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ABSTRACT
In recent years, approaches for scene text recognition based on
the attention mechanism have achieved amazing success. How-
ever, the majority of attention mechanism approaches are coupled,
and the majority of ways adhere to the concept of locating the
most pertinent image regions. In this paper, we present a language
model with a contrastive attention mechanism that is detached
from the standard encoder-decoder architecture. First, preliminary
text recognition results are obtained based on the encoder-decoder
framework; second, we perform the two steps of text prediction in
the language model and the calculation of the attention weight of
the text to the image, and we not only find the most relevant image
area, but also look for the least relevant image area; and finally,
the loss function is used to make the model pay less attention to
irrelevant areas and more attention to relevant areas. On seven
datasets, we evaluated the performance of our model and found
that it performed exceptionally well, particularly on the IC13, SVT,
and SVTP datasets.
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1 INTRODUCTION
Text on images of natural settings includes crucial information such
as car plate numbers and store names. To retrieve this important
information, scene text recognition was developed as a task.

The scene text recognition task consists primarily of two phases:
(1) text detection [1, 28, 41, 42]: locate the location of the text in
the image; (2) text recognition [6, 7, 35, 38]: based on the image
region discovered during text detection, the text sequence of the
region is identified. This article assumes that text detection has
been completed and focuses solely on text recognition.

Figure 1: Example of some scene text images

There are two categories for scene text recognition, which are
as follows: 1) identification of regular text The regular text is fre-
quently aligned on a single horizontal line and has a transparent
backdrop and regular fonts. This type of text is referred to as "regu-
lar." 2) Recognizing irregular text Irregular text typically contains a
significant deal of information that is hard to differentiate, such as
irregular text distribution, various fonts, and fuzzy image quality,
among other things. Recognizing irregular text can be challenging
because of all of these factors.

Due to the rapid development of deep learning models, the scene
text recognition approach based on deep learning has substan-
tially improved its performance in recent years [35, 36]. Images
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Figure 2: The overall framework of our method.

contain two-dimensional spatial semantics, whereas texts are one-
dimensional sequence information. Therefore, the information be-
tween images and texts cannot be one-to-one. The key to the present
text recognition method is modeling. And can be seen in Figure 1,
irregular text has a range of shapes, orientations, colors, sizes, and
text appearances. These characteristics may be observed in the
text itself. Therefore, the process of obtaining a meaningful text
representation for a task involving the recognition of irregular text
is still challenging. When attempting to correctly recognize text in
scene photographs, a cluttered background as well as a reduction
in image quality might lead to significant incorrect predictions.

Significant progress has been made in scene text recognition
models equipped with an attention mechanism in recent years [6, 7,
10, 38, 47]. By computing an attention weight, the attention mecha-
nism extracts the image region that is currently the most relevant.
However, occasionally, for instance, when the imaging quality of
the image is quite low, when the text layout is highly irregular,
when numerous portions of the image do not contain text infor-
mation, etc., these circumstances lead to inaccurate calculations of
results.

Some solutions overcome these concerns by utilizing the se-
manti context knowledge. In the article [51], visual features are
first aligned with semantic information, and then a global semantic
information inference module is utilized to combine visual and
semantic information to produce the result. In [9], the gradient flow
between the visual model and the language model is blocked to

produce the impact of independent autonomy of the visual model
and the language model, and the designed language model achieves
more accurate inference results via an iterative mechanism.

In this study, we present a decoupled language model based on a
mechanism of contrastive attention. The purpose of our proposed
model is to give more attention to relevant visual information and
less attention to irrelevant visual information; at the same time, the
contrastive attention model and semantic reasoning model can be
used independently as functional units and studied separately due
to their decoupling. Contributions of this paper mainly include:

(1) We propose a contrastive attention mechanism that gives
more weight to relevant information and less weight to ir-
relevant information when calculating the attention weight
of semantic information to visual information.

(2) We present a decoupled language that enables semantic in-
formation reasoning and attention weight computation to
be conducted independently and that can be optimized by
stacking the language model.

