o Are security commit messages informative? Not enough!
Sofia Reis Rui Abreu Corina Pasareanu
sofia.o.reis@tecnico.ulisboa.pt rui@computer.org pcorina@cmu.edu
INESC-ID & IST/Técnico, U. of Lisbon INESC-ID & FEUP, U. Porto Carnegie Mellon University
Lisbon, Portugal Porto, Portugal USA

ABSTRACT

The fast distribution and deployment of security patches are im-
portant to protect users against cyberattacks. These fixes can be
detected automatically by patch management triage systems. How-
ever, previous work has shown that automating the task is not
easy, in some cases, because of poor documentation or lack of in-
formation in security fixes. For many years, standard practices in
the security community have steered engineers to provide cryp-
tic commit messages (i.e., patch software vulnerabilities silently)
to avoid potential attacks and reputation damage. However, not
providing enough documentation on vulnerability fixes can hinder
trust between vendors and users. Current efforts in the security
community aim to increase the level of transparency during patch
and disclosing times to help build trust in the development commu-
nity and make patch management processes faster. In this paper,
we evaluate how informative security commit messages (i.e., mes-
sages attached to security fixes) are and how different levels of
information can affect different tasks in automated patch triage
systems. We observed that security engineers, in general, do not
provide enough detail to enable the three automated triage systems
at the same time. In addition, results show that security commit
messages need to be more informative—56.7% of the messages ana-
lyzed were documented poorly. Best practices to write informative
and well-structured security commit messages (such as SECOM)
should become a standard practice in the security community.

CCS CONCEPTS

« Software and its engineering — Software evolution; « Security
and privacy — Software security engineering.

KEYWORDS

Security, Best Practices, Convention, Commit Messages, Patch Man-
agement Process

ACM Reference Format:

Sofia Reis, Rui Abreu, and Corina Pésareanu. 2023. Are security commit
messages informative? Not enough!. In Proceedings of the International
Conference on Evaluation and Assessment in Software Engineering (EASE
’23), June 14-16, 2023, Oulu, Finland. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3593434.3593481

This work is licensed under a Creative Commons Attribution International
4.0 License.

EASE °23, June 14-16, 2023, Oulu, Finland

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0044-6/23/06.
https://doi.org/10.1145/3593434.3593481

1 INTRODUCTION

Many efforts in the software security engineering field (e.g., secu-
rity by design, security policies, application security testing) have
been made to avoid software vulnerabilities of reaching produc-
tion. Yet, the number of vulnerabilities and cyberattacks is still
growing. Timely patch management (i.e., the fast distribution and
deployment of security fixes to users [5, 13, 15]) is one of the most
effective and widely recognized strategies for protecting software
systems against cyberattacks [13]. One practical example is the
Equifax breach [1]: a failure to patch a 2-month-old critical bug in
Apache Struts, which led to a sensitive data breach that impacted
143 million US consumers [2]. Security patches can be detected au-
tomatically by patch management triage systems. However, those
systems are known to be inefficient in identifying and prioritizing
security patches [5, 12, 16]. Current processes are largely manual
(i-e., time-consuming) [5] and prone to ignore important bug fixes
such as the one behind Equifax [1]. One of the reasons why triage
systems are inefficient is the lack of detailed and quality documen-
tation about security fixes at the commit (or patch) level [6].

Problem: Cryptic messages to document security patches!
Previous work has shown that security commit messages (i.e., the
commit messages attached to the code changes used to patch soft-
ware vulnerabilities) can be cryptic [17] and inadequate to perform
software vulnerability and patch detection [6]. For many years, stan-
dard practices in the security community have steered engineers
to provide minimalist commit messages to avoid potential attacks
and reputation damages [17]. While this practice is usually used to
protect vendors and systems, it also limits the general knowledge
pool of people who actually understand the vulnerability and know
how to exploit it, which leaves users and defenders unprotected and
unaware. According to the CERT Coordinated Vulnerability Disclo-
sure (CVD) guide, this practice should be avoided since knowing
the existence of vulnerabilities and their patches is often the key
driver to effective patch deployment [3].

