
Automatic Kernel Offload Using BPF
Farbod Shahinfar
Politecnico di Milano

Sebastiano Miano
Queen Mary University of London

Giuseppe Siracusano
NEC Laboratories Europe

Roberto Bifulco
NEC Laboratories Europe

Aurojit Panda
New York University

Gianni Antichi
Politecnico di Milano &

Queen Mary University of London

Abstract
BPF support in Linux has made kernel extensions easier.

Recent efforts have shown that using BPF to offload portions
of server applications, e.g., memcached and service proxies,
can improve application performance and efficiency. How-
ever, thus far, the community has not looked at the question
of what parts of an application should be offloaded? This
paper first shows that blindly offloading application function-
ality to the kernel is neither beneficial nor desirable, and care
must be taken when deciding what to offload. Furthermore,
when deciding what to offload, developers must consider
not just the application, but also the workload being han-
dled, and the kernel being targetted, Therefore, we advocate
automating this decision process in a compiler, that can ana-
lyze application code, and produce two executables, a kernel
offload and a userspace program, that jointly implement the
application’s functionality. This paper discusses the chal-
lenges that must be addressed to build such a compiler, and
why they can be feasibly addressed.
CCS Concepts
• Networks→ Programming interfaces; Data center net-
works; Cloud computing; • Software and its engineering
→ Source code generation.

ACM Reference Format:
Farbod Shahinfar, Sebastiano Miano, Giuseppe Siracusano, Roberto
Bifulco, Aurojit Panda, and Gianni Antichi. 2023. Automatic Kernel
Offload Using BPF. In Workshop on Hot Topics in Operating Systems
(HOTOS ’23), June 22–24, 2023, Providence, RI, USA. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3593856.3595888

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HOTOS ’23, June 22–24, 2023, Providence, RI, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0195-5/23/06. . . $15.00
https://doi.org/10.1145/3593856.3595888

1 Introduction
BPF has made it easier to add functions to the Linux ker-

nel: administrators can now load and execute sandboxed
BPF programs that have limited access, without needing to
recompile the kernel or trust a kernel module [3]. This new
capability has attracted the interest of many researchers and
systems builders, who have leveraged BPF to accelerate ap-
plications such as key-value stores [4], firewalls [12], service
proxies [19] and virtual switches [26].

In this paper, we start from the observation that one needs
to be careful when choosing what parts of an application to
offload to the kernel. This is because, this choice affects both
feasibility (can the offload run in the kernel) and performance
(does the application run faster or more efficiently). Several
prior works have focussed on the first aspect only byworking
around the kernel verifier limitations [4, 12, 13, 18], which
must check the input BPF code for safety and can potentially
make some code infeasible to offload. Our focus is not on this,
since the community is actively working on removing its
current limitations [9, 10].1 We focus on both avoiding code
that can never be feasibly offloaded, or if offloaded is unlikely
to improve performance. Determining what offloads can
improve performance turns out to be subtle and an important
point to consider (§2).

Deciding what to offload requires significant programmer
effort, since one must carefully consider code complexity,
state dependencies, and what external libraries and system
calls are used by different parts of the program. Therefore,
we think that this analysis must be automated if we want
BPF offload to truly benefit programmers.

In this paper, we suggest that a new compiler might be the
right approach to automatically offload program logic. The
core challenge lies in developing analysis that the compiler
can use to identify code that should be offloaded (§2), and
this is the main focus of our paper. We complement our
discussion with an initial design of an end-to-end compiler
that given the source code of a program, splits it into two
executables, a userspace and an offload logic that has to be
automatically attached to the most approapriate hook in the

1However, we believe that offloading some application logic will remain
infeasible despite any planned or hypothetical improvements to the verifier.