(3) Our proposed model obtains superior performance on popu-
lar benchmarks, and we present a detailed empirical analysis
demonstrating how each component of our model improves
scene text recognition performance.
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2 RELATEDWORK
Traditional methods: Traditional natural scene text recognition
approaches rely heavily on the framework for recognizing individ-
ual characters. This of approach can be broken down into rely heav-
ily on the framework for recognizing individual characters. This
type of approach can be broken down into the following steps:(1)
segment the feature of scene text images; (2) send the segmented
image features to a single-character classifier intended to recognize
each segmentation. (3) combining the recognized single charac-
ters in accordance with a set of rules to achieve the final result of
recognition [29, 44, 45, 50]. However, due to the presence of sev-
eral low-quality images in scene text images, bottom-up solutions
cannot solve the scene text recognition problem entirely.

Methods based on encoder-decoder framework: Due to the
rapid development of deep learning models, the scene text recogni-
tion approach based on deep learning has substantially improved
its performance in recent years. In the era of deep learning, a visual
model is used to encode images into feature spaces by scene text
recognition models, the language model decodes image feature
into text information. Vision model and language model are corre-
spondingly characterized as encoder and decoder. Currently, text
recognition approaches based on deep learning are mostly sepa-
rated into two categories: (1) methods based on CTC (Connection
Temporal Classification) [12, 22] and (2) methods based on sequence
learning [6, 7, 34, 38] .

However, since the text is not consistently dispersed and the
image quality is inconsistent, additional effort is required to pro-
duce better outcomes. The article [26]suggests employing a genera-
tive adversarial network [11] to eliminate background information
while preserving text content. Text recognition can be improved
by utilizing high-resolution images as input; high-resolution im-
ages [39] provide consistent high-resolution images. The space
transformer (STN) concept [16] provides correction-based naviga-
tion. The approach for text recognition [20, 21, 37] greatly enhances
text recognition performance.

Attention: The attention method was initially applied to ma-
chine translation tasks [2], which can automatically identify the
portion of the source sentence that is most relevant to the current
word to be predicted. In the field of computer vision, numerous
attention-based methods, such as image captioning [49], visual
question answering [23], scene text recognition [19], etc., have
achieved significant success. As a prediction module, the attention
mechanism is frequently paired with a recurrent neural network
for scene text recognition tasks. Typically, the input of the attention
mechanism is the current instant, the learned history knowledge
of the character sequence, and the extracted visual elements of the
visual model. By computing an attention weight area, the attention
mechanism extracts the image that is currently the most relevant.

A wide variety of scene text recognition systems combined with
the attention mechanism have produced impressive results, and
there are ongoing efforts to improve the ability to represent in-
formation from several perspectives of attention mechanism. The
article [7] believes that when the ordinary attention mechanism
calculates the attention weight, it expands the visual features in
order from left to right and from top to bottom. The article [19]
designed a two-dimensional attention mechanism to calculate the

degree of correlation between each visual vector and the eight vec-
tors immediately surrounding it, thereby capturing the degree of
correlation in the spatial structure. The article [3] proposes an edit
probability metric, which calculates the edit distance between the
target character sequence and the attention probability distribution
prediction sequence, so as to solve the problem of attention drift.

Contrastive Leanring: The core concept of contrastive learning
is to decrease the distance between the positive sample and the
anchor sample, while increasing the distance to the negative sample.
After data improvement from the source sample, it is simpler for the
network to learn the common characteristics of multiple samples
after data enhancement from the source sample feature [5, 32] .
Particularly, the CLIP model has achieved very strong performance
on a variety of tasks, drawing evenmore attention to the contrastive
learning technique.

3 METHOD
3.1 Overview
As illustrated in Figure 2, our model incorporates a widely utilized
encoder-decoder structure. On the basis of this framework, we offer
a language model for performance optimization.

First, given a scene text image 𝐼 , the encoder extracts the visual
feature 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑁 } of 𝐼 , and the decoder produces the
initial text prediction result 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = {𝑡𝑖1, 𝑡𝑖2, . . . , 𝑡𝑖𝑙 }, in which 𝑁
is the number of visual features cells and 𝑙 is the length of 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 .

Our suggested language model is then fed 𝑉 and 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . The
positive attention mechanism extracts the most relevant visual fea-
tures for each character of 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , whereas the opposite attention
mechanism extracts the least relevant visual features, and the text
decoder performs secondary optimization on the text results.