Motivation. Figure 1 shows the security commit message used
to document the patch for CVE-2022-35928". Although the message
only provides a brief description of the patch, it is clear the code
changes fix a “security issue” related to “passwords”. In reality, this is
the patch for a potential buffer overrun vulnerability resulting from
reading user-provided passwords and confirmations via command-
line prompts—which could be clearer in the message. In addition,
the patch fixes an “Improper Authentication” weakness (CWE-287)
with a severity (CVSS) score of 8.4 in 10—which is not explicit in
the message. This extra information could have helped automated
or manual patch triage systems to prioritize this patch since it
has high severity. Again, while some argue that security-related
documentation should be minimalist, others argue that details are

!https://nvd.nist.gov/vuln/detail/CVE-2022-35928

https://doi.org/10.1145/3593434.3593481
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3593434.3593481
https://nvd.nist.gov/vuln/detail/CVE-2022-35928
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593434.3593481&domain=pdf&date_stamp=2023-06-14

EASE 23, June 14-16, 2023, Oulu, Finland

fixed acTION _ issue FLAW with

Figure 1: Example of commit message used to patch the soft-
ware vulnerability identified by CVE-2022-35928

crucial for making automated tools effective [12, 16], creating trust
amongst users [3], and enabling fast patch management [3, 16].

Study. Previous work has shown that security-related commits
can include relevant information [7, 8, 10]. In this study, we assess
how informative security commit messages are and show how the
different levels of information affect the different tasks in auto-
mated patch triage systems (detection, assessment, and prioritiza-
tion). We used a Named Entity Recognition (NER) tool to extract
security-related information from security commit messages [10].
An example of the extraction result can be seen in Figure 1. We
inferred the information level by applying a set of rules on top of
the information extracted for each message by the NER tool. In
total, we analyzed 11036 security commit messages.

Results. We observed that security engineers provided accept-
able or good levels of detail for 44.3% of the security commit mes-
sages. However, 56.7% of the messages were poorly documented,
which shows security engineers are not writing informative secu-
rity commit messages yet.

Solution. Detecting and extracting relevant information about
software vulnerabilities can be done through vulnerability reports
(after disclosing time). However, the average time between the avail-
ability of a security patch and its disclosure is one week (it varies
from days to years) [4], which is a lot of time for users to be ex-
posed to vulnerabilities when a fix is already available. Therefore,
it is important to craft informative commit messages to 1) ensure
triage systems can automatically detect security patches and trig-
ger notifications to the users about vulnerabilities and respective
patches earlier than disclosing time, to enable faster patch manage-
ment and avoid cyberattacks [3, 12, 16]; 2) to improve the human
understanding of these software vulnerabilities for researchers and
developers, which can drive science forward in the Software Vul-
nerability Management field [8, 12]. To craft well-structured and
informative commit messages, best practices, such as SECOM [9, 10]
(a standard for security commit messages validated by the open-
source security community) and SECOMlint [11] (a tool to measure
compliance against SECOM) should be applied.

Contribution. An empirical analysis of the information in-
cluded in security commit messages and how different levels of
information can affect the different automated tasks performed by
patch management processes.

2 HOW INFORMATIVE ARE SECURITY
COMMIT MESSAGES?

In this section, we detail the methodology used to classify the
different levels of information and report the respective results.

2.1 Dataset Collection and Preprocessing

We leverage the dataset of security commit messages and respective
data extraction produced in previous work [10]. This section briefly

197

Reis, et al.

summarizes the collection and preprocessing steps. The dataset
considers data released until the 12th of August, 2022.

2.1.1 Vulnerability Metadata Collection from Public Vulnerability
Databases. Public vulnerability databases, such as the National
Vulnerability Database (NVD)?, and the Open-Source Vulnerability
(OSV) database?, integrate documentation (or reports) for thousands
of known vulnerabilities. Our dump of the OSV database includes a
total of 30091 vulnerability reports for open-source vulnerabilities
from different ecosystems: GitHub Advisories, Linux, PyPI, NPM,
0SS-Fuzz, Maven, RubyGems, Go, and more. For NVD, we collected
a total of 181614 vulnerability reports. In total, we collected 211705
vulnerability reports from both databases.

