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The Exponential-Time Hypothesis (ETH) is a strengthening of the P � NP conjecture, stating that 3-SAT
on n variables cannot be solved in (uniform) time 2ϵ ·n , for some ϵ > 0. In recent years, analogous hypotheses
that are “exponentially strong” forms of other classical complexity conjectures (such as NP � BPP or

coNP � NP) have also been introduced and have become widely influential.
In this work, we focus on the interaction of exponential-time hypotheses with the fundamental and closely

related questions of derandomization and circuit lower bounds. We show that even relatively mild variants of

exponential-time hypotheses have far-reaching implications to derandomization, circuit lower bounds, and

the connections between the two. Specifically, we prove that:

(1) The Randomized Exponential-Time Hypothesis (rETH) implies that BPP can be simulated on

“average-case” in deterministic (nearly-)polynomial-time (i.e., in time 2Õ (log(n)) = nloglog(n)O (1)
). The de-

randomization relies on a conditional construction of a pseudorandom generator with near-exponential

stretch (i.e., with seed length Õ (log(n))); this significantly improves the state-of-the-art in uniform

“hardness-to-randomness” results, which previously only yielded pseudorandom generators with sub-

exponential stretch from such hypotheses.

(2) The Non-Deterministic Exponential-Time Hypothesis (NETH) implies that derandomization of

BPP is completely equivalent to circuit lower bounds against E, and in particular that pseudorandom
generators are necessary for derandomization. In fact, we show that the foregoing equivalence follows

from a very weak version of NETH, and we also show that this very weak version is necessary to prove

a slightly stronger conclusion that we deduce from it.
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Last, we show that disproving certain exponential-time hypotheses requires proving breakthrough circuit

lower bounds. In particular, if CircuitSAT for circuits over n bits of size poly(n) can be solved by probabilistic

algorithms in time 2n/polylog(n) , then BPE does not have circuits of quasilinear size.

CCS Concepts: • Theory of computation → Pseudorandomness and derandomization; Complexity

classes; Circuit complexity;
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1 INTRODUCTION

The Exponential-Time Hypothesis (ETH), introduced by Impagliazzo and Paturi [31] (and re-
fined in [32]), conjectures that 3-SAT with n variables andm = O (n) clauses cannot be determin-
istically solved in time less than 2ϵ ·n (for a constant ϵ = ϵm/n > 0). The ETH may be viewed as
an “exponentially strong” version of P � NP, since it conjectures that a specific NP-complete
problem requires essentially exponential time to solve.
Since the introduction of ETH many related variants, which are also “exponentially strong” ver-

sions of classical complexity-theoretic conjectures, have also been introduced. For example, the
Randomized Exponential-Time Hypothesis (rETH), introduced in [15], conjectures that the
same lower bound holds also for probabilistic algorithms (i.e., it is a strong version of NP �
BPP). The Non-Deterministic Exponential-Time Hypothesis (NETH), introduced (implic-
itly) in [7], conjectures that co-3SAT (with n variables and O (n) clauses) cannot be solved by non-
deterministic machines running in time 2ϵ ·n for some constant ϵ > 0 (i.e., it is a strong version
of coNP � NP). The variations MAETH and AMETH are defined analogously (see [61]1), and
other variations conjecture similar lower bounds for seemingly harder problems (e.g., for #3SAT;
see [15]).
These Exponential-Time Hypotheses have been widely influential across different areas of com-

plexity theory. Among the numerous fields to which they were applied so far are structural com-
plexity (i.e., showing classes of problems that, conditioned on exponential-time hypotheses, are
“exponentially hard”), parametrized complexity, communication complexity, and fine-grained com-
plexity; see, e.g., the surveys cited in [40, 62–64].
Exponential-time hypotheses focus on conjectured lower bounds for uniform algorithms. Two

other fundamental questions in theoretical computer science are those of derandomization, which
refers to the power of probabilistic algorithms; and of circuit lower bounds, which refers to the
power of non-uniform circuits. Despite the central place of all three questions, the interactions
of exponential-time hypotheses with derandomization and circuit lower bounds have yet to be
systematically studied.

1.1 Our Results: Bird’s Eye

In this work, we focus on the interactions between exponential-time hypotheses, derandomization,
and circuit lower bounds. In a nutshell, our main contribution is showing that:

1In [61], the introduction of these variants is credited to a private communication from Carmosino, Gao, Impagliazzo,

Mihajlin, Paturi, and Schneider [7].
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Even relatively mild variants of exponential-time hypotheses have far-

reaching consequences for derandomization and circuit lower bounds.

Let us now give a brief overview of our specific results before describing them in more detail in
Sections 1.2, 1.3, and 1.4. Our two main results are the following:

(1) We show that rETH implies a nearly-polynomial-time average-case derandomization of
BPP. Specifically, assuming rETH, we show that BPP can be decided, in average-case and

on infinitely many input lengths, by deterministic algorithms that run in time nloglog(n)O (1)

(see Theorem 1.1). This significantly improves the state-of-the-art in the long line of uniform
“hardness-to-randomness” results.

(2) A classical open question is whether worst-case derandomization of BPP requires pseu-
dorandom generators. We show that a weak version of NETH yields a positive answer to

this question; specifically, it suffices to assume that E = DT IME[2O (n)] is hard for small
circuits that are uniformly generated by non-deterministic machines (see Section 1.3). This
indicates that the answer to the classical question might be positive and suggests a path
towards proving so.

Last, we show that disproving a conjecture similar to rETH requires proving breakthrough circuit
lower bounds (see Theorem 1.7, and see the discussion in Section 1.4 for a comparison with the
state-of-the-art).

Relation to Strong Exponential Time Hypotheses. The exponential-time hypotheses that we con-

sider also have “strong” variants that conjecture a lower bound of 2(1−ϵ ) ·n , where ϵ > 0 is arbitrarily
small, for solving a corresponding problem (e.g., for solving SAT, coSAT, or #SAT; see, e.g., [63]).2

In this article, we focus only on the “non-strong” variants that conjecture lower bounds of 2ϵ ·n for
some ϵ > 0. Indeed, the point is that even the variants that we consider already have far-reaching
consequences for derandomization and circuit lower bounds.
We mention that a recent work of Carmosino, Impagliazzo, and Sabin [8] studied the im-

plications of hypotheses in fine-grained complexity on derandomization. These fine-grained
hypotheses are implied by the “strong” version of rETH (i.e., by rSETH), but are not known to
follow from the “non-strong” versions that we consider in this article. We will refer again to their
results in Section 1.2.

1.2 rETH and Pseudorandom Generators for Uniform Circuits

The first hypothesis that we study is rETH, which (slightly changing notation from above) asserts
that probabilistic algorithms cannot decide if a given 3-SAT formula with v variables and O (v )
clauses is satisfiable in time less than 2ϵ ·v , for some constant ϵ > 0. Note that such a formula can
be represented with n = O (v · log(v )) bits, and therefore the conjectured lower bound as a function
of the input length is 2ϵ ·(n/ log(n)) .

1.2.1 Background: Uniform Hardness vs. Randomness. Intuitively, using “hardness-to-
randomness” results, we expect that a strong lower bound such as rETH would imply a
strong derandomization result. When starting from lower bounds for non-uniform circuits, and
aiming to deduce worst-case derandomization, smooth tradeoffs that yield such results are well-
known (see, e.g., [34, 44, 50, 54, 57]) The key problem, however, is that the long line of works that
starts from hardness for uniform algorithms (and aims to deduce average-case derandomization)
did not yield such smooth tradeoffs so far (see [6, 8, 20, 26, 27, 33, 35, 41, 51, 56]).

2Some “strong” variants of standard exponential-time hypotheses are in fact known to be false (see [61]).
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Ideally, given an exponential lower bound for uniform probabilistic algorithms (such as E �
i.o.BPT IME[2ϵ ·n]),3 we would like to deduce that there exists a PRG with exponential stretch
for uniform circuits, and consequently that BPP = P in “average-case.”4 However, prior to the
current work, the state-of-the-art (by Trevisan and Vadhan [56]) could at best yield PRGs with
sub-exponential stretch (i.e., with seed length polylog(n)), even if the hypothesis refers to an ex-
ponential lower bound. Moreover, the best currently known PRG only works on infinitely many
input lengths.
Previous works bypassed these two obstacles in various indirect ways. Carmosino, Impagliazzo,

and Sabin [8] deduced polynomial-time derandomization of BPP on all input lengths relying
on strong hypotheses from fine-grained complexity (these hypotheses are implied by the “strong”
version of rETH, i.e., by rSETH). Gutfreund and Vadhan [27] deduced (subexponential-time) de-
randomization of RP on all input lengths, rather than of BPP (see details below). Last, a line of
works dealing with uniform “hardness-to-randomness” for AM (rather than for BPP) was able
to bypass both obstacles in this context (see, e.g., [26, 41, 51]).5

1.2.2 Our Contribution to Uniform Hardness vs. Randomness. In this work, we tackle both ob-
stacles directly. Loosely speaking, our first main result is that rETH implies the existence of a PRG
for uniform circuits with near-exponential stretch, which can be used for average-case derandom-
ization of BPP in nearly-polynomial-time. Specifically, the PRG that we construct has seed length

Õ (log(n), and the corresponding derandomization runs in time 2Õ (log(n)) = nloglog(n)O (1)
.

Our hardness assumption will in fact be weaker than rETH: It suffices to assume that theTotally

Quantified Boolean Formula (TQBF) problem cannot be solved by probabilistic algorithms that

run in time 2n/polylog(n) (see Definition 4.6 for a standard definition of TQBF). This hypothesis is
weaker than rETH, because 3-SAT reduces to TQBF with a linear overhead in the input length.
(Indeed, it is a far weaker hypothesis, since TQBF is PSPACE-complete, whereas 3-SAT is only
NP-complete.)
Theorem 1.1 (rETH ⇒ PRG with Almost-exponential Stretch for Uniform Circuits;

Informal). Suppose that there exists T (n) = 2n/polylog(n) such that TQBF � BPT IME[T ].
Then, there exists a PRG that has seed length Õ (log(n)), runs in time npolyloglog(n) , and is (1/n)-
pseudorandom on infinitely many input lengths for every distribution over circuits that can be
sampled in polynomial time.

The technical statement of Theorem 1.1 is even stronger: For every t (n) = npolyloglog(n) , the PRG
is (1/t )-pseudorandom for every distribution over circuits that can be sampled in time t and with
O (log(t )) bits of advice (see Theorem 4.14 for details).
Theorem 1.1 establishes for the first time that hardness assumptions forBPT IME yield a PRG

for uniform circuits with seed length as short as Õ (log(n)) and running time as small as 2Õ (log(n)) .
The proof of this result is based on careful refinements of the proof framework of [33], using new
technical tools that we construct. The latter tools significantly refine and strengthen the techni-

3See Section 3.1 for definitions of complexity classes used throughout the article.
4Throughout the article, when we say that a PRG is ϵ -pseudorandom for uniform circuits, we mean that for every efficiently

samplable distribution over circuits, the probability over choice of circuit that the circuit distinguishes the output of the

PRG from uniform with advantage more than ϵ is at most ϵ (see Definitions 3.6 and 3.7). The existence of such PRGs

implies an “average-case” derandomization of BPP in the following sense: For every L ∈ BPP there exists an efficient

deterministic algorithm D such that every probabilistic algorithm that gets input 1n and tries to find x ∈ {0, 1}n such that

D (x ) � L(x ) has a small probability of success (see, e.g., [20, Proposition 4.4]).
5Another relevant work is that of Goldreich [20]: He showed that if pr BPP = pr P, then there exists a PRG for uniform

circuits that suffices for this conclusion (in particular, the PRG runs in polynomial time and works for all input lengths).
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cal tools that were used by [56] to obtain the previously best uniform hardness-to-randomness
tradeoff. For high-level overviews of the proof of Theorem 1.1 (and of the new constructions), see
Section 2.1.

Overcoming the “infinitely-often” barrier. The hypothesis in Theorem 1.1 is that any probabilis-

tic algorithm that runs in time 2n/polylog(n) fails to compute TQBF infinitely-often, and the corre-
sponding conclusion is that the PRG “fools” uniform circuits only infinitely-often. (The meaning
of “infinitely-often” is “on infinitely many input lengths,” and the meaning of “almost-always”
that will be used next is “on all but finitely many input lengths.” Recall that a hypothesis of the
form L � BPT IME[T ] only means that every probabilistic time-T algorithm fails to compute L
infinitely-often.)
The shortcoming of Theorem 1.1 that the derandomization works only infinitely-often is iden-

tical to all previous uniform “hardness-to-randomness” results that used the [33] proof frame-
work.6, 7 However, known techniques (see, e.g., [27]) can nevertheless be adapted to yield an almost-
always PRG that uses O (log(n)) bits of non-uniform advice (relying on an almost-always lower
bound hypothesis).
We are able to significantly improve this: Assuming the “almost-always” version of rETH, we

show that BPP can be derandomized in average-case and almost-always, using only a triply loga-
rithmic number (i.e.,O (logloglog(n))) of advice bits. In fact, as in Theorem 1.1, it suffices to assume
hardness for TQBF, rather than for 3-SAT.

Theorem 1.2 (aa-rETH ⇒ Almost-always Derandomization in Time npolyloglog(n) ; Infor-
mal). Assume that for some T (n) = 2n/polylog(n) it holds that TQBF � i.o.BPT IME[T ], and let

t (n) = npolyloglog(n) . Then, for every L ∈ BPT IME[t] and every distribution ensemble X that
can be sampled in polynomial time, there exists a deterministic algorithm D = DX that runs in

time npolyloglog(n) and uses O (logloglog(n)) bits of non-uniform advice such that for almost all input
lengths n ∈ N it holds that Prx∼Xn

[D (x ) � L(x )] < 1/n.

Similarly to Theorem 1.2, the conclusion in Theorem 1.2 can be strengthened so it holds for

every distribution X samplable in time t (n) = npolyloglog(n) , and the derandomization succeeds on
all but a (1/t )-fraction of the inputs under X (rather than only on a 1 − 1/n fraction).

Remark 1.3 (Non-deterministic Extensions). We note that “scaled-up” versions of Theorems 1.1
and 1.2 for non-deterministic settings follow easily from known results; that is, assuming lower
bounds for non-deterministic uniform algorithms, we can deduce strong derandomization of corre-
sponding non-deterministic classes. First, from the hypothesis MAETH,8 we can deduce strong circuit
lower bounds, and hence also worst-case derandomization of prBPP and of prMA (see Appendix A
for details and for a related result). Similarly, as shown by Gutfreund, Shaltiel, and Ta-Shma [26], a
suitable variant of AMETH implies an average-case derandomization of AM.

6Other proof strategies (which use different hypotheses) were able to support an “almost-always” conclusion, albeit not

necessarily a PRG, from an “almost-always” hypothesis (see [8, 26]).
7As mentioned above, Gutfreund and Vadhan [27, Section 6] showed that if we settle for average-case derandomization of

RP (rather than of BPP), then the derandomization can work almost-always. As in previous results, their derandomiza-
tion is relatively slow (i.e., it works in sub-exponential time). We show that their ideas can be combined with the techniques

underlying Theorem 1.1, to deduce a fast average-case derandomization RP that works almost-always (see Theorem 4.15).
8Note that indeed a non-deterministic analogue of rETH is MAETH (or, arguably, AMETH), rather than NETH, due to the

use of randomness. Also recall that, while the “strong” version of MAETH is false (see [61]), there is currently no evidence

against the “non-strong” version MAETH.
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1.3 NETH and an Equivalence of Derandomization and Circuit Lower Bounds

In the previous section, we considered the hypothesis rETH, and now we consider the Non-

Deterministic Exponential-Time Hypothesis (NETH), which asserts that co-3SAT (with n vari-
ables and O (n) clauses) cannot be solved by non-deterministic machines running in time 2ϵ ·n for
some ϵ > 0. This hypothesis is an exponential-time version of coNP � NP, and is incomparable
to rETH (and weaker than MAETH).

1.3.1 Background and a Surprising Observation. The motivating observation for our results in
this section is thatNETH has an unexpected consequence to the long-standing question of whether
worst-case derandomization of prBPP is equivalent to circuit lower bounds against E. Specifically,
recall that two-way implications between derandomization and circuit lower bounds have been
gradually developing since the early ’90s (for surveys, see, e.g., [45, 60]), and that it is a long-
standing question whether the foregoing implications can be strengthened to show a complete
equivalence between the two. One well-known implication of such an equivalence would be that
any worst-case derandomization of prBPP necessitates the construction of PRGs that “fool” non-
uniform circuits.9

Then, being more concrete, the motivating observation for our results in this section is that
NETH implies an affirmative answer to the foregoing classical question. In fact, this is not difficult
to show, relying on known results (see Section 2.2 for details).

1.3.2 Our Results: Even Very Weak Forms of NETH Suffice for the Equivalence. Our main con-
tribution is in showing that, loosely speaking, even a very weak form of NETH suffices to answer
the question of equivalence in the affirmative, and that this weak form of NETH is in some sense
inherent. Specifically, we say that L ⊆ {0, 1}∗ has NT IME[T ]-uniform circuits if there exists a
non-deterministic machineM that gets input 1n , runs in timeT (n), and satisfies the following: For
some non-deterministic choices M outputs a single circuit C : {0, 1}n → {0, 1} that decides L on all
inputs x ∈ {0, 1}n , and whenever M does not output such a circuit, it outputs ⊥. We also quantify
the size of the output circuit, when this size is smaller than T (n).
The weak forms of NETH that will suffice to show equivalences between derandomization and

circuit lower bounds are of the form “E does not have NT IME[T ]-uniform circuits of size
S (n) 	 T (n),” for values ofT and S that will be specified below. In words, this hypothesis rules out
a world in which every L ∈ E can be computed by small circuits that can be efficiently produced
by a uniform (non-deterministic) machine. Indeed, this hypothesis is weaker than the NETH-style
hypothesis E � NT IME[T ], and even than the hypothesis E � (NT IME[T ]∩SIZE[T ]).10
The fact that such a weak hypothesis suffices to deduce that derandomization and circuit lower
bounds are equivalent can be seen as appealing evidence that the equivalence indeed holds.
Our results refer both to the “low-end” parameter regime, which connects relatively weak circuit

lower bounds to relatively slow derandomization algorithms, and to the “high-end” parameter
regime, which connects strong circuit lower bounds to fast derandomizatoin algorithms. Showing
an equivalence in the former regime will require weaker hypothesis, compared to the latter regime.

9The question of equivalence is mostly “folklore” but was mentioned several times in writing. It was asked in [30, Remark

33], which proved an analogous equivalence between non-deterministic derandomization with short advice and circuit

lower bounds against non-deterministic classes (i.e., against N T IME; see also [11]). It was also mentioned as a hypo-
thetical possibility in [56] (referred to there as a “super-Karp-Lipton theorem”). Following the results of [43], the question

was recently raised again as a conjecture in [55].
10We stress that our hypothesis refers to lower bounds for uniform models of computation, for which strong lower bounds

(compared to those for non-uniform circuits) are already known. (For example, N P is hard for N P-uniform circuits of

size nk for every fixed k ∈ N (see [49]), whereas we do not even know if ENP is hard for non-uniform circuits of arbitrarily

large linear size.)
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Starting with the “low-end” regime, our first result is that if E cannot be decided by

NT IME[2nδ

]-uniform circuits of polynomial size (for some δ > 0), then derandomization
of prBPP in sub-exponential time is equivalent to lower bounds for polynomial-sized circuits
against EXP.

Theorem 1.4 (NETH ⇒ Circuit Lower Bounds are Eqivalent to Derandomization;
“Low-end” Setting). Assume that there exists δ > 0 such that E cannot be decided by

NT IME[2nδ

]-uniform circuits of arbitrary polynomial size, even infinitely-often. Then,

prBPP ⊆ i.o.prSUBEXP ⇐⇒ EXP � P/poly .

The scaling of Theorem 1.4 to the “high-end” regime us not smooth and uses different proof
techniques (see Section 5 for details). Nevertheless, an analogous result holds for the extreme

“high-end” setting: Under the stronger hypothesis that E cannot be decided by NT IME[2Ω(n)]-
uniform circuits, we show that prBPP = prP is equivalent to lower bounds for exponential-sized
circuits against E; that is:

Theorem 1.5 (NETH ⇒ Circuit Lower Bounds are Eqivalent to Derandomization;
“High-end” Setting). Assume that there exists δ > 0 such that E cannot be decided by

NT IME[2δ ·n]-uniform circuits, even infinitely-often. Then:

prBPP = prP ⇐⇒ ∃ϵ > 0 : DT IME[2n] � i.o.SIZE[2ϵ ·n] .

(We remind the reader again that circuit lower bounds as in Theorems 1.4 and 1.5 are known to
be equivalent to the existence of corresponding PRGs that fool non-uniform circuits [3, 34, 44, 54,
57]. Thus, the hypotheses in these theorems imply that derandomization requires PRGs.)

The very weak version of NETH is inherent (for a stronger conclusion that it yields). Remarkably,
as mentioned above, hypotheses such as the ones in Theorems 1.4 and 1.5 actually yield a stronger
conclusion and are also necessary for that stronger conclusion. Specifically, the stronger conclusion
is that even non-deterministic derandomization of prBPP (such as prBPP ⊆ prNSUBEXP)
yields circuit lower bounds against E, which in turn yield PRGs for non-uniform circuits.

Theorem 1.6 (NT IME-uniform Circuits for E, Non-deterministic Derandomization,
and Circuit Lower Bounds). Assume that there exists δ > 0 such that E cannot be decided by

NT IME[2nδ

]-uniform circuits of arbitrary polynomial size. Then,

prBPP ⊆ prNSUBEXP =⇒ EXP � P/poly . (1.1)

In the other direction, if Equation (1.1) holds, then E cannot be decided by NP-uniform circuits.

Note that in Theorem 1.6 there is a gap between the hypothesis that implies Equation (1.1) and

the conclusion from Equation (1.1). Specifically, the hypothesis refers to NT IME[2nδ

]-uniform
circuits of polynomial size, whereas the conclusion refers to NP-uniform circuits. By optimizing
the parameters, this gap between sub-exponential and polynomial can be considerably narrowed
(see Theorem 5.11).

1.4 Disproving a Version of rETH Requires Circuit Lower Bounds

Our last main result is that disproving a weak version of rETH requires breakthrough circuit lower
bounds. Recall that rETH assumes hardness of the form 2ϵ ·n for solving 3-SAT for n-bit formulas;
thus, disproving rETH means constructing a probabilistic algorithm that solves 3-SAT for n-bit
formulas in time 2ϵ ·n .
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We consider the stronger assumption, that the problem CircuitSAT for n-bit circuits can be

solved in probabilistic time 2n/polylog(n) . (Recall that, in CircuitSAT, we want to solve satisfiabil-
ity for a given general Boolean circuit, rather than for a given depth-two formula as in 3-SAT.)
We show that such an algorithm would yield lower bounds for circuits of quasilinear size against

BPE = BPT IME[2O (n)].11

Theorem 1.7 (Circuit Lower Bounds from Randomized CircuitSAT Algorithms). For any
constant c ∈ N there exists a constant c ′ ∈ N such that the following holds: If CircuitSAT for

circuits over n variables and of size n2 · (logn)c ′
can be solved in probabilistic time 2n/(logn)c′

, then
BPE � SIZE[n · (logn)c ].

Theorem 1.7 can be viewed from another perspective, which reveals that it constitutes progress
on a well-known technical challenge. Specifically, we can view Theorem 1.7 as belonging to the
family of results asserting that circuit-analysis algorithms imply circuit lower bounds (following
Williams [59]). Previous results crucially rely on the hypothesis that the circuit-analysis algorithm
is deterministic. It is a well-known challenge to obtain analogous results for randomized algorithms,
and indeed Theorem 1.7 is such a result, albeit one that relies on a relatively fast algorithm (see
Section 2.3 for further details and for comparison with known results).
Since Theorem 1.1 deduces a conclusion from a weak version of rETH, and Theorem 1.7

deduces a conclusion from the negation of a weak version of rETH, we can combine the two
results to obtain a “win-win” statement. This yields the following unconditional Karp-Lipton style
result: If BPE can be decided by circuits of quasilinear size, then BPP can be derandomized, in

average-case and infinitely-often, in time 2Õ (log(n)) = npolyloglog(n) . (See Corollary 6.6 for details
and for a precise statement.)

1.5 Open Problems and Subsequent Work

Our work makes significant progress on several long-standing open problems, but by no means
did we resolve them completely. Let us mention a few of these problems.

Uniform hardness vs. randomness. As mentioned in Section 1.2, the goal in this classical line
of work is to deduce smooth tradeoffs between average-case derandomization and hardness for
uniform probabilistic algorithms (which mirror the known tradeoffs between worst-case deran-
domization and hardness for non-uniform circuits).
The main open problem is to deduce polynomial-time derandomization from the existence of

a hard function computable in exponential time (rather than in linear space as in Theorems 1.1
and 1.2); that is:

Open Problem 1. Deduce average-case derandomization of BPP that runs in polynomial time

from the existence of a function in E = DT IME[2O (n)] that is hard for uniform probabilistic
algorithms.

Progress on the foregoing problem was recently made in a work by three of the current au-
thors [12]. They deduced average-case derandomization of RP that runs in polynomial time from

the existence of a function computable by logspace-uniform circuits of size 2O (n) and depth 2o (n)

that is hard for BPT IME[2ϵ ·n] (for an arbitrary constant ϵ > 0).
Theorem 1.2 (as well as another result in aforementioned work [12]) deduced derandomization

of BPP on all input lengths that relies on a small number of bits of non-uniform advice. A second
open problem is to deduce such derandomization without relying on non-uniform advice:

11For context, the best-known lower bounds for circuits of quasilinear size are against Σ2 (see [36]) or against MA/1 (i.e.,

Merlin-Arthur protocols that use one bit of non-uniform advice; see [48]).
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Open Problem 2. Deduce fast derandomization of BPP (ideally, polynomial time) that works for
all input lengths and does not rely on any non-uniform advice, from the existence of a function in
DSPACE[O (n)] (or, better yet, in E) that is hard for uniform probabilistic algorithms.

In a different direction, a subsequent work by two of the authors [13] showed worst-case deran-
domization from strong hardness assumptions for uniform probabilistic algorithms (namely, from
the existence of a function f in P such that every probabilistic algorithm running in a certain fixed
polynomial time fails to compute f on each and every sufficiently large input). A follow-upwork by
Liu and Pass [39] showed an equivalence between worst-case derandomization and a similar (albeit
more complicated) hardness assumption for conditional time-bounded Kolmogorov complexity.

Derandomization vs. circuit lower bounds. As mentioned in Section 1.3, it is a classical question

whether derandomization of prBPP requires the circuit lower bounds in E = DT IME[2O (n)]
that are known to imply it. The conditional results in Theorems 1.4 and 1.5 suggest that the answer
may be positive, yet proving unconditional results is still a major open problem.

Open Problem 3. Show the implication prBPP = prP =⇒ E � P/poly.

Interestingly, while the foregoing problem has been open for decades, we are not aware of any
significant barriers towards solving it.

2 TECHNICAL OVERVIEW

In this section, we describe the proofs of our main results, in high level. In Section 2.1, we describe
the proofs of Theorems 1.1 and 1.2; in Section 2.2, we describe the proofs of Theorems 1.4, 1.5,
and 1.6; and in Section 2.3, we describe the proof of Theorem 1.7, which relies on the proofs from
Section 2.1.

2.1 Near-optimal Uniform Hardness-to-randomness Results for TQBF

Recall that in typical “hardness-to-randomness” results, a PRG is based on a hard function, and
the proof amounts to showing that an efficient distinguisher for the PRG can be transformed to an
efficient algorithm or circuit that computes the hard function.
In high level, our proof strategy follows this paradigm and relies on the classic approach of

Impagliazzo and Wigderson [33] for transforming a distinguisher into an algorithm for the hard
function. Loosely speaking, the latter approach works only when the hard function f ws : {0, 1}∗ →
{0, 1}∗ is well-structured; the precise meaning of the term “well-structured” differs across different
follow-up works, and in the current work it will also take on a new meaning, but for now let us
intuitively think of f ws as downward self-reducible and as having properties akin to random self-
reducibility. Instantiating the Nisan-Wigderson PRG with a suitable encoding ECC( f ws) of f ws as
the underlying function (again, the precise requirements from ECC differ across works), our goal
is to show that if the PRG with stretch t (n) does not “fool” uniform distinguishers even infinitely-
often, then f ws is computable in probabilistic time t ′(n) > t (n).
The key challenge underlying this approach is the significant overheads in the proof, which

increase the time complexity t ′ of computing f ws. In the original proof of [33] this timewas roughly
t ′(n) ≈ t (t (n)), and the state-of-the-art prior to the current work, by Trevisan and Vadhan [56]
(following [6]), yielded t ′(n) = poly(t (poly(n))). Since the relevant functions f ws in all works
are computable in E, proofs with such an overhead can yield at most a sub-exponential stretch

t (n) = 2nΩ(1)
.

As mentioned in Section 1.2, previous works bypassed this difficulty either by using stronger hy-
potheses, or by deducing weaker conclusions, or by working in different contexts (e.g., considering
derandomization of AM rather than of BPP). In contrast, we tackle this difficulty directly and
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manage to reduce all of the polynomial overheads in the input length to polylogarithmic overheads
in the input length. That is, we will show that for carefully constructed f ws and suitably chosen
ECC (and with some variations in the proof approach), if the PRG instantiated with ECC( f ws) for
stretch t does not “fool” uniform distinguishers infinitely-often, then f ws can be computed in time

t ′(n) = t (Õ (n))O (1) .

