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ABSTRACT
Inverse reinforcement learning (IRL) can solve the problem of com-
plex reward function shaping by learning from expert data. How-
ever, it is challenging to train when the expert data is insufficient,
and its stability is difficult to guarantee. Moreover, the reward func-
tion of mainstream IRL can only adapt to subtle environmental
changes. It cannot be directly transferred to a similar task scenario,
so the generalization ability still needs to be improved. To address
these issues, we propose an IRL algorithm to obtain a stable control
policy and transferable reward function (ST-IRL). Firstly, by intro-
ducing the Wasserstein metric and adversarial training, we solve
the problem that IRL is challenging to train in a new environment
with little expert data. Secondly, we add state marginal matching
(SMM), hyperparameter comparison and optimizer evaluation to
address the model’s generalisability problem. As a result, the con-
trol policy obtained by ST-IRL achieves outstanding control results
in all four Mujoco benchmarks. Furthermore, in both the custom
Ant and PointMaze environments, the reward function obtained by
our algorithm exhibits promising transferability.
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1 INTRODUCTION
With a series of breakthroughs in the field of games [1–3], and
robotics [4], and with successful real-world applications [5–7], the
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research community has seen a surge of interest in reinforcement
learning (RL) algorithms [8]. Although RL has impressive achieve-
ments, many implementations are drawn from specific cases and
cannot be transferred to similar domains. The main reason is that
when RL is used in an uncertain environment, the first challenge
is modeling the environment. Researchers rely on environmental
cognition and engineering experience to complete the shaping of
the reward function. However, it is highly stochastic and complex
for the data, scenarios, knowledge domains and other elements of
the environment [9] to deeply interact with the design or operation
of the system. As a result, describing the reward function formally
in a new environment is quite challenging.

Imitation learning (IL) [10] and IRL [11, 12] have laid a good
foundation for solving the problem that the environment is difficult
to be described accurately. IL attempts a direct learning policy but
relies on a stable environment to remain optimal. If the environment
changes, IL will require expert data from the new environment to
learn again. To some extent, IRL can solve the problem of dynamic
environment changes. The reward function learned by IRL is inde-
pendent of the dynamics of the environment, and it is an invisible
map of the task objective. Therefore, the policy will have better
universality by relearning the reward function obtained by IRL.

However, it is significantly difficult for IL and IRL to obtain
expert data in a new environment. In most scenarios, expert data is
inadequate, and is in a high-dimensional continuous space. In such
a context, IL faces the covariate shift problem [13]. Moreover, IRL
suffers from high training difficulty, non-convergence of control
policy and poor generalization of reward functions.

After analyzing the above problem, we find that the mainstream
IRL [14–19] measures the distribution between the expert trajecto-
ries and the policy trajectories through 𝑓 -divergence [20]. When
the data is in a high-dimensional space and the amount of data is
small, the results of the metric tend to be constant or infinite. This
situation is reflected in the training process that the model does
not converge or the convergence speed is slow.

Therefore, we focus on the metric functions and combine it with
the idea of adversarial training to propose ST-IRL. In order to get
a stable control policy and facilitate comparison with other algo-
rithms, We use the Soft Actor-Critic (SAC) model [21] to construct
our control policy. Likewise, to get a transferable reward function,
we use the Multilayer Perceptron (MLP) to build a transferable
reward function. Furthermore, we use adversarial training to it-
erate the control policy and the reward function to increase the
robustness between models. The divergence in the reward function
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is measured by Wasserstein metric [22], which solves the problem
of non-convergence or slow convergence of the model caused by
the small amount of data in the high-dimensional space. Hyperpa-
rameters and optimizer screening carry out the training process.
Finally, the core idea in SMM is adopted to improve the model’s
generalization ability by focusing on state data distribution.

The main contributions of this work are as follws:
• We propose an inverse reinforcement learning algorithm,
ST-IRL, by which we can obtain a control policy with better
performance and stability.

• With ST-IRL, we can obtain a reward function with transfer-
ability.

2 RELATEDWORK
Two branches of research inspired the ST-IRL: one started from
the perspective of the metric function, minimizing the distribution
of policy data and expert data. The other introduced the idea of
Generative Adversarial Network (GAN), using the reward function
as a discriminator for training to obtain the optimal reward function.