2.1.2 Collection and Preprocessing of References to Security Patches.
Each vulnerability report for both data sources includes a section
referencing the fix (or patch) when available.

Collection: To get the commits involved in patching the security
vulnerability, we filtered out all the vulnerability reports without
references to commit links. We discovered that only 9% of the vul-
nerability reports in the OSV and NVD have fixes available. In this
study, we only focus on vulnerability reports that include com-
mits for fixes available on GitHub—since security patches available
through GitHub reflect more than 80% of the commits extracted
from vulnerability reports. In total, we found references to GitHub
fixes in 8670 NVD reports and 9576 OSV reports.

Preprocessing: To collect the commit message of these commits,
we used the GitHub API, which requires knowing the owner of the
repository which integrates the commit; the name of the repository;
and the version (or, SHA key) that included the vulnerability. How-
ever, sometimes due to the lack of precise information, we could not
determine the data required to get the commit message (e.g., when
the commit link had master instead of a specific SHA key). Thus, we
can not ensure that the current version on master is the version
where the vulnerability was detected. Therefore, we removed all
the vulnerability reports where we found this issue which resulted
in a total of 8405 security patches for NVD (3% of data points) and
9466 security patches for OSV (1% of data points).

Merging and Cleaning: Both data sources were merged after
normalization into a dataset of 17871 security patches while keep-
ing the vulnerability reports metadata. Many vulnerabilities are
reported in both NVD and OSV. Therefore, we found duplicates
between both sources using different heuristics: 1) duplicated en-
tries for security patches but with missing values for vulnerability
score in one of the sources (18% of data points); 2) OSV reports
contain a field called “aliases” which is a list of IDs of the same vul-
nerability in other databases. Therefore, we removed all the NVD
entries (19% of data points) whose IDs were already in the aliases
of OSV reports; 3) vulnerabilities fixed with the same patch, usually
vulnerabilities that affect different codebases and therefore result
in different vulnerability reports were also removed (13% of data
points). After removing the different types of duplicates, we end
up with a dataset of 10254 security patches.

2.1.3 Collection and Preprocessing of Security Commit Messages.
Vulnerabilities can be fixed with one commit (single-commit patch)

National Vulnerability Database: https://nvd.nist.gov/
3A distributed vulnerability database for Open Source: https://osv.dev/

https://nvd.nist.gov/
https://osv.dev/

Are security commit messages informative? Not enough!

or more commits (multi-commit patch)—88.6% (9083) of the patches
are single-commit patches while the other 11.4% (1170) of the
patches are multi-commit patches. From 10254 security patches,
we extracted a total of 11809 security commits. GitHub metadata
(including the commit message) was collected using the GitHub APL
The commit messages were preprocessed in different ways: (1) A to-
tal of 334 commits (the equivalent to 160 vulnerability reports) were
no longer available at the metadata collection time. Therefore, they
were removed from the dataset. (2) We found duplicated commit
messages resulting from vulnerability reports with references to the
vulnerability fix but deployed in different branches. One example is
the GHSA-273r-mgr4-v34f*, which references a commit per branch
where the vulnerability was fixed. In these cases, since the commit
messages are the same, we only kept one of the commits. There-
fore, an extra 270 commits were removed from the dataset—which
left us with 11205 security commit messages. (3) As in previous
work [14], we removed non-human written message patterns except
when the original commit message is somehow attached to the
commit message under analysis, i.e., includes any text generated
by humans. One example is the GHSA-3m93-m4q6-mc6v> advisory,
which only references the cherry-picked commit. In addition to
the patterns mentioned in [14], we also removed commit messages
with pull request merges from dependabot and pull requests merges
without any human text. In summary, we found and removed a
total of 126 automated commit messages and kept 11079 security
commit messages. (4) We noticed some of the commit messages
were not written in English. Therefore, we ran langde'cect6 to in-
fer the message’s text language. The model detected 1311 (11.8%)
security commit messages as non-English. The tool can perform
inaccurate predictions when evaluating too short or too ambiguous
text. Therefore, we manually inspected the non-English messages
to make sure we would not remove English and valid messages. Af-
ter manual validation, we removed an extra total of 43 non-English
messages, such as “F P L5 EEAE R

Results. We successfully collected a total of 11036 security com-
mit messages, the equivalent to 9943 security patches.