2.1.1 The Well-structured Function f ws. Let us now be more specific about the properties of the
well-structured function f ws that we need in our proof. Our function f ws will satisfy the following:

(1) (Very efficient PSPACE-completeness:) The PSPACE-complete problem TQBF is re-
ducible to f ws in quasilinear time, and f ws is computable in linear space.12

(2) (Not too inefficient downward self-reducibility:) The function f ws is downward self-

reducible in time 2n/polylog(n) (see Definition 4.1 for a standard definition).
(3) (A strengthening of random self-reducibility:) The function f ws is sample-aided worst-

case to δ -average-case reducible, for δ (n) = 2−n/polylog(n) .

The last property, which is implicit in many works and was recently made explicit by Goldreich
and G. Rothblum [23], asserts the following: There exists a uniform algorithmT that gets as input a
circuitC : {0, 1}n → {0, 1}∗ that agrees with f wsn on at least δ (n) of the inputs, and labeled examples

(x , f ws (x )) where x ∈ {0, 1}n is uniformly chosen, runs in time 2n/poly log(n) and with high proba-
bility outputs a circuit C ′ : {0, 1}n → {0, 1}∗ that computes f wsn on all inputs (see Definition 4.2).
(Our construction of f ws will also satisfy an additional property, which will only be used in

the proof of Theorem 1.2 (i.e., of the “almost-always” version of the result). We will describe this
property in the proof outline for Theorem 1.2 below.)

The construction of f ws. Let us now explain how we construct f ws. Following Trevisan and Vad-
han [56], our f ws is an artificial PSPACE-complete problem that we carefully construct. Their
goal was to construct a PSPACE-complete problem that will be simultaneously downward self-
reducible and randomly self-reducible. Our goal will be to obtain a construction with stronger
completeness and random self-reducibility properties while compromising on a slower downward
self-reducibility algorithm (as detailed above). In a gist, we do so by drastically improving the
efficiency of parts of their construction; details follow.
The construction in [56] is based on the proof of IP = PSPACE [42, 52]. Recall that the

latter proof starts with a given 3-SAT formula φ, which represents a fully quantified instance for
TQBF (see Definition 4.6 for the standard definition). The proof then arithmetizes the TQBF function
on φ by a low-degree polynomial P (φ,0) = Q1 ◦Q2 ◦ · · · ◦Qpoly(n) ◦ P (φ ) , where P (φ ) is a standard
arithmetization of 3-SAT, and the Qi ’s are suitable arithmetic operators (i.e., arithmetizations of
the ∀ and of the ∃ operators, as well as an operator that lowers the degree of the intermediary

polynomial). Finally, the proof defines a sequence of poly(n) polynomials P (φ,1), . . . , P (φ,poly(n)) ,

where for i = 1, . . . , poly(n), the polynomial P (φ,i ) applies one less operator to P (φ ) , compared to

P (φ,i−1) . The crucial observation of [56] is that computing each P (φ,i ) efficiently reduces to comput-

ing P (φ,i−1) , and thus this sequence of polynomials already has a property reminiscent to down-
ward self-reducibility (whereas the polynomials are of low degree, and thus compute functions
that are random self-reducible).
Loosely speaking, the function from [56] defines, for every integer n ∈ N, a corresponding

interval In of poly(n) input lengths; for simplicity of presentation, let us pretend that this interval
is In = [n, . . . ,N = poly(n)]. At input length N = poly(n) the function gets as input a 3-SAT

12For our derandomization results, it would have sufficed for f ws to be computable in quasiexponential time 2Õ (n ) rather

than linear space; see the comment in the end of Section 4.1.2.

Journal of the ACM, Vol. 70, No. 4, Article 25. Publication date: August 2023.



On Exponential-time Hypotheses, Derandomization, and Circuit Lower Bounds 25:11

formula φ over n variables and outputs P (φ,0) . Then, for i ∈ [poly(n)], at input length N − i , the
function gets input (φ,w ), where w is a sequence of auxiliary variables, and outputs P (φ,i ) (w ).
Given the observation mentioned above, this function is downward self-reducible and randomly
self-reducible.
Going through their proof (with needed adaptations for our “high-end” parameter setting), we

encounter four different polynomial overheads in the input length, when reducing from TQBF to
their function. The first and obvious one is that inputs of length n are mapped to inputs of length
N = poly(n), corresponding to the number of rounds in the IP = PSPACE protocol. The other
polynomial overheads in the input length come from their reduction of TQBF to an intermediate
problem that takes both φ andw as part of the input and is still amenable to arithmetization13 from
the field size that is required for the stronger random self-reducibility property that we need and
from the way the poly(n) polynomials are combined into a single Boolean function.
The main challenge is to eliminate all of the foregoing overheads simultaneously. Our first main

idea is to use an IP = PSPACE protocol with polylog(n) rounds instead of poly(n) rounds, so
the first overhead (i.e., the additive overhead in the input length caused by the number of operators)
will be only polylog(n) instead of poly(n). Indeed, in such a protocol the verification time in each
round is high, and therefore our downward self-reducibility algorithm is relatively slow andmakes
many queries; but we will be able to afford this.
While implementing this idea, we define a different intermediate problem that is both amenable

to arithmetization and reducible from TQBF in quasilinear time, relying on an efficient Cook-Levin
theorem (see Claim 4.7.1); we move to an arithmetic setting that will support the strong random
self-reducibility property that we want and arithmetize the intermediate problem in this setting
(see Claim 4.7.2); we show how to execute arithmetic operators in a “batch” in this arithmetic
setting (see Claim 4.7.3); and we efficiently combine the resulting collection of polynomials into a
single Boolean function (see the last part of the proof of Lemma 4.7).
We stress that we are “paying” for all the optimizations above by the fact that the associated al-

gorithms (for downward self-reducibility and for our notion of random self-reducibility) now run

in time 2n/polylog(n) , rather than polynomial time; but again, we are able to afford this in our proof.

2.1.2 Instantiating the Reference [33] Proof Framework with the Function f ws. Given this con-
struction of f ws, we now use a variant of the proof framework of Impagliazzo and Wigderson [33],
as follows: For simplicity, in this overview, we show how to “fool” polynomial-time distinguishers
that do not use advice. (The full technical proof appears in Section 4.2; see the proof of Lemma 4.9.)
Let ECC be the Goldreich-Levin [21] (i.e., Hadamard) encoding ECC( f ws) (x , r ) = ⊕i f

ws (x )i ·
ri . Our PRG is the Nisan-Wigderson PRG, instantiated with ECC( f ws) as the hard function, and

with seed length Õ (log(n)). To analyze it, we rely on the well-known “uniform reconstruction”
argument of [33] (following [44]), which shows the following: If for input length n there exists

a uniform poly(n)-time distinguisher A for the PRG, then for input length � = Õ (log(n)) there
is a weak learner for ECC( f ws). That is, there exists an algorithm that gets input 1� and oracle

access to ECC( f ws) on �-bit inputs, runs in time poly(n) ≈ 2�/polylog(�) , and outputs a small circuit
that agrees with ECC( f ws) on approximately 1/2 + 1/n2 ≈ 1/2 + δ0 (�) of the �-bit inputs, where
δ0 (�) = 2−�/polylog(�) .
Thus, assuming that there exists a distinguisher for the PRG as above for every n ∈ N, we

deduce that a weak learner exists for every � ∈ N. Following the “bootstrapping” idea of [33],

we now iteratively construct, for each input length i = 1, . . . , �, a circuit of size 2i/polylog(i ) for

13Recall that the standard arithmetization of 3-SAT is a polynomial that depends on the input formula, whereas we want a
single polynomial that gets both a formula and the assignment as input.
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f wsi . The base case i = 1 is trivial. And, in iteration i > 1, having already obtained a circuit Ci−1
for f wsi−1, we run the weak learner for ECC( f ws) on input length 2i and answer its oracle queries
using the downward self-reducibility of f ws, the circuit Ci−1, and the fact that ECC( f ws)2i is easily
computable given access to f wsi .

The weak learner outputs a circuitC (0)
i of size 22i/polylog(2i ) that agrees with ECC( f ws) on approx-

imately 1/2 + δ0 (2i ) of the 2i-bit inputs, and we want to transform it into a circuit that computes
f ws on all i-bit inputs. To do so, we first use the list-decoding algorithm of Goldreich and Levin [21]

to efficiently transform C (0)
i to a circuit C (1)

i of similar size that computes f ws on a approximately
δ (i ) = poly(δ0 (2i )) of the i-bit inputs; the algorithm of [21] succeeds only with probability poly(δ ),
so we run it for poly(1/δ ) times and each time test the agreement of the resulting circuit with f ws,
using the circuit, Ci−1, and the downward self-reducibility of f

ws.

Our goal now is to transform C (1)
i into a circuit of similar size that computes f ws on all i-bit

inputs. Recall that in general, performing such transformations by a uniform algorithm is chal-
lenging (intuitively, if the truth-table of f ws is a codeword in an error-correcting code, then this
task corresponds to uniform list-decoding of a “very corrupt” version of f ws). However, in our spe-
cific setting, we can produce random labeled samples for f ws, using its downward self-reducibility
and the circuitCi−1. Relying on the sample-aided worst-case to average-case reducibility of f ws, we

can transform C (1)
i to a circuit Ci of similar size that computes f

ws
i on all inputs.

Finally, since TQBF is reducible with quasilinear overhead to f ws, if we can compute f ws in time
2n/polylog(n) , then we can compute TQBF in such time, a contradiction. This establishes that the

generator is indeed pseudorandom, and, since f ws is computable in space O (�) = Õ (log(n)) (and
thus in time npolyloglog(n)), the pseudorandom generator is also computable in time npolyloglog(n) .

2.1.3 The “Almost-always” Version: Proof of Theorem 1.2. We now explain how to adapt the
proof above to get an “almost-always” PRG with near-exponential stretch. For starters, we will use
a stronger property of f ws, namely, that it is downward self-reducible in a polylogarithmic number

of steps; this means that for every input length � there exists an input length �0 ≥ � − polylog(�)
such that f ws is efficiently computable at input length �0 (i.e., f

ws
�0

is computable in time 2�0/polylog(�0 )

without a “downward” oracle); see Section 4.1.1 for intuition and details about this property.
Now, observe that the transformation of a probabilistic distinguisher A for the PRG to a prob-

abilistic algorithm F that computes f ws actually gives a “point-wise” guarantee: For every input
length n ∈ N, if A distinguishes the PRG on a corresponding set of input lengths Sn , then F com-

putes f ws correctly at input length � = �(n) = Õ (log(n)); specifically, we want to use the down-
ward self-reducibility argument for f ws at input lengths �, � − 1, . . . , �0, and Sn is the set of input
lengths at which we need a distinguisher for G to obtain a weak learner for ECC( f ws) at input
lengths �, � − 1, . . . �0. Moreover, since f ws is downward self-reducible in polylog steps, we will
only need weak learners at inputs �, . . . , �0 = � − polylog(�); hence, we can show that Sn is a set
of polylog(�) = polyloglog(n) input lengths in the interval [n,n2] (see Lemma 4.9 for the precise
calculation). Taking the contrapositive, if f ws cannot be computed by F on almost all �’s, then for
every n ∈ N there exists an input lengthm ∈ Sn ⊂ [n,n2] such thatG fools A at input lengthm.14

Our derandomization algorithm gets input 1n and also gets the “good” input length m ∈ Sn

as non-uniform advice; it then simulates G (1m ) (i.e., the PRG at input length m) and truncates

14Actually, since f ws is downward self-reducible in polylog steps, it can be computed relatively efficiently on infinitely-

many input lengths and thus cannot be “hard” for almost all �’s. However, since TQBF can be reduced to f ws with quasilinear

overhead, if TQBF is “hard” almost-always, then for every �(n) there exists �′ ≤ Õ (�(n)) such that f ws is “hard” on �′,
which allows our argument to follow through, with a similar set Sn ⊂ [n, npolyloglog(n )] (see Proposition 4.11 for details).

For simplicity, we ignore this issue in the overview.
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the output to n bits. (We can indeed show that truncating the output of our PRG preserves its
pseudorandomness in a uniform setting; see Proposition 4.12 for details.) The crucial point is that,
since |Sn | = polyloglog(n), the advice length is O (logloglog(n)). Note, however, that for every
potential distinguisherA there exists a different input lengthm ∈ Sn such thatG is pseudorandom
for A on m. Hence, our derandomization algorithm (or, more accurately, its advice) depends on
the distinguisher that it wants to “fool.” Thus, for every L ∈ BPP and every efficiently samplable
distributionX of inputs, there exists a corresponding “almost-always” derandomization algorithm
DX (see Proposition 4.12).

2.2 NT IME-uniform Circuits for E and an Equivalence between Derandomization
and Circuit Lower Bounds

The proofs that we describe in the current section are significantly simpler technically than the
proofs described in Sections 2.1 and 2.3. As mentioned in Section 1.3, the motivating observation
is that NETH implies an equivalence between derandomization and circuit lower bounds; let us
start by proving this statement:

Proposition 2.1 (“Warm-Up”: A Weaker Version of Theorem 1.4). Assume that EXP �
i.o.NSUBEXP. Then, prBPP ⊆ prSUBEXP ⇐⇒ EXP � i.o.P/poly.

Proof. The “⇐=” direction follows (without any assumption) from [3]. For the “=⇒” direc-
tion, assume that prBPP ⊆ prSUBEXP, and assume towards a contradiction that EXP ⊂
i.o.P/poly. The latter hypothesis implies (using the Karp-Lipton style result of [3]) that EXP ⊂
i.o.MA. Combining this with the former hypothesis, we deduce that EXP ⊂ i.o.NSUBEXP,
a contradiction. �

Our proofs of Theorems 1.4 and 1.5 will follow the same logical structure as the proof of Proposi-
tion 2.1, and our goal will be to relax the hypothesis EXP � i.o.NSUBEXP.15 We will do so by
strengthening the Karp-Lipton style result that uses [3] and asserts that a joint “collapse” hypoth-
esis and derandomization hypothesis implies that EXP can be decided in small non-deterministic
time. We will show two different strengthenings, each referring to a different parameter setting:
The first strengthening refers to a “low-end” setting and asserts that if EXP ⊂ P/poly and
prBPP ⊆ prSUBEXP, then EXP has NSUBEXP-uniform circuits of polynomial size (see
Item (1) of Proposition 5.6); and the second strengthening refers to a “high-end” setting and asserts

that if E ⊂ i.o.SIZE[2ϵ ·n] and prBPP = prP, then E has NT IME[2O (ϵ ) ·n]-uniform circuits
(see Proposition 5.7). The proofs of these two different strengthenings rely on different ideas; for
high-level descriptions of the proofs, see Sections 5.1.2 and 5.1.3, respectively.
For context, recall that (as noted by Fortnow, Santhanam, and Williams [17]), the proof of [3]

already supports the stronger result that EXP ⊂ P/poly ⇐⇒ EXP = OMA16; and by
adding a derandomization hypothesis (e.g., prBPP = prP), we can deduce that EXP = ONP.
Nevertheless, our results above are stronger, because NP-uniform circuits are an even weaker
model than ONP: This is since, in the latter model, the proof is verified on an input-by-input
basis, whereas, in the former model, we only verify once that the proof is convincing for all inputs.

15This high-level proof structure, which combines a non-uniform collapse hypothesis (using a Karp-Lipton-style theorem)

and a derandomization hypothesis, dates back to the work of Impagliazzo, Kabanets, and Wigderson [30], underlies the

algorithmic method of Williams [59], and has been used in works published in parallel to ours (such as Chen et al. [10]).
16The notation OMA stands for “oblivious” MA. It denotes the class of problems that can be decided by an MA verifier

such that for every input length there is a single “good” proof that convinces the verifier on all inputs in the set (rather

than a separate proof for each input); see, e.g., [17, 22].
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We also stress that some lower bounds for this weaker model (i.e., for NT IME-uniform circuits
of small size) are already known: Santhanam and Williams [49] proved that for every k ∈ N there
exists a function in NP that cannot be computed by NP-uniform circuits of size nk .
We also note that our proofs actually show that (conditioned on lower bounds for NT IME-

uniform circuits against E) even a relaxed derandomization hypothesis is already equivalent to
the corresponding circuit lower bounds. For example, in the “high-end” setting, to deduce that

E � SIZE[2Ω(n)] it suffices to assume that CAPP onv-bit circuits of size n = 2Ω(v ) can be solved
in time 2ϵ ·v for a sufficiently small ϵ > 0.17 For more details, see Section 5.2.

Proof of Theorem 1.6. The first part of Theorem 1.6 asserts that if E does not have

NT IME[2nδ

]-uniform circuits of polynomial size, then the conditional statement “prBPP ⊆
prNSUBEXP =⇒ EXP � P/poly” holds. The proof of this statement again follows the
logical structure from the proof of Proposition 2.1 and relies on a further strengthening of our
“low-end” Karp-Lipton style result such that the result only uses the hypothesis that prBPP ⊆
prNSUBEXP rather than prBPP ⊆ prSUBEXP.18
The second part of Theorem 1.6 asserts that if the conditional statement “prBPP ⊆

prNSUBEXP =⇒ EXP � P/poly” holds, then E does not have NP-uniform circuits. We
will in fact prove the stronger conclusion that E � (NP ∩ P/poly). (Recall that the class of prob-
lems decidable by NP-uniform circuits is a subclass of ONP ⊆ NP ∩ P/poly.) The proof itself
is very simple: Assume towards a contradiction that E ⊆ (NP ∩ P/poly); since BPP ⊆ EXP,
it follows that prBPP ⊆ prNP (see the proof of Theorem 5.10); and by the hypothesized condi-
tional statement, we deduce that EXP � P/poly, a contradiction. Indeed, the parameter choices
in the foregoing proof are far from tight, and (as mentioned after the statement of Theorem 1.6)
the quantitative gap between the two parts of Theorem 1.6 can be considerably narrowed (see
Theorem 5.11).

2.3 Circuit Lower Bounds from Randomized CircuitSAT Algorithms

Recall that Theorem 1.7 asserts that if CircuitSAT for n-bit circuits of size Õ (n2) can be solved
in probabilistic time 2n/(logn)c

, then BPE � SIZE[n · (logn)c ′
], where c ′ depends on c . The

relevant context for this result is the known line of works that deduce circuit lower bounds from
“non-trivial” circuit-analysis algorithms, following the celebrated result ofWilliams [59]. Themain
technical innovation in Theorem 1.7 is that our hypothesis is only that there exists a probabilistic
circuit-analysis algorithm, whereas the aforementioned known results crucially rely on the fact
that the circuit-analysis algorithm is deterministic. However, the aforementioned known results

yield new circuit lower bounds even if the running time of the algorithm is 2n/nω (1) ,19 whereas

Theorem 1.7 only yields new circuit lower bounds if the running time is 2n/polylog(n) .
As far as we are aware, Theorem 1.7 is the first result that deduces circuit lower bounds from a

near-exponential-time probabilistic algorithm for a natural circuit-analysis task. The closest result
that we are aware of is by Oliveira and Santhanam [46, Theorem 14], who deduced lower bounds
for circuits of size nO (1) against BPE from probabilistic algorithms for learning with membership

17Note that the problem of solvingCAPP forv-bit circuits of size n = 2Ω(v ) can be trivially solved in time 2O (v ) = poly(n),
and thus unconditionally lies in pr P∩pr BPT IME[Õ (n)]. The derandomization problem described above simply calls

for a faster deterministic algorithm for this problem.
18Intuitively, in the “low-end” Karp-Lipton result, we only need to derandomize probabilistic decisions made by the non-

deterministic machine that constructs the circuit, whereas the circuit itself is deterministic; thus, a non-deterministic de-

randomization hypothesis suffices for this result. See Section 5.1.2 for details.
19For example, from such an algorithm they deduce the lower bound N EXP � P/poly; and from an algorithm that runs

in time 2n/polylog(n ) as in Theorem 1.7, their results yield the lower bound N P � SIZE[nk ] for every fixed k ∈ N.
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queries (rather than for a circuit-analysis task such as CircuitSAT); as explained next, we build on
their techniques in our proof.20

Our proof strategy is indeed very different from the proof strategies underlying known results
that deduce circuit lower bounds from deterministic circuit-analysis algorithms (e.g., from the
“easy-witness” proof strategy [9, 11, 14, 30, 43, 59] or from proofs that rely on MA lower
bounds [30, Remark 26], [48, 55]). In high level, to prove our result, we exploit the connection
between randomized learning algorithms and circuit lower bounds, which was recently discovered
by Oliveira and Santhanam [46, Section 5] (following [16, 28, 37]). Loosely speaking, their
connection relies on the classical results of [33], and we are able to significantly refine this
connection using our refined version of the [33] argument that was detailed in Section 2.1.
Our starting point is the observation that CircuitSAT algorithms yield learning algorithms.

Specifically, fix k ∈ N, and assume (for simplicity) that CircuitSAT for polynomial-sized n-bit
circuits can be solved in probabilistic time 2n/polylog(n) for an arbitrarily large polylogarithmic
function. We show that in this case, any function that is computable by circuits of size n · (logn)k

can be learned (approximately) using membership queries in time 2n/polylog(n) (we explain below
how to prove this).21 Now, let f ws be the well-structured function from Section 2.1, and recall
that f ws is computable in linear space and hard for linear space under quasilinear-time reductions.
Then, exactly one of two cases holds:

(1) The function f ws does not have circuits of size n · (logn)k . In this case, a Boolean ver-
sion of f ws also does not have circuits of such size and, since this Boolean version is in
SPACE[O (n)] ⊆ BPE, we are done.

(2) The function f ws has circuits of size n · (logn)k . Hence, f ws is also learnable (as we concluded
above), and so the argument of [33] can be used to show that f ws is computable by an efficient
probabilistic algorithm.22 Now, by a diagonalization argument, there exists Ldiag ∈ Σ4[n ·
(logn)2k ] that cannot be computed by circuits of size n · (logn)k . We show that Ldiag ∈
BPE by first reducing Ldiag to f ws in time Õ (n) and then computing f ws (using the efficient
probabilistic algorithm).

Thus, in both cases, we showed a function in BPE \ SIZE[n · (logn)k ]. The crucial point
is that in the second case, our new and efficient implementation of the [33] argument (which
was described in Section 2.1) yields a probabilistic algorithm for f ws with very little overhead,
which allows us to indeed show that Ldiag ∈ BPE. Specifically, our implementation of the
argument (with the specific well-structured function f ws) shows that if f ws can be learned in

time T (n) = 2n/polylog(n) , then f ws can be computed in similar time T ′(n) = 2n/polylog(n) (see
Corollary 4.10).
We thus only need to explain how a CircuitSAT algorithm yields a learning algorithm with

comparable running time. The idea here is quite simple: Given oracle access to a function f ws,
we generate a random sample of r = poly(n) labeled examples (x1, f

ws (x1)), . . . , (xr , f
ws (xr )) for

20Another known result, which was communicated to us by Igor Oliveira, asserts that if CircuitSAT for circuits over

n variables and of size poly(n) can be solved in probabilistic sub-exponential time 2no (1)
, then BPT IME[2O (n )] �

P/poly. This result can be seen as a “high-end” form of our result (i.e., of Theorem 1.7), where the latter will use a weaker

hypothesis but deduce a weaker conclusion.
21That is, there exists a probabilistic algorithm that gets input 1n and oracle access to f and with high probability outputs

an n-bit circuit of size n · (logn)k that agrees with f on almost all inputs.
22Actually, our implementation of the [33] argument shows that if the function ECC(f ws) (where ECC is defined as in

Section 2.1) can be learned, then the function f ws can be efficiently computed. For simplicity, we ignore the difference

between f ws and ECC(f ws) in the current high-level description.
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f ws, and we use the CircuitSAT algorithm to construct, bit-by-bit, a circuit of size n · (logn)k that
agrees with f ws on the sample. Note that the input for the CircuitSAT algorithm is a circuit of size
poly(n) over only n′ ≈ n · (logn)k+1 bits (corresponding to the size of the circuit that we wish to

construct). Hence, the CircuitSAT algorithm runs in time 2n′/polylog(n′) = 2n/polylog(n) . And if the
sample size r = poly(n) is large enough, then with high probability any circuit of size n · (logn)k

that agrees with f ws on the sample also agrees with f ws on almost all inputs (i.e., by a union-bound
over all circuits of such size).

3 PRELIMINARIES

We denote random variables in boldface. For an alphabet Σ and n ∈ N, we denote the uniform
distribution over Σn by un , where Σ will be clear from context.
For any set L ⊆ {0, 1}∗ and n ∈ N, we denote by Ln = L ∩ {0, 1}n the restriction of L to n-bit

inputs. Similarly, for f : {0, 1}∗ → {0, 1}∗, we denote by fn : {0, 1}n → {0, 1}∗ the restriction of f
to the domain of n-bit inputs.

3.1 Complexity Classes

We will use standard complexity-theoretic notation, which can be found in any standard textbook
(such as [2, 19]). As few specific reminders for classes that will be used in our article, let us recall
that:

(1) The class E = DT IME[2O (n)] is the set of languages decidable in deterministic time 2O (n) .
(2) For a function s : N→ N, the class SIZE[s] is the set of languages decidable by an infinite

family {Cn : {0, 1}n → {0, 1} }n∈N of Boolean circuits with fan-in two over the De Morgan
basis such that Cn is of size at most s (n).

(3) For a class C of languages, the notation i.o.C refers the set of languages L ⊆ {0, 1}∗ that
agree with some L′ ∈ C on infinitely many input lengths; that is, there exists an infinite set
S ⊆ N such that for every n ∈ S it holds L ∩ {0, 1}n = L′ ∩ {0, 1}n .

(4) The notation prBPP refers to the set of promise problems decidable in probabilistic poly-
nomial time; that is, the set of pairs (Y,N) ∈ {0, 1}∗ × {0, 1}∗ such that there exists a
probabilistic polynomial time machine M satisfying x ∈ Y ⇒ Pr[M (x ) = 1] ≥ 2/3 and
x ∈ N ⇒ Pr[M (x ) = 0] ≥ 2/3.

(5) The class SUBEXP = ∩ϵ>0DT IME[2nϵ

] is the set of languages decidable in sub-
exponential time (i.e., time 2nϵ

where ϵ > 0 can be an arbitrarily small constant). Similarly,
the class i.o.prSUBEXP is the set of promise problems decidable in sub-exponential time
on infinitely many input lengths; and the class prNSUBEXP is the set of promise prob-
lems decidable in sub-exponential time.

3.2 Two Exponential-time Hypotheses

We define two exponential-time hypotheses that we consider in this article. We note in advance
that our actual results refer to various weaker variants of these hypotheses.

Hypothesis 1 (rETH; see Reference [15]). Randomized Exponential Time Hypothesis

(rETH): There exists ϵ > 0 and c > 1 such that 3-SAT on n variables and with c · n clauses can-
not be solved by probabilistic algorithms that run in time 2ϵ ·n .

Hypothesis 2 (NETH; see Reference [7]). Non-Deterministic Exponential Time Hypoth-

esis (NETH): There exists ϵ > 0 and c > 1 such that co-3-SAT on n variables and with c · n clauses
cannot be solved by non-deterministic algorithms that run in time 2ϵ ·n .

Journal of the ACM, Vol. 70, No. 4, Article 25. Publication date: August 2023.



On Exponential-time Hypotheses, Derandomization, and Circuit Lower Bounds 25:17

We also extend the two foregoing hypotheses to stronger versions in which every algorithm
(probabilistic or non-deterministic, respectively) fails to compute the corresponding “hard” func-
tion on all but finitely-many input lengths. These stronger hypotheses are denoted a.a.-rETH, and
a.a.-NETH, respectively.

3.3 Worst-case Derandomization and Pseudorandom Generators

We now formally define the circuit acceptance probability problem (or CAPP, in short); this well-
known problem is also sometimes called Circuit Derandomization, Approx Circuit Average, and
GAP-SAT or GAP-UNSAT.

Definition 3.1 (CAPP). The circuit acceptance probability problem with parameters α , β ∈ [0, 1]
such that α > β and for size S : N → N (or (α , β )-CAPP[S], in short) is the following promise
problem:

• The YES instances are (representations of) circuits over v input bits of size at most S (v )
that accept at least an α fraction of their inputs.

• The NO instances are (representations of) circuits over v input bits of size at most S (v ) that
accept at most a β fraction of their inputs.

We define the CAPP[S] problem (i.e., omitting α and β) as the (2/3, 1/3)-CAPP[S] problem. We
define CAPP to be the problem when there is no restriction on S .

It is well-known that CAPP is complete for prBPP under deterministic polynomial-time
reductions; in particular, CAPP can be solved in deterministic polynomial time if and only if
prBPP = prP. (For a proof, see, e.g., [58, Corollary 2.31], [19, Exer. 6.14].)
We will need the following well-known construction of a pseudorandom generator from a func-

tion that is “hard” for non-uniform circuits, by Umans [57] (following the line of works initiated
by Nisan and Wigderson [44]).

Theorem 3.2 (Umans’ PRG; see Reference [57, Theorem 6]). There exists a constant c > 1 and
an algorithm G such that the following holds: When G is given an n-bit truth-table of a function f :

{0, 1}log(n) → {0, 1} that cannot be computed by circuits of size s , and a random seed of length �(n) =
c · log(n), it runs in time nc , and for m = s1/c outputs an m-bit string that is (1/m)-pseudorandom
for every size-m circuit overm bits.