143

https://doi.org/10.1145/3593856.3595888
https://doi.org/10.1145/3593856.3595888
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593856.3595888&domain=pdf&date_stamp=2023-06-22

HOTOS ’23, June 22–24, 2023, Providence, RI, USA F. Shahinfar, S. Miano, G. Siracusano, R. Bifulco, A. Panda, G. Antichi

kernel (§3). We conclude the paper with a discussion of the
challenges associated to our design (§4).
2 To Offload or Not To Offload?
We start by looking at when offloading application logic to

the kernel is beneficial, and when it might not be beneficial.
The analysis we present here both motivates our proposal,
and guides our proposed approach to automatically decide
what to offload.

Much of the prior work [12, 13, 19, 26] has focused on
offloading self-contained application logic that can be en-
tirely executed in the kernel, and does not share state with
any other parts of the application that might be running in
userspace (in many cases the state requirements are trivially
satisfied by having no userspace component). Other prior
work [4], has used the kernel as a cache by memoizing the re-
sult of past computations, and using these memoized results
to respond to requests when possible. In both of these cases,
the performance benefits of offloading are because they allow
the application to avoid a kernel-to-userpace transition.
Given this analysis of prior work, one might believe that

the only code that should be offloaded is code that either
processes requests entirely within the kernel, or acts as a fast
path (such as a cache) for a significant fraction of requests.
However, this is not the case, offloading can help in other
circumstances too, including: (a) When it can summarize and
thus reduce the amount of data that is returned by a system
call (e.g., the read syscall), because in nearly all cases (with a
few recent exceptions, e.g., io_uring with registered buffers,
where no copies are performed), summarization reduces the
amount of data the kenrel must copy from its buffers to
application buffers; (b) By combining return values across
multiple system calls, and thus batching system calls [8, 24]
to reduce the number of kernel-to-userspace transitions;
and (c) By offloading logic that can sometimes be executed
entirely in the kernel (e.g., error code generation logic for
web servers) thus avoiding a subset of kernel-to-userspace
transitions. We note that our list is not exhaustive, it merely
serves to illustrate that offloading can be beneficial even
when the offloaded logic is not self-contained, and processing
is split between the kernel and userspace.

However, care must be taken when offloading application
logic that is not self-contained. We believe that there are
at least four core concerns that must be considered when
selecting what application logic is offloaded:
Feasibility.Not all application logic can be feasibly offloaded
to the kernel. The BPF verifier used by the kernel poses one
feasibility barrier, since it limits what logic can be loaded into
the kernel. While the verifier has been improving steadily,
allowing a wider variety of logic to be offloaded, we be-
lieve there will always be logic that cannot be offloaded.

For example, it is unclear if the kernel will ever permit of-
floaded code to perform blocking operations (e.g., file reads or
opens), since the overheads for blocking and then unblock-
ing the thread negate any benefits from avoiding kernel-
to-userspace crossing. We hasten to note this is different
from syscall batching, which combines results from multiple
syscalls all of which are issued by the userspace program.
Regardless, it is easy to see that when choosing application
logic to offload, programmers must consider feasibility.
Shared state. When looking beyond self-contained appli-
cation logic, we must consider cases where the kernel and
userspace logic share state. Unfortunately, the standard tech-
nique to sharing state between kernel-and-userspace re-
quires creating BPF maps in the kernel, which can then be
accessed using read and write syscalls, or by using mmap to
map it into userspace [16]. Both add significant overheads to
access, and thus programmers must consider the frequency
of shared state access when deciding on what application
logic to offload to the kernel.
Synchronization. Synchronizationmight be necessarywhen
splitting application state and logic between the kernel and
userspace. Of course, synchronization across isolation do-
mains (i.e., the kernel and userspace) is likely to be more ex-
pensive than synchronization within an application’s threads
(for instance, any synchronization primitive requires state
access, which as we explained above carries significant over-
head in this context). Therefore, programmers must also
consider synchronization frequency when choosing what to
offload.
Benefits. Finally, and perhaps most importantly, program-
mers need to evaluate whether offloading to the kernel is
beneficial to their program. The benefits of offloading spe-
cific application logic depend not only on the logic and how
it interacts with the rest of the application, but also on the
workload, which determines how frequently it is executed.
At the same time, offloading code which has no benefit into
the kernel comes at a cost, and affects system complexity
and performance.
Our message is not that the factors listed above are ex-