The first branch proceeded from the metric function. MaxEntIRL
[14] determined the policy and reward function by minimizing the
forward Kullback-Leibler (KL) divergence among policy trajectories
based on the maximum entropy. Similar to MaxEntIRL, ReEntIRL
[23], Deep MaxEntIRL [15] and GCL [16] optimized the forward KL
divergences among policy trajectories. However, there lay some dif-
ferences. ReEntIRL modeled the task as a relative entropy problem,
while Deep MaxEntIRL and GCL estimated the reward function by
constructing a deep neural network in reward functions. Starting
with reverse KL, SMM [24] and EBIL [25] minimized the differ-
ence between expert trajectories and policy trajectories. Finally,
𝑓 -IRL [26] aggregated 𝑓 -divergence to achieve IRL optimization on
forward KL, reverse KL and Jensen-Shannon (JS) metrics.

The second branch brought in the GAN model. Finn et al. [27]
first proposed the combination of IRL and GAN in 2016, and many
algorithms were further studied following this direction. GAIL [17]
and 𝑓 -MAX [18] picked expert data from state-action pairs, using
the policy model as a generator to produce actions with the state
data as input. At the same time, the reward function acted as a
discriminator to judge the similarity between the generated action
and the expert action. AIRL [19] decoupled the reward function
into a state-only function, which was more robust than GAIL.

We extend the above ideas from 𝑓 -divergence to the Wasser-
stein metric. Using the Wasserstein metric, ST-IRL can successfully
measure the divergence among trajectory distributions when the
trajectory data is in a high-dimensional space and the amount of
data is small. Thus the problem of gradient disappearance or gradi-
ent explosion can be solved. We borrow the idea of combining IRL
and adversarial training, which uses the control policy as the gen-
erator and the reward function as the discriminator for adversarial
training. The differences from previous IRL algorithms are:

• We evaluate two different implementations of the Wasser-
stein metric and propose the optimal IRL based on the
Wasserstein metric.

• We construct the reward function through MLP, decouple
it in adversarial training, and generalize the trained reward
function to similar tasks.

3 METHOD
This section focuses on the ST-IRL algorithm and analyzes why the
ST-IRL is more stable in high-dimensional spaces with little expert
data.

3.1 Preliminaries
In this section, we review the definitions of the Wasserstein metric,
the state marginal matching (SMM) and the generative adversarial
network (GAN) that we build upon in this work.

3.1.1 Wasserstein Metric. The definition of the Wasserstein metric
is shown in equation (1).

𝑊 (𝑃𝑒 , 𝑃𝑎) = 𝑖𝑛𝑓

𝛾∼ΓE(𝑥,𝑦)∼𝛾 [𝑥 − 𝑦] (1)

where 𝑃𝑒 (𝑃𝑒𝑥𝑝𝑒𝑟𝑡 ) and 𝑃𝑎 (𝑃𝑎𝑔𝑒𝑛𝑡 ) are two distributions over 𝑋 . 𝑋
is a compact metric set (such as the space of images [0, 1]𝑑 ). Γ is the
set of all possible joints on𝑋 ×𝑋 that have marginals 𝑃𝑒 and 𝑃𝑎 . For
each possible joint distribution 𝛾 , a sample 𝑥 and 𝑦 can be obtained
by sampling (𝑥, 𝑦) ∼ 𝛾 from it and calculating the distance 𝑥 −𝑦 for
this pair of samples. Intuitively, 𝛾 indicates how much “mass” must
be transported from 𝑥 to𝑦 in order to transform the distributions 𝑃𝑒
into the distribution 𝑃𝑎 . The lower bound E(𝑥,𝑦)∼𝛾 [𝑥 − 𝑦] that can
be taken on this expectation across all possible joint distributions
is the Wasserstein metric.

3.1.2 State Marginal Matching. The state marginal distribution
𝑃 (𝑠) is a distribution of states, not trajectories: It is the distribution
over states visited in a finite-length episode, not the stationary
distribution of the policy after infinitely many steps. The definition
of the state marginal distribution 𝑃 (𝑠) is shown in equation (2).