Corollary 3.3 (Near-optimal Non-uniformHardness-to-randomness using Umans’ PRG).
There exists a universal constant Δ > 1 such that for every time-computable S : N → N and for

T (n) = 2Δ ·S−1 (nΔ) , we have that

(1) If E � SIZE[S], then CAPP ∈ i.o.prDT IME[T ].
(2) If E � i.o.SIZE[S], then CAPP ∈ prDT IME[T ].
In addition, we will need a suitable construction of an averaging sampler. Recall the standard

definition of averaging samplers:

Definition 3.4 (Averaging Sampler). A function Samp : {0, 1}m′ → ({0, 1}m )D is an averaging

sampler with accuracy ϵ and confidence δ (or (ϵ,δ )-averaging sampler, in short) if for every

T ⊆ {0, 1}m , the probability over choice of x ∈ {0, 1}m′
that Pri ∈[D][Samp (x )i ∈ T ] � |T |/2m ± ϵ

is at most δ .

We will specifically use the following well-known construction by Guruswami, Umans, and
Vadhan [25]. (The construction in [25] is of an extractor, rather than of an averaging sam-
pler, but the two are well-known to be essentially equivalent; see, e.g., [19, Section D.4.1.2] or
[58, Corollary 6.24].)
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Theorem 3.5 (The Near-optimal Extractor of Reference [25], Instantiated as a Sam-
pler and for Specific Parameters). Let γ ≥ 1 and β > α > 0 be constants. Then, there ex-

ists a polynomial-time algorithm that for every m computes an (m−γ , 2−(β−α ) ·m )-averaging sampler

Samp : {0, 1}m′ → ({0, 1}m )D , wherem′ = (1 + β ) ·m and D = poly(m).

3.4 Average-case Derandomization and Pseudorandom Generators

We now define the notions of “average-case” derandomization of probabilistic algorithms. The
first definitions that we need are of circuits that distinguish a distribution from uniform and of
distributions that are pseudorandom for uniform algorithms. Towards this purpose, we consider a
generator G that gets input 1n , a random seed of length �(n), and a stretch parameter str(n) and
outputs str(n) pseudorandom bits.

Definition 3.6 (Distinguishing Distributions from Uniform). For two functions str, � : N → N,
let G be an algorithm that gets input 1n and a random seed of length �(n) and outputs a string of
length str(n). Then:

(1) For n ∈ N and n′ ∈ str−1 (n), we say that Dn : {0, 1}n → {0, 1} ϵ-distinguishes G (1n′
, u�(n′) )

from uniform if | Pr[Dn (G (1n′
, u�(n′) )) = 1] − Pr[Dn (un ) = 1]| > ϵ .

(2) For a probabilistic algorithm A, an integer n, and ϵ > 0, we say that G (1n , u�(n) ) is ϵ-

pseudorandom for A if the probability that A(1str(n) ) outputs a circuit that ϵ-distinguishes
G (1n , u�(n) ) from uniform is at most ϵ .

When applying this definitionwithout specifying a function str, we assume that str is the identity
function.

We now use Definition 3.6 to define pseudorandom generators for uniform circuits and hitting-

set generators for uniform circuits, which are analogous to the standard definitions of PRGs and
HSGs for non-uniform circuits:

Definition 3.7 (PRGs for Uniform Circuits). For � : N → N, let G be an algorithm that gets as
input 1n and a random seed of length �(n) and outputs strings of length n. For t ,a : N → N and
ϵ : N → (0, 1), we say that G is an ϵ-i.o.-PRG for (t ,a)-uniform circuits if for every probabilistic
algorithmA that runs in time t (n) and gets a(n) bits of non-uniform advice there exists an infinite
set SA ⊆ N such that for every n ∈ SA it holds that G (1n , u�(n) ) is ϵ (n)-pseudorandom for A. If for
every such algorithm A there is a set SA as above that contains all but finitely-many inputs, then
we say thatG is an ϵ-PRG for (t ,a)-uniform circuits.

Definition 3.8 (HSGs for Uniform Circuits). For � : N → N, let H be an algorithm that gets as
input 1n and a random seed of length �(n) and outputs strings of length n. For t ,a : N → N and
ϵ : N → (0, 1), we say that H is an ϵ-HSG for (t ,a)-uniform circuits if the following holds: For
every probabilistic algorithmA that gets input 1n and a(n) bits of non-uniform advice, runs in time
t (n), and outputs a circuitDn : {0, 1}n → {0, 1}, and every sufficiently large n ∈ N, with probability
at least 1 − ϵ (n) (over the coin tosses of A) at least one of the following two cases holds:

(1) There exists s ∈ {0, 1}�(n) such that Dn (G (1n , s )) = 1.
(2) The circuit Dn satisfies Prx ∈{0,1}n [Dn (x ) = 1] ≤ ϵ (n).

As mentioned in Section 1, PRGs for uniform circuits can be used to derandomize BPP “on
average” (see, e.g., [20, Proposition 4.4]). Analogously, HSGs for uniform circuits can be used to
derandomize RP “on average.” That is, loosely speaking, if there exists an HSG for uniform cir-
cuits, then for any L ∈ RP there exists a deterministic algorithm D such that for every efficiently
samplable distribution X, the probability over x ∼ X that D (x ) � L(x ) is small. For simplicity, we
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prove the foregoing claim for HSGs that are computable in polynomial time and have logarithmic
seed length:

Claim 3.9 (HSGs for Uniform Circuits ⇒ Derandomization of RP “On Average”). For
ϵ : N → (0, 1) such that ϵ (n) ≤ 1/3, assume that for every k ∈ N there exists a ϵ-HSG for

(nk , 0)-uniform circuits that is polynomial-time computable and that has logarithmic seed length.
Then, for every L ∈ RP and every c ∈ N, there exists a deterministic polynomial-time algorithm D
such that for every probabilistic algorithm F that runs in time nc and every sufficiently large n ∈ N,
the probability (over the internal coin tosses of F ) that F (1n ) outputs a string x ∈ {0, 1}n such that
D (x ) � L(x ) is at most ϵ (n).

Proof. Let M be an RP machine that decides L in time nc ′
for some c ′ ∈ N. The deterministic

algorithm D gets input x ∈ {0, 1}n , enumerates the seeds of the HSG for output length m = nc ′

and with the parameter k = O (1+ c/c ′), and accepts x if and only if there exists an output r of the
HSG such thatM accepts x with random coins r . Note that D never accepts inputs x � L (sinceM
is an RP machine), and thus, we only have to prove that for every algorithm F as in the claim’s
statement, the probability that x = F (1n ) satisfies both x ∈ L and D (x ) = 0 is at most ϵ (n).
To do so, let F be a probabilistic algorithm that runs in time nc . Consider the probabilistic al-

gorithm A that, on input 1m , runs the algorithm F on input 1n to obtain x ∈ {0, 1}n and outputs
a circuit Cm,x : {0, 1}m → {0, 1} that computes the decision of M at input x as a function of M’s

m = nc ′
random coins. Note that the algorithm A runs in time at most mO (1+c/c ′) , and also note

that the only probabilistic choices that Amakes are a choice of x = F (1n ). Thus, by Definition 3.8
for every sufficiently largem, with probability at least 1−ϵ (m) > 1−ϵ (n) over choice of x = F (1n )
(i.e., over the coin tosses of A), if D (x ) = 0 then Prr [Cm,x (r ) = 1] = Pr[M (x ) = 1] ≤ ϵ (n) ≤ 1/3,
which means that x � L. �

3.5 An E-complete Problem with Useful Properties

Our proofs in Section 5 will rely on the well-known existence of an E-complete problem Lnice

with the following useful properties: The problem Lnice is randomly self-reducible and that has an
instance checker with linear-length queries such that both the instance checker and the random
self-reducibility algorithm use a linear number of random bits. Let us properly define these notions:

Definition 3.10 (Instance Checkers). A probabilistic polynomial-time oracle machine IC is an in-

stance checker for a set L ⊆ {0, 1}∗ if for every x ∈ {0, 1}∗ the following holds:
(1) (Completeness.) ICL (x ) = L(x ), with probability one.
(2) (Soundness.) For every L′ ⊆ {0, 1}∗, we have that Pr[ICL′

(x ) � {L(x ),⊥}] ≤ 1/6.23

For � : N → N, if for every x ∈ {0, 1}∗, all the oracle queries of IC on input x are of length �( |x |),
then we say that IC has queries of length �. We will also measure the maximal number of queries

that IC makes on inputs of any given length.

Definition 3.11 (Random Self-reducible Function). We say that f : {0, 1}∗ → {0, 1}∗ is randomly

self-reducible if there exists a probabilistic oracle machine Dec that gets input x ∈ {0, 1}n and
access to an oracle д : {0, 1}n → {0, 1}∗, runs in time poly(n), makes oracle queries such that each
query is uniformly distributed in {0, 1}n , and if for every oracle query q ∈ {0, 1}n it holds that
д(q) = f (q), then Decд (x ) = f (x ).

23The standard definition of instance checkers fixes the error probability to 1/3, but we can reduce the error to 1/6 using

standard error-reduction.
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In high level, the problemLnice is the low-degree extension of an (arbitrary) E-complete problem.
The intuition is that, since Lnice is a low-degree extension, it is randomly self-reducible, and, since
Lnice is E-complete, we can construct an instance checker for it. (Specifically, the instance checker
for Lnice simulates a PCP verifier for Lnice, and the problem of answering the verifier’s queries
reduces to Lnice, so the verifier’s queries can be answered using an oracle to Lnice.) For details and
a full proof, see Appendix C.

Proposition 3.12 (An E-complete Problem that is Random Self-reducible and has a
Good Instance Checker). There exists Lnice ∈ DT IME[Õ (2n )] such that:

(1) Any L ∈ DT IME[2n] reduces to Lnice in polynomial time with a constant multiplicative
blow-up in the input length; specifically, for every n there exists n′ = O (n) such that any n-bit
input for L is mapped to an n′-bit input for Lnice.

(2) The problem Lnice is randomly self-reducible by an algorithm Dec that on inputs of length n
uses n + polylog(n) random bits.

(3) There is an instance checker IC for Lnice that on inputs of length n uses n +O (log(n)) random
bits and makes O (1) queries of length �(n) = O (n).

4 RETH AND NEAR-OPTIMAL UNIFORM HARDNESS-TO-RANDOMNESS

In this section, we prove Theorems 1.1 and 1.2. First, in Section 4.1, we define and construct well-

structured functions, which are the key technical component in our proof of Theorem 1.1. Then,
in Section 4.2, we show how well-structured functions can be used in the proof framework of [33]
(with minor variations) to construct a PRG that “fools” uniform circuits, assuming that the well-
structured function cannot be computed by efficient probabilistic algorithms. Finally, in Section 4.3,
we prove Theorems 1.1 and 1.2.

4.1 Construction of a Well-structured Function

In Section 4.1.1, we present the required properties of well-structured functions and define such
functions. Then, in Section 4.1.2, we present a high-level overview of our construction of such
functions. Finally, in Section 4.1.3, we present the construction itself in detail.

4.1.1 Well-structured Function: Definition. Loosely speaking, we will say that a function f :
{0, 1}∗ → {0, 1}∗ is well-structured if it satisfies three properties. The first property, which is not
crucial for our proofs but simplifies them a bit, is that f is length-preserving; that is, for every
x ∈ {0, 1}∗ it holds that | f (x ) | = |x |.
The second property is a strengthening of the notion of downwards self-reducibility. Recall that

a function f : {0, 1}∗ → {0, 1}∗ is downwards self-reducible if fn can be computed by an efficient
algorithm that has oracle access to fn−1. First, we quantify the notion of “efficient,” to also allow
for a very large running time (e.g., running time 2n/polylog(n)). Second, we also require that for any
n ∈ N there exists an input length m that is not much smaller than n such that fm is efficiently
computable without any “downward” oracle. That is, intuitively, if we try to compute f on input
length n by “iterating downwards” using downward self-reducibility, our “base case” in which the
function is efficiently computable is not input length O (1), but a large input lengthm that is not
much smaller than n. More formally:

Definition 4.1 (Downward Self-reducibility in Few Steps). For t , s : N→ N, we say that a function
f : {0, 1}∗ → {0, 1}∗ is downward self-reducible in time t and s steps if there exists a probabilistic
oracle machine A that for any sufficiently large n ∈ N satisfies the following:

(1) When A is given input x ∈ {0, 1}n and oracle access to fn−1, it runs in time at most t (n) and
satisfies Prr [A

fn−1 (x , r ) = f (x )] ≥ 2/3.
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(2) There exists an input lengthm ∈ [n− s (n),n] such thatA computes fm in time t (m) without
using randomness or oracle queries.

In the special case that s (n) = n, we simply say that f is downward self-reducible in time t .

The third property that we need is a refinement of the notion of random self-reducibility, which
is called sample-aided worst-case to average-case reducibility. This notion was recently made
explicit by Goldreich and G. Rothblum [23] and is implicit in many previous results (see, e.g., the
references in [23]).

To explain the notion, recall that if a function f is randomly self-reducible, then a circuit C̃ that
computes f on most of the inputs can be efficiently transformed to a (probabilistic) circuit C that
computes f on every input (whp). We want to relax this notion by allowing the efficient algorithm

that transforms C̃ into C to obtain random labeled samples for f (i.e., inputs of the form (r , f (r ))
where r is chosen uniformly at random). The main advantage in this relaxation is that we will

not need to assume that C̃ computes f on most of the inputs but will be satisfied with the weaker

assumption that C̃ computes f on a tiny fraction of the inputs. Specifically24:

Definition 4.2 (Sample-aided Reductions; see [23, Definition 4.1]). Let f : {0, 1}∗ → {0, 1}∗ be
a length-preserving function, and let s : N → N and δ0 : N → [0, 1). Let M be a probabilistic
oracle machine that gets input 1n and a sequence of s (n) pairs of the form (r ,v ) ∈ {0, 1}n × {0, 1}n

and oracle access to a function f̃n : {0, 1}n → {0, 1}n , and outputs a circuit C : {0, 1}n → {0, 1}n

with oracle gates. We say that M is a sample-aided reduction of computing f in the worst-case

to computing f on δ0 of the inputs using a sample of size s if for every f̃n : {0, 1}n → {0, 1}n

satisfying Prx ∈{0,1}n [ f̃n (x ) = fn (x )] ≥ δ0 (n) the following holds: With probability at least 1−δ0 (n)
over choice of r̄ = r1, . . . , rs (n) ∈ {0, 1}n and over the internal coin tosses of M , we have that

M
˜fn (1n , (ri , fn (ri ))i ∈[s (n)]) outputs a circuit C such that Pr[C

˜fn (x ) = fn (x )] ≥ 2/3 for every x ∈
{0, 1}n (the probability bound of 2/3 is over the internal randomness of C).

Definition 4.3 (Sample-aided Worst-case to Average-case Reducibility). For δ0 : N → (0, 1), we
say that a function f : {0, 1}∗ → {0, 1}∗ is sample-aided worst-case to δ0-average-case reducible

if there exists a sample-aided reduction M of computing f in worst-case to computing f on δ0 of
the inputs such thatM runs in time poly(n, 1/δ0 (n)) and uses poly(1/δ0 (n)) samples.

For high-level intuition of why labeled samples can be helpful for worst-case to average-case
reductions, and for a proof that if f is a low-degree multivariate polynomial then it is sample-aided
worst-case to average-case reducible, see Appendix B.
We are now ready to define well-structured functions. Fixing a parameter δ > 0, a function

f ws is δ -well-structured if it is length-preserving, downward self-reducible in time poly(1/δ ), and
sample-aided worst-case to δ -average case reducible. That is:

Definition 4.4 (Well-structured Function). For δ : N → (0, 1) and s : N → N, we say that a
function f ws : {0, 1}∗ → {0, 1}∗ is (δ , s )-well-structured if f ws is length-preserving, downward self-
reducible in time poly(1/δ ) and s steps, and sample-aided worst-case to δ -average-case reducible.
Also, when s (n) = n (i.e., f ws is simply downward self-reducible in time poly(1/δ )), we say that
f ws is δ -well-structured.

24Definition 4.2 is actually a slightly modified version of the definition in [23]. First, we consider reductions of computing

f in the worst-case to computing f in “rare-case,” whereas [23] both reduces the computation of f to the computation of a

possibly different function f ′ and parametrizes the success probability of computing both f and f ′. Second, we separately
account for the success probability of the transformation M and of the final circuit C . And, last, we also require f to be

length-preserving.
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In the following definition, we consider reductions from a decision problem L ⊆ {0, 1}∗ to a
well-structured function f ws : {0, 1}∗ → {0, 1}∗. To formalize this, we consider both a reduction R,
which transforms any input x for L to an input R (x ) for f ws, and a “decision algorithm” D, which
translates the non-Boolean result f ws (R (x )) into a decision of whether or not x ∈ L.

Definition 4.5 (Reductions to Multi-output Functions). Let L ⊆ {0, 1}∗ and f : {0, 1}∗ → {0, 1}∗. For
t ,b : N → N, we say that L reduces to f in time t with blow-up b if there exist two deterministic
time-t algorithms R and D such that for every x ∈ {0, 1}∗ it holds that |R (x ) | ≤ b ( |x |) and that
x ∈ L if and only if D ( f (R (x ))) = 1.

4.1.2 Overview of Our Construction. For δ = 2−n/polylog(n) and s = polylog(n), our goal is
to construct a (δ , s )-well-structured function f ws : {0, 1}∗ → {0, 1}∗ such that TQBF reduces to
f ws in quasilinear time (and thus with quasilinear blow-up). Throughout the section, assume
that an n-bit input to TQBF is simply a 3-SAT formula φ on n variables, and it is assumed that all
variables are quantified in order with alternating quantifiers (e.g., ∀w1∃w2∀w3...φ (w1, . . . ,wn );
see Definition 4.6).
Our starting point is the well-known construction of Trevisan and Vadhan [56], which (loosely

speaking) transforms the protocol underlying the IP = PSPACE proof into a computational
problem LTV : {0, 1}∗ → {0, 1}∗.25 They required that LTV will meet the weaker requirements
(compared to our requirements) of being downward self-reducible and randomly self-reducible,
where the latter means reducible from being worst-case computable to being computable on, say,
.99 of the inputs.
Before describing our new construction, let us first review the original construction of LTV . For

every n ∈ N, fix a corresponding interval In = [N0,N1] of r (n) = poly(n) input lengths. The input
to LTV at any input length in In (disregarding necessary padding) is a pair (φ,w ) ∈ F2n , where F
is a sufficiently large field. (The field size is chosen such that both P and related polynomials that
are described below will be of low degree.) If (φ,w ) ∈ {0, 1}2n , then we think of φ as representing a
3-SAT formula and ofw as representing an assignment. At input length N0, we define LTV (φ,w ) =
P (φ,w ), where P (φ,x ) is a low-degree arithmetized version of the Boolean function (φ,w ) �→ φ (w ).
Now, recall that the IP = PSPACE protocol defines three arithmetic operators on polyno-

mials (two quantification operators and a linearization operator). Then, at input length N0 + i , the
problem LTV is recursively defined by applying one of the three arithmetic operators on the poly-
nomial from the previous input length N0 + i − 1.26 Observe that computing LTV at input length
N0 + i corresponds to the residual computational problem that the verifier faces at the (r − i )th

round of the IP = PSPACE protocol when instantiated for formula φ and with r = r (n) rounds.
Indeed, at the largest input length N1 = N0+r (n) the polynomial LTV is simply a low-degree arith-
metized version of the function that decides whether or not φ ∈ TQBF (regardless ofw); thus, TQBF
can be reduced to LTV by mapping φ ∈ {0, 1}n to (φ, 1n ) ∈ F2n and adding padding to get the
input to be of length N1 = poly(n). Note that LTV is indeed both downward self-reducible (since
for each operator O and polynomial P , we can compute O (P ) (φ,w ) in polynomial-time with two
oracle queries to P ), and randomly self-reducible (since the polynomials have low degree.)

25Actually, in [56] they define a Boolean function, which treats a suffix of its input as an index of an output bit in the

non-Boolean version that we describe and outputs the corresponding bit. To streamline our exposition, we ignore this

issue.
26In more detail, we define three arithmetic operators on functions F2n → F, each indexed by a variable j ∈ [n], and

denote these operators by {O j

k
}k∈[3], j∈[n]. In each recursive step i ∈ [r (n)], the polynomial corresponding to input length

N0 + i is obtained by applying operator O j (i )
k (i )

, where j, k : N → [3] are polynomial-time computable functions, to the

polynomial corresponding to input length N0 + i − 1. Thus, at input length N0 + i , we compute LT V (φ, w ) by applying i

operators on the polynomial P and evaluating the resulting polynomial at (φ, w ).
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Let us now define our f ws : {0, 1}∗ → {0, 1}∗, which replaces their LTV , and highlight what
is different in our setting. Recall that our main goal is to construct the well-structured function
f ws such that TQBF is reducible to f ws with only quasilinear overhead in the input length (i.e.,
we need to avoid polynomial overheads), while keeping the running time of all operations (i.e.,
of the algorithms for downward self-reducibility and for sample-aided worst-case to rare-case

reducibility) to be at most 2n/polylog(n) .
The first issue, which is relatively easy to handle, is the number of bits that we use to represent

an (arithmetized) input (φ,w ) for f ws. Recall that we want f ws to be worst-case to δ -average-case
reducible for a tiny δ = 2−n/polylog(n) ; thus, f ws will involve computing polynomials over a field of
large size |F| ≥ poly(1/δ ). Using the approach of [56], we would need 2n · log( |F|) = Ω̃(n2) bits
to represent (φ,w ), and thus the reduction from TQBF to f ws would incur a polynomial overhead.
This is easily solvable by considering a “low-degree extension” instead of their “multilinear exten-
sion”: To represent an input (φ,w ) ∈ {0, 1}2n to f ws, we will use few elements in a very large field.
Specifically, we will use � = polylog(n) variables (i.e., the polynomial will be F2� → F) such that
each variable “provides” O (n/polylog(n)) bits of information.
A second problem is constructing a low-degree arithmetization P (φ,w ) of the Boolean function

that evaluates φ at w . In [56], they solve this by first reducing TQBF to an intermediate problem
TQBF′ that is amenable to such low-degree arithmetization; however, their reduction incurs a qua-
dratic blow-up in the input length, which we cannot afford in our setting. To overcome this, we
reduce TQBF to another intermediate problem, denoted TQBFloc, which is amenable to low-degree
arithmetization, such that the reduction incurs only a quasilinear blow-up in the input length.
(Loosely speaking, we define TQBFloc by applying a very efficient Cook-Levin reduction to the
Turing machine that gets input (φ,w ) and outputs φ (w ); see Claim 4.7.1 for precise details.) We
then carefully arithmetize TQBFloc, while “paying” for this efficient arithmetization by the fact that
computing the corresponding polynomial now takes time exp(n/�) = poly(1/δ ), instead of poly(n)
time as in [56] (see Claim 4.7.2).
Third, the number of polynomials in the construction of LTV (i.e., the size of the interval In )

is r (n) = poly(n), corresponding to the number of rounds in the IP = PSPACE protocol.
This poses a problem for us, since the reduction from TQBF maps an input of length n is to an
input of length N1 ≥ poly(n). We solve this problem by “shrinking” the number of polynomials
to be polylogarithmic, using an approach similar to an IP = PSPACE protocol with only

polylog(n) rounds and a verifier that runs in time 2n/polylog(n) : Intuitively, at each input length,
we define f ws by simultaneously applying O (log(1/δ )) operators (rather than a single operator)
to the polynomial that corresponds to the previous input length. Indeed, as one might expect,
this increases the running time of the downward self-reducibility algorithm to poly(1/δ ), but we
can afford this. Implementing this approach requires some care, since multiple operators will be
applied to a single variable (which represents many bits of information), and since the linearization
operator needs to be replaced by a “degree-lowering operation” (that will reduce the individual
degree of a variable to be poly(1/δ )); see Claim 4.7.3 for details.
Last, we also want our function to be downward self-reducible in polylog(n) steps (i.e., after

polylog(n) “downward” steps, the function at the now-smaller input length is computable in time
poly(1/δ ) without an oracle). This follows by noting that the length of each interval In is now
polylogarithmic, and that at the “bottom” input length the function f ws simply computes the arith-
metized version of TQBFloc, which (as mentioned above) is computable in time poly(1/δ ).

The complexity of f ws. For our derandomization result, it suffices to prove that f ws is computable

in time 2Õ (n) , rather than in linear space. (This is because our derandomization algorithm enumer-

ates over all choices for a seed of length Õ (n) and computes the Nisan-Wigderson generator on
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each choice, with f ws as the hard function.) However, analogously to Trevisan and Vadhan [56],
we prove the stronger statement that f ws is computable in linear space.27 This stronger property
may be of independent interest and in particular may be used in future work for constructions of
PRGs that work in small space. (See Remark 4.13 for further details.)

4.1.3 The Construction Itself. We consider the standard “totally quantified” variant of theQuan-

tified Boolean Formula (QBF) problem, called Totally Quantified Boolean Formula (TQBF).
In this version, the quantifiers do not appear as part of the input, and we assume that all the vari-
ables are quantified and that the quantifiers alternate according to the index of the variable (i.e.,
xi is quantified by ∃ if i is odd and otherwise quantified by ∀).

Definition 4.6 (TQBF). A string φ ∈ {0, 1}∗ of length n = |φ | is in the set TQBF ⊆ {0, 1}∗ if φ is a
representation of a 3-SAT formula in variables indexed by [n] such that, denoting the variables by
w1, . . . ,wn , it holds that ∃w1∀w2∃w3∀w4...φ (w1, . . . ,wn ). In other words, φ ∈ TQBF if the quanti-
fied expression that is obtained by quantifying all n variables, in order of their indices and with
alternating quantifiers (starting with ∃), evaluates to true.

Recall that a formula φ that is represented by n bits actually has less than n input variables, since
the representation length of an m-bit formula is O (m · log(m)). Thus, an n-bit φ actually has at
most n/O (log(n)) variable. In Definition 4.6, we assume for simplicity (and to avoid cumbersome
notation) that φ has precisely n input variables, but some of these are dummy variables that are
ignored.28

Recall that QBF, in which the quantifiers are part of the input, is reducible in linear time to TQBF
from Definition 4.6 (by renaming variables and adding dummy variables).
The main result in this section is a construction of a well-structured function f ws such that

TQBF can be reduced to f ws with only quasilinear blow-up. This construction is detailed in the
following lemma:

Lemma 4.7 (A Well-structured Set That is Hard for TQBF under Quasilinear Reduc-
tions). There exists a universal constant r ∈ N such that for every constant c ∈ N the following

holds: For �(n) = log(n)3c and δ (n) = 2−n/�(n) , there exists a (δ ,O (�2))-well-structured function
f ws : {0, 1}∗ → {0, 1}∗ such that f ws is computable in linear space, and TQBF deterministically re-
duces to f ws in time n · log2c+r (n).

Proof. In high level, we first reduce TQBF to a problem TQBFloc that will have a property
useful for arithmetization and then reduce TQBFloc to a function f ws that we will construct as
follows: We will first carefully arithmetize a suitable witness-relation that underlies TQBFloc;
then transform the corresponding arithmetic version of TQBFloc to a collection of low-degree
polynomials that also satisfy a property akin to downward self-reducibility (loosely speaking,
these polynomials arise from the protocol underlying the proof of IP = PSPACE [42, 52]);
and finally “combine” these polynomials to a Boolean function f ws that will “inherit” the useful
properties of the low-degree polynomials and will thus be well-structured.

A variant of TQBF that is amenable to arithmetization. We will need a non-standard variant
of TQBF, which we denote by TQBFloc, such that TQBF is reducible to TQBFloc with quasilinear
blow-up, and TQBFloc has an additional useful property. To explain this property, recall that the

27Recall that the downward self-reducibility algorithm for f ws works in time poly(1/δ ) = 2n/polylog(n ) , and thus the

existence of this algorithm does not immediately imply that f ws ∈ PSPACE.
28This choice makes our reduction of TQBF to f ws somewhat wasteful, but this waste only causes a polylogarithmic over-

head, which is insignificant for our results. Thus, for simplicity, we assume that the number of variables indeed equals the

representation length of φ .
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verification procedure of a “witness” w = w1, . . . ,wn in TQBF is local, in the following sense: For
every fixed φ it holds that φ ∈ TQBF iff ∃w1∀w2... 3SAT (φ,w ), where 3SAT (φ,w ) = φ (w ) is a
relation that can be decided by a conjunction of local conditions on the “witness” w . We want
the stronger property that the relation that underlies TQBFloc can be tested by a conjunction of
conditions that are local both in the input and in the witness. That is, denoting the underlying
relation by R-TQBFloc, we will have that x ∈ TQBFloc iff ∃w1∀w2... R-TQBFloc (x ,w ), where
R-TQBFloc is a conjunction of local conditions on (x ,w ). In more detail:

Claim 4.7.1 (A Variant of TQBF with Verification that is Local in Both Input and Wit-
ness). There exists a set TQBFloc ∈ SPACE[O (n)] and a relation R-TQBFloc ⊆ ({0, 1}∗ × {0, 1}∗)
such that TQBFloc = {x : ∃w1∀w2∃w3∀w4...(x ,w ) ∈ R-TQBFloc}, and the following holds:

(1) (Length-preserving witnesses.) For any (x ,w ) ∈ R-TQBFloc it holds that |w | = |x |.
(2) (Verification that is local in both input and witness.) For every n ∈ N there exist n functions

{ fi : {0, 1}n × {0, 1}n → {0, 1}}i ∈[n] such that the mapping (x ,w, i ) �→ fi (x ,w ) is computable
in quasilinear time and linear space, and each fi depends on only three variables, and
(x ,w ) ∈ R-TQBFloc if and only if for all i ∈ [n] it holds that fi (x ,w ) = 1.