haustive, in fact we believe it is likely that other factors that
we missed also have a large impact on decisions about what
application logic should be offloaded. Instead, what we aim
to convey is that programmers must analyze several factors
when deciding what application logic should be offloaded,
and the observation that few if any tools are available to help
the programmer with this analysis: tools that analyze shared
state accesses, or synchronization between code paths are
rare if not non-existent (we do not know of any), and no
tools have targeted the type of feasibility analysis required
for this usecase. Therefore, we believe that this analysis poses
a significant programmer’s burden, and prevents the wider
adoption and use of kernel offloads.

144

Automatic Kernel Offload Using BPF HOTOS ’23, June 22–24, 2023, Providence, RI, USA

Thus, we argue that we should build tools to automate
this analysis and eliminate this programmer’s burden. Specif-
ically, we envision an approach where a compiler splits an
input program into two parts, one that runs in userspace and
another that is offloaded to the kernel, that jointly imple-
ment the input program’s functionality. The key challenge
in building such a compiler lies in how we analyze programs
and automatically make determinations on the factors we
listed above.
2.1 Can we automate offload selection?
Is it feasible for us to analyze programs and determine

what to offload? Below we briefly outline approaches for
analyzing each of the four factors we highlight above, that we
think are implementable today and suffice for our purposes:
Feasibility. Our feasibility concerns come from two sources:
does the selected code make calls that no kernel would of-
fload, and can the selected code pass the current kernel veri-
fier? Checking for the former requires using syntactic rules,
similar to what any linter does, and is thus within reach. Prior
work [28] uses the kernel verifier in userspace to check this,
and has also shown that super-optimization or other tech-
niques can often be used to optimize the code (in a semantic
preserving manner) to pass the verifier.
Shared State and Synchronization. Existing approaches
to program slicing [1, 23, 27] can already split a program into
independent slices with no data or control flow dependencies.
These approaches suffice for producing independent com-
ponents that do not need shared state, and in most cases do
not need to synchronize with each other. However, program
slicing might be too extreme for our use: we think in many
cases it might be necessary and even desirable, to offload ap-
plication logic that shares state with the userspace program,
and we merely need to ensure that userspace access is infre-
quent. Similarly, it might be desirable to not entirely disallow
synchronization, but merely ensure that it is infrequent. We
believe that this can be done by using an approach similar
to profile guided optimization [7], and using profile informa-
tion (gathered from executing the program) to inform the
program slicing algorithm.
Benefits. Finally, evaluating benefits requires modeling and
comparing the performance of different choices of what ap-
plication logic to offload. Prior work [5, 6] has shown the
feasibility of using models to predict relative performance,
and in combination with profiling can allow us to empirically
check benefits and determine whether and what application
logic should be offloaded.

Thus, we believe that we can automate the determination
of what application logic to offload, however we are still
working on actually validating our approach. In the next
section, we discuss how this analysis fits into a compiler to
implement the end-to-end workflow we target.

Figure 1: A high level overview of steps for automat-
ically generating BPF offload programs. The source
code is analysed for extracting the application logic.
The paths which benefit from offloading are selected
and transformed into a BPF program.