Finally, we combine 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑇𝑝 , 𝑇𝑜 and 𝑇𝑡𝑑 to provide the final
text prediction result 𝑇𝑓 𝑖𝑛𝑎𝑙 = {𝑡 𝑓1, 𝑡 𝑓2, . . . , 𝑡 𝑓𝑙 }. In addition, our
suggested language model can be stacked several steps, meaning
that the 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 can be replaced with 𝑇𝑓 𝑖𝑛𝑎𝑙 .

3.2 Visual and Text Feature Extraction
We employ ResNet [14] and Transformer [43] as encoder and de-
coder respectively. In addition, the text decoder in out proposed
language model is also a Transformer.

Let 𝑋 ∈ 𝑅𝑟×𝐻×𝑊 represents visual features, where H and W
represent the spatial height and width, and r is the number of
channels. And 𝑝𝑜𝑠 ∈ 𝑅𝑙×ℎ represents the positional encodings of
character orders, where 𝑙 is the length of the character sequence
and ℎ is the dimension of the feature. Then 𝑉 and 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 referred
in 3.1 are achieved by transform them, where 𝑁 = 𝐻 ×𝑊 . Besides,
𝑉 and 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 has the same dimension ℎ.

Different from the conventional Transformer, in the calculation
of the attention mechanism, the iterm 𝑄 is 𝑝𝑜𝑠 . 𝐾 and 𝑉 are both
visual features in the decoder, while 𝐾 and 𝑉 are both text features
in the text decoder.

3.3 Constrative Attention
Positive Attention: The objective of the traditional attention
mechanism is to identify the visual information that is most relevant
to the current text information. The objective of this paper is to
identify the visual feature that match to each character in the text
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sequence. This strategy is highly compatible with the typical way
of thinking of humans.

Inspired by [43], dot-product attention is applied as a positive
attention mechanism :

𝑎𝑖 = 𝑄𝐾
⊤
𝑖

𝛼𝑖 =
𝑒𝑥𝑝 (𝑎𝑖 )∑𝑁
𝑗=1 𝑒𝑥𝑝 (𝑎 𝑗 )

𝑄 𝑗 =

𝑁∑︁
𝑖=1

𝛼𝑖𝑉𝑖

(1)

where Q, K, V denotes query vector, key vectors, and value vectors,
respectively. 𝛼𝑝 = {𝛼1, 𝛼2, . . . , 𝛼𝑁 } is the attention weight distribu-
tion of 𝑄 to 𝑉 . Then the current context information 𝑐𝑝 as a vector
of element-wise weighted sums of V.

In this paper, our positive attention mechanism focuses on the
attention weight distribution of text features to visual features,
aims to build the connection between text information and visual
information by focusing on the appropriate region of the image.
Consequently, 𝑄 is the text sequence feature, while 𝐾 and 𝑉 are
the same two vectors, they are visual features.

Opposite Attention: The attention weights obtained by Equa-
tion 1 accurately capture the connection between textual and visual
elements, then we design a opposite attention mechanism.

We set the attention weight obtained by Equation 1 as 𝛼𝑝 , then
the opposite attention weights can be calculated as following:

𝛼𝑜 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (1 − 𝛼𝑝 ) (2)

where 𝛼𝑜 denotes the opposite attention weights. Therefore, the
context information calculation method of the opposite attention
mechanism is as follows:

𝑐𝑜 = 𝛼𝑜𝑉 (3)

The function of Equation 2 performs a masking operation. When
1 is subtracted from the positive attention weight, the original max-
imum value becomes the minimum value, and the minimum value
becomes the maximum value. In this way, the most relevant parts of
the visual features receive maximum attention under the positive
attention mechanism, but are ignored in the opposite attention
mechanism. At the same time, the remaining less relevant or irrele-
vant visual features get more attention under the opposite attention
mechanism, so as to be used for contrastive training.

In contrast to positive attention, which summarizes currently rel-
evant visual features, opposite attention summarizes currently irrel-
evant or less relevant context. They constitute a pair of contrastive
information and jointly contribute to the final text generation.

3.4 Fusion
After obtaining the context information 𝑐𝑝 and 𝑐𝑜 calculated by the
forward attention mechanism and the reverse attention mechanism,
respectively; and getting the new text features 𝑡𝑡𝑑 calculated by
the text decoder, the context information and new text features are
concatenated to produce the combined text features:

𝑇𝑐𝑜𝑚𝑏𝑖𝑛𝑒 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑇𝑝 ,𝑇𝑜 ,𝑇𝑡𝑑 )𝑊𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (4)

where𝑊𝑐𝑜𝑚𝑏𝑖𝑛𝑒 ∈ 𝑅3ℎ×ℎ .