2.2 Information Level Classification

This section explains the methodology used to classify the different
levels of information provided in security commit messages and
the respective results.

2.2.1 Named Entity Recognition. NER is a form of Natural Lan-
guage Processing (NLP) and also referred to as entity chunking,
extraction, or identification. It is the task of identifying and ex-
tracting key information, called entities, from unstructured data (in
this case, text). An entity can be any word or bag of words that
refers to the same entity category. For instance, different names of
companies, “Netflix”, “Google” or “Apple” are entities that belong
to the Company category. NER requires the design of specific entity
categories and the respective entity values, which relies on good
domain knowledge.

“https://github.com/advisories/ GHSA-273r-mgr4-v34f
Shttps://github.com/advisories/ GHSA-3m93-mdq6-mc6v
langdetect, tool to infer the text language. It supports 55 different text languages.

198

EASE 23, June 14-16, 2023, Oulu, Finland

Table 1: Different Categories of Entities [10].

Category | Rationale Example

VULNID Vulnerability IDs are used to iden- | GHSA-269q-hmxg-m83q,
tify vulnerabilities for different | CVE-2016-2512, CVE-2015-
ecosystems in commit messages: | 8309, GHSA-9x4c-63pf-
CVE, GHSA, OSV, PyPI, etc. The ID | 525f, OSV-2016-1
can enable the detection of security
commits.

CWEID Vulnerabilities usually belong toa | CWE-119, CWE-20, CWE-
weakness type and can enable as- | 79, CWE-189
sessment tasks. One common taxon-
omy used to classify security weak-
nesses is the Common Weakness
Enumeration (CWE) one.

SEVERITY | Vulnerabilities usually have a sever- | low, medium, high, critical
ity assigned and can enable priori-
tization during patch management
processes.

SECWORD | Security-relevant words usually de- | ldap injection, crlf injection,
scribe the vulnerability and respec- | improper validation, com-
tive fix. These words can enable the | mand injection, cross-site
detection of security commits. scripting, sanitize, bypass

ACTION A commit usually implies an action, | fix, patch, change, add, re-
in the case of security, fixing a vul- | move, found, protect, up-
nerability (corrective maintenance). | date, optimize, mitigate

FLAW Fixing a security vulnerability usu- | defect, weakness, flaw,
ally implies fixing a flaw. fault, bug, issue

Table 2: Tasks in Patch Management Triage Systems.
Automated Task Description Entity Category
DETECTION (D) Locate or detect security- | VULNID, ACTION,
related commits through | FLAW, SECWORD
commit message analysis.
ASSESSMENT (A) Classify and cluster security- | CWEID
related commits per weakness.

PRIORITIZATION (P) | Classify and order security- | SEVERITY

related commits per severity.

2.2.2 Entity Extraction. Previous work has developed a list of cat-
egory entities (or information) to extract from security commit
messages [10]. Table 1 describes the different entity categories we
picked from the original list for this study. The rationale behind each
category is presented in Table 1. We chose VULNID, CWEID, and
SEVERITY because we argue to be the most effective for performing
detection (D), assessment (A), and prioritization (P) tasks in commit
messages, respectively (Table 2). SECWORD, ACTION, and FLAW
categories can also be useful for detecting security-related commits.
Yet, not as effective as the VULNID since the vulnerability ID clearly
identifies a known security vulnerability. The different entities were
extracted from a total of 11036 security commit messages. In this
study, we leverage the extraction performed in previous work[10] to
assess the different levels of information security engineers provide
in current security patch documentation.

2.2.3 Information Level Assessment. We considered six different
levels of information for security commit messages: Excellent, Very
Good, Good, Medium, Poor, and Very Poor. Table 3 provides details
on the rationale behind each level of information, the rule used to
classify each level, the number of commit messages classified per
level, and which automated tasks could be performed for the differ-
ent levels of information in security commit messages. Information
level classification is calculated based on the presence or absence
of specific category entities and combinations.