𝑃 (𝑠) Δ
= E

𝑠1 ∼ 𝑝0 (𝑆)
𝑎𝑡 ∼ 𝜋 (𝐴|𝑠𝑡 )

𝑠𝑡+1 ∼ 𝑝 (𝑆 |𝑠𝑡 , 𝑎𝑡 )

[
1
𝑇

𝑇∑︁
𝑡

F (𝑠𝑡 = 𝑠)
]

(2)

where 𝑆 is a state set and 𝐴 is the action set in a Markov Decision
Process (MDP) with fixed episode lengths 𝑇 , 𝑠1 is an initial state
sampled from the initial state distribution 𝑝0 (𝑆), 𝜋 is a parametric

policy, 𝑝 (𝑆 |𝑠𝑡 , 𝑎𝑡 ) is a dynamics distribution,
𝑇∑
𝑡
F(𝑠𝑡 = 𝑠) is the visi-

tation count of a state 𝑠 in a finite-length episode. Given the expert
state distribution 𝑃𝑒 (𝑠), we can train an agent to match the expert
behavior by minimizing the following Wasserstein metric objective
𝐿𝑤 :

𝐿𝑤 (𝜃 ) = 𝐷𝑤 (𝑃𝑒 (𝑠) | |𝑃𝑎 (𝑠)) (3)
where 𝐷𝑤 is the definition of the Wasserstein metric mentioned
before in equation (1).

Our algorithm will compute the analytical gradient of equation
(3) w.r.t. 𝜃 and optimize the reward function via gradient descent.

3.1.3 Generative Adversarial Network. The first step of the GAN is
to fix the generator and update the discriminator, where the loss
function of the discriminator is equation (4).

−E𝑥∼𝑃𝑒 (𝑠 ) [𝑙𝑜𝑔𝐷 (𝑥)] − E𝑥∼𝑃𝑎 (𝑠 ) [log (1 − 𝐷 (𝑥))] (4)

where 𝑃𝑒 (𝑠) is an expert state distribution, 𝑃𝑎 (𝑠) is the agent state
distribution, and 𝐷 (𝑥) is the discriminator.
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Figure 1: Model structure diagram. The yellow part is the generator, and the blue part is the discriminator.

The second step is to fix the discriminator and update the gener-
ator, where the loss function of the generator is equation (5).

E𝑥∼𝑃𝑎 (𝑠 ) [log (1 − 𝐷 (𝑥))] (5)

3.2 Model structure
The model structure of ST-IRL can be divided into a generator
and a discriminator. The model uses adversarial training to iterate,
in order to achieve the Nash equilibrium between the generator
and the discriminator. The overall training process of ST-IRL is as
follows: Firstly, the generator samples the state data 𝑃𝑎 (𝑠) of the
trained SAC agent and inputs it into the discriminator 𝐷 . And then,
the discriminator 𝐷 updates the reward function 𝑟𝜃 by minimizing
the divergence between the expert state distribution 𝑃𝑒 (𝑠) and
agent state distribution 𝑃𝑎 (𝑠) (see Algorithm 1). Finally, the updated
reward function 𝑟 ′

𝜃
is used as the environment evaluation function

for the next generator update.
As for the specific structure, inside the generator, the SAC agent

interacts with the environment and obtains as many rewards as
possible from the environment through continuous iteration. The
discriminator uses the Wasserstein metric internally to measure
the divergence among the state data distributions and then updates
it by gradient descent. After both the SAC agent and the reward
network are trained, we apply the SAC agent to the current task to
evaluate its stability and feasibility, and then transfer the reward
network to similar task scenarios to evaluate its transferability.

Algorithm 1 ST-IRL
require: Expert state distribution 𝑃𝑒 (𝑠)
ensure: Learned reward function 𝑟𝜃 , Policy 𝜋𝜃
initialize 𝑟𝜃 , and Discriminator 𝐷
for 𝑖 ⇐ 1 to 𝐼𝑡𝑒𝑟 do
𝜋𝜃 ⇐ ST-IRL(𝑟𝜃 ) and collect agent trajectories 𝑇𝜃
fit the discriminator 𝐷 by equation (4) using expert and agent