3 How to Automatically Offload?
In this section we present an overview of our envisioned

compiler (Figure 1) and end-to-end workflow. Given the orig-
inal application’s code, our solution first extracts the pro-
gram’s control flow graph (CFG) (§3.1). Then, it uses the
analysis function we proposed in the previous section to
select what code should be offloaded, and selects the appro-
priate hooks where the offloaded code should be installed
(§3.2). Finally, it creates two executables: one for the BPF
offload and one for the userspace application (§3.3).
3.1 Understanding the source code
In order to automatically understand the logic of an appli-

cation, we make three assumptions about its structure: (1)
The application uses POSIX API: this is useful as we can rely
on standard function calls to understand program behavior
(Table 1 provides a list of functions that we consider and
the information they convey); (2) The source code contains
event-loops which handle the requests: this helps to quickly
find the logic that can be potentially offloaded; (3) The CFG
of the application is known during the compilation (i.e., there
are no indirect calls or jumps): this is important as without
that we cannot split the input program into two executables
at compile time. Such type of requirements are usually a
common practice and past works have assumed a known
code structure as well [15, 21].
The idea is to first scan the code in search for an event-

loop (second assumption) which is started with the function
call poll (first assumption). After that, the first time we find
the call to the recv function indicates the arrival of a request
and root of our CFG. We deduced the end of the request
processing in the following two cases: (1) When finding
one or more invocation of the send function call: in this
case the program ends with a reply action; (2) If there is no
invocation of the send function call until the next call to the
poll function. Our reasoning is that when translating this
path to BPF, the packet resulted in the execution of this path
should be dropped anyway until further packets arrive.

145

HOTOS ’23, June 22–24, 2023, Providence, RI, USA F. Shahinfar, S. Miano, G. Siracusano, R. Bifulco, A. Panda, G. Antichi

Table 1: List of landmark functions

Functions Indicator Information

bind Which request are related to
this service

Server address

poll, select, epoll Beginning of the event-loop —

recv, read, recvfrom,
recvmsg

Arrival of a request Receive buffer

send, write, sendto,
sendmsg

Replying to a request Send buffer

It is worth noting that during the analysis, it is possible to
encounter multiple calls to recv. In this case, the calls are
grouped together and considered as one, if they are on the
same socket. However, reading from different sockets would
be interpreted as IO operations on the execution path.2 Simi-
larly, sending data on multiple sockets is treated as multiple
IO operations (e.g., RPC or database queries).
3.2 Selecting The Right BPF Hook
After selecting the paths that shall be offloaded from the

application CFG, the next step is to pick the right BPF hook(s)
in the kernel. This is an important step as each hook has
access to different parts of a packet and different helper
functions: in Table 2, we present a list of currently available
hooks alongside examples on when they can be useful.

Naively, we might be inclined to attach the BPF program
to the lowest possible hook: for packet reception this is XDP,
which is located in the NIC driver just after the interrupt pro-
cessing and before any operations performed by the network
stack. Indeed, by doing so it would be potentially possible to
save computation and improve performance by quickly pro-
cessing the incoming packet and enable an early-exit path.
Unfortunately, this is not always possible. Indeed, when of-
floading a socket program to BPF, the target hook must be
chosen based on both the transport protocol and semantic
of the program itself.
Let’s take as an example a TCP-based application which

gets accelerated by offloading part of its logic into the kernel.
Here, if we would attach the offload to XDP or TC, in case
of early-exit (i.e., the offload replies directly to the source),
the kernel would not have visibility on this action and could
wrongly treat the packet handled by the offload as lost, trig-
gering a retransmission. To avoid that, it is important to
attach the BPF program to the SK_SKB hook which is lo-
cated after the kernel has provided its TCP processing.
In contrast, for UDP-based application the situation is

different. They are not as restricted as the TCP ones and here

2System calls and IO operations are not supported in BPF and paths having
IO operations will be ignored.