2.24 Results. Our study shows security engineers provide medium
or good levels of detail in 44.3% of security commit messages used

EASE 23, June 14-16, 2023, Oulu, Finland

Table 3: Information Spectrum of Security Commit Messages.

Reis, et al.

Level Rule Rationale D| A| P | #Messages
Excellent | VULNID A CWEID A SEVERITY A SEC- | Security engineers provide all the different entity categories in a security commit | v'| V' | V| 0
WORD A ACTION A FLAW message and enable all the 3 different tasks (D, A, P).
Very VULNID A SECWORD A ACTION A | Security engineers provide all the different entity categories in a security commit | v/ 264
Good FLAW message except for metadata (CWEID and SEVERITY). They can still look at the
vulnerability report manually to collect the weaknesses type and severity, but not
referencing both in the commit message disables A and P.
Good SECWORD A ACTION A FLAW Security engineers only provide a description of the vulnerability and respective fix. D | v/ 1262
is possible, but A and P will fail.
Medium ACTION A (FLAW vV SECWORD) Security engineers provide a description of a flaw (that can be a security vulnerability or | v/ 3253
not) and its respective fix. D is possible but most likely will require manual validation.
Poor VULNID V CWEID V SEVERITY V SEC- | Security engineers include at least one of the entity categories in the security commit | v'| v/| v'| 4602
WORD V ACTION V FLAW message. It may enable one or more of the different tasks (D, A, P), but not all.
Very Poor | No entity was found. Security engineers fail to include any of the entity categories. D, A, and P tasks fail. 1655

to patch known security vulnerabilities. However, in none of the
cases, patch triage systems could perform all three different auto-
mated tasks (D, A, and P). This emphasizes the need for complete
security commit messages, i.e., messages that include all six cate-
gory entities, specially VULNID, CWEID, and SEVERITY, to enable
and improve automated tasks in triage systems. A total of 56.7% of
the messages were poorly documented. In fact, 15% did not include
any of the six category entities, i.e., would be completely missed
by automated triage systems. In 41.7% of the poorly documented
security commit messages, security engineers provided at least one
of the category entities, which can enable some of the different
automated tasks but not all as in the excellent information level.
The detection (D) task seems to be the easiest to perform (possible
in different levels of information, Table 3).

Answer. Not informative enough. Security engineers must pro-
vide more detailed documentation to make triage systems effective.

3 TRANSPARENCY IS RISKY BUT NECESSARY

Transparency is a double-edged sword. It can be a source of trust
for consumers [3], but also a place for vulnerability [17]. The real-
ity is that non-transparent processes make timely and automated
patch management a challenge (or even impossible). The CERT Co-
ordinated Vulnerability Disclosure (CVD) guide suggests avoiding
poorly informative documentation since it hinders public awareness
of fixes to software vulnerabilities—which breaks user trust in ven-
dors and leads to poor triage systems. The SECOM convention [10]
and respective compliance tool [11] are meant to help vendors to
produce informative documentation for security patches at the com-
mit level. We are aware that being too much transparent can make
users vulnerable to cyberattacks, but we argue that providing better
documentation will help triage systems locate those fixes instantly
and enable fast security patch management processes. Thereby,
users and companies can benefit from a solution that notifies them
as soon as a new security patch is released, which is usually one
week earlier than the disclosure [4]. Risk Analysis. Experienced
security engineers should determine the level of detail to provide. If
development systems are private, then no major risks are attached
to providing detailed security commit messages (in principle, we
do not account for internal attackers). However, when a critical
vulnerability is to be patched in open-source software of wide use,
then security engineers should carefully decide which details to
include in the message. They should provide enough information
to users to understand its criticality but not enough to attackers.

199

4 CONCLUSIONS

In this study, we assess the different information levels in secu-
rity commit messages to understand how detailed and transparent
patch documentation at the commit level is and how the level of in-
formation can affect automated triage systems (important to avoid
cyberattacks). We observed that security commit messages must be
more informative to enable detection, assessment, and prioritization
(all important tasks for security maintenance teams).