(3) (Efficient reduction with quasilinear blow-up.) There exists a deterministic linear-space and
quasilinear-time algorithm A that gets as input φ ∈ {0, 1}n and outputs x = A(φ) such that
φ ∈ TQBF if and only if x ∈ TQBFloc.

Proof. Consider a 3-SAT formula φ ∈ {0, 1}n as an input to TQBF, and for simplicity assume
that n is even (this assumption is insignificant for the proof and only simplifies the notation). By
definition, we have that φ ∈ TQBF if and only if

∃w1∀w2∃w3....∃wn φ (w1, . . . ,wn ) = 1 .

Now, let M be a linear-space and quasilinear-time machine that gets as input (φ,w ) and
outputs φ (w ). We use an efficient Cook-Levin transformation of the computation of the ma-
chine M on inputs of length 2n to a 3-SAT formula and deduce the following29: There exists a
linear-space and quasilinear-time algorithm that, on input 1n , constructs a 3-SAT formula Φn :

{0, 1}n×{0, 1}n×{0, 1}ql(n) → {0, 1} of size ql(n) = Õ (n) such that for any (φ,w ) ∈ {0, 1}n×{0, 1}n it

holds that φ (w ) = 1 if and only if there exists a uniquew ′ ∈ {0, 1}ql(n) satisfying Φn (φ,w,w ′) = 1.
Now, using the formula Φn , note that φ ∈ {0, 1}n is in TQBF if and only if

∃w1∀w2∃w3...∃wn ∃w ′
1∃w ′

2...∃w ′
ql(n) Φn (φ,w,w ′) = 1 . (4.1)

We slightly modify Φn to make the suffix of existential quantifiers in Equation (4.1) alternate
with universal quantifiers that are applied to dummy variables. (Specifically, for each i ∈ [ql(n)],
we rename w ′

i to w ′
2i , which effectively introduces a dummy variable before w ′

i .) Denoting the
modified formula by Φ′

n , we have that φ ∈ TQBF if and only if

∃w1∀w2∃w3...∃wn∀w ′
1∃w ′

2∀w ′
3...∃w ′

2ql(n) Φ′
n (φ,w,w ′) = 1 .

We define the relation R-TQBFloc to consist of all pairs (x ,w ) such that x = (φ, 12ql( |φ |) ) and
w = (w (0),w (1) ) ∈ {0, 1} |φ | × {0, 1}2ql( |φ |) and Φ′

|φ | (φ,w
(0),w (1) ) = 1. Indeed, in this case the

corresponding set TQBFloc is defined by

TQBFloc =
{

(φ, 12ql( |φ |) ) : ∃w (0)
1 ∀w (0)

2 ...∃w
(0)
|φ |∀w

(1)
1 ∃w (1)

2 ...∃w
(1)
2ql( |φ |) Φ′

|φ | (φ,w
(0),w (1) ) = 1

}
.

29The algorithm transforms M into an oblivious machine [24, 47] and then applies an efficient Cook-Levin transformation

of the oblivious machine to a 3-SAT formula (see, e.g., [2, Section 2.3.4]).
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Note that, by definition, for every (x ,w ) ∈ R-TQBFloc, we have that |w | = |x |. To see that
R-TQBFloc can be tested by a conjunction of efficiently computable local conditions, note that an
n-bit input to TQBFloc is of the form (φ, 12ql( |φ |) ) ∈ {0, 1}m × {1}2ql(m) , and recall that Φ′

m is a
3-SAT formula of size ql(m) < n that can be produced in linear space and quasilinear time from

input 1m . Also, TQBFloc is computable in linear space, since on input (φ, 12ql( |φ |) ) the number of
variables that are quantified is |φ | + 2ql( |φ |), and since Φ′

|φ | can be evaluated in spaceO ( |φ |). Last,
TQBF trivially reduces to TQBFloc by adding padding φ �→ (φ, 12ql( |φ |) ). �

Arithmetic setting. For any n ∈ N, let �0 = �0 (n) = �(logn)c �, let n′ = �n/�0�, let δ0 (n) = 2−n′
,

and let F be the field with 25n
′
= 1/poly(δ0 (n)) elements. Recall that a representation of such a

field (i.e., an irreducible polynomial of degree 5n′ over F2) can be found deterministically either in
linear space (by a brute-force algorithm) or in time poly(n′) = poly(n) (by Shoup’s [53] algorithm).
Fix a bijection π between {0, 1}5n′

and F (i.e., π maps any string in {0, 1}5n′
to the bit-

representation of the corresponding element in F) such that both π and π−1 can be computed

in polynomial time and linear space. Let H ⊂ F be the set of 2n′
elements that are repre-

sented (via π ) by bit-strings with a prefix of n′ arbitrary bits and a suffix of 4n′ zeroes (i.e.,
H = {π (z) : z = x04n

′
,x ∈ {0, 1}n′ } ⊂ F such that |H | = 2n′

).30

We will consider polynomials F2�0 → F, and we think of the inputs to each such polynomial
as of the form (x ,w ) ∈ F�0 × F�0 . Note that, intuitively, x and w each represent about 5n bits of
information. When x and w are elements in the subset H �0 ⊂ F�0 , we think of them as a pair of
n-bit strings that might belong to R-TQBFloc.

Arithmetization of R-TQBFloc. Our first step is to carefully arithmetize the relation R-TQBFloc

within the arithmetic setting detailed above. We will mainly rely on the property that there is a
“doubly-local” verification procedure for R-TQBFloc.

Claim 4.7.2 (Low-degree Arithmetization). There exists a polynomial PTQBFloc : F2�0 → F

such that the following holds:

(1) (Low-degree.) The degree of PTQBFloc is at most O (n · 2n′
).

(2) (Arithmetizes R-TQBFloc.) For every (x ,w ) ∈ H �0 × H �0 it holds that PTQBFloc (x ,w ) = 1 if

(x ,w ) ∈ R-TQBFloc, and PTQBFloc (x ,w ) = 0 otherwise.
(3) (Efficiently computable.) There exists a deterministic algorithm that gets as input (x ,w ) ∈ F2�0 ,

runs in time poly( |F|), and outputs PTQBFloc (x ,w ) ∈ F. There also exists a deterministic
linear-space algorithm with the same functionality.

Proof. We first show a polynomial-time and linear-space algorithm that, given input 1n ,

constructs a low-degree polynomial PTQBFloc

0 : F2n
′ ·�0 → F that satisfies the following: For every

(x ,w ) ∈ F2n
′ ·�0

2 (i.e., when the input is a string of 2n′ · �0 ≥ 2n bits, and we interpret it as a pair

(x ,w ) ∈ {0, 1}2n) it holds that PTQBFloc

0 (x ,w ) = 1 if (x ,w ) ∈ R-TQBFloc (x ,w ), and PTQBFloc

0 (x ,w ) = 0
otherwise.
To do so, recall that, by Claim 4.7.1, we can construct in polynomial time and linear space a

collection of n polynomials { fi : F2n
′ ·�0

2 → F2}i ∈[n] such that for each i ∈ [n] the polynomial fi de-

pends only on three variables in the input (x ,w ), and such that (x ,w ) ∈ R-TQBFloc if and only if for
all i ∈ [n] it holds that fi (x ,w ) = 1. For each i ∈ [n], letpi : F

2n′ ·�0 → F be themultilinear extension
of fi , which can be evaluated in time poly(n) and in linear space (since fi depends only on three

30The specific choice of H as the image of H0 = {x04n′
: x ∈ {0, 1}n′ } under π is immaterial for our argument, as long as

we can efficiently decide H0 and enumerate over H0.
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variables, and using Lagrange’s interpolation formula and the fact that π is efficiently computable).

Then, the polynomial PTQBFloc

0 is simply the multiplication of all the pi ’s; that is, P
TQBFloc

0 (x ,w ) =∏
i ∈[n] pi (x ,w ). Note that PTQBFloc

0 can indeed be evaluated in time poly(n) and in linear space, and

that the degree of PTQBFloc

0 is O (n) (since each pi is a multilinear polynomial in O (1) variables).

Now, let π (H )
1 , . . . ,π

(H )
n′ : H → {0, 1} be the “projection” functions such that π (H )

i outputs the ith

bit in the bit-representation of its input according to π . Abusing notation, we let π (H )
1 , . . . ,π

(H )
n′ :

F→ F be the low-degree extensions of the π (H )
i ’s, which are of degree at most |H | − 1 < 2n′

. Also,

for every σ ∈ F, we denote by π (H ) (σ ) the string π (H )
1 (σ ), . . . ,π (H )

n′ (σ ) ∈ Fn′
. Note that the map-

ping of σ ∈ F to π (H ) (σ ) ∈ Fn′
can be computed in time poly( |H |) = poly( |F|) and in linear space

(again just using Lagrange’s interpolation formula and the fact that π is efficiently computable).

Finally, we define the polynomial PTQBFloc : F2�0 → F. Intuitively, for (x ,w ) ∈ H �0 × H �0 , the

polynomial PTQBFloc first uses the π (H )
i ’s to compute the bit-projections of x andw , which are each

of length n′ · �0, and then evaluates the polynomial PTQBFloc

0 on these 2n′ · �0 bit-projections. More

formally, for every (x ,w ) ∈ F2�0 , we define

PTQBFloc (x ,w ) = PTQBFloc

0

(
π (H ) (x1), . . . ,π (H ) (x�0 ),π

(H ) (w1), . . . ,π (H ) (w�0 )
)
.

The first item in the claim follows, since for every i ∈ [n′] the degree of π (H )
i is less than

2n′
, and, since deg(PTQBFloc

0 ) = O (n). The second item in the claim follows immediately from the

definition of PTQBFloc . And the third item in the claim follows, since π (H ) can be computed in time

poly( |F|) and in linear space, and since PTQBFloc

0 can be constructed and evaluated in polynomial
time and in linear space. (The two different algorithms are since we need to find an irreducible
polynomial, which can be done either in linear space or in time poly(n) < poly( |F|).) �

Constructing a “downward self-reducible” collection of low-degree polynomials. Our goal now is
to define a collection of O (�20 ) polynomials {Pn,i : F2�0 → F}i ∈[O (�20 )] such that the polynomials

are of low degree, and Pn,1 essentially computes TQBFloc, and computing Pn,i can be reduced
in time poly(1/δ0 (n)) to computing Pn,i+1. The collection and its properties are detailed in the
following claim:

Claim 4.7.3. There exists a collection of �̄0 = �0 (2�0 + 1) + 1 polynomials, denoted
{Pn,i : F

2�0 → F}i ∈[�̄0], that satisfies the following:

(1) (Low degree:) For every i ∈ [�̄0], the degree of Pn,i is at most O (n · �0 · 22n′
).

(2) (Pn,1 computes TQBF
loc on H -inputs:) For any (x ,w ) ∈ H �0 ×H �0 it holds that Pn,1 (x ,w ) = 1

if x ∈ TQBFloc, and Pn,1 (x ,w ) = 0 if x � TQBFloc. (Regardless of w .)
(3) (“Forward” self-reducible:) For every i ∈ [�̄0] it holds that Pn,i can be computed in time

poly(2n′
) when given oracle access to Pn,i+1.

(4) (Efficiently computable:) The polynomial Pn, �̄0
can be computed in time poly(2n′

). Moreover,

for every i ∈ [�̄0], it holds that Pn,i can be computed in space O (n · �̄0).

Proof. For simplicity of notation, assume throughout the proof that n′ is even. Towards
defining the collection of polynomials, we first define two operators on functions p : F2�0 → F.
Loosely speaking, the first operator corresponds to n′ alternating quantification steps in the
IP = PSPACE proof (i.e., n′ steps of alternately quantifying the next variable either by ∃ or
by ∀), and the second operator roughly corresponds to a linearization step that is simultaneously
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applied to n′ variables. In both cases, the n′ variables that we consider are the bits in the
representation of a single element in the second input to p.

Quantifications operator: Let i ∈ [�0]. Loosely speaking, Quant
(i ) (p) causes p to ignore the ith

variable of its second input and instead consider alternating quantification steps applied to the
bits that represent this variable. In more detail, consider an input (x ,w ) ∈ F2�0 for p, and think of
w = w1, . . . ,w�0 ∈ F. The operator Quant(i ) (p) causesp to ignorewi and instead think of a variable

π (σ04n
′
) ∈ H that is determined a sequence of n′ bits σ = σ1, . . . ,σn′ ; then, Quant(i ) (p) will be

the arithmetization of the expression “∃σ1∀σ2∃σ3... : p (x ,w1, . . . ,wi−1,π (σ04n
′
),wi+1, . . . ,w�0 )”

(obtained by arithmetizing the “∃” and “∀” operations in the usual way). To do this, we define a
sequence of functions such that the first function replaces the ith variable in the second input for
p by a dummy variable in H , and each subsequent function corresponds to a quantification step
applied to a single bit in the representation of this dummy variable.

Formally, we recurvisely define n′ + 1 functions Quant(i,0), . . . , Quant(i,n′) = Quant(i ) (p) such
that for j ∈ {0, . . . ,n′} it holds that Quant(i, j ) (p) is a function F2�0 × {0, 1}n′−j → F. The function
Quant(i,0) (p) gets as input (x ,w ) ∈ F2�0 and σ ∈ {0, 1}n′

, ignores the ith element ofw , and outputs
Quant(i,0) (x ,w,σ ) = p (x ,w1...wi−1π (σ04n

′
)). Then, for j ∈ [n′], if j is odd, then we define

Quant(i, j ) (p) (x ,w,σ1...σn′−j ) = 1 − ���
∏

z ∈{0,1}

(
1 − Quant(i, j−1) (p) (x ,w,σ1, . . . ,σn′−jz)

)��� ,

and if j is even, then we define

Quant(i, j ) (p) (x ,σ1, . . . ,σn′−j ) =
∏

z ∈{0,1}
Quant(i, j−1) (p) (x ,w,σ1...σn′−jz) .

Note that the function Quant(i ) (p) can be evaluated at any input in linear space with oracle

access to p (since each Quant(i, j ) (p) can be evaluated in linear space with oracle access to

Quant(i, j−1) (p)). Also observe the following property of Quant(i ) (p), which follows immediately
from the definition:

Fact 4.7.3.1. If for some x ∈ H �0 and any w ∈ H �0 it holds that p (x ,w ) ∈ {0, 1}, then for

the same x and any w ∈ H �0 it holds that Quant(i ) (p) (x ,w ) = 1 if ∃σ1∀σ2∃σ3...∀σn′ such that

p (x ,w1...wi−1π (σ1...σn′04n
′
)wi+1...w�0 ) = 1, and Quant(i ) (p) (x ,w ) = 0 otherwise.

Degree-reduction operator: For every fixed z ∈ H , let Iz : H → {0, 1} be the indicator function
of whether the input equals z, and let Īz : F → F be the low-degree extension of Iz , which is of

degree at most |H | − 1 (i.e., Īz (x ) =
∏

h∈H \{z }
x−h
z−h

). Then, for any i ∈ [�0], we define

DegRed(i ) (p) (x ,w ) =
∑
z ∈H

Īz (xi ) · p (x1...xi−1zxi+1...x�0 ,w ) ,

and similarly for i ∈ [2�0], we denote i
′ = i − �0 and define

DegRed(i ) (p) (x ,w ) =
∑
z ∈H

Īz (wi′ ) · p (x ,w1...wi′−1zwi′+1...w�0 ) .

Similarly to the operator Quant(i ) , note that the function DegRed(i ) (p) can be evaluated at

any input in linear space with oracle access to p. Also, the definition of the operator DegRed(i )

implies that:

Fact 4.7.3.2. For i ∈ [2�0], let v be the variable whose degree DegRed(i ) reduces (i.e., v = xi if

i ∈ [�0] and v = wi′ = wi−�0 if i ∈ [2�0]). Then, the individual degree of v in DegRed(i ) (p) is |H | − 1,

and the individual degree of any other input variable to DegRed(i ) (p) remains the same as in p.
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Moreover, for every (x ,w ) ∈ F�0 × F�0 , if the input (x ,w ) assigns the variable v to a value in H , then

DegRed(i ) (p) (x ,w ) = p (x ,w ).

Composing the operators: We will be particularly interested in what happens when we first
apply the quantifications operator to some variable i ∈ [�0] and then apply the degree-reduction
operator to all variables sequentially. A useful property of this operation is detailed in the
following claim:

Claim 4.7.3.3. Let p : F2�0 → F and x ∈ H �0 such that for any w ∈ H �0 it holds that p (x ,w ) ∈
{0, 1}. For i ∈ [�0], let p ′ : F2�0 → F be the function that is obtained by first applying Quant(i ) to p,

then applying DegRed(j ) for each j = 1, . . . , 2�0. Then, for any w ′ ∈ H �0 , we have that p ′(x ,w ′) = 1
if ∃σ1∀σ2∃σ3...∀σn′ : p (x ,w ′

1...w
′
i−1π (σ1...σn′ )w ′

i+1...w
′
�0

) = 1, and p ′(x ,w ′) = 0 otherwise.

Proof. Fix any w ′ ∈ H �0 . By Fact 4.7.3.1, and relying on the hypothesis that for

any w ∈ H �0 , we have that p (x ,w ) ∈ {0, 1}, it follows that Quant(i ) (p) (x ,w ′) = 1 if

∃σ1∀σ2∃σ3...∀σn′ : p (x ,w ′
1...w

′
i−1π (σ1...σn′ )w ′

i+1...w
′
�0

) = 1 and that Quant(i ) (p) (x ,w ′) = 0 other-

wise. Now, let p (0) = Quant(i ) (p), and for every j ∈ [2�0] recursively define p
(j ) = DegRed(j ) (p (j−1) ).

By the “moreover” part of Fact 4.7.3.2, and, since (x ,w ′) ∈ H �0 ×H �0 , for every j ∈ [2�0], we have
that p (j ) (x ,w ′) = p (j−1) (x ,w ′), and hence p ′(x ,w ′) = Quant(i ) (x ,w ′). �

Defining the collection of polynomials: Let us now define the collection of �̄0 = �0 (2�0 + 1) + 1

polynomials. We first define Pn, �0 (2�0+1)+1 (x ,w ) = PTQBFloc (x ,w ). Then, we recursively construct
the collection in �0 blocks such that each block consists of 2�0 + 1 polynomials. The base
case will be block i = �0, and we will decrease i down to 1. Loosely speaking, in each block
i ∈ [�0], starting from the last polynomial in the previous block, we first apply a quantification
operator to the ith variable of the second input w and then apply 2�0 linearization operators,
one for each variable in the inputs (x ,w ). Specifically, for the ith block, we define the first

polynomial by Pn,i (2�0+1) (x ,w ) = Quant(i ) (Pn,i (2�0+1)+1) (x ,w ); and for each j = 1, . . . , 2�0, we

define Pn,i (2�0+1)−j (x ,w ) = DegRed(j ) (Pn,i (2�0+1)−j+1) (x ,w ).
Note that the claimed Property (3) of the collection holds immediately from our definition. To

see that Property (4) also holds, note that the first part (regarding Pn, �̄0
) holds by Claim 4.7.2; and

for the “moreover” part, recall (by the properties of the operators Quant(i ) and DegRed(i ) that
were mentioned above) that each polynomial Pn,k in the collection can be computed in linear
space when given access to the “previous” polynomial Pn,k−1, and also that we can compute the

“first” polynomial Pn, �0 (2�0+1)+1 in linear space (since this polynomial is just PTQBFloc and relying
on Claim 4.7.2). Using a suitable composition lemma for space-bounded computation (see, e.g.,
[19, Lemma 5.2]), we can compute any polynomial in the collection in space O (n · �̄0).
We now prove Property (1), which asserts that all the polynomials in the collection are of

degree at most O (n · �0 · 22n′
). We prove this by induction on the blocks, going from i = �0

down to i = 1, while maintaining the invariant that the “last” polynomial in the previous block

i + 1 (i.e., the polynomial Pn,i (2�0+1)+1) is of degree at most O (n · 2n′
). For the base case i = �0

the invariant holds by our definition that Pn, �0 (2�0+1)+1 = PTQBFloc and by Claim 4.7.2. Now, for
every i = �0, . . . , 1, note that the first polynomial Pn,i (2�0+1) in the block is of degree at most

2n′ · deg(Pn,i (�0+1)+1) = O (n · 22n′
) (i.e., the quantifications operator induces a degree blow-up of

2n′
), and in particular the individual degrees of all variables of Pn,i (2�0+1) are upper-bounded by

this expression. Then, in the subsequent 2�0 polynomials in the block, we reduce the individual

degrees of the variables (sequentially) until all individual degrees are at most |H | − 1 < 2n′
(this

relies on Fact 4.7.3.2). Thus, the degree of the last polynomial in the block (i.e., of Pn, (i−1)(2�0+1)+1)

is at most 2�0 · 2n′
< n · 2n′

, and the invariant is indeed maintained.
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Finally, to see that Property (2) holds, fix any (x ,w ) ∈ H �0 × H �0 . Our goal is to show that
Pn,1 (x ,w ) = 1 if x ∈ TQBFloc and Pn,1 (x ,w ) = 0 otherwise (regardless of w). To do so, recall that

Pn, �̄0
= PTQBFloc , and hence for any w ′ ∈ H �0 it holds that Pn, �̄0

(x ,w ′) = 1 if (x ,w ′) ∈ R-TQBFloc

and Pn, �̄0
(x ,w ′) = 0 otherwise. Note that the last polynomial in block i = �0 (i.e., the polynomial

Pn, �0 (2�0+1)−2�0 ) is obtained by applying Quant(�0 ) to Pn, �̄0
and then applying DegRed(j ) for each

j = 1, . . . , 2�0. Using Claim 4.7.3.3, for any w ′ ∈ H �0 , when this polynomial is given input (x ,w ′),
it outputs the value 1 if ∃σ1∀σ2∃σ3...∀σn′ (x ,w ′

1...w
′
�0−1π (σ1...σn′ )) ∈ R-TQBFloc and outputs 0

otherwise. By repeatedly using Claim 4.7.3.3 for the last polynomial in each block i = �0 − 1, . . . , 1,

we have that Pn,1 (x ,w ) = 1 if ∃σ (1)
1 ∀σ (1)

2 ...∀σ
(1)
n′ ...∃σ (�0 )

1 ...∀σ (�0 )
n′ : (x ,w ′) ∈ R-TQBFloc, where

w ′ = (π (σ (1)
1 ...σ

(1)
n′ ), . . . ,π (σ (�0 )

1 ...σ (�0 )
n′ )); and Pn,1 (x ,w ) = 0 otherwise. In other words, we have

that Pn,1 (x ,w ) = 1 if x ∈ TQBFloc and Pn,1 (x ,w ) = 0 otherwise, as we wanted. �

Combining the polynomials into a Boolean function. Intuitively, the polynomials in our collection
are already downward self-reducible (where “downward” here means that Pn,i is reducible to
Pn,i+1) and sample-aided worst-case to average-case reducible (since the polynomials have low
degree and relying on Proposition B.1). Our goal now is simply to “combine” these polynomials
into a single Boolean function f ws : {0, 1}∗ → {0, 1}∗ that will be δ -well-structured.
For every n ∈ N, we define a corresponding interval of input lengths In = [N ,N + �̄0−1], where

N = 10n′ · �0+11n · �̄0 = O (n · �̄0). Then, for every i ∈ {0, . . . , �̄0−1}, we define f ws on input length
N + i such that it computes (a Boolean version of) Pn, �̄0−i . Specifically, f

ws : {0, 1}N+i → {0, 1}N+i

considers only the first 10n′ · �0 = 2�0 · log( |F|) = O (n) bits of its input, maps these bits to
(x ,w ) ∈ F2�0 using π , computes Pn, �̄0−i (x ,w ), and outputs the bit-representation of Pn, �̄0−i (x ,w )

(using π−1), padded to the appropriate length N + i . On input lengths that do not belong to any
interval In for n ∈ N, we define f ws in some fixed trivial way (e.g., as the identity function).
A straightforward calculation shows that the intervals {In }n∈N are disjoint, and thus f ws is

well-defined.31 In addition, since the input length to f ws is N = O (n · �̄0) and each polynomial in
the collection is computable in space O (n · �̄0), it follows that f ws is computable in linear space.
To see that TQBF reduces to f ws, recall that, by Claim 4.7.1, we can reduce TQBF to TQBFloc in time
n · (logn)r (for some universal constant r ∈ N); and note that we can then further reduce TQBFloc
to f ws by mapping any x ∈ {0, 1}n to an (N + �̄0 − 1)-bit input of the form (x ,w,p), where w is
an arbitrary string and p is padding. (This is since f ws on inputs of length N + �̄0 − 1 essentially
computes Pn,1.) This reduction is computable in deterministic time n · log(n)r+2c+1.
We nowwant to show that f ws is downward self-reducible in time poly(1/δ ) and inO ((logN )2c )

steps, where δ (N ) = 2N /(logN )3c

and N denotes the input length. To see this, first note that given
input length N ∈ N, we can find in polynomial time an input length n such that N ∈ In , if such n
exists. If such n does not exist, then the function is defined trivially on input length n and can be
computed in polynomial time. Otherwise, let N0 ≤ N be the smallest input length in In (i.e., N0 =

10�n/�0 (n)� ·�0 (n)+11n · �̄0 (n)), and denote N = N0+i , for some i ∈ {0, . . . , �̄0 (n)−1}. Note that f ws
N

corresponds to the polynomial Pn, �̄0 (n)−i , and f ws
N −1 corresponds to the polynomial Pn, �̄0 (n)−(i−1) . By

Claim 4.7.3, the former can be computed in time poly(2n′
) = poly(2n/(logn)c

) = poly(2N /(logN )3c

)
with oracle access to the latter. Last, recall that |In | = �̄0 (n) < O (logN )2c and that f ws

N0
corre-

sponds to Pn, �0 (n) , which can be computed in time poly(2n′
); hence, there exists an input length

N0 ≥ N −O ((logN )2c ) such that f ws
N0

can be computed in time poly(2n′
) < poly(1/δ (N0)).

31This is the case, since the largest input length in In is 10 �n/�0 (n)� · �0 (n) + 11n · �̄0 (n) + (�̄0 (n) − 1) < 10n + 10�0 (n) +
(11n + 1) · �̄0 (n) − 1 < 10n + 11(n + 1) · �̄0 (n) − 1, whereas the smallest input length in In+1 is 10 �(n + 1)/�0 (n + 1)� ·
�0 (n + 1) + 11(n + 1) · �̄0 (n + 1) ≥ 10n + 11(n + 1)�̄0 (n + 1) + 10.
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To see that f ws is sample-aided worst-case to δ -average-case reducible, first note that computing
f ws on any input length N on which it is not trivially defined is equivalent (up to a polynomial

factor in the runtime) to computing a polynomial F2�0 (n) → F of degree d = O (poly(n) · 22n′
) in

a field of size q = |F| = 25n′
, where n < N /(logN )2c and n′ = �n/�0 (n)�.32 We use Proposition B.1

with parameter ρ (log( |F2�0 (n) |)) = δ0 (n) < δ (N ) and note that its hypothesis δ0 (n) ≥ 10 ·
√
d/|F|

is satisfied, since we chose |F| = poly(1/δ0 (n)) to be sufficiently large. �

4.2 PRGs for Uniform Circuits with Almost-exponential Stretch

Let δ (n) = 2−n/polylog(n) . The following proposition asserts that if there exists a function that is

both δ -well-structured and “hard” for probabilistic algorithms that run in time 2n/polylog(n) , then
there exists an i.o.-PRG for uniform circuits with almost-exponential stretch. That is:

Proposition 4.8 (Almost-exponential Hardness of a Well-structured Function⇒ PRG
for Uniform Circuits with Almost-exponential Stretch). Assume that for some constant

c ∈ N and for δ (n) = 2−n/ log(n)c

there exists a δ -well-structured function that can be computed in

linear space but cannot be computed by probabilistic algorithms that run in time 2O (n/ log(n)c ) . Then,

for every k ∈ N and for t (n) = nloglog(n)k

there exists a (1/t )-i.o.-PRG for (t , log(t ))-uniform circuits

that has seed length Õ (log(n)) and is computable in time npolyloglog(n) .