both the XDP and TC hooks provides enough flexibility to
attach the BPF offload.
3.3 Generating the Executables
The last and final step requires us to convert the selected

application CFG paths into two executables: one BPF for the
offload and one for userspace.
Fortunately, BPF compilers are available for most lan-

guages, and we plan to reuse them for our work. The only
thing we need to do before invoking these compilers is to
replace calls that send or receive data (e.g., recv and send)
with kernel alternatives, and to handle state. The former is a
simple syntactic change.
State requires a little more efforts, since any global or

shared variables must be implemented using BPF maps. Fi-
nally, the compiler has to add the bound checking instructurs
before accessing the packet data and bound any unbounded
loop to make the verifier happy. In case the result is not
found in the bounded offloaded loop, then the application
shall fall back to the userspace logic.
We also need to change the userspace executable to re-

move offloaded codepaths, to replace calls into this codepath
with appropriate calls, and to change how shared variables
are accessed. We plan to use mmaped access for the later.
4 Discussion
The analysis step described in §2 is the core challenge that

needs to be addressed to achieve our vision of building a
compiler that automates the use of eBPF offloads. However,
once this challenge has been addressed, and a compiler has
been built, new challenges and questions emerge. We discuss
these below.
External Libraries. Thus far in our description we focused
on applications whose code is self-contained. But most ap-
plications use a variety of libraries. While in some cases, we
can consider library code during our analysis (i.e., perform
the equivalent of link-time optimization [25]), and include
portions of it in our offload binary, this requires that we
either have access to the library’s code or to an intermediate
form (e.g., Rust rlibs or dylibs). However, source code is
not available for all libraries, and most libraries do not ship
in a form that is amenable to analysis or offloading. A naive
approach to deal with this problem is to never offload any
application logic that uses an external library, but this is
limiting. New approaches, either technical (e.g., ways to link
in library code in BPF) or cultural (e.g., changes that make
analyzable libraries a common occurrence), will be required
to address this problem.
Handling Workload Changes. Many of our initial sug-
gestions for how to identify application logic to offload are
profile driven. We do not know of alternate approaches to
analyze some of the criterion (e.g., frequency of shared state
access, or benefit) that we think are important when deciding

146

Automatic Kernel Offload Using BPF HOTOS ’23, June 22–24, 2023, Providence, RI, USA

Table 2: Description of different BPF hook. It shows the direction of data path (I: ingress, E: egress) and the
information a hook can access.

Name I/E Input Conditions Example Application

XDP I Packet Processes packets before network stack. It is suitable for offloading
stateless protocols like UDP. But dropping or modifying TCP packets
can corrupt the connection state.

Load-Balancing, Active Queue Management,
Access Control

TC I/E SKB Can classify packets and redirect them to another destination. Packet Classification and routing.

SK_LOOKUP I SKB Runs when network stack is selecting the target socket. It can redirect
connections to another socket.

Binding a service (one socket) to multiple
addresses and ports.

SK_SKB I SKB Runs on TCP stack receive data event. It canmodify packets and respond
to them

Accelerating NGINX.

SK_MSG E MSG Runs before the message enters the network stack. It can modify and
redirect the packet to another socket.

Offloading TLS to the kernel. Accelerating
proxy servers.

what to offload. However, profiles depend on workloads, and
workloads change at both small (e.g., over hours due to the
diurnal effect) and large (e.g., over months due to changing
needs) time intervals. Thus, our choice of what to offload
might be suboptimal over time, and lead to lower perfor-
mance gains, or even worse performance than no offloads.
Therefore, we believe that in addition to the compiler that
has been the focus of this paper, an approach such as ours
also needs a runtime that detects workload changes, and
reruns our compiler when necessary. Recent work [15] has
proposed related approaches to run time optimization that
demonstrate the feasibility of such an approach.
Beyond Network Applications. Our description in §3 fo-
cused on offloading network functionality from applications.
However, a similar approach can be adopted to offloading
other functionality, e.g., storage based functionality.
Consider, for instance, how we might automate the use

of XRP [29], a recently proposed framework that uses BPF
hooks in NVMe drivers to accelerate an application’s storage
functionality. The core change required is to develop a new
approach to find entry points in the code for our analysis
(§3.1), since we can longer depend on tracing code from an
event loop. We can take a few approaches in this case: we
can require programmer’s to annotate functions where the
compiler should begin its analysis, or we can require code to
be written in a DSL that makes it easier for use to identify
entry-points. Of course, the approach chosen impacts both
applicability (i.e., what programs can we target), and efficacy
(i.e., how much can the compiler offload).
Impact on kernel evolution. Finally, our focus thus far
has been on how to make it easier for applications to offload
logic to the kernel, allowing a wider variety of applications
to make use of these capabilities. We believe that this should
also influence how the kernel evolves in the future. Some of
this evolution is trivial, perhaps a change in how offloads

