, then S is a 
clique in G iff the nodes in S can be colored the same color in t~ 
(i.e., S is an independent set in t~). 
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PROOF. If. Given an algorithm A '  for the NCC 
problem we describe an algorithm A for the ECC 
problem. Let  G be a given graph input for the ECC 
problem. Say that G has edges {el, e2 . . . . .  em}. Form 
a graph G '  with nodes {nl, n2 . . . . .  nm} and edges as 
follows. For 1 ---- i < j --< m,  let Iu denote the set of 
nodes in G upon which ei and e~ are incident (so that 
I~j contains either three or four nodes, depending on 
whether or not ei and e~ share an endpoint) .  Join n~ 
and n~ by an edge in G '  iff Iu contains the nodes of a 
complete subgraph of G. It is easy to verify that 
ECC(G) = NCC(G') .  The algorithm A constructs G '  
and applies A '  to G ' .  

Only if. Let A be the given algorithm for the ECC 
problem. Let G be an input for the NCC problem and 
say that G has e edges. Consider t additional nodes U 
= { U l ,  / 1 2 ,  • • • , Ut}, where t =Ice + d + 1]. Join each 
u~ to all nodes in G. Let the new graph be G ' .  We first 
claim that 

ECC(G')  <- t .NCC(G)  + e. 

To prove this s tatement ,  let {C1, (72 . . . . .  Cucc<c~} be 
a node-clique-cover for G. By construction, {u~} t_/ Cj 
is a clique in G ' ,  and the set of all such cliques {u~} U 
Cj for 1 -< i -< t and 1 <-j <- NCC(G) covers all edges 
from U to G. In order to cover all edges in G,  we need 
at most e more cliques. Thus the total is at most 
t .NCC(G)  + e. The polynomial-t ime algorithm A 
applied to G '  produces a set S of cliques which cover 
the edges of G ' .  By hypothesis,  the cardinality of S is 

A(G' )  <- c .ECC(G' )  + d <- c( t .NCC(G) + e) + d. 

For 1 ----- i --< t, let Si C_ S be the set of cliques which 
contain the node ut, and let k~ be the cardinality of St. 
Note that St f) Sj = ~b for i 4 ] because u~ and us are 
not connected. For any i, the cliques in S~ with the 
node u~ deleted can clearly be used as a node-clique- 
cover for G. Thus within polynomial t ime we can 
extract from S a node-clique-cover for G with cardinal- 
ity equal to 

l _ , m i n k t - < [ ~ ]  -< <-c.NCC(G) + 1. [] 

The following corollary is immediate from Proposi- 
tion 2 (only if) and the result of Garey and Johnson 
mentioned above.  

COROLLARY 1. I f  P =~ NP and i f  there are nonnega- 
tire constants c and d and a polynomial-time algorithm 
A for the ECC problem such that A(G)  <- c .ECC(G)  
+ d for all graphs G, then c >- 2. 

We now note that the problem of finding a mini- 
mum edge-clique-cover is NP-complete.  This means 
that P = N P  if and only if there is a polynomial-t ime 
algorithm for the ECC problem such that A(G)  = 
ECC(G) for all G. In order to conform to the frame- 
work used by Karp [7] in proving NP-completeness,  
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we restate the ECC and NCC problems as set recogni- 
tion problems.  Let 

SET-NCC = {(G, k)INCC(G) <- k}, 
SET-ECC = {(G, k) I ECC(G) <- k}. 

PROPOSITION 3. SEToECC is NP-complete. 