state samples from 𝑃𝑒 (𝑠) and 𝑇𝜃
compute sample gradient ∇𝜃𝐿𝑤 (𝜃 ) over 𝑇𝜃
𝜃 ⇐ 𝜃 − 𝜆∇𝜃𝐿𝑤 (𝜃 )

end

3.3 Principle analysis
In Fig. 1, the state data distribution 𝑃𝑎 (𝑠) is generated depending
on the interaction between the agent in the generator and the
environment. If the data distribution in this model is in a high-
dimensional space, it satisfies the definition of a low-dimensional
manifold in a high-dimensional space [28]. The policy generally
maps low-dimensional discrete state data into high-dimensional
continuous action data via a deep neural network. If the agent
is fixed, the distribution of the data will be limited by the low-
dimensional space, although the sampled data is defined in the high-
dimensional space. So the final support set of the data distribution
becomes a low-dimensional flow in the high-dimensional space.
When the amount of expert data is small, the expert data cannot fill
the entire high-dimensional space. Therefore, the expert state data
distribution 𝑃𝑒 (𝑠) and the sampling state data distribution 𝑃𝑎 (𝑠)
obtained by the agent are in the state of no overlap or negligible
overlap.

The mainstream IRL updates the control policy and reward func-
tion by measuring the divergence between 𝑃𝑒 (𝑠) and 𝑃𝑎 (𝑠), using
the 𝑓 -divergence. When there is no overlap or negligible overlap
between the two distributions, the 𝑓 -divergence measure is either
infinite or constant (refer equation (6)). This means that the gradient
descent update method is not suitable.

𝑅𝐾𝐿(𝑃𝑒 (𝑠) | |𝑃𝑎 (𝑠)) = +∞

𝐾𝐿(𝑃𝑒 (𝑠) | |𝑃𝑎 (𝑠)) = +∞

𝐽𝑆 (𝑃𝑒 (𝑠) | |𝑃𝑎 (𝑠)) = 𝑙𝑜𝑔2 (6)

where 𝑅𝐾𝐿 is reverse Kullback-Leibler divergence, 𝐾𝐿 is Kullback-
Leibler divergence, and 𝐽𝑆 is Jensen-Shannon (JS) metrics.

The advantage of the Wasserstein metric is that even if there is
no overlap between two distributions, it still reflects the divergence
between the distributions (see Appendix A).

However, the definition of Wasserstein metric cannot be solved
directly in the discriminator model, so we resort to the idea of
Lipschitz GAN [29] to construct it in the form of a loss function by
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Figure 2: Experimental outline. The diagrams in the top-right corner of the illustration above show the four classic Mujoco
environments. The diagrams in the middle show the custom Ant environment, and the diagrams on the bottom show six custom
PointMaze environments. PointMaze is a square with length=1. The most significant difference in each PointMaze environment
is the position and length of the middle bar. For example, the original PointMaze has the bar on the left, with length=2/3 and
height=1/2. The variant PointMaze I has the bar on the left, with length=2/3 and height=1/3. The variant PointMaze II has
the bar on the left, with length=2/3 and height=2/3. The variant PointMaze III has the bar on the left, with length=1/3 and
height=1/2. The variant PointMaze IV is on the right, with length=2/3 and height=1/2. The variant PointMaze V is on the right,
with length=1/3 and height=1/2.

incorporating Lipschitz continuity (refer equation (7)).

𝑊 (𝑃𝑒 (𝑠) , 𝑃𝑎 (𝑠)) =
1
𝐾

𝑠𝑢𝑝

𝑓𝐿≤𝐾E𝑥∼𝑃𝑒 (𝑠 ) [𝑓 (𝑥)] − E𝑥∼𝑃𝑎 (𝑠 ) [𝑓 (𝑥)]
(7)

where the supermum is over all the K-Lipschitz functions. The K-
Lipschitz function actually imposes an additional restriction on top
of a continuous function 𝑓 by requiring the existence of a constant
𝐾 ≥ 0. So any two elements 𝑥1 and 𝑥2 in the domain of definition
satisfy |𝑓 (𝑥1) − 𝑓 (𝑥2) |≤ 𝐾 |𝑥1 − 𝑥2 |.

4 EXPERIMENTS
The experimental section focuses on answering two questions (see
Fig. 2):

• How effective and stable does ST-IRL obtain the control
policy?