Proposition 4.8 follows as an immediate corollary of the following lemma. Loosely speaking,
the lemma asserts that for any δ -well-structured function f ws, there exists a corresponding PRG
with almost-exponential stretch such that a uniform algorithm that distinguishes the output of
the PRG from uniform yields a uniform probabilistic algorithm that computes f ws. Moreover, the
lemma provides a “point-wise” statement: For any n ∈ N, a distinguisher on a small number (i.e.,
polyloglog(n)) of input lengths in a small interval around n yields a uniform algorithm for f ws

on input length Õ (log(n)). We will later use this “point-wise” property of the lemma to extend
Proposition 4.8 to “almost everywhere” versions (see Propositions 4.11 and 4.12).
In the following statement, we consider three algorithms: The pseudorandom generator G; a

potential distinguisher for the PRG, denoted A; and an algorithm F for the “hard” function f ws.
Loosely speaking, the lemma asserts that for any n ∈ N, if G is not pseudorandom for A on every
input length in a small set of input lengths surrounding n, then F computes f ws on input length
�(n) = Õ (log(n)).Wewill first fix a constant c that determines the target running time of F (i.e., run-
ning time tF (�) = 2�/ log(�)c

), and the other parameters (e.g., the parameters of the well-structured
function and the seed length of the PRG) will depend on c . Specifically:

Lemma 4.9 (Distinguishing a PRG based on f ws ⇒ Computing f ws). Let c ∈ N be an arbitrary

constant, let δ (n) = 2−n/ log(n)c

, and let s : N → N be a polynomial-time computable function
such that s (n) ≤ n/2 for all n ∈ N. Let f ws : {0, 1}∗ → {0, 1}∗ be a (δ , s )-well-structured function

that is computable in linear space, let t (n) = nloglog(n)k

for some constant k ∈ N, and let �(n) =
�log(n) · (loglogn)b � for a sufficiently large constant b ∈ N. Then, there exist two objects that satisfy
the property detailed below:

(1) (Pseudorandom generator). An algorithm G0 that gets as input 1n and a random seed of length

�G (n) = Õ (�(n)), runs in time npolyloglog(n) , and outputs a string of length n.

32The only potential issue here is that the Boolean function is actually a “padded” version of the function that corresponds

to polynomial: It is not immediate that if there exists an algorithm that computes the Boolean function correctly on ϵ > 0

of the n-bit inputs, then there exists an algorithm that computes the polynomial correctly on the same fraction ϵ > 0

of the m = log( |F2�0 |)-bit inputs. However, the latter assertion holds in our case, since we are interested in probabilistic

algorithms.

Journal of the ACM, Vol. 70, No. 4, Article 25. Publication date: August 2023.



25:32 L. Chen et al.

(2) (Mapping of any input length to a small set of surrounding input lengths). A polynomial-time

computable mapping of any unary string 1n to a set Sn ⊂ [n,n2] of size |Sn | = s (Õ (log(n))),
where a ∈ N is a sufficiently large constant that depends on k .

The property that the foregoing objects satisfy is the following: For every probabilistic time-t algo-
rithmA that uses log(t ) bits of non-uniform advice there exists a corresponding probabilistic algorithm

F that runs in time tF (�) = 2O (�/ log(�)c ) such that for any n ∈ N, we have that: If for every m ∈ Sn

it holds that G0 (1m , u�G0 (m) ) is not (1/t (m))-pseudorandom for A, then F computes f ws on strings of

length �(n).
Moreover, for any function str : N → N such that str(n) ≤ n, the above property holds if

we replace G0 by the algorithm G that computes G0 and truncates the output to length str(n) (i.e.,
G (1n , z) = G0 (1n , z)1, . . . ,G0 (1n , z)str(n)).

Observe that Proposition 4.8 indeed follows as a contra-positive of Lemma 4.9 (with str being
the identity function, whichmeans thatG = G0): If every probabilistic algorithm F that gets an �-bit
input and runs in time 2O (�/ log(�)c ) fails to compute f ws infinitely-often, then for every correspond-
ing time-t algorithm A there exists an infinite set of inputs on which G is pseudorandom for A.

Proof of Lemma 4.9. We prove the “moreover” part, and it implies the foregoing statement
using the function str(n) = n.

Construction: The generator G0. For any p, s , δ , k , t , and f ws that satisfy our hypothesis, let

f GL(ws) : {0, 1}∗ → {0, 1} be defined as follows: For any (x , r ) ∈ {0, 1}n ×{0, 1}n , we let f GL(ws) (x , r ) =∑
i ∈[n] f

ws (x )i ·ri , where the arithmetic is over F2.
33 (We use the notation f GL(ws) , since we will use

the algorithm of Goldreich and Levin [21] to transform a circuit that agrees with f GL(ws) on 1/2+ϵ
of the inputs into a circuit that computes f ws on poly(ϵ ) of the inputs.) We will need the following
standard definition:

Definition 4.9.1 (Combinatorial Designs). An (�,a)-combinatorial design is a collection of sets
S1, . . . , Sn ⊆ [d] such that for every i ∈ [n] it holds that |Si | = �, and for every distinct i, j ∈ [n] it
holds that |Si ∩ S j | ≤ a. We call n the number of sets, and d the universe size, and a the pairwise-

intersection size.

Consider a combinatorial design that has n sets of size �(n) = �log(n) · (loglogn)b � (where b is
a sufficiently large constant that depends on k) with pairwise-intersection size γ · log(n), where
γ > 0 is a sufficiently small constant, in a universe of size �G (n) = Õ (�(n)) = Õ (log(n)) (see, e.g.,
[58, Problem 3.2] for a polynomial-time construction of such a design).

The algorithm G0 is the Nisan-Wigderson generator, instantiated with f GL(ws) as the hard
function and with the foregoing design. Since f ws is computable in linear space, the function

f GL(ws) (x , r ) is computable in time npolyloglog(n) , and hence G0 is computable in time npolyloglog(n)

and has seed length �G (n).

Analysis: Transforming a distinguisher A into an algorithm F for f ws. Let us first fix some pa-
rameters that will be useful below. Denote �′(n) = �(n)/ log(�(n))c+1, and fix a sufficiently
small universal constant ϵ > 0. We assume that �(n) is sufficiently large such that t (n) =

nloglog(n)k ≤ 2ϵ ·�′ (n) . Recall that, since f ws is downward self-reducible in s steps, there exists an
input length �0 (n) ≥ �(n) − s (�(n)) such that f ws

�0 (n)
is computable in time poly(1/δ (�0 (n))). For

Ln = {�0 (n), . . . , �(n)}, we define Sn = {�−1 (2i ) : i ∈ Ln }; see Figure 1 for an illustration. Note that

33On odd input lengths, the function f GL(ws) is defined by ignoring the last input bit; that is, f GL(ws) (x, r σ ) = f GL(ws) (x, r ),
where |x | = |r | and |σ | = 1.
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indeed |Sn | ≤ s (�(n)) = s (Õ (log(n))); and relying on the fact that s (�(n)) ≤ �(n)/2, we have that
Sn ⊂ [n0,n1] where n0 = �

−1 (2�0) ≥ �−1 (�(n)) = n and n1 = �
−1 (2�(n)) < n2.

Let A be a probabilistic algorithm that gets input 1n and log(t (n)) bits of non-uniform advice
and runs in time t (n), fix a corresponding advice sequence, and fix a function str(n) ≤ n. Recall
that we denote G (1n , s ) = G0 (1n , s )1, ...,str(n) .

We call n ∈ N distinguishable if for every m ∈ Sn , when A is given input 1str(m) and the

advice bits, with probability at least 1/t (m) it outputs a circuit Dstr(m) : {0, 1}str(m) → {0, 1} that
(1/t (m))-distinguishes G (1m , u�G (m) ) from uniform. We will construct a probabilistic algorithm

F ckt that gets input 1�(n) , runs in time 2O (�(n)/ log(�(n))c ) , and if n is distinguishable, then with

high probability F ckt outputs a circuit {0, 1}�(n) → {0, 1} that correctly computes f ws on �(n)-bit
inputs. (It follows that a probabilistic algorithm F can decide f ws on {0, 1}�(n) in time at most

2O (�(n)/ log(�(n))c ) by running F ckt and evaluating the circuit at the given input.)

Construction and analysis of F ckt. Given as input 1�(n) , the algorithm F ckt iteratively constructs

circuits for f wsi for increasing values of i ∈ Ln = {�0 (n), . . . , �(n)}. The construction for the base
case i = �0 (n) relies on the fact that f ws

�0 (n)
is computable in time poly(1/δ (�0 (n))) (i.e., the circuit

for f ws
�0 (n)

simply implements this algorithm). For subsequent iterations, the algorithm F ckt will rely

on the following procedure:

Claim 4.9.2. There exists an algorithm F step that gets as input i ∈ Ln \ {�0 (n)} and a circuit

Ci−1 : {0, 1}i−1 → {0, 1}i−1 that computes f wsi−1, runs in time 2O (i/ log(i )c ) · poly( |Ci−1 |), and if n is

distinguishable, then with probability at least 1 − exp(−i/ log(i )c+1) the algorithm F step outputs a

circuit Ci : {0, 1}i → {0, 1}i of size 2O (i/ log(i )c ) that computes f wsi .

Before proving Claim 4.9.2, let us see how is suffices for the construction of F ckt. The algo-
rithm F ckt uses F step with inputs i = �0 (n) + 1, . . . , �(n), and thus it runs in time 2O (�(n)/ log(�(n))c ) .
(Note that the size of the output circuit Ci in Claim 4.9.2 does not depend on the size of the in-
put circuit Ci−1.) The probability that it outputs a circuit that correctly computes f

ws
�(n)

is at least

1 − ∑�
i=�′ exp(i/ log(i )c+1) ≥ 2/3, assuming that � is sufficiently large. Thus, it remains to prove

Claim 4.9.2.

Preliminary step: Constructing a weak learner. Towards constructing F step and proving

Claim 4.9.2, our first step is to construct an efficient algorithm F lrn that gets input 1�(m)

and oracle access to f GL(ws) on �(m)-bit inputs, uses a small amount of non-uniform advice, and

if m ∈ Sn for a distinguishable n, then the algorithm prints a circuit that computes f GL(ws) on
noticeably more than half of the �(m)-bit inputs. The construction and proof follow the standard
efficient uniform reconstruction argument for the Nisan-Wigderson PRG, from [33] (following
[44]).

Claim 4.9.3. There exists a probabilistic algorithm F lrn that gets input 1�(m) , and oracle access

to f GL(ws) on �(m)-bit inputs, and 3ϵ · �′(m) bits of non-uniform advice, runs in time 2�
′(m) , and

satisfies the following: If m ∈ Sn for a distinguishable n, then with probability more than 2−�
′ (m)

the algorithm outputs a circuit {0, 1}�(m) → {0, 1} that computes f GL(ws) correctly on more than

1/2 + 2−�
′ (m) of the inputs.

Proof. Let � = �(m), let �′ = �′(m), and letm′ = str(m) ≤ m. Let us first assume thatm′ = m
(i.e., str is the identity function andG0 = G). In this case, a standard argument (based on [44] and
first noted in [33]) shows that there exists a probabilistic polynomial time algorithm RecNW that

satisfies the following: When given as input a circuit Dm : {0, 1}m → {0, 1} that (1/mloglog(m)k

)-
distinguishes G (1m , u�G (m) ) from uniform, and also given oracle access to f GL(ws) on �-bit inputs,
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Fig. 1. We want to compute f ws on inputs of length �(n). We define a corresponding interval Ln =

{�0 (n), . . . , �(n)} of input lengths, where �0 (n) ≥ �(n) − s (�(n)), in which we will use the downward self-

reducibility of f ws. We assume that there is a uniform distinguisher A for the PRG on all input lengths in

Sn = �
−1 (2Ln ), in which case there exists a weak learner Flrn for f GL(ws) on all input lengths in 2Ln .

with probability at least 1/O (m) the algorithm RecNW outputs a circuit C� : {0, 1}� → {0, 1} such
that Prx ∈{0,1}� [C� (x ) = f GL(ws) (x )] ≥ 1/2 + 1/O (mloglog(m)k

).
Towards extending this claim to the setting of an arbitrary m′ = str(m) ≤ m, let us quickly

recap the original construction of RecNW: The algorithm randomly chooses an index i ∈ [m] (for a
hybrid argument) and values for all the bits in the seed of the NW generator outside the ith set (in
the underlying design); then uses its oracle to query poly(m) values for f GL(ws) (these are potential
values for the output indices whose sets in the design intersect with the ith set) and “hard-wires”
them into a circuit C� that gets input x ∈ {0, 1}� , simulates the corresponding m-bit output of
the PRG, and uses the distinguisher to decide if x ∈ f GL(ws) . Now, note that if the output of the
PRG is truncated to lengthm′ < m, then the construction above works essentially the same if we
choose an initial index i ∈ [m′] instead of i ∈ [m] and if C� completes x to anm

′-bit output of the
PRG instead of anm-bit output. Indeed, referring to the underlying analysis, these changes only
improve the guarantee on the algorithm’s probability of success (we do not use the fact that the
guarantee is better).

Thus, there is an algorithm RecNW that gets as input 1m and a circuitDm′ : {0, 1}m′ → {0, 1} that
(1/mloglog(m)k

)-distinguishes G (1m , u�G (m) ) from uniform, and oracle access to f GL(ws)
�

, and with

probability at least 1/O (m) outputs a circuit C� : {0, 1}� → {0, 1} such that Prx ∈{0,1}� [C� (x ) =

f GL(ws) (x )] ≥ 1/2 + 1/O (mloglog(m)k

).
Now, let n be distinguishable, letm ∈ Sn , let � = �(m), and letm′ = str(m). Our probabilistic

algorithm F lrn is given as input 1� and non-uniform advice (a,m′,m) such that |a | = log(t (m)) =
log(m) · loglog(m)k = ϵ · �′; note that, since m′ ≤ m, the total length of the advice is at most

ϵ ·�′+2 log(m) < 2ϵ ·�′. The algorithm F lrn simulates the algorithmA on input 1m′
with the advice

a, feeds the output ofA as input for RecNW along with 1m , and outputs the circuit given by RecNW.

Our algorithm F lrn runs in timemO (loglog(m)k ) = 2�
′
. With probability more than (1/mloglog(m)k

),

the algorithm A outputs Dm′ : {0, 1}m′ → {0, 1} that (1/mloglog(m)k

)-distinguishes G (1m , u�G (m) )
from uniform, and conditioned on this event, with probability at least 1/O (m) the algorithm F lrn

outputsC� : {0, 1}� → {0, 1} that correctly computes f GL(ws) on 1/2+ 1/O (mloglog(m)k

) > 1/2+ 2−�
′

of the �-bit inputs. �

Claim 4.9.3 implies that for any distinguishable n, when F lrn gets input 1r where r ∈ 2Ln = {2i :
i ∈ Ln }, it succeeds (with probability ≥ 2−�

′(n)) in printing a circuit that approximates f GL(ws) on
r -bit inputs. (This is because, by the definition of Sn , any such input length is of the form �(m)
form ∈ Sn .) See Figure 1 for a pictorial description of the sets Ln , 2Ln , and Sn , and for a reminder
about our assumptions at this point.

Proof of Claim 4.9.2. Let i ′ = 2i/ log(2i )c+1, and let S = |Ci−1 |. First note that the algorithm can com-
pute f wsi in time poly(1/δ (i ), S ) (using the downward self-reducibility of f ws and the circuit Ci−1)

and also compute f GL(ws)
2i in time poly(1/δ (i ), S ) (using the fact that f GL(ws) (x , r ) =

∑
j ∈[i] f

ws
i (x )j ·r j ).

We will construct Ci in a sequence of steps:
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(1) Simulating the learner for f GL(ws)
2i . We enumerate over all 23ϵ ·i′ possible advice strings for F lrn.

For each fixed advice string a ∈ {0, 1}3ϵ ·i′ , we simulate F lrn on input 12i with advice a for 2O (i′)

times (using independent randomness in each simulation) while answering its queries to f GL(ws)
2i

using Ci−1.

Analysis: When a is the “good” advice, each simulation of F lrn is successful with probability at

least 2−i′ . Thus, with probability at least 1 − exp(−i ′), we obtained a list of 2O (i′) circuits, at least

one of which correctly computes f GL(ws)
2i on at least 1/2 + 2−i′ of its inputs.

(2) Weeding the list to find a circuit for f GL(ws)
2i . We enumerate over the list of 2O (i′) circuits. For

each circuit, we randomly sample 2O (i′) inputs, compute f GL(ws)
2i at each of these inputs usingCi−1,

and compare the value of f GL(ws)
2i to the output of the candidate circuit. If the circuit agrees with

f GL(ws)
2i on at least 1/2 + 2−i′ − 2−2i

′
of the inputs in the sample, then we denote this circuit byC (1)

i

and move on to Step 3; otherwise, we continue to the next circuit in the list. If we enumerated over

the entire list and did not find a suitable circuit C (1)
i , then we abort.

Analysis: For each circuit, with probability at least 1−2−O (i′) over the sampled inputs, we correctly

estimate its agreement with f GL(ws)
2i up to error 2−2i

′−1. Union-bounding over the 2O (i′) circuits, with

probability at least 1 − 2−O (i′) , in this step, we obtained a circuit C (1)
i that has agreement at least

1/2 + 2−2i
′
with f GL(ws)

2i .

(3) Conversion to a probabilistic circuit that computes f wsi with success poly(δ0). We use the al-

gorithm of Goldreich and Levin [21] to convert the deterministic circuit C (1)
i into a probabilistic

circuit C (2)
i : {0, 1}i → {0, 1}i of size 2O (i′) such that Pr[C (2)

i (x ) = f wsi (x )] ≥ 2−O (i′) , where the

probability is taken both over a random choice of x ∈ {0, 1}i and over the internal randomness

of C (2)
i . Specifically, the circuit C (2)

i gets input x ∈ {0, 1}i and simulates the algorithm from [19,

Theorem 7.8] with parameter δ0 = 2
−2i′ , while resolving the oracle queries of the algorithm using

the circuit C (1)
i ; then, the circuit C (2)

i outputs a random element from the list that is produced by
the algorithm from [19].

Analysis: Since Ex [Prr [C
(1)
i (x , r ) = f GL(ws)

2i (x , r )]] ≥ 1/2+ δ0, it follows that for at least δ0/2 of the

inputs x ∈ {0, 1}i it holds that Prr [C
(1)
i (x , r ) = f GL(ws)

2i (x , r )] ≥ 1/2 + δ0/2. For each such input x ,
with probability at least 1/2 the algorithm of [21] outputs a list of size poly(1/δ0) that contains

f wsi (x ), and thus the circuit C (2)
i outputs f wsi (x ) with probability poly(δ0).

(4) Fixing randomness for the probabilistic circuit. For t = 2O (i′) attempts, we choose a random

string for C (2)
i , hard-wire it into the circuit, and estimate the agreement between the resulting

deterministic circuit and f wsi , with an additive error of δ1 = poly(δ0) and confidence 1− 1/poly(t ).
(The estimation in each attempt is done using random sampling of inputs, the downward self-
reducibility of f wsi and the circuit Ci−1, similarly to Step 2.) We proceed to the next step if in one
of these attempts yields a deterministic circuit that (according to our estimations) agrees with f wsi

on at least 2δ1 of the inputs.

Analysis: With probability at least 1 − exp(−i ′), at least one choice of random string yields a

deterministic circuit that agrees with f wsi on at least 3δ1 of the inputs, and with probability at least
1 − exp(−i ′), all of our t estimates are correct up to an additive error of δ1. Thus, with probability
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at least 1− exp(−i ′), we proceed to the next step with a deterministic circuitC (3)
i of size 2O (i′) that

agrees with f wsi on δ1 = 2
−O (i′) = 2−O (i/ log(i )c+1 ) > δ (i ) of the inputs.

(5) Worst-case to δ -average-case reduction for f wsi . We use the sample-aided worst-case to δ -
average-case reduction for f ws, generating random labeled samples (r , f wsi (r )) by using the down-
ward self-reducibility of f ws and the circuit Ci−1 to compute f wsi (r ).

Analysis:With probability at least 1−δ (i ), the uniform reduction outputs a probabilistic circuitC (4)
i

of size poly(1/δ (i )) such that for every x ∈ {0, 1}i it holds that Prr [C
(4)
i (x , r ) = f wsi (x )] ≥ 2/3.34

(6) Fixing randomness for the final circuit. Applying naive error-reduction to C (4)
i , we obtain a

circuitC (5)
i of size poly(1/δ (i )) that correctly computes f wsi at any input with probability 1−2−O (i ) .

Then, we uniformly choose randomness forC (5)
i and “hard-wire” the randomness into it, such that

with probability at least 1−2−i , we obtain a deterministic circuitCi : {0, 1}i → {0, 1} that computes
f wsi correctly on all inputs.

Having proved Claim 4.9.2, this concludes the proof of Lemma 4.9. �

In the last part of the proof of Lemma 4.9, after we converted a distinguisher for f GL(ws) into

a weak learner for f GL(ws) (i.e., after Claim 4.9.3), we used the existence of the weak learner for

f GL(ws) on 2Ln to obtain a circuit that computes f ws on Ln . This part of the proof immediately
implies the following, weaker corollary. (The corollary is weaker, since it does not have any “point-
wise” property, i.e., does not convert a learner on specific input lengths to a circuit for f ws on a
corresponding input length.)

Corollary 4.10 (Learning f GL(ws) =⇒ Computing f ws). Let c ∈ N be an arbitrary constant,

let f ws : {0, 1}∗ → {0, 1}∗ be a δ -well-structured function for δ (n) = 2−n/ log(n)c

, and let f GL(ws) be
defined as in the proof of Lemma 4.9. Assume that for every � ∈ N there exists a weak learner for

f GL(ws) ; that is, an algorithm that gets input 1� and oracle access to f GL(ws)
�

, runs in time δ−1 (�), and

with probability more than δ (�) outputs a circuit over � bits that computes f GL(ws) correctly on more
than 1/2 + δ (�) of the inputs. Then, there exists an algorithm that for every �, when given input 1� ,

runs in time 2O (�/ log(�)c ) and outputs an �-bit circuit that computes f ws.

We now use the “point-wise” property of Lemma 4.9 to deduce two “almost-always” versions of
Proposition 4.8. Recall that in our construction of a well-structured function f ws, on some input
lengths f ws is defined trivially, and thus it cannot be that f ws is hard almost-always.35 However,
since TQBF can be reduced to f ws with a quasilinear blow-up b : N → N, we can still deduce the
following: If TQBF is “hard” almost-always, then for every n ∈ N there exists n′ ≤ b (n) such that
f ws is “hard” on input length n′ (i.e., this holds for the smallest n′ ≥ n of the form b (n0) for n0 ∈ N).
In our first “almost-always” result, the hypothesis is that a well-structured function is “hard” on

a dense set of input lengths as above, and the conclusion is that there exists an “almost-everywhere”
HSG for uniform circuits.

Proposition 4.11 (“Almost Everywhere” Hardness of f ws ⇒ “Almost Everywhere”
Derandomization of RP “On Average”). Assume that for some constant c ∈ N and for

δ (n) = 2−n/ log(n)c

there exists a (δ , polylog(n))-well-structured function and b (n) = Õ (n) such that

34In Definition 4.3 the output circuit has oracle gates to a function that agrees with the target function on a δ fraction of

the inputs. Indeed, we replace these oracle gates with copies of the circuit C
(3)
i .

35Moreover, in every small interval of input lengths, there is an input length on which f ws can be solved in time poly(1/δ )
(without using an oracle).
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for every probabilistic algorithm that runs in time 2n/ log(n)c

, and every sufficiently large n ∈ N, the
algorithm fails to compute f ws on input length n = min{b (n0) ≥ n : n0 ∈ N}. Then, for every k ∈ N
and for t (n) = nloglog(n)k

there exists a (1/t )-HSG for (t , log(t ))-uniform circuits that is computable

in time npolyloglog(n) and has seed length Õ (log(n)).

Proof. We instantiate Lemma 4.9 with the constant c , the function f ws, the parameter 2k instead

of k (i.e., the parameter t in Lemma 4.9 is t (n) = nloglog(n)2k

), and with str(n) = n (i.e., str is the
identity function). Let �(n) = �Õ (log(n))� be the quasilogarithmic function given by Lemma 4.9,

letG = G0 be the corresponding PRG, and let �G (n) = Õ (log(n)) be the seed length ofG. From our
hypothesis regarding the hardness of f ws, we can deduce the following:

Corollary 4.11.1. For every n ∈ N there is a polynomial-time-enumerable set Sn = Snpolyloglog(n ) ⊂
[n,npolyloglog(n)] of size polyloglog(n) such that for every probabilistic algorithm A′ that runs in time

t2 and uses 2 log(t ) bits of advice, if n ∈ N is sufficiently large, then there exists m ∈ Sn such that
G (1m , u�G (m) ) is (1/t2 (m))-pseudorandom for A′.

Proof. For every n ∈ N, let �(n) = min{b (�0) ≥ �(n) : �0 ∈ N}, and let n = �−1 (�(n)) ∈
[n,npolyloglog(n)].We define Sn = Sn , where Sn is the set from Item (2) of Lemma 4.9 that corresponds

to n. Note that Sn ⊂ [n,npolyloglog(n)] and that |Sn | ≤ polyloglog(n).
Now, let A′ be a probabilistic algorithm as in our hypothesis, let F ′ be the corresponding proba-

bilistic algorithm from Lemma 4.9 that runs in time tF ′ (i ) = 2i/ log(i )c

, and let n ∈ N be sufficiently

large. By Lemma 4.9, if there is nom ∈ Sn such thatG (1m , u�G (m) ) is (1/t (m))-pseudorandom forA′,

then F ′ correctly computes f ws on input length �(n) = �(n), which contradicts our hypothesis. �

The HSG, denoted H , gets input 1n , uniformly choosesm ∈ Sn , computesG (1m , s ) for a random
s ∈ {0, 1}�G (m) , and outputs the n-bit prefix ofG (1m , s ). Note that the seed length thatH requires is

Õ (log(npolyloglog(n) )) + log( |Sn |) = Õ (log(n)) and that H is computable in time at most npolyloglog(n) .
To prove that H is a (1/t )-HSG for (t , log(t ))-uniform circuits, let A be a probabilistic algorithm

that runs in time t and uses log(t ) bits of advice. Assume towards a contradiction that there ex-
ists an infinite set BA ⊆ N such that for every n ∈ BA, with probability more than 1/t (n) the
algorithm A outputs a circuit Dn : {0, 1}n → {0, 1} satisfying Prs [Dn (H (1n , s )) = 0] = 1 and
Prx ∈{0,1}n [Dn (x ) = 1] > 1/t (n). We will construct an algorithm A′ that runs in time less than

t2, uses log(t ) + log(n) < 2 log(t ) bits of advice, and for infinitely-many sets of the form Sn , for

every m ∈ Sn it holds that G (1m , u�G (m) ) is not (1/t (m))-pseudorandom for A′. This contradicts
Corollary 4.11.1.
The algorithm A′ gets input 1m , and as advice it gets an integer of size at mostm. Specifically,

if m is in a set Sn for some n ∈ BA, then the advice will be set to n; and otherwise the advice
is zero (which signals to A′ that it can fail on input length m). For any m ∈ N such that the
first case holds, we know that A(1n ) outputs, with probability more than 1/t (n), a circuit Dn :
{0, 1}n → {0, 1} satisfying both Pr

s ∈{0,1}Õ (log(n )) [Dn (H (1n , s )) = 0] = 1 and Prx ∈{0,1}n [Dn (x ) = 1] >

1/t (n). The algorithm A′ simulates A on input length n and outputs a circuit Dm : {0, 1}m → {0, 1}
such that Dm computes Dn on the n-bit prefix of its input. By our hypothesis regarding Dn , when
fixing the first part of the seed of H to be the integer m, we have that Prs ′[Dn (H (1n ,m ◦ s ′)) =
0] = Prs ′[Dm (G (1m , s ′)) = 0] = 1, whereas Prx ∈{0,1}m [Dm (x ) = 1] > 1/t (n). It follows that Dm

distinguishes them-bit output of G from uniform with advantage 1/t (n) ≥ 1/t (m). �

We also prove another “almost-everywhere” version of Proposition 4.8. Loosely speaking, under
the same hypothesis as in Proposition 4.11, we show that BPP can be derandomized “on average”
using only a small (triple-logarithmic) amount of advice. In contrast to the conclusion of Propo-
sition 4.11, in the following proposition, we do not construct a PRG or HSG, but rather simulate
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every BPP algorithm by a corresponding deterministic algorithm that uses a small amount of
non-uniform advice.

Proposition 4.12 (“Almost Everywhere”Hardness of f ws ⇒ “Almost Everywhere” Deran-
domization of BPP “On Average” with Short Advice). Assume that for some constant c ∈ N
and for δ (n) = 2−n/ log(n)c

there exists a (δ , polylog(n))-well-structured function and b (n) = Õ (n)
such that for every probabilistic algorithm that runs in time 2O (n/ log(n)c ) , and every sufficiently large
n ∈ N, the algorithm fails to compute f ws on input length n = min{b (n0) ≥ n : n0 ∈ N}.

For k ∈ N and t (n) = nloglog(n)k

, let L ∈ BPT IME[t] and let F be a probabilistic t-time

algorithm. Then, there exists a deterministic machine D that runs in time npolyloglog(n) and gets
O (logloglog(n)) bits of non-uniform advice such that for all sufficiently large n ∈ N, the probability
(over coin tosses of F ) that F (1n ) is an input x ∈ {0, 1}n for which D (x ) � L(x ) is at most 1/t (n).