PROOF. As is customary with such proofs,  we omit 
the trivial verification that SET-ECC belongs to NP.  
Since SET-NCC is known to be NP-complete  [7], we 
need only show that SET-NCC is t ransformable to 
SET-ECC by a function computable  in polynomial- 
time. Let  (G, k) be a given graph-integer pair. Con- 
struct the graph G '  as in the proof  of Proposition 2 
(only if) wherec  = 1 a n d d  = 0, so t ha t t  = e + 1. Let 
k '  = k(e + 1) + e. It follows as in the proof  of 
Proposition 2 that 

(G, k) E SET-NCC iff (G',  k ') E SET-ECC,  

which completes the proof.  [] 

4. Heuristic for the ECC Problem 

In view of the results in the previous section, it 
seems unlikely that there is a polynomial-t ime algo- 
rithm A for the ECC problem with a ratio 
A(G ) /ECC(G )  less than 2, and there is even cause to 
suspect that there is no such algorithm with bounded 
ratio. The literature contains a number  of heuristic 
algorithms for the NCC problem (in the guise of graph 
coloring algorithms), for example [9, 10]; each such 
NCC algorithm yields an ECC algorithm by Proposi- 
tion 2 (if). However ,  Johnson [5] has analyzed the 
behavior  of several graph coloring algorithms and has 
shown the ratio A(G ) /NCC(G )  to be unbounded for 
all those which he considered. In light of Proposition 2 
(only if), this adds weight to the suspicion that there is 
no polynomial-time ECC algorithm with A(G) /ECC(G)  
bounded.  

Kellerman [8] has proposed a polynomial-t ime heu- 
ristic for the keyword conflict problem. It is an intui- 
tively appealing heuristic and indeed works very well 
for small problems. However ,  we shall construct a 
family of cases such that even an improved version of 
the heuristic will have an arbitrarily large ratio. 

When translated to the ECC problem,  the heuristic 
in [8] can be stated as follows. Let  G be a given graph 
input. We assume that the nodes of G have been 
labeled 1, 2 . . . . .  n. The algorithm forms cliques C1, 
C2 . . . .  by examining the nodes one by one. When a 
node i is examined,  only edges connecting i to nodes 
with smaller label are considered. In the following 
description of the algorithm, i is the node currently 
being examined,  and k is the number  of cliques which 
have been created so far. The set W contains those 
nodes j < i such that an edge connecting {i, j} has yet 
to be covered. 
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1. Initialize k ~ 0 and i ~ 0. 
2. Set i ~ i + 1 and terminate the algorithm if i > n. 

Set W ,,-- {Jl] < i and { i , j }  are connected in G}. 
3. If W = ~b, then set k ,---k + 1, create a new clique Ck = {i}, and 

go to 2. 
4. Try to insert i into existing cliques: 

4.1. Set m ~-- 1 and V ~  q~. 
4.2. While m -< k and V :b W do 

4.2.1 IfCm c W, thenset Cm ~ C m  tO{i} 

and V ~"- V tO Cm. 

4.2.2 m ",-m + 1. 
5. Update W to account for those edges which were covered in step 

4 : W * ' - - W -  V. 

6. If W = ~b, then go to 2. Otherwise new cliques must be added. 
Find an m, 1 < m -< k, such that the cardinality of C,, fq W is 
maximal; break ties by choosing the smallest such m. Set k ~ k 
+ 1, Ck ".-- (Cm fq W) tO {i}, W ~ W - Cm, and go to 6. 

(Note  tha t  s t ep  3 canno t  p r o d u c e  useless  s ing le ton  
cl iques  because  we have  a s sumed  tha t  G con ta ins  no 
i so la ted  nodes .  The  cl iques  in i t iaI ized in s tep  3 a re  
subsequen t ly  g rown in s tep  6.)  

In the  e x a m p l e  in F igure  1, the  resul t ing  c l iques  

are  Ca = {1, 3, 5}, Cz = {2, 3, 4}, Cz = {4, 5, 6}, C4 = 
{3, 6}. No te  tha t  when cons ide r ing  node  5, we see it is 
connec t ed  to 1, 3, 4. Since Ca = {1, 3} at tha t  m o m e n t ,  
it inc ludes  5 to form a new cl ique Ca = {1, 3, 5}, and  a 
new cl ique Cz = {4, 5} is c r ea t ed .  A s  a resu l t ,  for  node  
6, we need  two cl iques ,  {4, 5, 6} and  {3, 6}. C lea r ly ,  
an op t ima l  c l ique  cover  is Ca = {1, 3, 5}, C2 = 
{2, 3, 4}, Ca = {3, 4, 5, 6}. 