• How transferable is the reward function obtained via ST-IRL?

To answer the first question, we conduct two pre-experiments.
The first pre-experiment evaluates the effect of different Wasser-
stein metric implementations on the ST-IRL algorithm, and the
second pre-experiment evaluates the effect of hyperparameters and
optimizers on the ST-IRL. And then, to verify the control effect
and stability of ST-IRL, we compare the ST-IRL algorithm with
six mainstream IRL algorithms in four classical Mujoco environ-
ments. The four classic Mujoco environments are Ant-v3, Hopper-
v3, HalfCheetah-v3, and Walker2d-v3, which can well represent
the control problems of continuous state space and action space.

To answer the second question, we also perform a pre-
experiment to verify whether or not ST-IRL can learn valid in-
formation from expert data containing task goals. Finally, in the
formal experiments, we test the transferability of ST-IRL’s reward
function in two scenarios: one with the same task and different
agents and the other with the same task and different environments.

The expert state data in the above experiments are all sampled
from a stable SAC model.

4.1 Stability verification of control policy
4.1.1 Pre-experiment 1-1. In ST-IRL, we implement two forms of
weight clipping [22] and gradient penalty [30] of the Wasserstein
metric and obtain ST-IRL-WC and ST-IRL-GP, respectively.

We select expert state data with a trajectory number of 4 to
conduct experiments in four Mujoco environments and compare
the cumulative sum of the final rewards obtained by the policy. The
results (see Fig. 3) show that ST-IRL-WC significantly outperforms
ST-IRL-GP in terms of the final cumulative reward and convergence
speed. In the two implementations, weight clipping is limited by
clipping the network weight 𝑤 . In contrast, the gradient penalty
is limited by setting an additional loss term. The weight clipping
approach is valid globally for the whole sample space. However,
the gradient penalty is valid only for the proper and false sample
concentration regions and the transitional zones in between. The
experiment demonstrates that ST-IRL-WC has faster convergence
speed and better stability. The ST-IRL algorithms mentioned in the
following experiments use weight clipping.
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Figure 3: The cumulative return of ST-IRL-WC and ST-IRL-GP in four Mujoco environments.

Figure 4: The figure on the left shows the ST-IRL divergence under different optimizers. The right figure shows the ST-IRL
divergence in different clip values. All experiments are carried out under Hopper-v3.

4.1.2 Pre-experiment 1-2. This experiment mainly evaluates the
impact of different clip values in weight clipping and different
optimizers in the model on the ST-IRL algorithm.

As for the clip value, we compare the cases of 10, 5, 1, 0.1, and
0.01. As for the optimizer, we select three optimizers: RMRProp,
Adam, and SGD. In the environment of expert trajectories=4 and
hopper-v3, we analyze the divergence between the distribution of
expert trajectories and the distribution of policy trajectories with
different clip values and optimizers. From the experimental results
of the optimizer, RMSProp converges faster and is more stable.
However, the optimizer of SGD fluctuates a lot, and the optimizer
of Adam converges slowly. As for the experimental results of clip
values, the optimal results are achieved when clip=1. If the clip
value is too small, there will be redundant network clipping, and
useful information is hard to learn. However, if the clip value is too
large, the convergence speed of the model will be reduced.

4.1.3 Experiment 1. In this section, we answer Question 1 in tabu-
lar and graphical form. In four classical Mujoco environments, we
compare the ST-IRL algorithm with six mainstream IRL algorithms.
Furthermore, we illustrate the training policy’s cumulative rewards

when the number of expert trajectories is 1, 4 and 16. The cumu-
lative reward is an intuitive reflection of the effectiveness of the
policy. The table (refer Table 1 shows the ratio of the policy tra-
jectory’s cumulative reward to the expert trajectory’s cumulative
reward. We trim the ratio directly to 1 when the cumulative reward
of the policy trajectory is greater than the cumulative reward of
the expert trajectory. The ratios in the table show that ST-IRL can
exceed 0.9 in all four experiments, which has strong stability. In
addition, ST-IRL can achieve state-of-the-art under HalfCheetah-v3
and Walker2d-v3.