Proof. Let us first prove the claim assuming that L ∈ BPT IME[t] can be decided using
only a number of random coins that equals the input length; later on, we show how to remove
this assumption (by a padding argument). For t as in our hypothesis for L as above, let M be a
probabilistic t-time algorithm that decides L and that for every input x ∈ {0, 1}∗ uses |x | random
coins, and let F be a probabilistic t-time algorithm. Consider the algorithm A that, on input 1n ,
simulates F on input 1n to obtain x ∈ {0, 1}n and outputs a circuit Cx : {0, 1}n → {0, 1} that
computes the decision ofM at input x as a function of the random coins ofM .
We instantiate Lemma 4.9 with the constant c , the function f ws, and the parameter k . Let � =

Õ (log(n)) be the quasilogarithmic function given by the lemma, let G0 be the PRG, and let �G =
Õ (log(n)) be the seed length of G0. We first need a claim similar to Corollary 4.11.1, but this time
also quantifying over the function str:

Corollary 4.12.1. For every n ∈ N there is a polynomial-time-enumerable set Sn = Snpolyloglog(n ) ⊂
[n,npolyloglog(n)] of size polyloglog(n) that satisfies the following: For every str : N → N satisfying

str(n) ≤ n, let Gstr be the algorithm that on input 1n uses a random seed of length Õ (log(n)),
computesG0, which outputs an n-bit string, and truncates the output to length str(n). Then, for every
probabilistic algorithm A′ that runs in time t and uses log(t ) bits of advice, if n ∈ N is sufficiently

large, then there existsm ∈ Sn such that Gstr (1m , u�G (m) ) is (1/t (m))-pseudorandom for A′.

Proof. For any n ∈ N, we define �(n) and Sn as in the proof of Corollary 4.11.1. For any
str : N → N satisfying str(n) ≤ n, let Gstr be the corresponding function. Now, let A′ be
any probabilistic algorithm as in our hypothesis, let F ′ be the corresponding probabilistic algo-
rithm from Lemma 4.9 that runs in time tF ′ (i ) = 2i/ log(i )c

, and let n ∈ N be sufficiently large. By

Lemma 4.9, if there is nom ∈ Sn such thatGstr (1m , u�G (m) ) is (1/t (m))-pseudorandom forA′, then

F ′ correctly computes f ws on input length �(n). This contradicts our hypothesis regarding f ws. �

The machine D gets input x ∈ {0, 1}n and advice of lengthO (logloglog(n)), which is interpreted

as an index of an elementm in the set Sn . Then, for each s ∈ {0, 1}�G (m) the algorithm computes the
n-bit prefix ofG0 (1m , s ), denotedws = G0 (1m , s )1, ...,n , and outputs themajority value of {M (x ,ws ) :
s ∈ {0, 1}�G (m) }. Note that the machine D indeed runs in timempolyloglog(m) = npolyloglog(n) .
Our goal now is to prove that for every sufficiently large n ∈ N there exists advicem ∈ Sn such

that with probability at least 1 − 1/t (n) over the coin tosses of F (which determine x ∈ {0, 1}n and
Cx : {0, 1}n → {0, 1}) it holds that				 Pr

r ∈{0,1}n
[Cx (r ) = 1] − Pr

s
[Cx (G0 (1m , s )1, ...,n ) = 1]

				 < 1/t (n) , (4.2)
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which is equivalent (for a fixed x ∈ {0, 1}n) to the following statement:				 Pr
r ∈{0,1}n

[M (x , r ) = 1] − Pr
s
[M (x ,ws ) = 1]

				 < 1/t (n) . (4.3)

Indeed, proving this would suffice to prove our claim, since for every x ∈ {0, 1}n such that Equa-
tion (4.3) holds, we have that D (x ) = L(x ).
To prove the claim above, assume towards a contradiction that there exists an infinite set of

input lengths BA ⊆ N such that for every n ∈ BA and every advice m ∈ Sn , with probability
more than 1/t (n) over x ← F (1n ) it holds that Cx : {0, 1}n → {0, 1} violates Equation (4.2). Let

str : N → N be defined by str(m) = n ifm ∈ Sn for some n ∈ BA, and str(m) = m otherwise.36

Then, our assumption implies that for infinitely-many input lengths n ∈ BA, for everym ∈ Sn it
holds thatGstr (1m , u�G (m) ) is not (1/t (n))-pseudorandom for A. This contradicts Corollary 4.12.1.
Finally, let us remove the assumption that L can be decided using a linear number of coins by

a padding argument. For any L ∈ BPT IME[t], consider a padded version Lpad = {(x , 1t ( |x |) ) :
x ∈ L}, and note that Lpad can be decided in linear time using |z | coins on any input z. By the ar-
gument above, for every probabilistic t-time algorithm F pad there exists an algorithm Dpad that

runs in time tDpad (m) = mpolyloglog(m) such that for all sufficiently large m ∈ N it holds that
Prz←F pad (1m )[D

pad (z) � Lpad (z)] ≤ 1/t (m).

We define the algorithm D in the natural way, i.e., D (x ) = Dpad (x , 1t ( |x |) ), and note that this
algorithm runs in time npolyloglog(n) . Assume towards a contradiction that there exists a t-time
algorithm F and an infinite set of input lengths BF ⊆ N such that for everyn ∈ BF , with probability
more than 1/t (n) it holds that D (x ) � L(x ). Consider the algorithm F pad that on input of the form
1n+t (n) runs F (1n ) to obtain x ∈ {0, 1}n and outputs (x , 1n ) (on inputs of another form F pad fails
and halts), and let BF pad = {n + t (n) : n ∈ BF }. For anym ∈ BF pad , we have that

Pr
z←F pad (1m )

[Dpad (z) � Lpad (z)] = Pr
x←F (1n )

[D (x ) � L(x )] > 1/t (n) > 1/t (m) ,

which yields a contradiction. �

Remark 4.13 (A PRG That Runs in Quasilogarithmic Space). The PRG constructed in Lemma 4.9
actually works in quasilogarithmic space (since f ws is computable in linear space), except for one
crucial part: The construction of combinatorial designs. Combinatorial designs with parameters as
in our proof actually can be constructed in logarithmic space, but these combinatorial designs work
only for values of � that are of a specific form (since the constructions are algebraic).37 However,
in our downward self-reducibility argument, we need such designs for every integer � (such that
we can assume the existence of distinguishers on the set Sn = �

−1 (2Ln ), and hence of learners for

f GL(ws) on 2Ln).

4.3 Proofs of Theorems 1.1 and 1.2

Let us now formally state Theorem 1.1 and prove it. The theorem follows immediately as a corollary
of Lemma 4.7 and Proposition 4.8.

Theorem 4.14 (rETH ⇒ i.o.-PRG for Uniform Circuits). Assume that there exists i ≥ 1 such

that TQBF � BPT IME[2n/ log(n)i

]. Then, for every k ∈ N and for t (n) = nloglog(n)k

there exists

36Note that str is well-defined, since we can assume without loss of generality that Sn ∩ Sn′ = ∅ for distinct n, n′ ∈ BA

(i.e., we can assume without loss of generality that n and n′ are sufficiently far apart).
37This can be done using an idea from [29, Lemma 5.5] (attributed to Salil Vadhan), essentially “composing” Reed-Solomon

codes overGF (n) of degree n/polylog(n) with standard designs (à la Nisan andWigderson [44]; see [29, Lemma 2.2]) with

set-size � = polylog(n).
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a (1/t )-i.o.-PRG for (t , log(t ))-uniform circuits that has seed length Õ (log(n)) and is computable in

time npolyloglog(n) .

Proof. Let δ (n) = 2−n/ log(n)3c

for a sufficiently large constant c ∈ N. By Lemma 4.7, there
exists (δ ,O (log(n)6c ))-well-structured function f ws that is computable in linear space and such
that TQBF reduces to f ws in time ql(n) = n · log(n)2c+r , where r ∈ N is a universal constant.

Using our hypothesis, we deduce that f ws cannot be computed in probabilistic time 2n/ log(n)3c−1
>

2O (n/ log(n)3c ) ; this is the case, since otherwise, TQBF could have been computed in probabilistic time

2ql(n)/ log(ql(n))3c−1
= 2n ·log(n)2c+r / log(ql(n))3c−1

< 2n/ log(n)c−r−1
, (4.4)

which is a contradiction if c ≥ i + r + 1. Our conclusion now follows from Proposition 4.8. �

We also formally state Theorem 1.2 and prove it, as a corollary of Lemma 4.7 and of Proposi-
tions 4.11 and 4.12.

Theorem 4.15 (a.a.-rETH ⇒Almost-alwaysHSG forUniformCircuits andAlmost-always
“Average-case” Derandomization of BPP). Assume that there exists i ≥ 1 such that TQBF �
i.o.-BPT IME[2n/ log(n)i

]. Then, for every k ∈ N and for t (n) = nloglog(n)k

:

(1) There exists a (1/t )-HSG for (t , log(t ))-uniform circuits that is computable in time npolyloglog(n)

and has seed length Õ (log(n)).
(2) For every L ∈ BPT IME[t] and probabilistic t-time algorithm F there exists a deterministic

machine D that runs in time npolyloglog(n) and gets O (logloglog(n)) bits of non-uniform advice
such that for all sufficiently large n ∈ N the probability (over coin tosses of F ) that F (1n ) is an
input x ∈ {0, 1}n for which D (x ) � L(x ) is at most 1/t (n).

Proof. Note that both Proposition 4.11 and Proposition 4.12 rely on the same hypothesis and
that their respective conclusions correspond to Items (1) and (2) in our claim. Thus, it suffices to
prove that their hypothesis holds.

To see this, as in the proof of Theorem 4.14, let δ (n) = 2−n/ log(n)3c

for a sufficiently large constant
c ∈ N, and let f ws be the (δ , polylog(n))-well-structured function that is obtained from Lemma 4.7
with parameter δ . Let r ∈ N be the universal constant from Lemma 4.7, and let ql(n) = n·log(n)2c+r .

Note that for every algorithm that runs in time 2n/ log(n)3c−1
> 2O (n/ log(n)3c ) and every sufficiently

large n0 ∈ N, the algorithm fails to compute f ws on input length n = ql(n0); this is because, other-

wise, we could have computed TQBF on infinitely-often n0’s in time 2n/ log(n)c−r−1 ≤ 2n0/ log(n0 )k

,
where the calculation is as in Equation (4.4). This implies the hypothesis of Propositions 4.11
and 4.12. �

5 NETH AND THE EQUIVALENCE OF DERANDOMIZATION AND CIRCUIT LOWER
BOUNDS

In this section, we prove Theorems 1.4, 1.5, and 1.6. Recall that these results show two-way impli-
cations between the statement that derandomization and circuit lower bounds are equivalent, and
a very weak variant of NETH. Specifically, the latter variant is that E does not haveNT IME[T ]-
uniform circuits of small size; let us now properly define this notion:

Definition 5.1 (NT IME[T ]-uniform Circuits). For S,T : N → N, we say that a set L ⊆ {0, 1}∗
can be decided by NT IME[T ]-uniform circuits of size S if there exists a non-deterministic ma-
chineM that gets input 1n , runs in time T (n), and satisfies the following:

(1) For every n ∈ N there exist non-deterministic choices such that M (1n ) outputs a circuit
C : {0, 1}n → {0, 1} of size at most S (n) that decides Ln = L ∩ {0, 1}n .

Journal of the ACM, Vol. 70, No. 4, Article 25. Publication date: August 2023.



On Exponential-time Hypotheses, Derandomization, and Circuit Lower Bounds 25:41

(2) For every n ∈ N and non-deterministic choices, M (1n ) either outputs a circuit C : {0, 1}n →
{0, 1} that decides Ln , or outputs ⊥.

When we simply say that L can be decided by NT IME[T ]-uniform circuits (without specify-
ing a size bound S), we consider the trivial size bound S (n) = T (n).

The class ONT IME[T ], which was defined in [17, 22] and stands for “oblivious
NT IME[T ],” consists of all sets decidable by non-deterministic time-T machines such that for
every input length n ∈ N there exists a single witness wn that convinces the non-deterministic
machine on all n-bit inputs in the set. As mentioned in Section 2.2, the class of problems decidable
by NT IME[T ]-uniform circuits is a subclass of ONT IME[T ], which is in turn a subclass of
NT IME[T ] ∩ SIZE[T ]. That is:
Fact 5.2. For T : N → N, if L ⊆ {0, 1}∗ can be decided by NT IME[T ]-uniform circuits, then

L ∈ ONT IME[T ′] ⊆ (NT IME[T ′] ∩ SIZE[T ′]), for T ′(n) = Õ (T (n)).

Proof. Fix L, and let M be a non-deterministic machine that uniformly constructs circuits for
L as in Definition 5.1. For every n ∈ N, let wn ∈ {0, 1}T (n) be non-deterministic choices such that
M (1n ,wn ) is a circuit for Ln . Then, L can be decided by a non-deterministic machine that gets
input x ∈ {0, 1}n and witnesswn , constructs a circuit for Ln usingwn , and evaluates this circuit at
input x . The same witness wn leads this non-deterministic machine to accept all x ∈ Ln , and the
running time is quasilinear in the size of the circuit (i.e., in T ). �

Since we will be repeating some technical non-degeneracy conditions on functions throughout
the section, let us define these conditions concisely at this point:

Definition 5.3 (Size Functions and Time Functions). We say that S : N → N is a size function if S
is time-computable, increasing, satisfies S (n) = o(2n/n), and for every n ∈ N satisfies S (n) > n and
S (n + 1) ≤ 2S (n). We say that T : N → N is a time function if T is time-computable, increasing,
and for every n ∈ N satisfies T (n) > n.

We will first prove, in Section 5.1, the key technical results that underlie the main theorems;
these technical results will be strengthenings of classical Karp-Lipton style theorems. Then, in
Section 5.2, we will prove Theorems 1.4, 1.5, and 1.6.

5.1 Strengthened Karp-Lipton Style Results

Recall that Babai et al. [3] proved that if EXP ⊂ P/poly, then EXP =MA; if we also use an ad-
ditional hypothesis that prBPP = prP, then we can deduce the stronger conclusion EXP = NP.
In the current section, we will prove two strengthenings of this result, which further strengthen
the foregoing conclusion: Instead of deducing that EXP = NP, we will deduce that EXP can be
decided by NT IME[T ]-uniform circuits of size S , for small values of T , S .
We first prove, in Section 5.1.1 a lemma that will be used in one of our proofs; we present this

lemma and the underlying question in a separate section, since they might be of independent inter-
est. The two strengthened Karp-Lipton style results will be subsequently proved in Sections 5.1.2
and 5.1.3, respectively.

5.1.1 Solving (1, 1/3)-CAPP using Many Untrusted CAPP Algorithms. Recall that in the problem
(α , β )-CAPP, we get as input a description of a circuit, and our goal is to distinguish between
circuits with acceptance probability at least α > 0 and circuits with acceptance probability at most
β > 0; we also denote CAPP = (2/3, 1/3)-CAPP (see Definition 3.1). Assume that we want to solve
CAPP on an input circuit C of description length n and that we are guaranteed that an algorithm
A solves CAPP on some input length (unknown to us) in the interval [n, S (n)] for some function S .
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This problem arises, for example, if we assume that prBPP ⊂ i.o.prNP (which implies that
CAPP ∈ i.o.prNP) and want to derandomize MA infinitely-often. (This is because when the
MA verifier gets an input of lengthm, the derandomization of the verifier corresponds to a CAPP

problem on some input length n =mk , but we are not guaranteed that the CAPP algorithm works
on input length n.38) How can we solve this problem?
If we invoke the algorithm A on each input length in the interval [n, S (n)], while feeding itC as

input each time (i.e.,C is padded up to the appropriate length), then we obtain a variety of answers,
and it is not clear a priori howwe can distinguish the correct answer from possiblymisleading ones.
In this section, we show a solution for this problem in the setting where we only need to solve
CAPP with one-sided error and whenA solves a problem in prBPP that slightly generalizes CAPP.
Intuitively, since we only need to solve (1, 1/3)-CAPP, it will be possible to prove to us that C is
not a YES instance (i.e., thatC does not accept all of its inputs); and, since A solves a problem that
slightly generalizes CAPP, we will be able to modify it to an algorithm that is able to provide such
a proof when C is not a YES instance. Details follow.
We first define the aforementioned variation of (α , β )-CAPP, denoted pCAPP (for “parametrized

CAPP”), in which α and β are specified as part of the input.

Definition 5.4 (Parametrized CAPP). In the promise problem pCAPP[S, �], the input is a triplet
(C,α , β ), where C is a Boolean circuit over v variables and of size S (v ) and 1 > α > β > 0 are
rational numbers specified with �(v ) bits. The YES instances are such that Prx [C (x ) = 1] ≥ α and
the NO instances are such that Prx [C (x ) = 1] ≤ β .

Note that if �(v ) = O (log(S (v ))), then pCAPP[S, �] ∈ prBPP. (This is since we can uniformly
sample ϵ−2 inputs for C , where ϵ = β − α ≥ 1/poly(S (v )), and estimate Prx [C (x ) = 1] with
accuracy (α − β )/2, with high probability.) We now show that solving (1, 1/3)-CAPP for circuits
of size S (n) infinitely-often reduces to solving pCAPP infinitely-often (i.e., on an arbitrary infinite
set of input lengths).

Lemma 5.5 (SolvingCAPPwithOne-sided Error on a Fixed Input LengthReduces to Solv-
ing pCAPP on an Unknown “Close” Input Length). For any two size functions S (n), S (v ) : N→
N and time function T : N → N, assume that pCAPP[S (v ), �] ∈ i.o.DT IME[T ], where �(v ) =
4 · log(v ). Then, there exists an algorithm McoRP that for infinitely-many values of n ∈ N, when

given as input (1n ,C ) such that C a v-bit circuit of size at most max{S (n) (n), S (v ) (v )}, the algorithm

McoRP solves (1, 1/3)-CAPP on C in time poly(n) · v · Õ (S (n)) ·T (Õ (S (n) (n))).

Proof. Let ql(S ) = Õ (S ) such that circuits of size S can be described by strings of length ql(S ).
For any n ∈ N, we consider inputs of length S (n) (n) that describe v-bit circuits of size S (v ) (v ). Let
In = [2ql(S (n) (n)), 2ql(S (n) (n + 1)) − 1], and note that any sufficiently large integer belongs to a

unique interval In . Let M
pCAPP be a time-T algorithm that solves pCAPP[S (v ), �] infinitely-often.

We will useMpCAPP to construct the following search algorithm:

Claim 5.5.1 (Search-to-decision Reduction that Preserves the Input Length). There
exists an algorithm F that gets as input (1n ,C,m), where C is a v-bit circuit of size at most

max{S (n) (n), S (v ) (v )} and m ∈ In , runs in time poly(n) · v · T (m), and if MpCAPP correctly solves

pCAPP[S (v ), �] on input lengthm and Prx [C (x ) = 1] ≤ 1/3, then F (1n ,C,m) ∈ C−1 (0).

Proof. In the following, we will construct a set ofm-bit inputs and runMpCAPP on each of those
inputs. Since all of our inputs will be of the form (C,α , β ) where α and β can be specified with

38Also, in this setting the function S represents “how far ahead” (beyond n) we are willing to look in our search for the

“good” input length.
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4 · log(v ) bits, each input will be of size less than 2ql(SO (n) (n)) ≤ m; we will therefore pad each
input to be of length exactlym.
First, we runMpCAPP on input (C, 1/2, 1/3), and ifMpCAPP accepts, then we output 0v . Otherwise,

whenMpCAPP rejected, we have that Prx [C (x ) = 1] ≤ 1/2; in this case, our goal will be to construct
a string in C−1 (0), bit-by-bit. Let ¬C be the circuit that computes C and negates the output, let σ0
be the empty string, and for i ∈ [v], in iteration i , we act as follows:

(1) We start with a prefix σi−1 ∈ {0, 1}i−1, and with the guarantee that the circuit ¬Cσi−1 , which
is obtained by fixing the first i − 1 input variables of ¬C to σi−1, satisfies Prx [¬Cσi−1 (x ) =
1] ≥ 1/2 − (i − 1) · v−2.

(2) We runMpCAPP at input (¬Cσi−10, 1/2− (i − 1) ·v−2, 1/2− i ·v−2). IfMpCAPP accepts, then we
define σi = σi−10, and otherwise, we define σi = σi−11.

(3) To see that the guarantee on¬Cσi
is preserved for iteration i+1, note that, ifMpCAPP accepted,

then Prx [¬Cσi
(x ) = 1] > 1/2 − i · v−2; and otherwise, we have that Prx [¬Cσi−11 (x ) = 0] ≤

1/2 − (i − 1) · v−2, which implies (by the guarantee on ¬Cσi−1 from the beginning of the
iteration) that Prx [¬Cσi

(x ) = 1] ≥ 1/2 − (i − 1) · v−2.

After the v iterations, we have that Prx [¬Cσi
(x ) = 1] > 0, and therefore σi ∈ (¬C−1) (1) = C−1 (0)

and we output σi . The running time of each iteration is poly(n) · v ·T (m). �

Our algorithm McoRP runs F at inputs {(1n ,C,k )}k ∈In
and evaluates C at the outputs of F ; if

for some k ∈ In it holds that C (F (C,k )) = 0, then McoRP rejects, and otherwise McoRP accepts.

The running time of McoRP is poly(n) · v · T (2ql(S (n) (n + 1))) · |In | = poly(n) · Õ (S (n) (n)) ·
v ·T (Õ (S (n) (n))).
Now, fix n ∈ N such that for some m ∈ In it holds that MpCAPP decides pCAPP[S (v ), �] on

inputs of lengthm. To see thatMcoRP correctly solves (1, 1/3)-CAPP on an input circuitC over v
bits of size at most max{S (n) (n), S (v ) (v )}, note that if C accepts all its inputs, then McoRP always
accepts C; and if C accepts at most 1/3 of its inputs, then for the “good” m ∈ In it holds that
F (1n ,C,m) ∈ C−1 (0), in which caseMcoRP rejects. �

5.1.2 A Strengthened Karp-Lipton Style Result for the “Low-end” Setting. To prove our first
strengthening of [3], let L ∈ EXP, and note that by our assumption L ∈ P/poly. Consider an
MA verifier V that gets input 1n , guesses a circuit CL : {0, 1}n → {0, 1} , and tries to decide
if CL correctly computes Ln = L ∩ {0, 1}n . The key observation is that, since this decision
problem (of deciding whether or not a given n-bit circuit computes Ln ) is in EXP, we can
apply the original Karp-Lipton style result of [3] to it. The latter result implies that there
exists an MA verifier M that decides whether or not CL computes Ln correctly. Our verifier V
guesses CL and a witness for M , simulates M , and if M confirms that CL computes Ln , then V
outputs CL .
We will derandomize the foregoing MA verifier in one of two ways: The first relies on a

hypothesis of the form prBPP ⊆ prNSUBEXP, which immediately implies that MA ⊆
NSUBEXP. The second relies on a hypothesis of the form prBPP ⊂ i.o.prSUBEXP; in
this case, we derandomize theMA verifier infinitely-often, relying on the fact that theMA veri-
fier can be assumed to have perfect completeness [18] and on Lemma 5.5 (which was presented in
Section 5.1.1). Note that in both cases, the running time of the resulting non-deterministic machine
is sub-exponential, but the size of the output circuit CL is nevertheless still polynomial.
The following statement and proof generalize the above, using parametrized “collapse” and de-

randomization hypotheses. Specifically, if we assume that E ⊂ SIZE[S] and that prBPP can be
derandomized in time T , then we deduce that E has NT IME[T ′] uniform circuits of size S (n),
where T ′(n) ≈ T (S (S (n))).
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Proposition 5.6 (A Strengthened “Low-end” Karp-Lipton Style Result). There exist two
constants k,k ′ > 1 such that for any size function S : N→ N and time functionT : N→ N satisfying

T (n) ≥ nk ′
the following holds: Let T ′(n) = T (S̄ (n)))O (1) where S̄ (n) = Õ (S (Õ (S (n)))).

(1) If DT IME[2n] ⊂ SIZE[S] and pCAPP[vk · S (v ), 4 · log(v )] ∈ i.o.prDT IME[T ], then
any L ∈ DT IME[2n] can be decided on infinitely-many input lengths by NT IME[T ′]-
uniform circuits of size S (n).

(2) If DT IME[2n] ⊂ SIZE[S] and (1, 1/3)-CAPP[vk · S (v )] ∈ prNT IME[T ], then any
L ∈ DT IME[2n] can be decided (on all input lengths) by NT IME[T ′]-uniform circuits of
size S (n).

Proof. We first prove Item (1). Fix L ∈ DT IME[2n], and recall that by our hypothesis L ∈
SIZE[S]. We define a corresponding problem L-Ckts as the set of size-S circuits that decide L;
that is, denoting by ql(S ) = Õ (S ) the description length of size-S circuits, on inputs of length
N = n + ql(S (n)) we define L-Ckts by

L-CktsN =
{
(1n ,C ) : |C | = ql(S (n)) ∧ ∀x ∈ {0, 1}n ,C (x ) = L(x )

}
,

and on inputs of length N that cannot be parsed as N = n + ql(S (n)), we define L-Ckts trivially.
Note that L-Ckts ∈ DT IME[2N ], since we can enumerate the 2n < 2o (N ) inputs, and for each

x ∈ {0, 1}n compute C (x ) and L(x ) in time 2n + poly( |C |) < 2o (N ) .

Given input 1n , we first guess a circuit C (L)
n of size S (n), in the hope that C (L)

n decides Ln ; note
that a suitable circuit exists by our hypothesis. Now, we consider the problem of deciding if x =

(1n ,C (L)
n ) ∈ L-Ckts, where x ∈ {0, 1}N=n+ql(S (n)) . Since L-Ckts ∈ DT IME[2N ], we can reduce

L-Ckts to the problem Lnice from Proposition 3.12; that is, we compute in time poly(N ) an input
x ′ ∈ {0, 1}N ′=O (N ) for Lnice such that x ∈ L-Ckts ⇐⇒ x ′ ∈ Lnice.
Now, let N̄ = �(N ′) = O (N ), where � is the query length of the instance checker IC for Lnice.

We guess another circuit, which is of size S (2N̄ ) and denoted CLnice

N̄
: {0, 1}N̄ → {0, 1} , in the hope

that CLnice

N̄
decides Lnice

N̄
; again, a suitable circuit exists by our hypothesis.39 We then construct a

circuit IC
CLnice

N̄

x ′ : {0, 1}O (N̄ ) → {0, 1} that computes the decision of IC at input x ′ and with oracle

CLnice

N̄
, as a function of the O (N̄ ) random coins of IC, and maps the outputs {0,⊥} of IC to 0, and

the output 1 of IC to 1.

Note that the circuit IC
CLnice

N̄

x ′ is over v = O (N̄ ) input bits and of size S (n) (n)
def
== poly(N ) · S (2N̄ ).

Also, measuring the size of IC
CLnice

N̄

x ′ as a function of its number of input bits (i.e., of v), the size is

upper-bounded by S (v ) (v )
def
== vk · S (v ), where k ∈ N is a sufficiently large universal constant (and

we assume without loss of generality that v ≥ 2N̄ ). By the properties of the instance checker, and

using the fact that a suitable circuit CLnice

N̄
for Lnice

N̄
exists, we have that:

(1) IfC (L)
n decides L, then x ′ ∈ Lnice, and hence for some guess ofCLnice

N̄
the circuit IC

CLnice

N̄

x ′ will

have acceptance probability one.

(2) If C (L)
n does not decide L, then x ′ � Lnice, and hence for all guesses of CLnice

N̄
the circuit

IC
CLnice

N̄

x ′ accepts at most 1/6 of its inputs.

39To see this more formally, let Lpad = {(x, 1O (log( |x )) ) : x ∈ Lnice }. Since Lnice ∈ DT IME[Õ (2n )], we have that
Lpad ∈ DT IME[2n ]. Using our hypothesis, Lpad on inputs of length N ′ = N̄ +O (log(N̄ )) has circuits of size S (N ′), and
these circuits can be converted (by hardwiring the last N ′− N̄ input bits) to N̄ -bit circuits for Lnice of size S (N ′) < S (2N̄ ).
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Using our hypothesis about pCAPP and Lemma 5.5, there exists an algorithm McoRP that for

infinitely-many values of n ∈ N gets input (1n , IC
CLnice

N̄

x ′ ) and solves (1, 1/3)-CAPP on IC
CLnice

N̄

x ′ in

time poly(n) ·v ·Õ (S (n)) ·T (Õ (S (n) (n)). We run this algorithm on (1n , IC
CLnice

N̄

x ′ ), and if it accepts (i.e.,

asserts that the acceptance probability of IC
CLnice

N̄

x ′ is larger than 1/3), then we output the circuit

C (L)
n ; otherwise, we output ⊥.
Note that the size of the circuit that we output is S (n), and that our running time is at most

poly(n) · v · Õ (S (n)) ·T
(
Õ (S (n) (n)

)
= poly(n) · Õ (S (n))2 ·T

(
Õ (S (Õ (S (n))))

)

≤ T
(
Õ (S (Õ (S (n))))

)O (1)
,

where the last inequality relied on the fact that T (n) ≥ nk ′
for a sufficiently large constant k ′.

Let us now explain how to prove Item (2). We guess C (L)
n and CLnice

N̄
and construct IC

CLnice

N̄

x ′

as above. However, instead of using Lemma 5.5, we run the hypothesized non-deterministic

(1, 1/3)-CAPP[vk · S (v )] machine, denoted McoRP , on input IC
CLnice

N̄

x ′ (the advantage in the cur-

rent setting being that, in contrast to the proof of Item (1), the machine McoRP is guaranteed to

work on all input lengths). When C (L)
n decides Ln there are some non-deterministic choices that

will cause McoRP to accept, whereas when C (L)
n does not decide Ln , all non-deterministic choices

will causeMcoRP to reject. Our running time isT (Õ (S (n) (n))), which can be bounded as above by
T (Õ (S (Õ (S (n)))))O (1) . �

Note that, in the proof of Proposition 5.6, we did not use the fact that Lnice is randomly self-
reducible, but only the facts that Lnice is complete for E under linear-time reductions (such that
all n-bit inputs are mapped to n′-bit inputs, for n′ = O (n)) and that it has an instance checker with
query length �(n) = O (n).