O u r  p r o p o s e d  i m p r o v e m e n t  of  the  a b o v e  heur is t ic  
r equ i res  one  add i t i ona l  pass  a f te r  the  or ig ina l  a lgor i thm 
t e rmina t e s  in s tep  2. 

7. Suppose C1, cz . . . . .  ck are the cliques produced by the 
previous heuristic. Examine the cliques one by one to see if the 
edges covered by a clique are a subset of the union of the edges 
covered by the remaining cliques. If a clique is subsumed by the 
union of the remaining cliques, then eliminate it. 

This  vers ion  is still p o l y n o m i a l - t i m e ,  and  it ce r ta in ly  
will neve r  p r o d u c e  m o r e  c l iques  than  the  or ig ina l  
heuris t ic .  

F o r  e x a m p l e ,  in F igure  2 the  or ig ina l  heur is t ic  will 
p r o d u c e  cl iques  C a = { 1 ,  2, 3}, C2 = {1, 2, 4}, Ca = 
{1, 3, 5}, C4 = {2, 3, 6}. But  the  edges  cove red  by  Ca 
are  a subse t  of  those  cove red  by (:72, Ca, C4; Ca is thus  
e l imina t ed  by the  mod i f i ed  vers ion•  In fact  {(:?2, Ca, C4} 
is an op t ima l  edge -c l ique -cove r .  

I t  should  be p o i n t e d  ou t  tha t ,  a l though  a s t ra ight -  
fo rward  i m p l e m e n t a t i o n  of  the  c l ique  e l imina t ion  s tep  
7 runs  in p o l y n o m i a l  t ime ,  this s t ep  might  c o n s u m e  
m o r e  t ime than  the  or ig inal  heur is t ic .  The  increase  
could  be ,  in the  wors t  case,  a fac tor  p r o p o r t i o n a l  to 
the  n u m b e r  of  c l iques  found  by the  or ig ina l  heur is t ic .  

W e  now cons t ruc t  a fami ly  of  g raphs  {Gin,t} which 
i l lus t ra te  tha t  even  the i m p r o v e d  heur is t ic  can p r o d u c e  
a n u m b e r  of  c l iques  which is an a rb i t r a r i ly  large  mul t i -  
p le  of  the  op t ima l  n u m b e r .  This  fami ly  is very  s imi lar  
to one  which Johnson  [6] has cons t ruc t ed  to i l lus t ra te  
the  wors t -case  p e r f o r m a n c e  of  the  Wel sh  and Powel l  
[9] co lor ing  a lgor i thm.  Le t  {al, a2 . . . . .  a m }  be the 
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nodes  of  a c o m p l e t e  g raph  A and  let  {ba, b2 . . . . .  b in}  

be the nodes  of  a c o m p l e t e  g raph  B. Join  {ai, b~} for  i 
= 1, 2, . . . ,  m .  Le t  {ua, u2 . . . . .  u t }  be a set of  
d is jo in t  nodes .  Join  each  u~ to all nodes  in A and  B. 
The  g raph  thus  cons t ruc t ed  is the  r e q u i r e d  Gra. t .  

W e  label  the  nodes  of  am,t in the  o r d e r  ut ,  Uz, 
. . . .  u t ,  a l ,  b a ,  a 2 ,  b z ,  • • • , a m ,  b i n .  T h e n  s teps  1 -6  of  
the  heur is t ic  p r o d u c e  the  fo l lowing c l iques:  

Ci = {aa, b l ,  ui}, i = 1, 2 . . . . .  t ,  

Ct+a = {al, a e ,  a a ,  • • • , am, Ul}, 
Ct+i - -  {a2 ,  bz, ui}, i = 2, 3 . . . . .  t ,  
Cgt+l = {bl, b2, b3 . . . . .  bra ,  Ua}, 
Ctt-a~t~-a)+i+2 = {aj, bj ,  ui}, 2 < i < t,  3 -< j < m.  