The trend of the curves in Fig. 5 shows that ST-IRL has signif-
icantly better convergence and stability than all the algorithms
except 𝑓 -MAX-IRL and GAIL. After analyzing 𝑓 -MAX-IRL and
GAIL, we find that the reward function is tightly coupled with the
control policy in the model structure. Instead of generating an inde-
pendent reward function, a temporary evaluation function is used
in the training process to complete the policy training. Such algo-
rithms can achieve good results in policy evaluation. However, they
are susceptible to hyperparameters. Besides, they require many
tuning parameters in each environment to reach optimality.
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Table 1: We compare the performance of seven IRL algorithms in four Mujoco environments, where the bolded values represent
the best performance of each experimental environment.

Ant-v3 Hopper-v3 HalfCheetah-v3 Walker2d-v3
Expert return 6050 3612 12914 5429
Expert traj 1 4 16 1 4 16 1 4 16 1 4 16

MaxEnt IRL 0.91 0.96 0.92 0.64 0.87 0.65 0.99 0.83 0.97 1 0.99 0.99
FKL(𝑓 -IRL) 0.91 0.88 0.91 0.54 0.71 0.80 0.95 0.93 0.99 0.92 0.91 0.95
RKL(𝑓 -IRL) 0.94 0.97 0.96 0.53 0.67 0.66 0.98 0.98 0.97 0.98 0.96 0.94
JS(𝑓 -IRL) 0.91 0.99 0.90 0.52 0.57 0.68 0.96 0.99 0.96 1 1 0.97
𝑓 -MAX-IRL 0.99 1 0.99 0.95 0.94 0.95 0.72 0.75 0.71 0.59 0.61 0.67
GAIL 0.98 0.98 0.97 0.88 0.91 0.90 0.69 0.40 0.69 0.57 0.58 0.61
ST-IRL 0.93 0.96 0.99 0.92 0.93 0.93 1 1 0.99 1 1 1

Figure 5: We compare the cumulative returns of seven IRL algorithms for policies in four Mujoco environments with expert
trajectory numbers of 1, 4, and 16.
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Figure 6: The reward function of ST-IRL and the reward function set in Mujoco score the same random action.

Figure 7: From top to bottom: healthy Ant, Ant with one broken leg, Ant with broken two legs, and Ant with broken three legs.

4.2 Transferability evaluation of reward
function

4.2.1 Pre-experiment 2. Before verifying the transferability of the
reward function generated by ST-IRL, we first verify its feasibility
through a pre-experiment.

The goal of this pre-experiment is to determine whether ST-IRL
can learn instructive information about the task from the expert
data or not. The reward function maps the task information in
the environment. Therefore, we can indirectly guide the agent to
achieve the task goal through the reward function. We wonder
if the reward function 𝑅𝑎 generated by ST-IRL can learn the task
information. We judge whether 𝑅𝑎 and the reward function 𝑅𝑒 set
in the four Mujoco environments have similar scores for the same
random action or not. It can be seen from Fig. 6 that the two reward
functions indeed give similar scores with a consistent trend, proving
that ST-IRL can learn task-oriented information from expert data.

4.2.2 Experiment 2-1. This section answers the problem: how trans-
ferable is the ST-IRL reward function for the same taskwith different
agents?

We customize a healthy Ant and construct Ants with one, two
and three broken legs, respectively, to meet the constraints of the
same task and different agents. The experiment process is as follows:
we first use the expert data of a healthy Ant to train the decou-
pled reward function in ST-IRL, and next use the obtained reward
function as the reward function of the self-defined broken-legged
Ant. Then, with known environmental rewards, we use forward
reinforcement learning to train the SAC policy. Fig. 7 shows part of
the frame data captured by a healthy Ant and Ants with bad legs
walking through the SAC policy after training. It can be seen from
the figure that Ants with one broken leg and two broken legs can
still be used under the reward function of ST-IRL. However, Ant,
with three broken legs, can no longer walk with only one leg. Fig.
8 shows the cumulative reward sums for the three broken-legged
Ants during the training process. We can see that the more legs
used in the custom Ant agent, the more valid information is learned
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Figure 8: The cumulative rewards of three kinds of broken-
legged Ants during training.

from the reward function. The result is that the further the distance
traveled per unit of time, the higher the cumulative reward sum
obtained.