are used might suggest new kernel functions that should be
exported so they can be used from BPF. But perhaps this
can also lead to a deeper discussion of additional kernel
functionality or modules that might benefit applications: we
have already seen this happen before, when wider use of
TLS led to the kernel adopting kTLS [11], allowing some TLS
processing to move from userspace libraries into the kernel.
5 Related Work
BPF-based approaches for improving application effi-
ciency. Many papers from the research community or in-
dustry effort have leveraged BPF for improving application
performance [4, 12, 14, 15, 17, 18, 22, 26, 28, 29]. Studies
such as BMC [4], bpf-iptables [12], and SPRIGHT [18] aim
to improve the performance of applications such as Mem-
cached, iptables, and Kubernetes by manually offloading
self-contained application logic that can be executed solely
in the kernel, without sharing state with other parts of the
application running in userspace. Building on these findings,
our work goes a step further by proposing that even when
application logic is not fully self-contained, offloading part
of its functionality can still yield performance benefits. How-
ever, care must be taken to avoid offloading code that does
not provide benefits, as this can increase system complexity
and negatively impact performance.
Static and dynamic optimization of BPF programs. Sev-
eral works have explored the possibility to either statically
or dynamically optimize BPF programs. K2 [28] is a program-
synthesis-based compiler that automatically optimizes BPF
bytecode with formal correctness. It synthesizes programs
that are formally shown to be equivalent to the original pro-
gram and uses a cost function to limit and guide its search
process. Morpheus [15] describes and implements a system
that instruments packet-processing programs to gather sta-
tistics at runtime, and supports both eBPF and DPDK back-
ends. It detects packet-level dynamic to apply aggressive

147

HOTOS ’23, June 22–24, 2023, Providence, RI, USA F. Shahinfar, S. Miano, G. Siracusano, R. Bifulco, A. Panda, G. Antichi

optimization depending on the specific workloads. Unlike
these works, we propose to analyse socket programs in order
to generate BPF programs. This is orthogonal to their system.
Both Morpheus and K2 can be used to further optimize the
automatically generated BPF offload.
Simplifying BPF programming. Writing BPF programs is
known to be difficult and challenging [4, 28]. To tackle these
challenges, some solutions have been proposed. For example,
bpftrace [2] provides a scripting language that compiles to
BPF, making it easier to write BPF programs for tracing and
observability. Others [20] propose using the flexibility of
userspace to write BPF programs without worrying about
the verifier, relying on a compiler to split the code into BPF
and userspace programs. Our work is complementary to
these solutions, as we aim to address a different problem,
how to automatically identify and generate BPF offloads and
userspace programs.
6 Join the Revolution
BPF and other new Linux interfaces are usually added to

improve security, enable new application functionality, or
improve the performance of existing applications. However,
using these new interfaces poses a signficant challenge for
application developers: they must learn and understand the
tradeoffs these new interfaces offer, understand the main-
tainence complexities that might come from adopting them,
and potentially loose compatability with other UNIX-like
systems. Consequently, many of these features are only ever
used by hyper-scalers and companies that can afford an army
of experts, or by research groups where graduate students
and postdocs use them in projects which are generally not
maintained after publication. In this paper we proposed a
path that allows one new interface, BPF, to be more widely
adopted, by automating away much of the complexity that
programmers have to deal with today. We think the systems
research and the Linux development communities ought to
consider ours and other approaches to automating interface
adoption, since it is the only chance we have to democratize
who benefits from these improvements. Viva la revolución.