F o r  e x a m p l e ,  when  b2 is u n d e r  c o n s i d e r a t i o n ,  Ca, (:?2, 
• • • , C z t  are  a l r e a dy  in ex i s t ence ,  bz is c o n n e c t e d  to  
U l ,  u 2  . . . . .  u t ,  a 2 ,  and  ba, so tha t  bz can be  in se r t ed  
into the  c l iques  C t + z ,  • • • , C~t .  This  leaves  only  the  
edges  {bl, bz} and  {ua, bz} u n c o v e r e d ;  so a new cl ique 
C 2 H  is c r ea t ed .  T h e r e a f t e r ,  when  examin ing  aj f o r j  -> 
3, s tep  4 of  the  a lgo r i thm inser ts  aj  in to  C t + a .  N o  o t h e r  
inser t ions  are  poss ib le  be c a use  all o t h e r  exis t ing c l iques  
con ta in  some  node  in B which is no t  c o n n e c t e d  to as. 
T h e r e f o r e  s tep  6 c rea tes  t - 1 new cl iques  to cover  the  
edges  f rom as to Us, ua, • • • , ut. Then  bs is inse r t ed  
into C2t+x and  into  the  t - 1 c l iques  which were  jus t  
c r e a t e d  for  aj .  No te  that  the  n u m b e r  of  c l iques  is 

m ( t  - 1) + 3. 
C o n s i d e r  now the effect  of  the  c l ique  e l imina t ion  

s tep  7 when  a pp l i e d  to this edge -c l i que -cove r .  Ca can 
be  e l i m i n a t e d ,  bu t  each  of  the  o t h e r  c l iques  Cj for  j -> 
2 covers  an edge  which is c ove re d  by no  o t h e r  cl ique•  
F o r  e x a m p l e ,  G is the  only  c l ique  which covers  the  
edge  connec t ing  us to  a l ,  f o r ]  = 2, 3, . . . , t. Le t t i ng  
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H denote the heuristic algorithm consisting of steps 
1-7 above,  we therefore have 

H ( G m , t )  = m ( t  - 1) + 2. 

On the other hand, if we form cliques in the 
following manner:  

C'i = { a l ,  • • • , a m ,  u i } ,  i = 1 ,  2 . . . . .  t ,  

C't+~ = {ba . . . . .  bin,  u~}, i = 1, 2 ,  . . . , t ,  

C'2t+j = { a  j ,  b j } ,  j = 1 ,  2 ,  . . . , m ,  

then {C'1, • • • , C'2t+,.} is an edge-clique-cover for Gm, t .  

Therefore ,  

E C C ( G m , t )  < 2t + m .  

Choosing m = t, we have 

H ( G m , t ) / E C C ( G m , t )  >- [ m ( t  - 1) + 2]/(2t + m) = 
(t 2 - t  + 2 ) / 3 t ~ o o a s t ~ 0 o .  

Received May 1976; revised October 1976. 
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B-trees Re-examined 
Gerald Held, Tandem Computers, Inc. 
and Michael Stonebraker, 
University of California, Berkeley 

The B-tree and its variants have, with increasing 
frequency, been proposed as a basic storage structure 
for multiuser database applications. Here, three 
potential problems which must be dealt with in such a 
structure that do not arise in more traditional static 
directory structures are indicated. One problem is a 
possible performance penalty. 

Key Words and Phrases: B-tree, directory, static 
directory, dynamic directory, index sequential access 
method 
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Introduction 

The B-tree [1] has been receiving considerable 
attention as a storage structure for certain files on 
paged secondary storage devices. Such files include 
those consisting of a collection of records each of 
which has an identifying portion called a KEY.  Access 
to the file is desired both randomly (by requesting the 
record corresponding to a given key) and sequentially 
(in collating sequence by key value). 

In this paper  we briefly explain a B-tree,  several of 
its variants and an alternate static directory structure. 
Then we indicate some potential  problems which B- 
tree implementat ions must overcome in a multiuser 
database environment  that do not arise in static direc- 
tory structures. These problems include a possible 
performance penalty. 
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