In addition, for the goal of information enhancement, the text
features produced by decoder are incorporated into the final text
features with a gated mechanism:

𝐺 = 𝜎 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ,𝑇𝑐𝑜𝑚𝑏𝑖𝑛𝑒 )𝑊𝑓 ) (5)
𝑇𝑓 𝑖𝑛𝑎𝑙 = 𝐺 ⊙ 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + (1 −𝐺) ⊙ 𝑇𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (6)

3.5 Loss Function
Ourmodel is trained end-to-end, and themulti-task cross-entropy is
used as objective function. Then given an image 𝐼 and its groundtruth,
the loss can be formulated as follows:

𝐿𝑂𝑆𝑆 = 𝐿𝑖𝑛𝑖𝑡𝑖𝑎𝑙 +
1
𝑀

(𝐿𝑖𝑝 + _𝐿𝑖𝑜 + 𝐿𝑖
𝑡𝑑

+ 𝐿𝑖
𝑓 𝑖𝑛𝑎𝑙

) (7)

where 𝐿𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝐿𝑝 , 𝐿𝑜 , 𝐿𝑡𝑑 and 𝐿𝑓 𝑖𝑛𝑎𝑙 are the loss from 𝑇𝑖𝑛𝑖𝑡𝑎𝑙 , 𝑇𝑝 ,
𝑇𝑜 ,𝑇𝑡𝑑 and𝑇𝑓 𝑖𝑛𝑎𝑙 , respectively. 𝐿𝑖𝑝 , 𝐿𝑖𝑜 , 𝐿𝑖𝑡𝑑 and 𝐿𝑖

𝑓 𝑖𝑛𝑎𝑙
are the losses

at the 𝑖-th step.
It should be pointed out that when calculating 𝐿𝑜 , we use the

softmin function for text prediction, while other parts utilize soft-
max function. The text prediction calculation steps are as follows:

𝑃𝑜 (𝑦𝑖 | (𝑦1, 𝑦2, . . . , 𝑦𝑖−1)) = 𝑠𝑜 𝑓 𝑡𝑚𝑖𝑛(𝑊𝑜𝑇𝑜 ) (8)

where𝑊𝑜 ∈ 𝑅ℎ×ℎ . The softmin function is calculated as follows:

𝑠𝑜 𝑓 𝑡𝑚𝑖𝑛(𝑡𝑖 ) =
𝑒−𝑡𝑖∑𝑙
𝑗=1 𝑒

−𝑡 𝑗
(9)

where 𝑡𝑖 =𝑊𝑜𝑇𝑜𝑖 and 𝑇𝑜𝑖 means the 𝑖-th elemens of 𝑇𝑜 .
The softmin and softmax functions have opposite function.When

we attempt to maximize Po, the opposite attention mechanism
searches for the visual feature with the lowest weighting. This in-
dicates that Po can be made higher the less the inverse attention
mechanism is connected with visual aspects.

4 EXPERIMENTS
4.1 Datasets
We will validate the performance of our model on seven bench-
marks, including four regular datasets and three irregular datasets.
The seven benchmarks include IIIT5K-Words (IIIT5K) [27], Street
ViewText(SVT) [44], ICDAR 2003(IC03) [24], ICDAR 2013(IC13) [18],
CUTE80 [33], ICDAR 2015(IC15) [17], and SVT-Perspective(SVTP) [31].
Details of these datasets can be found in [51].

4.2 Implementation Details
Network: we set the size of image to be 32×128, where 32 and 128
represents the height and width respectively. We take Resnet-50 as
the encoder and a 4 layers transformer as decoder and text decoder.
The dimension ℎ is set to be 512.

Traning: MJSynth (MJ) [15] and SynthText(ST) [13] are the
datasets that we use to train. Our model is optimized with the
Adam optimizer, where learning rate 𝑙𝑟 = 10−4, 𝛽1 = 0.9, 𝛽2 = 0.99
and 𝜖 = 10−8. After five epochs during the training procedure, the
learning rating degrades by 0.1.