Acknowledgements. We thank the HotOS reviewers for
their useful feedbacks. This work was funded in part by the
National Science Foundation grant 2137220, the UK EPSRC
project EP/T007206/1, and by the European Union’s Italian
National Recovery and Resilience Plan (NRRP) of NextGener-
ationEU, partnership on “Telecommunications of the Future”
(PE00000001, “RESTART”).
References
[1] David W Binkley and Keith Brian Gallagher. 1996. Program slicing.

Advances in computers 43 (1996), 1–50.
[2] bpftrace 2022. bpftrace: high-level tracing language for Linux enhanced

Berkeley Packet Filter. https://github.com/iovisor/bpftrace.

[3] ebpf 2022. eBPF. https://ebpf.io/
[4] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine Blin, and Gilles

Muller. 2021. BMC: Accelerating Memcached using Safe In-kernel
Caching and Pre-stack Processing. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 21). 487–501.

[5] Rishabh Iyer, Katerina Argyraki, and George Candea. 2022. Perfor-
mance Interfaces for Network Functions. In 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22). USENIX,
567–584.

[6] Rishabh Iyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal Pirelli, Ka-
terina Argyraki, and George Candea. 2019. Performance Contracts
for Software Network Functions. In Proceedings of the 16th USENIX
Conference on Networked Systems Design and Implementation (NSDI’19).
USENIX, 517–530.

[7] Erik Johansson and Sven-Olof Nyström. 2000. Profile-Guided Opti-
mization across Process Boundaries. SIGPLAN Not. 35, 7 (jan 2000),
23–31.

[8] Ake Koomsin and Yasushi Shinjo. 2015. Running Application Specific
Kernel Code by a Just-in-Time Compiler. In Proceedings of the 8th
Workshop on Programming Languages and Operating Systems (PLOS
’15). ACM, 15–20.

[9] Joanne Koong. 2021. A different approach to BPF loops. https://lwn.
net/ml/bpf/20211123183409.3599979-1-joannekoong@fb.com/

[10] Joanne Koong. 2022. BPF: Dynamic pointers. https://lwn.net/Articles/
895885/

[11] ktls 2022. Kernel TLSD Offload. https://docs.kernel.org/networking/tls-
offload.html

[12] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Mauricio Vásquez
Bernal, Yunsong Lu, and Jianwen Pi. 2019. Securing Linux with a
Faster and Scalable Iptables. SIGCOMM Comput. Commun. Rev. 49, 3
(nov 2019), 2–17.

[13] Sebastiano Miano, Roberto Doriguzzi-Corin, Fulvio Risso, Domenico
Siracusa, and Raffaele Sommese. 2019. Introducing SmartNICs in
Server-Based Data Plane Processing: The DDoS Mitigation Use Case.
IEEE Access 7 (2019), 107161–107170.

[14] Sebastiano Miano, Fulvio Risso, Mauricio Vásquez Bernal, Matteo
Bertrone, and Yunsong Lu. 2021. A Framework for eBPF-Based Net-
work Functions in an Era of Microservices. IEEE Transactions on
Network and Service Management 18, 1 (2021), 133–151.

[15] Sebastiano Miano, Alireza Sanaee, Fulvio Risso, Gábor Rétvári, and
Gianni Antichi. 2022. Domain Specific Run Time Optimization for
Software Data Planes. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’22). ACM, 1148–1164.

[16] Andrii Nakryiko. 2019. Add support for memory-mapping BPF array
maps. https://lwn.net/Articles/805043/

[17] Tomasz Osiński, Jan Palimąka, Mateusz Kossakowski, Frédéric Dang
Tran, El-Fadel Bonfoh, and Halina Tarasiuk. 2022. A Novel Pro-
grammable Software Datapath for Software-Defined Networking. In
Proceedings of the 18th International Conference on Emerging Network-
ing EXperiments and Technologies (CoNEXT ’22). ACM, 245–260.