5.1.3 A Strengthened Karp-Lipton Style Result for the “High-end” Setting. The result presented
next asserts that if E ∈ SIZE[S] and prBPP can be derandomized in time T , then E has
NT IME[T ′] uniform circuits (with a trivial size bound ofT ′(n)), whereT ′ ≈ T (S (n)). The main
difference between this result and the result presented in Section 5.1.3, other than the differences
in parameters, is that for this result, we will need to assume that prBPP can be derandomized
deterministically, rather than only non-deterministically.
Let us briefly describe the proof idea. We construct a circuit for an E-complete problem Lnice

that has an instance checker and that is randomly self-reducible (see Section 3.5 for definitions

and details). We guess a circuit CLnice
for Lnice, which exists by our “collapse” hypothesis, and

randomly check whether or not this circuit “convinces” the instance checker on almost all inputs;

if it does, then we instantiate the instance checker with CLnice
as an oracle, to obtain a “corrupt”

version of Lnice, denoted L̃. We then construct a probabilistic circuit C ′ that decides Lnice, with
high probability, using the random self-reducibility of Lnice and oracle access to L̃.
Now, under the hypothesis prBPP ⊆ prDT IME[T ], we can derandomize the two prob-

abilistic steps in the foregoing construction. Specifically, we derandomize the probabilistic

verification that the circuit CLnice
“convinces” the instance checker on almost all inputs, and we

also derandomize the probabilistic circuit itself (i.e., we actually output a deterministic circuit that
constructs the probabilistic circuit C ′ and applies a deterministic CAPP algorithm to C ′). Details
follow.
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Proposition 5.7 (A Strengthened “High-end” Karp-Lipton Style Result). There exist two
constants k,k ′ > 1 such that for any size function S : N → N and time function T : N → N

the following holds: Assume that DT IME[2n] ⊂ i.o.SIZE[S] and that CAPP[vk ′ · S (v )] ∈
prDT IME[T ]. Then any L ∈ DT IME[2n] can be decided on infinitely-many input lengths by

NT IME[T ′]-uniform circuits, where T ′(n) = Õ(T (nk · S (k · n))).

Note that the actual hypothesis of Proposition 5.7 is weaker than the hypothesis prBPP ∈
prDT IME[T ], since we only require an algorithm for CAPP for large circuits (i.e., for v-bit
circuits of size poly(v ) · S (v )).

Proof of Proposition 5.7. Fixing any L ∈ DT IME[2n], we prove that there exist
NT IME[T ′]-uniform circuits that solve L infinitely-often. In what follows, it will be impor-
tant to distinguish between the non-deterministic machine M , and the deterministic circuit
C : {0, 1}n → {0, 1} thatM constructs. The machineM gets input 1n and constructs C as follows:

Step 1: Reduce L to Lnice. As its first step, the circuit C computes the linear-time reduction from

L to the problem Lnice from Proposition 3.12; that is,C maps its input x ∈ {0, 1}n into x ′ ∈ {0, 1}n′
,

where n′ = O (n), such that x ∈ L if and only if x ′ ∈ Lnice.

Step 2: Guess-and-verify a circuit for Lnicen̄ . Let IC be the instance checker for Lnice and let n̄ =
�(n′) be the length of queries that IC makes to its oracle on inputs of length n′.

Claim 5.7.1. For infinitely-many input lengths n there exists a circuit CLnice

n̄ : {0, 1}n̄ → {0, 1} of

size S (4n̄) that decides Lnicen̄ .

Proof. For every n ∈ N, let In = [2α · n, 2α · (n + 1) − 1], where α ∈ N is the constant such that
n̄ = �(n′) = α · n. Note that every sufficiently large integerm ∈ N belongs to a unique interval In
(i.e., n = �m/2α�). We define L′ to be the language that on input lengthm ∈ In considers only its
first n̄ = α · n input bits and decides Lnicen̄ on those input bits. Since L′ on input lengthm can be

decided in time Õ (2n ) < 2m , by our hypothesis there exist an infinite set M ⊆ N of input lengths
such that for everym ∈ M there exist size-S (m) circuits for L′

m . For every suchm ∈ In , we hard-
wire the lastm − n̄ input bits (to be all-zeroes) and obtain a circuit of size S (m) < S (4α ·n) = S (4n̄)
that decides Lnicen̄ . �

Thus, if n is one of the infinitely-many input lengths mentioned in Claim 5.7.1, then there exists

CLnice

n̄ : {0, 1}n̄ → {0, 1} of size S (4n̄) that decides Lnicen̄ . The machine M non-deterministically

guesses such a circuit. We define the corruption of CLnice

n̄ by

Crpt
(
CLnice

n̄

)
= Pr

z ∈{0,1}n′

[
Pr[ICCLnice

n̄ (z) =⊥] > 1/6
]
,

where the internal probability is over the random choices of themachine IC. Let Dec be themachine
underlying the random self-reducibility of Lnice, and let c ∈ N such that the number of queries
that Dec makes on inputs of length n′ is at most (n′)c . Consider the following promise problem Π:

• The input is guaranteed to be a circuit CLnice

n̄ : {0, 1}n̄ → {0, 1} of size S (4n̄).

• YES instances: The circuit CLnice

n̄ decides Lnicen̄ , in which case Crpt(CLnice

n̄ ) = 0.

• NO instances: It holds that Crpt(CLnice

n̄ ) > (n′)−2c .

Now, note that Π ∈ pr -coRP, since a probabilistic algorithm that getsCLnice

n̄ as input can decide

whetherCLnice

n̄ is a YES instance or a NO instance by sampling z’s and estimating Pr[ICCLnice
n̄ (z) =⊥

] for each z. Moreover, using the sampler fromTheorem 3.5, there is a probabilistic coRP algorithm
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for Π that on input CLnice

n̄ : {0, 1}n̄ → {0, 1} of size S (4n̄) usesm = O (n) random bits and runs in
time poly(n) · S (4n̄).40

Hence, the problem Π is reducible to an instance of (1, 1/3)-CAPP with a circuit CΠ on v =
O (n) input bits and of size nO (1) · S (4n̄) = vO (1) · S (v ). The machine M runs the hypothesized

CAPP[vk ′ · S (v )] algorithm on CΠ , which takes time T (nO (1) · S (O (n))), and rejects iff the CAPP

algorithm rejects. Thus, from now on, we can assume that CLnice

n̄ is not a NO instance of Π, or in

other words that Crpt(CLnice

n̄ ) ≤ (n′)−2c .

Step 3: Transforming a non-corrupt CLnice

n̄ into a probabilistic circuit for L. Given that

Crpt(CLnice

n̄ ) ≤ (n′)−2c , the machine M now transforms CLnice
into a probabilistic circuit C ′ that

computes L. In high level, the circuitC ′ simulates the random self-reducibility algorithm Dec for L

while resolving the random queries of Dec by instantiating the instance checker with oracleCLnice
.

Details follow.

Lemma 5.7.2 (Non-corrupt CLnice

n̄ ⇒ Probabilistic Circuit for Lnice). There exists an algo-

rithm that gets as input 1n and a circuitCLnice

n̄ : {0, 1}n̄ → {0, 1} of size S (4n̄) such that Crpt(CLnice

n̄ ) ≤
(n′)−2c and outputs a probabilistic circuit C ′ : {0, 1}n′ → {0, 1} of size poly(n) · S (4n̄) that uses O (n)
random coins such that for every x ′ ∈ {0, 1}n′

, with high probability over choice of random coins r
for C ′ it holds that C ′(x ′, r ) = Lnice (x ′).

Proof. We consider an instantiation of IC on inputs of length n′ and with oracle to CLnice

n̄ , and
as a first step, we reduce the error of this algorithm. Letm = O (n) be the number of random bits

that IC uses on inputs of length n′. Consider the following probabilistic algorithm ÎC : {0, 1}n′ →
{0, 1,⊥}. Given input z ∈ {0, 1}n′

, the algorithm ÎC uses the sampler from Theorem 3.5, instantiated
for output lengthm and with accuracy 1/n, to obtain a sample of D = poly(n) strings r1, . . . , rD ∈
{0, 1}m ; then ÎC outputs the majority vote among the values {vi }i ∈[D], wherevi is the output of IC

when instantiated on input z with oracle CLnice

n̄ and fixed randomness ri .

Note that ÎC uses O (n) random bits and runs in time poly(n) · S (4n̄). We claim that there

exists a set G ⊆ {0, 1}n′
of density 1 − (n′)−2c such that for every z ∈ G, with probability at

least 1 − exp(−n) over the randomness of ÎC it holds that ÎC(z) = Lnice (z). To see this, let G

be the set of z’s such that Pr[ICCLnice
n̄ (z) =⊥] ≤ 1/6, and recall that the density of G is at least

1 − (n′)−2c . Note that for any z ∈ G, we have that Pr[ICCLnice
n̄ (z) = Lnice (z) ≥ 2/3, because

Pr[ICCLnice
n̄ (z) � Lnice (z)] ≤ Pr[ICCLnice

n̄ (z) =⊥] + Pr[ICCLnice
n̄ (z) = ¬CLnice

n̄ (z)] ≤ 1/3. Thus, for

any fixed z ∈ G, the probability (over the random choices of ÎC) that the majority vote of the vi ’s
will not equal Lnice (z) is at most exp(−n).
Now, consider a probabilistic circuit C ′ : {0, 1}n′ → {0, 1} that chooses O (n) random bits to be

used as randomness for ÎC and simulates the random self-reducibility algorithm Dec on its input

40Specifically, the algorithm uses the sampler from Theorem 3.5 (with a sufficiently large β, γ > 1 and sufficiently small

α > 0) to sample D = poly(n) strings z1, . . . , zD ∈ {0, 1}n′
and then uses this sampler again to sample D strings

r1, . . . , rD ∈ {0, 1}n+O (log(n )) to be used as randomness for the machine IC. The algorithm rejects CLnice

n̄ if and only if

Pri∈[D][Prj∈[D][IC
C Lnice

n̄ (z, r j ) =⊥] ≥ .01] ≥ 1/2(n′)−2c , where ICC Lnice
n̄ (z, r j ) denotes the simulation of ICC Lnice

n̄ (z )

with the fixed randomness r j . This algorithm always accepts YES instances. Now, assume thatCLnice

n̄ is a NO instance, and

let us call z ∈ {0, 1}n′
is bad if Pr[ICC Lnice

n̄ (z ) =⊥] ≥ 1/6. By the properties of the sampler, with high probability over the

choice of z1, . . . , zD , the fraction of bad z’s in our sample is at least 1/2(n′)−2c ; and for any (fixed) bad z , the probability

that Prj∈[D][IC
C Lnice

n̄ (z, r j ) =⊥] < .01 is exp(−n). Hence, CLnice

n̄ will be rejected with high probability. The bound on

the algorithm’s running time follows from standard quasilinear-time algorithms for the Circuit Eval problem (see, e.g., [38,

Theorem 3.1]) and since Õ (S (4n̄)) < poly(n) · S (2n̄).
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x ′ ∈ {0, 1}n′
while answering its queries using the algorithm ÎC with the fixed random bits chosen

in advance. Note that the circuit C ′ is of size poly(n) · S (4n̄). We claim that for every x ′ ∈ {0, 1}n′
,

with high probability C ′(x ) = Lnice (x ′). To see this, recall that Dec makes at most (n′)c queries
such that each query is uniformly distributed, and thus the probability that all queries of Dec lie
in the setG is at least 1− (n′)−c . Conditioned on this event, for each fixed query z, the probability
over choice of randomness for ÎC that ÎC(z) does not output Lnice (z) is at most exp(−n). Hence,
by another union-bound, with high probability, all the queries of Dec are answered correctly, in
which case C ′(x ′) = Lnice (x ′). �

Step 4: Derandomizing C ′. The non-deterministic machine guessed-and-verified a circuit

CLnice

n̄ : {0, 1}n̄ → {0, 1} such that Crpt(CLnice

n̄ ) ≤ (n′)−2c , and transformed it (using the algorithm
from Proposition 5.7.2) into a probabilistic circuit C ′. The machine M then constructs the final
circuit C , which gets input x ∈ {0, 1}n and acts as follows:

(1) Computes the reduction from L to Lnice to obtain x ′ ∈ {0, 1}n′
.

(2) Hard-wires x ′ into C ′ to obtain a description of a circuit C ′
x ′ : {0, 1}O (n) → {0, 1} such that

C ′
x ′ (r ) = C ′(x ′, r ).

(3) Runs the hypothesized CAPP[vk ′ · S (v )] algorithm on C ′
x and outputs its decision.

Note that C ′
x is a circuit with v = O (n) input bits and of size poly(n) · S (4n̄) = vO (1) · S (v ),

and therefore for an appropriate choice of constant k ′, the CAPP[vk ′ · S (v )] algorithm distin-
guishes between the case that C ′ accepts x ′ with high probability and the case that C ′ rejects
x ′ with high probability. Thus, for every x ∈ {0, 1}n it holds that C (x ) = L(x ). Finally, both
the size of the circuit C and the running time of our non-deterministic machine are bounded

by Õ (T ((nO (1) · S (O (n)))). �

5.2 Proof of Theorems 1.4, 1.5, and 1.6

We now prove the main theorems from Section 1.3. We will first prove Theorem 1.4, which refers
to the “low-end” parameter setting: Subexponential-time derandomization of prBPP and lower
bounds for polynomial-sized circuits against EXP.

Theorem 5.8 (Theorem 1.4, Restated). Assume that there exists δ > 0 such that DT IME[2n]

cannot be decided by NT IME[2nδ

]-uniform circuits of an arbitrarily large polynomial size, even

infinitely-often. Then, denoting prSUBEXP = ∩ϵ>0prDT IME[2nϵ

], we have that

∪c pCAPP[vc , 4 · log(v )] ∈ i.o.prSUBEXP ⇐⇒ EXP � P/poly .

Proof. Let us first prove the first statement. The “⇐=” direction follows from [3], relying on
the fact that ∪c pCAPP[vc , 4 · log(v )] ∈ prBPP. For the “=⇒” direction, assume that for every
c ∈ N and every ϵ > 0 it holds that pCAPP[vc , 4 · log(v )] ∈ i.o.prDT IME[2nϵ

]. Assuming
towards a contradiction that EXP ⊂ P/poly, we have that DT IME[2n] ⊂ SIZE[nc ] for
some c ∈ N. We use Item (1) of Proposition 5.6 with parameters S (n) = nc and T (n) = 2nϵ

,
where ϵ > 0 is sufficiently small. We deduce that DT IME[2n] can be decided infinitely-often
by NT IME[T ′]-uniform circuits of size nc , where

T ′(n) ≤ T (Õ (S (Õ (S (n)))))O (1) < T (nOc (1) )O (1) = 2nϵ ·Oc (1)
,

which contradicts our hypothesis if ϵ is sufficiently small. �

We now prove Theorem 5.9, which refers to a “high-end” parameter setting (i.e., faster deran-
domization and lower bounds for larger circuits). We will in fact show that, conditioned on the
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hypothesis that E cannot be decided by NT IME[2Ω(n)]-uniform circuits, even a weaker de-
randomization hypothesis is already equivalent to circuit lower bounds. For example, instead of
assuming that prBPP = prP, we will only need to assume that CAPP for v-bit circuits of size
2Ω(v ) can be solved deterministically in time 2α ·v for some small constant α > 0.41

Theorem 5.9 (Theorem 1.5, Restated). Assume that there exists δ > 0 such that E cannot be
decided by NT IME[2δ ·n]-uniform circuits even infinitely-often. Then:

(1) There exists a universal constant c > 1 such that

∃ϵ > 0 : CAPP[2ϵ ·v ] ∈ prDT IME[n(δ /c )/ϵ )] ⇐⇒ ∃ϵ > 0 : E � i.o.SIZE[2ϵ ·n] .

(2) For every fixed constant c > 1 it holds that

∃α > 1 : CAPP[2v1/c

] ∈ prDT IME[2α ·(logn)c

] ⇐⇒ ∃ϵ > 0 : E � i.o.SIZE[2ϵ ·n1/c

] .

Proof. We first prove Item (1). The “⇐=” direction follows from [34] (or, alternatively, from
the more general Corollary 3.3). Specifically, the hypothesized circuit lower bound implies that

prBPP = prP, and in particular that CAPP ∈ prDT IME[nc ′
] for some c ′ ∈ N. The conclusion

then holds for ϵ < δ
c ·c ′ . For the “=⇒” direction, let k,k ′ ∈ N be as in Proposition 5.7, and let

c = 2k . Assume that for some ϵ > 0 it holds that CAPP[S ′] ∈ prDT IME[T ], where T (n) =
n(δ /c )/ϵ ) , and S (n) = 2ϵ ·n/nk ′

, and S ′(v ) = vk ′ · S (v ) = 2ϵ ·v . Assuming towards a contradiction
that E ⊂ i.o.SIZE[S], Proposition 5.7 implies thatDT IME[2n] can be decided infinitely-often

byNT IME[T ′]-uniform circuits, whereT ′(n) = Õ (T (nk ·S (k ·n))) < 2δ ·n ; this is a contradiction.
The proof of Item (2) is similar. The “⇐=” follows from Corollary 3.3, instantiated with S (n) =

2ϵ ·n1/c

, to deduce that CAPP ∈ prDT IME[T ] forT (n) = 2Δ ·S−1 (nΔ) = 2(Δ/ϵ )c ·(logn)c

. For the “=⇒”

direction, let ϵ < (δ/kα )1/c be sufficiently small, let S (n) = 2ϵ ·n1/c

/nk ′
, let S ′(v ) = vk ′ ·S (v ) = 2v1/c

,
and let T (n) = 2α ·(logn)c

. We use Proposition 5.7 as above, and rely on the fact that T ′(n) =
Õ (T (nk · S (k · n))) < 2δ ·n . �

Next, we prove Theorem 1.6, which asserts that if non-deterministic derandomization implies
lower bounds against EXP, then EXP does not have NP-uniform circuits. We will actually
prove a stronger result: First, we will use a weaker hypothesis than in Theorem 1.6, namely, that
prBPP ⊆ prNP implies circuit lower bounds against EXP; and second, we will deduce the
stronger conclusion that EXP � (NP ∩ P/poly). (This conclusion is stronger, because the class
of problems decidable by NP-uniform circuits is a subclass of NP ∩ P/poly.)
Theorem 5.10 (Theorem 1.6, Restated). Assume that there exists δ > 0 such that E does not

have NT IME[2nδ

]-uniform circuits of an arbitrarily large polynomial size. Then,

prBPP ⊂ prNSUBEXP =⇒ EXP � P/poly , (5.1)

where prNSUBEXP = ∩ϵ>0prNT IME[2nϵ

]. In the other direction, if Equation (5.1) holds,42

then EXP � (NP ∩ P/poly), and in particular EXP does not have NP-uniform circuits.

Proof. The proof of the first statement is similar to the proof of Theorem 5.8. We assume that
EXP ⊂ P/poly, and use Item (2) of Proposition 5.6 with parameters S (n) = nc and T (n) = 2nϵ

,

41This is reminiscent of the recent results of Murray and Williams [43], who showed that solving CAPP for v-bit circuits

of size 2Ω(v ) in time 2.99·v suffices to deduce circuit lower bounds. Note that the foregoing CAPP problem can be solved in

deterministic polynomial time, since the input length is 2Ω(v ) (i.e., thisCAPP problem lies in pr BPT IME[Õ (n)]∩pr P).
42In fact, for this statement, it suffices to assume that pr BPP ⊆ pr N P =⇒ EXP � P/poly. However, since we will

show a result with tighter relations between the parameters below (see Theorem 5.11), in the current statement, we ignore

this issue for simplicity.
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where ϵ > 0 is sufficiently small; we deduce that any L ∈ E can be decided on all input lengths by

NT IME[T ′]-uniform circuits of size nc , whereT ′(n) < 2O (n3ϵ ·c ) < 2nδ

, which is a contradiction
(the last inequality relied on ϵ > 0 being sufficiently small).
To prove the “in the other direction” statement, first recall that prEXP ⊆ pr (NP ∩

P/poly) ⇐⇒ EXP ⊆ (NP ∩ P/poly), because every exponential-time machine that
solves a promise problem also induces a language.43 Now, assume towards a contradiction that
prEXP ⊆ pr (NP∩P/poly). SinceprBPP ⊆ prEXP, we have thatprBPP ⊆ pr (NP∩P/poly).
By the hypothesized conditional statement, it follows that EXP � P/poly, a contradiction. �

As mentioned in the introduction, by optimizing the parameters, we can show tighter two-way
implications between the statement “derandomization and lower bounds are equivalent” and the
statement “E does not haveNT IME[T ]-uniform circuits.” Towards proving this result, we define
the following class of growth functions, which lie “in between” quasipolynomial functions and sub-

exponential functions. For every two constants k, c ∈ N, we denote by e(k,c ) : N→ N the function
that applies k logarithms to its input, raises the obtained expression to the power c , and then takes

k exponentiations of this expression. For example, e(1,c ) (n) = 2(logn)c

and e(2,c ) (n) ∈ 22
loglog(n )c

.

Note that e(k+1,c ) grows asymptotically faster than e(k,c ′) for any constants c, c ′, and that e(k,c ) is
smaller than any sub-exponential function. Then, we have that:

Theorem 5.11 (Theorem 1.6, a Tighter Version). For any constant k ∈ N, we have that:

∃δ > 0 : DT IME[2n] does not have NT IME[T ]-uniform circuits, for T = 2e
(k,δ )
, (5.2)����

prBPP ⊆ ∩ϵ>0prNT IME[2e(k,ϵ )
] =⇒ DT IME[2n] � ∪c0∈NSIZE[e(k,c0 )] (5.3)����

∀c0 ∈ N,DT IME[2n] � (NT IME[T ] ∩ SIZE[T ]), for T (n) = e(k,c0 ), (5.4)

that is, statement (5.2) implies statement (5.3), which in turn implies statement (5.4).

We stress that the gap between the values of T in statements (5.2) and (5.4) is substantial, but
nevertheless much smaller than an exponential gap. This is since in statement (5.2), the hypoth-

esis is for T that is exponential in e(k,δ ) where δ > 0 is an arbitrarily small constant, whereas in

statement (5.4), the conclusion is forT = e(k,c0 ) where c0 is an arbitrarily large constant. For exam-
ple, for k = 1, this is the difference between quasipolynomial functions and functions of the form

22
(logn )ϵ 	 2nϵ

.

Proof of Theorem 5.11. To see that statement (5.2) implies statement (5.3), first observe

that for any two constants c, c ′ ∈ N it holds that (e(k,c ) )−1 (n) = e(k,1/c ) (n) and that

e(k,c ) (e(k,c ′) (n)) = e(k,cc ′) (n). Now, assuming that prBPP ⊆ ∩ϵprNT IME[2e(k,ϵ )
] and

that DT IME[2n] ⊂ ∪c0SIZE[e(k,c0 )], we will show that Equation (5.2) does not hold.

To do so, we use Item (2) of Proposition 5.6 with S (n) = e(k,c0 ) and with T (n) = 2e
(k,ϵ )

(n)
for a sufficiently small ϵ > 0, and rely on the fact that for some b ∈ N it holds that

T ′(n) < T (S (S (n)b )b )b < T (e(k,2b2 ·c0 ) (n))b = 2e
(k,2ϵb3 ·c0 ) (n) .

43In more detail, the “=⇒” direction is trivial, so we prove the “⇐=” direction. For every Π ∈ pr EXP, let M be an

exponential-time machine that solves Π, and let LM be the set of inputs that M accepts. Since LM ∈ EXP, there exists
an N P-machine that decides LM and a polynomial-sized circuit family that decides LM , and the foregoing machine and

circuit family also solve Π.
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To see that statement (5.3) implies statement (5.4), assume towards a contradiction that for some

c0 ∈ N it holds that prDT IME[2n] ⊆ pr (NT IME[T ] ∩ SIZE[T ]), where T (n) = e(k,c0 ) (n).
Hence, CAPP ∈ DT IME[Õ (2n )] ⊆ pr (NT IME[T (Õ (n))] ∩ SIZE[T (Õ (n))]), and it
follows that

prBPP ⊆ ∪c ∈NprNT IME[T (nc )]

⊆ ∪c ∈NprNT IME
[
e(k,c )

]
⊆ ∩ϵ>0prNT IME

[
2e

(k,ϵ )
]
.

By our hypothesis (i.e., by Equation (5.3)) it follows that DT IME[2n] � ∪c0∈NSIZE[e(k,c0 )],
which is a contradiction. Finally, to deduce the statement (i.e., bridge the gap between
prDT IME[2n] and DT IME[2n]), we use the same argument as in Footnote 43. �

6 NOT-RETH AND CIRCUIT LOWER BOUNDS FROM RANDOMIZED ALGORITHMS

In this section, we prove Theorem 1.7. We first show the desired BPE lower bounds follow
from a weak learning algorithm for general circuits of quasi-linear size and then show such

an algorithm follows from the 2n/polylog(n)-time randomized CircuitSAT algorithm for roughly
quadratic-size circuits.
We first generalize the definition of weak learning algorithms so the algorithm is now required

to learn any possible small oracle circuits.

Definition 6.1 (Weak Learner for General Circuits). For S : N → N and δ : N → R, we say that a
randomized oracle machine A is a δ -weak learner for S-size circuits if the following holds:

• On input 1n ,A is given oracle access to an oracleO : {0, 1}n → {0, 1} and runs in time δ−1 (n).
• If SIZE (O ) ≤ S (n), then with probability at least δ , A outputs a circuit C on n input bits
with size ≤ S (n) such that C computes O correctly on at least a 1/2 + δ fraction of inputs.44

Next, we need the following standard diagonalization argument:

Proposition 6.2 (Diagonalization Against Circuits in Σ4). Let δ = 2−n/polylog(n) , kckt be a
constant, and f ws be the δ -well-structured function guaranteed by Lemma 4.7, there is a language

Ldiag, which is n · polylog(n)-time reducible to f ws, and Ldiag � SIZE[n · (logn)kckt].

Proof. Let s = n · (logn)kckt and s ′ = s · logn. By standard arguments, there exists an s ′-size
circuit on n bits that cannot be computed by s-size circuits.
Consider the following Σ4 algorithm:

• Given an input x ∈ {0, 1}n , we guess a circuit C of size s ′ on n input bits and reject imme-
diately if C (x ) = 0. Then, we check the following two conditions and accept if and only if
both of them are satisfied.

• (A): For all circuits D on n input bits with size ≤ s , there exists an input y ∈ {0, 1}n such that
C (y) � D (y). That is, C cannot be computed by any circuit with size ≤ s .

• (B): For all circuitsD on n input bits with size s ′ such that the description ofD is lexicograph-
ically smaller than that ofC , there exists a circuit E with size ≤ s such that for all y ∈ {0, 1}n ,
E (y) = D (y). That is, C is the lexicographically first s ′-size circuit that cannot be computed
by s-size circuits.

44In Section 3.1, we defined SIZE as referring to languages, whereas, here, we apply this notation to a fixedn-bit function.

The meaning of SIZE (O ) here is the size of the smallest circuit computing O .
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Clearly, the above algorithm can be formulated as an n · polylog(n)-size Σ4SAT instance, and
therefore also an n · polylog(n)-size TQBF instance (which can be further reduced to f ws in n ·
polylog(n) time). Moreover, it is easy to see that it computes the truth-table of the lexicographically
first s ′-size circuit on n input bits that cannot be computed by any circuit with size ≤ s .
Therefore, we can set Ldiag to be the language computed by the above algorithm. �

Remark 6.3. We remark that the standard Σ3P construction of a truth-table hard for s-size
circuits actually takes Õ (s2) time, in which one first existentially guesses an s ′-length (where
s ′ = s · polylog(s )) truth-table L, then enumerates all possible s-size circuits C and all s ′-length
truth-tables L′ such that L′ < L (lexicographically), and checks there exists an input x such that
C (x ) � L(x ), and an s-size circuit C ′ computing L′. In the last step, checking C ′ computing L′

requires evaluating C ′ on s ′ many inputs, which takes Õ (s2) time.

Now, we are ready to show that weak learning algorithms imply non-trivial circuit lower bounds
for BPE.
Theorem 6.4 (Weak Learning Algorithms Imply BPE Lower Bounds). For any constant

kckt > 0, there is another constant klearn = klearn (kckt), such that letting δlearn = 2
−n/(logn)klearn , if there

is a δlearn-weak learner for n · (logn)kckt -size circuits, then BPT IME[2n] � SIZE[n · (logn)kckt].

Proof. Let δ = 2−n/(logn)kδ where kδ is a large enough constant, depending on kckt. Let f
ws be

the δ -well-structured function guaranteed by Lemma 4.7.
Recall that f ws ∈ SPACE[O (n)]. Hence, the Boolean function f GL(ws) , which is defined as in

the proof of Lemma 4.9, is computable in SPACE[O (n)] as well.
We can safely assume f GL(ws) ∈ SIZE[n · (logn)kckt], as otherwise the theorem follows im-

mediately. Then, by our assumption, it follows that there is a δlearn-weak learner for f
GL(ws)

n . Ap-
plying Corollary 4.10 and setting klearn = kδ , it follows that f

ws can be computed by randomized

Tws (n)
def
== 2n/(logn)klearn−1

.
Let Ldiag be the language guaranteed by Proposition 6.2 such that Ldiag � SIZE[n · (logn)kckt]

and d = d (kckt) be a constant such that Ldiag is n · (logn)d -time reducible to f ws. We can then

compute L
diag
n in randomized Tws (n · (logn)d ) = 2o (n) time by setting klearn to be large enough.