Implementation:Using the Pytorch framework and twoNVIDIA
Telsa V100 GPUs, our model is implemented. And the batch size is
set to be 192.
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Table 1: Comparison of different constrative attention settings.

Base Text Decoder Positve Attention Opposite Attention IIIT5K SVT IC03 IC13 IC15 SVTP CUTE80 AVG
✓ 95.5 91.7 95.4 95.8 84.7 84.8 89.2 91.72
✓ ✓ 95.9 93.5 95.9 97.3 85.5 89.0 89.2 92.74
✓ ✓ ✓ 96.0 93.0 97.2 97.4 85.8 88.8 89.6 92.96
✓ ✓ ✓ ✓ 96.1 94.4 96.3 97.3 85.9 90.1 90.3 93.15

Table 2: Ablation study of stacking steps. In this study, we
set _ to be 0.2 in Equation 7.

staking steps IIIT5K SVT IC03 IC13 IC15 SVTP CUTE80 AVG
1 96.0 93.5 96.1 97.1 85.0 86.8 88.5 92.46
2 96.0 93.5 96.4 97.8 85.7 88.8 88.2 92.86

4.3 Ablation Study
To determine the impact of various model components on identifi-
cation performance, we design a series of ablation experiments. The
results of the ablation studies are all evaluated on seven standard
benchmarks.

Comparison of constrative attention settings: In this por-
tion of the studies, only the encoder and decoder models will be
employed as baseline models. The experimental results of a number
of distinct model configurations are presented in the Table 1.

The performance of text recognition is highest when the model
contains our proposed decoupled language model based on a con-
trastive attention mechanism, as shown in Table 1. On both the
regular text dataset and the irregular text dataset, the model we
developed outperforms the baseline model significantly, with the
irregular text dataset showing the most significant performance
improvement.

The findings in the table demonstrate that our model can better
extract relevant visual elements and increase the distance between
related and unrelated visual features.

Comparison of the staked steps of language model: As can
be seen from Figure 2, our language model can be stacked in multi-
ple steps to further optimize the recognition results. We present the
results of this comparison in Table 2. The results show that when
the language model is stacked, the text recognition performance of
the model will be improved to a certain extent.

The difference in the number of stacking steps between training
and testing was investigated further. The fluctuation of the aver-
age precision in Figure 3 implies that: (1) increasing the number
of stacking steps in training is beneficial for the performance of
the model; (2) applying stacking only in the test can also achieve
relatively good results; and (3) the model’s performance reaches a
relatively saturated state when stacked to more than 4 steps.

Nevertheless, if the number of stacking steps increases during
training, the training cost of the model will also grow proportion-
ally; therefore, we set the number of stacking steps at 2 during
training to ensure that the model achieves better outcomes while
saving training time and money. And from Figure 3, when _ = 0.1
the model get more better performance.

Figure 3: Accuracy of stacking steps in training and testing.

4.4 Comparisons with state-of-the-art models
In this section, the performance of our method is compared to that
of other methods on generic datasets. IIIT5k, SVT, IC03, and IC13
are examples of regular datasets, while CUTE80, IC15, and SVTP
are examples of irregular datasets. These findings are presented in
Table refresult, with the highlighted value being the second-best
performance among all models and the bolded value representing
the best performance.

As shown in Table 3, our model achieves the best results for five
datasets and the second-best results for two datasets. The effect
improvement is especially obvious on the SVT and SVTP datasets,
where it is 0.8% and 2.0% higher than the second-best model, re-
spectively. The image quality of these two datasets is blurry, and
the encoder is incapable of encoding them effectively. In addition,
we discovered that the text decoder in our language model can
supplement the initial text features even if the text distribution
in the image is irregular and the font is not conventional. Conse-
quently, even without image rectification, our model can achieve
the second-best score on the CUTE80 benchmark.

5 CONCLUSION
In this paper, we propose a novel contrastive attention mechanism
to make relevant parts of text and imagery to be closer and irrele-
vant parts farther apart. Simultaneously, the language model we
developed is decoupled, allowing it to better learn text information
while being unaffected by visual characteristics, and it is also more
adaptable. In addition to being applicable to scene text recognition
tasks, our method is also applicable to other vision-to-language
tasks, such as image captioning, image question answering, etc.
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