[18] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang, and K. K. Ra-
makrishnan. 2022. SPRIGHT: Extracting the Server from Serverless
Computing! High-Performance EBPF-Based Event-Driven, Shared-
Memory Processing. In Proceedings of the ACM SIGCOMM 2022 Con-
ference (SIGCOMM ’22). ACM, 780–794.

[19] Liz Rice. 2021. Cilium: How eBPF Streamlines the Service Mesh. https:
//thenewstack.io/how-ebpf-streamlines-the-service-mesh/

[20] Farbod Shahinfar, Sebastiano Miano, Alireza Sanaee, Giuseppe Sir-
acusano, Roberto Bifulco, and Gianni Antichi. 2021. The Case for

148

https://github.com/iovisor/bpftrace
https://ebpf.io/
https://lwn.net/ml/bpf/20211123183409.3599979-1-joannekoong@fb.com/
https://lwn.net/ml/bpf/20211123183409.3599979-1-joannekoong@fb.com/
https://lwn.net/Articles/895885/
https://lwn.net/Articles/895885/
https://docs.kernel.org/networking/tls-offload.html
https://docs.kernel.org/networking/tls-offload.html
https://lwn.net/Articles/805043/
https://thenewstack.io/how-ebpf-streamlines-the-service-mesh/
https://thenewstack.io/how-ebpf-streamlines-the-service-mesh/

Automatic Kernel Offload Using BPF HOTOS ’23, June 22–24, 2023, Providence, RI, USA

Network Functions Decomposition. In Proceedings of the 17th Interna-
tional Conference on Emerging Networking EXperiments and Technolo-
gies (CoNEXT ’21). ACM, 475–476.

[21] Justine Sherry, Peter Xiang Gao, Soumya Basu, Aurojit Panda, Arvind
Krishnamurthy, Christian Maciocco, Maziar Manesh, João Martins,
Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. 2015. Rollback-
Recovery for Middleboxes. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication (SIGCOMM ’15). ACM,
227–240.

[22] Nikita Shirokov and Ranjeeth Dasineni. 2018. Katran, a scalable
network load balancer. https://engineering.fb.com/2018/05/22/open-
source/open-sourcing-katran-a-scalable-network-load-balancer/

[23] Josep Silva. 2012. A Vocabulary of Program Slicing-Based Techniques.
ACM Comput. Surv. 44, 3, Article 12 (jun 2012).

[24] Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call
Scheduling with Exception-Less System Calls. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation
(OSDI’10). USENIX, 33–46.

[25] Amitabh Srivastava and David W. Wall. 1994. Link-Time Optimization
of Address Calculation on a 64-Bit Architecture. SIGPLAN Not. 29, 6
(jun 1994), 49–60.

[26] William Tu, Yi-Hung Wei, Gianni Antichi, and Ben Pfaff. 2021. Revisit-
ing the Open VSwitch Dataplane Ten Years Later. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference (SIGCOMM ’21). ACM, 245–257.

[27] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen.
2005. A Brief Survey of Program Slicing. SIGSOFT Softw. Eng. Notes
30, 2 (mar 2005), 1–36.

[28] Qiongwen Xu, Michael D. Wong, Tanvi Wagle, Srinivas Narayana,
and Anirudh Sivaraman. 2021. Synthesizing Safe and Efficient Kernel
Extensions for Packet Processing. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference (SIGCOMM ’21). ACM, 50–64.

[29] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao,
Evan Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan
Stutsman, and Asaf Cidon. 2022. XRP: In-Kernel Storage Functions
with eBPF. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22). USENIX, 375–393.

149

https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/

	Abstract
	1 Introduction
	2 To Offload or Not To Offload?
	2.1 Can we automate offload selection?

	3 How to Automatically Offload?
	3.1 Understanding the source code
	3.2 Selecting The Right BPF Hook
	3.3 Generating the Executables

	4 Discussion
	5 Related Work
	6 Join the Revolution
	References