REFERENCES

[1] Russell Brandom. 2017. Former Equifax CEO blames breach on a single person
who failed to deploy patch. https://www.theverge.com/2017/10/3/16410806/
equifax-ceo-blame-breach-patch-congress-testimony.

[2] Dan Goodin. 2017. Failure to patch two-month-old bug led to massive
Equifax breach. https://arstechnica.com/information-technology/2017/09/
massive-equifax-breach- caused-by-failure- to- patch-two-month-old-bug/.

[3] Allen Householder, Garret Wassermann, Arthur Manion, and Christopher King.
2020. CERT® Guide to Coordinated Vulnerability Disclosure. (9 2020). https:
//doi.org/10.1184/R1/12367340.v1

[4] Frank Li and Vern Paxson. 2017. A Large-Scale Empirical Study of Security
Patches. In CCS’17. 2201-2215.

[5] Frank Li, Lisa Rogers, Arunesh Mathur, Nathan Malkin, and Marshini Chetty.
2019. Keepers of the Machines: Examining How System Administrators Manage
Software Updates For Multiple Machines. In SOUPS @ USENIX’19.

[6] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. 2018. Beyond Metadata:
Code-centric and Usage-based Analysis of Known Vulnerabilities in Open-source
Software. (2018).

[7] Serena E. Ponta, Henrik Plate, Antonino Sabetta, Michele Bezzi, and Cédric
Dangremont. 2019. A Manually-Curated Dataset of Fixes to Vulnerabilities of
Open-Source Software. In MSR’19. IEEE Press, 383-387.

[8] Sofia Reis and Rui Abreu. 2017. SECBENCH: A Database of Real Security Vulner-
abilities.. In SecSE @ ESORICS. 69-85.

[9] Sofia Reis, Rui Abreu, Hakan Erdogmus, and Corina Pasareanu. 2022. SECOM:

Towards a convention for security commit messages. In MSR’22.

Sofia Reis, Hakan Erdogmus, Rui Abreu, and Corina Pasarenau. 2023. Best

Practices when Writing Security Commit Messages: Are we there yet?

Sofia Reis, Corina Pasareanu, Rui Abreu, and Hakan Erdogmus. 2023. SECOMlint:

A linter for Security Commit Messages.

Arthur D. Sawadogo, TegawendéF. Bissyandé, Naouel Moha, Kevin Allix, Jacques

Klein, Li Li, and Yves Le Traon. 2022. SSPCatcher: Learning to catch security

patches. Empirical Software Engineering 6 (2022), 151.

Murugiah Souppaya and Karen Scarfone. 2013. Guide to Enterprise Patch Man-

agement Technologies. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-40r3.pdf.

Yingchen Tian, Yuxia Zhang, Klaas-Jan Stol, Lin Jiang, and Hui Liu. 2022. What

makes a good commit message?. In ICSE’22. ACM.

Christian Tiefenau, Maximilian Haring, Katharina Krombholz, and Emanuel

Von Zezschwitz. 2020. Security, Availability, and Multiple Information Sources:

Exploring Update Behavior of System Administrators (SOUPS’20).

Zheng Zhang. 2021. An Investigation of the Android Kernel Patch Ecosystem. In

USENIX’21".

Jiayuan Zhou, Michael Pacheco, Zhiyuan Wan, Xin Xia, David Lo, Yuan Wang,

and Ahmed E. Hassan. 2021. Finding A Needle in a Haystack: Automated Mining

of Silent Vulnerability Fixes. In ASE’21.

(1]

[12

(13]

[14

[15

[16

=
=

https://www.theverge.com/2017/10/3/16410806/equifax-ceo-blame-breach-patch-congress-testimony
https://www.theverge.com/2017/10/3/16410806/equifax-ceo-blame-breach-patch-congress-testimony
https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug/
https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug/
https://doi.org/10.1184/R1/12367340.v1
https://doi.org/10.1184/R1/12367340.v1
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-40r3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-40r3.pdf

	Abstract
	1 Introduction
	2 How informative are security commit messages?
	2.1 Dataset Collection and Preprocessing
	2.2 Information Level Classification

	3 Transparency is risky but necessary
	4 Conclusions
	References