Therefore, it follows that BPT IME[2n] � SIZE[n · (logn)kckt]. �

6.1 Randomized CircuitSAT Algorithms Imply BPE Circuit Lower Bounds

We now prove Theorem 1.7, which asserts that randomized algorithms that solve CircuitSAT in
time 2n/polylog(n) imply circuit lower bounds against BPE. As explained in Section 2.3, we do so
by showing that the foregoing algorithms for CircuitSAT imply the weak learner for quasi-linear
size circuits, which enables us to apply Theorem 6.4.

Reminder of Theorem 1.7. For any constant kckt ∈ N there exists a constant ksat ∈ N such that

the following holds: If CircuitSAT for circuits over n variables and of size n2 · (logn)ksat can be solved

in probabilistic time 2n/(logn)ksat
, then BPT IME[2n] � SIZE[n · (logn)kckt].

Proof. Let s = s (n) = n · (logn)kckt . Let klearn and δlearn be as in Theorem 6.4 such that a δlearn-
weak learner for s-size circuits implies that BPE � SIZE[s]. In the following, we construct
such a weak learnerAwith the assumed CircuitSAT algorithm. In fact, we are going to construct
a stronger learner such that:

• If SIZE (O ) ≤ s (n), then with probability at least 2/3, A outputs a circuit C on n input bits
with size ≤ s (n) such that C computes O correctly on at least a 0.99 fraction of inputs.
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Letksat = ksat (kckt) be a constant to be specified later. The learnerAfirst draws t = n·(logn)kckt+2

uniform random samples x1,x2, . . . ,xt from {0, 1}n and asksO to getyi = O (xi ) for all i ∈ [t]. Note
thatA operates incorrectly if and only if SIZE (O ) ≤ s (n) and it outputs a circuit D of size ≤ s (n)
such that Prx ∈{0,1}n [O (x ) = D (x )] < 0.99.
We say that a circuit D is bad if it has size ≤ s (n) and Prx ∈{0,1}n [O (x ) = D (x )] < 0.99. For a

fixed bad circuit D, by a Chernoff bound, with probability at least 1 − 2−Ω(t ) , we have D (xi ) � yi

for some i . Since there are at most nO (s ) bad circuits, with probability at least 1 − nO (s ) · 2−Ω(t ) ≥
1 − 2−Ω(t )+O (s ) ·logn = 1 − 2−Ω(t ) (the last equality follows as t = n · (logn)kckt+2), it follows that for
every bad circuit D there exists an index i such that D (xi ) � yi . In the following, we condition on
such a good event.
By repeating the CircuitSAT algorithm O (n) times and taking the majority of the outputs, we

can assume without loss of generality that the CircuitSAT algorithm has an error probability of
at most 2−n . Now, we use the randomized CircuitSAT algorithm to construct a circuit C of size
≤ s (n) such that C (xi ) = yi for all i , bit-by-bit (this can be accomplished with the well-known
search-to-decision reduction for SAT) with probability at least 0.99. Note that, in each iteration,
the length of the input to the CircuitSAT algorithm is the length of the description of a circuit of
size s (n) and hence at most s ′(n) = O (n · (logn)kckt+1). Setting ksat large enough, it follows that A
runs in randomized (δlearn (n))−1 time.
Assuming SIZE (O ) ≤ s (n), such circuits exist, and we can find one with probability at least

0.99. Conditioning on the good event, this circuit cannot be bad, and therefore it must agree with
O on at least a 0.99 fraction of inputs. Putting everything together, when SIZE (O ) ≤ s (n), the
algorithm A outputs a circuit C such that Prx ∈{0,1}n [O (x ) = D (x )] ≥ 0.99 with probability at least

0.99 − 2−Ω(t ) ≥ 2/3, which completes the proof. �

6.2 Randomized Σ2-SAT[n] Algorithms Imply BPE Circuit Lower Bounds

One shortcoming of Theorem 1.7 is that the hypothesized algorithm needs to decide the satisfiabil-

ity of an n-bit circuit of size Õ (n2), rather than the satisfiability of circuits (or of 3-SAT formulas) of
linear size.45 To address this shortcoming, we now prove a different version of Theorem 1.7, which

asserts that randomized algorithms that solve Σ2-SAT for formulas of linear size in time 2n/polylog(n)

imply circuit lower bounds against BPE.

Theorem 6.5 (Randomized Σ2-SAT Algorithms Imply Circuit Lower Bounds Against
BPE). For any constant kckt > 0, there is another constant ksat = ksat (kckt) such that if Σ2-SAT with

n variables and n clauses can be decided in randomized 2n/(logn)ksat
time, then BPT IME[2n] �

SIZE[n · (logn)kckt].

Proof. Let TQBFloc be the function from Claim 4.7.1, and recall that TQBFloc ∈ SPACE[O (n)].
Therefore, we can safely assume TQBFloc ∈ SIZE[s (n)], for s (n) = n · (logn)kckt .
Now, we describe a randomized algorithm computing a circuit for TQBFloc on inputs of length

n. First, it computes the trivial circuit of size-s (1) for TQBFloc1. Now, suppose we have an s (m)-
size circuit Cm computing TQBFlocm where m < n, we wish to find an s (m + 1)-size circuit for
TQBFlocm+1.

45Since we are interested in algorithms that run in time 2n/polylog(n ) for a sufficiently large polylogarithmic function, there

is no significant difference for us between circuits and 3-SAT formulas of linear (or quasilinear) size. This is since any

circuit can be transformed to a formula with only a polylogarithmic overhead, using an efficient Cook-Levin reduction;

and since we can “absorb” polylogarithmic overheads by assuming that the polylogarithmic function in the running time

2n/polylog(n ) is sufficiently large.
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By the downward self-reducibility of TQBFloc, we can obtain directly an O (s (m))-size circuit D
for TQBFlocm+1. Our goal is to utilizing the circuit D and our fast Σ2-SAT algorithm to compute
an s (m + 1)-size circuit for TQBFlocm+1. Consider the following Σ2-SAT question: Given a prefix
p, is there an s (m + 1) circuit C whose description starts with p, such that for all x ∈ {0, 1}m+1,
we have C (x ) = D (x )? This can be formulated by a Σ2-SAT instance of n · polylog(n) size. By
fixing the description bit-by-bit, we can obtain an s (m+1)-size circuit for TQBFlocm+1. The success
probability can be boosted to 1− 2−2n by repeating each call to the Σ2-SAT algorithm a polynomial
number of times and taking the majority.
Let Ldiag be the language guaranteed by Proposition 6.2 and d be a constant such that

Ldiag is n · (logn)d -time reducible to TQBFloc. By setting ksat large enough, we can com-

pute TQBFlocn ·(logn)d (and therefore also L
diag
n ) in 2o (n) time, Therefore, it follows that

BPT IME[2n] � SIZE[n · (logn)kckt]. �

Finally, we now use a “win-win” argument to deduce, unconditionally, that either we have an
average-case derandomization of BPP or BPE is “hard” for circuits of quasilinear size (or both
statements hold). An appealing interpretation of this result is as a Karp-Lipton-style theorem: If
BPE has circuits of quasilinear size, then BPP can be derandomized in average-case.

Corollary 6.6 (A “Win-win” Result for Average-case Derandomization of BPP and
Circuit Lower Bounds against BPE). At least one of the following statements is true:

(1) For every constant k ∈ N it holds that BPT IME[2n] � SIZE[n · (logn)k ].

(2) For every constant k ∈ N and for t (n) = nloglog(n)k

there exists a (1/t )-i.o.-PRG for (t , log(t ))-
uniform circuits that has seed length Õ (log(n)) and is computable in time npolyloglog(n) .

Proof. If for every k ′ ∈ N it holds that Σ2-SAT for n-bit formulas with O (n) clauses can be

decided by probabilistic algorithms that run in time 2n/(logn)k′
, then by Theorem 6.5, we have that

Item (1) holds. Otherwise, for some k ′ ∈ N, it holds that Σ2-SAT for n-bit formulas with O (n)

clauses cannot be decided by probabilistic algorithms that run in time 2n/(logn)k′
. In particular,

since solving satisfiability of a given n-bit Σ2 formula with O (n) clauses can be reduced in linear

time to solving TQBF, we have that TQBF � BPT IME[2n/(logn)k′+1
]. In this case, Item (2) follows

from Theorem 4.14. �

We note that to prove Corollary 6.6, we do not have to use Theorem 6.5. An alternative proof
relies on the fact that the Σ4 formula from the proof of Proposition 6.2 can be constructed in

polynomial time. In particular, if TQBF can be decided in probabilistic time 2n/polylog(n) for an arbi-
trarily large polylogarithmic function, then for every kckt, we can construct the corresponding Σ4

formula from Proposition 6.2 in polynomial time and decide its satisfiability in probabilistic time

2o (n) , which implies that Ldiag ∈ BPE; Item (1) of Corollary 6.6 then follows. Otherwise, we have

that TQBF cannot be solved in probabilistic time 2n/polylog(n) for some polylogarithmic function;
then we can invoke Theorem 4.14 to deduce Item (2) of Corollary 6.6.

APPENDICES

A ON IMPLICATIONS OF MAETH

Consider the hypothesis MAETH, which asserts that co-3SAT cannot be solved by Merlin-Arthur
protocols running in time 2ϵ ·n , for some ϵ > 0. Recall that the “strong” version of this hypothesis
is false (since Williams [61] showed that #CircuitSAT can be solved by a Merlin-Arthur protocol

in time Õ (2n/2)), but there is currently no evidence against the “non-strong” version.
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Asmentioned in Section 1.3, the assumptionMAETH can be easily shown to imply strong circuit
lower bounds and derandomization ofprBPP (and thus also ofprMA). Specifically, the following
more general (i.e., parametrized) result relies on a standard Karp-Lipton-style argument, which
originates in [3]. We note in advance that after the proof of this result, we prove another result,
which shows a very different tradeoff between MA lower bounds (specifically, lower bounds for
fixed-polynomial-time verifiers) and derandomization.

Theorem A.1 (Lower Bounds for MA Algorithms Imply Non-uniform Circuit Lower
Bounds). There exists L ∈ E and a constant k > 1 such that for any time-computable function
S : N→ N such that S (n) ≥ n the following holds: Assume that DT IME[2n] �MAT IME[S ′],
where S ′(n) = S (k · n)k . Then, L � SIZE[S].
Note that, using Corollary 3.3, under the hypothesis of Theorem A.1, we have that CAPP ∈

i.o.prDT IME[T ], where T (n) = 2O (S−1 (nO (1) )) . In particular, under MAETH (which refers to

S (n) = 2Ω(n/ log(n))), we have that prBPP ⊆ i.o.prDT IME[nO (loglog(n))].

Proof of Theorem A.1. Let L be the problem from Proposition 3.12. Assuming towards a con-
tradiction that L ∈ SIZE[S], we show that DT IME[2n] ⊆ MAT IME[S ′].
Let L0 ∈ DT IME[2n]. We construct a probabilistic verifier that gets input x0 ∈ {0, 1}n0 , and

if x0 ∈ L0, then for some non-deterministic choices the verifier accepts with probability one, and
if x0 � L0, then for all non-deterministic choices the verifier rejects with high probability. The
verifier first reduces L0 to L by computing x ∈ {0, 1}n of length n = O (n0) such that x0 ∈ L0 if and
only if x ∈ L.
Let n′ = �(n) = O (n) = O (n0). By our hypothesis, there exists a circuit over n′ input bits of

size S (n′) that decides Ln′ . The verifier guesses a circuit CL : {0, 1}n′ → {0, 1} of size S (n′) and
simulates the machine M from Proposition 3.12 on input x while resolving its oracle queries of
usingCL . The verifier accepts if and only ifM accepts. Note that if x0 ∈ L0 and the verifier’s guess
was correct (i.e.,CL decides Ln′), then the verifier accepts with probability one. However, if x0 � L0,
then for every guess of CL (i.e., every oracle for M) the verifier rejects with high probability. The

running time of the verifier is poly(n) · poly(S (n′)) = S (O (n))O (1) . �

In the following result, instead of assuming strong (e.g., super-polynomial) lower bounds for
MAT IME against E, we assume fixed polynomial lower bounds for MAT IME against P,
and deduce both a sub-exponential derandomization of BPP and a polynomial-time derandom-
ization of BPP with nϵ advice for an arbitrarly small constant ϵ > 0.46

Theorem A.2 (Fixed-polynomial-size Lower Bounds for MA =⇒ Derandomization and
Circuit Lower Bounds). Assume that for every k ∈ N it holds that P � i.o.MAT IME[nk ].
Then, for every ϵ > 0, it holds that prBPP ⊆ (prP/nϵ ∩ prDT IME[2nϵ

]).

Proof. In high level, we want to use our hypothesis to deduce that there exists a polynomial-
time algorithm that outputs the truth-table of a “hard” function and then use that “hard” function
for derandomization. Loosely speaking, the following claim, whose proof is a refinement of an
argument from [10], asserts that if the output string of every polynomial-time algorithm has

circuit complexity at most nk , then all of P can be decided byMA verifiers running in time nO (k ) .

Claim A.2.1. Assume that there exists k ∈ N such that for every deterministic polynomial-time
machine M there exists an infinite set S ⊆ N such that for every n ∈ S the following holds: For every

46Recall that, by Adleman’s theorem [1, 5], we can derandomize pr BPP with poly(n) bits of non-uniform advice (and

even with O (n) bits, using Theorem 3.5). However, an unconditional derandomization of pr BPP with o (n) bits of non-
uniform advice is not known.
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x ∈ {0, 1}n , when the output string M (x ) is viewed as a truth-table of a function, this function has

circuit complexity at most nk . Then, P ⊆ i.o.MAT IME[nO (k )].

Proof. Let L ∈ P, and letM be a polynomial-time machine that decides L. Our goal is to decide
L in MAT IME[nk ] on infinitely-many input lengths.

For every x ∈ {0, 1}n , let Tx : {0, 1}poly(n) → {0, 1} be a polynomial-sized circuit that gets
as input a string Π and accepts if and only if Π is the computational history of M (x ) and
M (x ) = 1. Note that the mapping of x �→ Tx can be computed in polynomial time (since M runs
in polynomial time). Also, fix a PCP system for CircuitSAT with the following properties: The
verifier runs in polynomial time and uses O (log(n)) randomness and O (1) queries; the verifier
has perfect completeness and soundness error 1/3; and there is a polynomial-time algorithmW
that maps any circuitC and a satisfying assignment forC (i.e., y ∈ C−1 (1)) to a PCP proof that the
verifier accepts. For every x ∈ {0, 1}n and every input Π ∈ {0, 1}poly(n) for Tx , letW (Tx ,Π) be the
corresponding PCP proof thatW produces.
Observe that there is a polynomial-time algorithmA that gets as input x ∈ {0, 1}n , produces the

computational history of M (x ), which we denote by HM (x ) , produces the circuit Tx , and finally
prints the PCP witnessW (Tx ,HM (x ) ). Thus, by our hypothesis, there exists an infinite set S ⊆ N
such that for every n ∈ S and every x ∈ {0, 1}n there exists a circuit Cx : {0, 1}O (log(n)) → {0, 1} of
size nk whose truth-table isW (Tx ,HM (x ) ).

The MA verifier V gets input x and expects to get as proof a circuit C : {0, 1}O (log(n)) → {0, 1}
bits. The verifierV now simulates the PCP verifier while resolving its queries to the PCP using the
circuit C . Note that for every n ∈ S and every x ∈ {0, 1}n the following holds: If M (x ) = 1, then
there exists a proof (i.e., a circuit Cx ) such that the verifier accepts with probability one; however,
if M (x ) = 0, then Tx rejects all of its inputs, which implies that for every proof, with probability
at least 2/3, the MA verifier rejects. �

Using our hypothesis that for every k ∈ N it holds that P � i.o.MAT IME[nk ], and taking
the counter-positive of Claim A.2.1, we deduce that:

Corollary A.2.2. For every k ∈ N there exists a polynomial-time machine M such that for every
sufficiently large n ∈ N there exists an input x ∈ {0, 1}n such that M (x ) is the truth-table of a

function with circuit complexity more than nk .

Now, fix ϵ > 0, let L ∈ prBPP, and let R be a probabilistic polynomial-time machine that
decides L. Given input x ∈ {0, 1}n , we decide whether x ∈ L in polynomial-time and with nϵ

advice, as follows: Consider the circuit Rx that computes the decision of R at x as a function
of the random coins of R, and let c > 1 such that the size of Rx is at most nc . We instantiate
Corollary A.2.2 with k = c ′/ϵ , where c ′ > c is a sufficiently large constant. We expect as advice

an input y of length nϵ to the machine M such that M (y) has circuit complexity nc ′
. We then

use M (y) to instantiate Theorem 3.2 with seed length O (log(n)) and error 1/10 and for circuits
of size nc (such that the PRG “fools” the circuit Rx ) and enumerate its seeds to approximate the
acceptance probability of Rx (and hence decide whether or not x ∈ L).

We now also show that L ∈ prDT IME[2n2ϵ

]. To do so, consider the foregoing algorithm, and
assume that it gets no advice. Instead, it enumerates over all 2nϵ

possible advice strings to obtain
2nϵ

truth-tables, each of size poly(n). We know that at least one of these truth-tables has circuit

complexity nc ′
. Now, the algorithm constructs the truth-table of a function f over nϵ +O (log(n))

bits, which uses the first nϵ bits to “choose” one of the 2nϵ

truth-tables, and uses the O (log(n))
bits as an index to an entry in that truth-table (i.e., for i ∈ {0, 1}nϵ

and z ∈ O (log(n)) it holds
that f (i, z) = дi (z), where дi is the function that is obtained from the ith advice string). Note

that, since at least one of the 2nϵ

functions had circuit complexity nc ′
, it follows that f also has
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circuit complexity nc ′
. Thus, this algorithm can use f to instantiate Theorem 3.2 with seed length

nϵ +O (log(n)) and for circuits of size nc to “fool” the circuit Rx . �

B POLYNOMIALS ARE SAMPLE-AIDED WORST-CASE TO AVERAGE-CASE
REDUCIBLE

Recall that, in Section 4.1 we defined the notion of sample-aided worst-case to δ -average-case-

reducible function (see Definitions 4.2 and 4.3) following [23]. In this Appendix, we explain why
labeled samples can be helpful for uniform worst-case to “rare-case” reductions and show that
low-degree polynomials are indeed sample-aided worst-case to average-case-reducible.
Consider a function f whose truth-table is a codeword of a locally list-decodable code, and

also assume that f is randomly self-reducible (i.e., computing f in the worst-case is reducible to

computing f on, say, .99 of the inputs). Then, for every circuit C̃ that agrees with f on a tiny

fraction of inputs (i.e., C̃ computes a “corrupt” version of f ), we can efficiently produce a small list
of circuits with oracle gates to C̃ such that one of these circuits correctly computes f on all inputs.
The main trouble is that we do not know which candidate circuit in this list to use. This is where
the labeled samples come in: We can iterate over the candidates in the list, use the labeled samples
to test each candidate circuit for agreement with f , and with high probability find a circuit that
agrees with f on (say) .99 of the inputs. Then, using the random self-reducibility of f , we obtain
a circuit that correctly computes f on each input, with high probability.
The crucial property that we need from the code to make the foregoing algorithmic approach

work is that the local list-decoding algorithm will efficiently produce a relatively short list. Specifi-
cally, recall that by our definition, a sample-aided worst-case to δ -average-case reduction needs to
run in time poly(1/δ ). Hence, we need a list-decoding algorithm that runs in time poly(1/δ ) (and
indeed produces a list of such size). A suitable local list-decoding algorithm indeed exists in the
case that the code is the Reed-Muller code, which leads us to the following result:

Proposition B.1 (Low-degree Polynomials are Uniformly Worst-case to Average-case
Reducible with a Self-oracle). Let q : N → N be a field-size function, let � : N → N such that

n ≥ � · log(q), and let d, ρ : N → N such that 10
√
d (n)/q(n) ≤ ρ (n) ≤ (q(n))−Ω(1) = o(1). Let f =

{ fn : {0, 1}n → {0, 1}}n∈N be a sequence of functions such that fn computes a polynomial F
�(n)
n → Fn

of degree d (n) where |Fn | = q(n). Then f is sample-aided worst-case to ρ-average-case reducible.

Proof. We construct a probabilistic machineM that gets input 1n and oracle access to a function

f̃n that agrees with fn on ρ (n) of the inputs, and also poly(1/ρ (n)) labeled samples for fn , and
with probability 1 − ρ (n) outputs a circuit C : F� → F such that for every x ∈ F� it holds that
Prr [C

f̃n (x , r ) = fn (x )] ≥ 2/3.
The first step of themachineM is to invoke the local list-decoding algorithm of [54, Theorem 29],

instantiated with degree parameter d = d (n) and agreement parameter ρ = ρ (n). The algorithm
runs in time poly(�(n),d, log(q(n)), 1/ρ) = poly(n, 1/ρ) and outputs a list of O (1/ρ) probabilistic
oracle circuitsC1, . . . ,CO (1/ρ ) : {0, 1}n → {0, 1}n such that with probability at least 2/3 there exists

i ∈ [O (1/ρ)] satisfying Pr[C
f̃n

i (x ) = fn (x )] ≥ 2/3 for all x ∈ {0, 1}n . We call any circuit that satisfies
the latter condition good. By invoking the algorithm of [54] for poly(1/ρ) times, we obtain a list of
t = poly(1/ρ) circuitsC1, . . . ,Ct such that with probability at least 1 − poly(ρ) there exists i ∈ [t]
such that Ci is good.
The second step of the machine is to transform the probabilistic circuits into deterministic cir-

cuits such that, with high probability, the deterministic circuit corresponding to the “good” circuit

Ci will correctly compute fn on .99 of the inputs (when given oracle access to f̃n). Specifically, by
implementing naive error-reduction in all circuits, we can assume that for every x ∈ F� it holds
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that Prr [C
f̃n

i (x , r ) = fn (x )] ≥ .995. Now, the machine M creates O (log(1/ρ)) copies of each cir-
cuit in the list and for each copy M “hard-wires” a randomly chosen fixed value for the circuit’s
randomness. The result is a list of t ′ = poly(1/ρ) deterministic circuits D1, . . . ,Dt ′ such that with

probability 1 − poly(ρ) there exists a circuit Di satisfying Prx [D
f̃n

i (x ) = fn (x )] ≥ .99.
The third step of the machineM is to “weed” the list to find a single circuit Di that (when given

access to f̃n) correctly computes f on .95 of the inputs. To do so, M iterates over the list and for

each circuit D j estimates the agreement of D
f̃n

j with fn with error .01 and confidence 1 − poly(ρ),
using the random samples.
The final step of the machine M is to use the standard random self-reducibility of the Reed-

Muller code to transform the circuit Di into a probabilistic circuit that correctly computes f at
each input with probability at least 2/3. Specifically, the probabilistic circuit implements the stan-
dard random self-reducibility algorithm for the (q, �,d ) Reed-Muller code (see, e.g., [2, Theorem
19.19]) while resolving its oracle queries using the circuit Di . The standard algorithm runs in time

poly(q, �,d ), and works whenever Di agrees with fn on at least 1− 1−d/q

6 < .95+d/q of the inputs,
which holds in our case, since d/q < δ = o(1). �

C AN E-COMPLETE PROBLEM WITH USEFUL PROPERTIES

In this Appendix, we prove Proposition 3.12, which asserts the existence of an E-complete problem
(under linear-time reductions) that is randomly self-reducible, has an instance checker with linear-
length queries, and such that both the random self-reducibility algorithm and the instance checker
use a linear number of random bits.

PropositionC.1 (An E-complete ProblemThat is Random Self-reducible andHas aGood
Instance Checker). For every η > 0 there exists Lnice ∈ DT IME[Õ (2n )] such that:

(1) Any L ∈ DT IME[2n] reduces to Lnice in polynomial time with a multiplicative blow-up of
at most 1 + η in the input length. Specifically, for every n there exists n′ ≤ (1 + η) · n such that
any n-bit input for L is mapped to an n′-bit input for Lnice.

(2) The problem Lnice is randomly self-reducible by an algorithm Dec that on inputs of length n
uses n + polylog(n) random bits.

(3) There is an instance checker IC for Lnice that on inputs of length n uses n +O (log(n)) random
bits and makes O (1) queries of length �(n), where �(n) < (2 + η) · n.

Proof. For a sufficiently small δ ≤ η/7, let LE = {(〈M〉,x ) : M accepts x in 2 |x | steps}. Let
fLE : {0, 1}∗ → {0, 1}∗ be the low-degree extension of LE such that inputs of length n0 for L

E are

mapped to inputs in Fm , where m = δ · n0

�log(n0 )� and |F| = 2(1/δ+1) · �log(n0 )� , for a polynomial of

individual degree d = �(n0)1/δ �. Note that (d + 1)m ≥ 2n0 (i.e., there is a unique extension of LE

with these parameters) and that |F| > m · d (i.e., the polynomial is indeed of low degree). Finally,

let Lnice be the set of pairs (z, i ) ∈ {0, 1}m ·log( |F |) × {0, 1} �loglog( |F |)� , such that fLE (z)i = 1 (i.e., the
ith bit in the binary representation of fLE (z) ∈ F equals one).
Note that LE is reducible in polynomial time to fLE , which is in turn reducible in polynomial

time to Lnice; and that inputs of length n0 ∈ N for LE are mapped to inputs of length n = m ·
log( |F|) + �loglog( |F|)� + 1 < (1 + 2δ ) · n0 for Lnice. Thus, any L ∈ DT IME[2n] is reducible in
polynomial time to Lnice with a multiplicative overhead of at most 1+ 3δ in the input length. Also
note that Lnice ∈ DT IME[Õ (2n )], since the polynomial fLE can be evaluated in such time.
Let us now prove that Lnice is randomly self-reducible with at most (1 + δ ) · n random bits. Let

Dec0 be the standard random self-reducibility algorithm for fLE , which uses less than n random
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bits.47 Given input (z, i ) ∈ {0, 1}m · �log( |F |)�+ �loglog( |F |)� and oracle access to some L′ ⊆ {0, 1}n , we
simulate Dec0 at input z and with oracle access to a function induced by L′ (as detailed below)
and then output the ith bit of its answer. Specifically, we initially choose a random permutation

π of {0, 1}loglog( |F |) using polylog(n) < δ · n random coins, and whenever Dec0 makes a query
q1 ∈ Fm , we query L′ at all inputs {(q1,q2)}q2∈{0,1}�loglog( |F|)� , ordered according to π , and answer Dec0
accordingly. Note that each of our queries is uniformly distributed: This is since for every query
(q1,q2), we have that q1 is uniform (because Dec0’s queries are uniform) and that q2 is uniform and
independent from q1 (because we chose a random π ). Also note that if L′(q1,q2) = Lnice (q1,q2) for
every query (q1,q2), then each query q1 of Dec0 is answered by fLE (q1), in which case, we output
fLE (z)i = Lnice (z, i ).
Finally, to see that Lnice has an instance checker that uses n + O (log(n)) random bits and is-

sues O (1) queries of length (2 + 7δ ) · n, fix a PCP system for DT IME[T ], where T (n) = Õ (2n ),
with the following specifications: The verifier V runs in polynomial time, uses n +O (log(n)) bits
of randomness, issues O (1) queries, and has perfect completeness and soundness error 1/6; and
there is an algorithm P that gets an input x ∈ {0, 1}n and outputs a proof for x in this PCP sys-

tem (or ⊥, if x � L) in deterministic time Õ (2n ) (for a suitable PCP system, see [4, Theorem 1]).
We will instantiate this PCP system for the set Lnice1 = {(z, i,b) : Lnice (z, i ) = b}, which is in

DT IME[Õ (2n )].
The instance checker IC for Lnice gets input (z, i ) ∈ {0, 1}n and simulates the verifierV for Lnice1

on inputs (z, i, 0) and (z, i, 1). Whenever V (z, i,b) queries its proof at location j ∈ [Õ (2n )], the
instance checker IC uses its oracle to try and decide the problem Π at input (z, i,b, j ), where Π =
{((z, i,b), j ) : P (z, i,b)j = 1}. Specifically, since Π ∈ DT IME[Õ (2n/2)] ⊆ DT IME[Õ (2n )], it
holds that Π reduces to Lnice in polynomial time and with multiplicative blow-up of 1 + 3δ in the
input length; hence, IC reduces ((z, i,b), j ) to an input for Lnice of length �(n) ≤ (1+3δ ) · (2n+1) <
(2 + 7δ ) · n and uses its oracle to try and obtain Π((z, i,b), j ). For σ ∈ {0, 1} , the instance checker
IC outputs σ if and only ifV (z, i,σ ) = 1 andV (z, i, 1−σ ) = 0, and otherwise outputs ⊥. Note that
ICLnice

(z, i ) = Lnice (z, i ), with probability one; and that IC errs when given oracle L′ � Lnice (i.e.,
ICL′

(z, i ) = 1 − Lnice (z, i )) only when V accepts (z, i, 1 − Lnice (z, i )) � Lnice1 , which happens with
probability at most 1/6 for any L′. �
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