4.2.3 Experiment 2-2. This section answers whether or not the
reward function of ST-IRL can still be transferable in the same task
in a different environment.

At first, we customize a PointMaze experimental environment.
The goal of PointMaze is that the white ball should reach the top
of the yellow ball through the shortest path. To demonstrate gen-
erality, we randomly select a scene from six different PointMaze
environments as the original scene. And then, to fully demonstrate

the stability and generalization ability of ST-IRL, we select rela-
tively poor expert data in the original scenario. In the next step,
we migrate the reward function learned by ST-IRL from the expert
data to the following five variants of PointMaze, based on which
we use the sac model for reinforcement learning training. Fig. 9
shows that the learned policy completes the task, demonstrating
that the reward function generated by ST-IRL can generalize well
to the same task in different environments.

5 CONCLUSION
Imitation learning and mainstream IRL suffer from poor results in
the situation of complex environments and insufficient expert data.
We propose the ST-IRL algorithm based on the Wasserstein metric
and adversarial training to address this problem. Through exper-
iments, we demonstrate the stability of the ST-IRL algorithm on
policy and the transferability of the reward function. Furthermore,
the proposed algorithm provides an idea for shaping the reward
function in a complicated environments. Before constructing the
reward function artificially, web collect expert data in that envi-
ronment or similar environments, use the expert data to construct
the base reward function in ST-IRL, and finally make appropriate
fine-tuning to obtain the final reward function. This data-driven
approach for constructing the reward function can avoid the sub-
jectivity and limitations associated with artificially shaped rewards.

In the future, wewill consider introducing the idea of hierarchical
reward functions [31–33] into ST-IRL to improve the exploratory
power and generalizability of the reward functions. Moreover, ST-
IRL can be combined with meta-learning [34, 35] to use the reward
functions generated by ST-IRL as metadata for further optimization.

Figure 9: From top to bottom are the original PointMaze environment, the expert trajectory, the six variants of the PointMaze
environment and the policy trajectories in the corresponding environments.
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A A DERIVATION AND PROOF
Let 𝑤 and 𝑤 ′ be two parameter vectors in R𝑑 . Let 𝑃𝑒 be a fixed
distribution over F. Let 𝑠 be a random variable over another space
S. Let 𝑓 : S × R𝑑 → F be a function, that will be denoted 𝑓𝑤 (𝑠)
with the 𝑠 the first coordinate and𝑤 the second. Let 𝑃𝑤 denote the
distribution of 𝑓𝑤 (S).

From the definition of the Wassertein metric, we know 𝛾 is
the distribution of the joint (𝑓𝑤 (S), 𝑓𝑤′ (S)), which clearly has
(𝑃𝑤 , 𝑃𝑤′ ).

By the definition of the Wassertein metric, we have

𝑊 (𝑃𝑤 , 𝑃𝑤′ ) = 𝑖𝑛𝑓

𝛾∼Π(Pw,Pw′ )E(𝑥,𝑦)∼𝛾 [𝑥 − 𝑦]

=
𝑖𝑛𝑓

𝛾∼Π(Pw,Pw′ )E(𝑥,𝑦)∼𝛾 [𝑦 − 𝑥]
≤ E(𝑥,𝑦)∼𝛾 [𝑥 − 𝑦]
= E𝑆 [𝑓𝑤 (𝑠) − 𝑓𝑤′ (𝑠)]

= E𝑆 [𝑓𝑤′ (𝑠) − 𝑓𝑤 (𝑠)] (satisfy symmetry)if 𝑓 is continuous in
𝑤 , then (𝑤 → 𝑤 ′) → (𝑓𝑤 → 𝑓𝑤′ ). So 𝑓𝑤 (𝑠) − 𝑓𝑤′ (𝑠) pointwise as
function of 𝑠 .

Since F is compact, the distance of any two elements in it has to
be uniformly bounded by some constant 𝐷 , and therefore 𝑓𝑤 (𝑠) −
𝑓𝑤′ (𝑠) ≤ 𝐷 for all𝑤 and 𝑠 uniformly. By the bounded convergence
theorem, we therefore have

𝑊 (𝑃𝑤 , 𝑃𝑤′ ) ≤= E𝑆 [𝑓𝑤′ (𝑠) − 𝑓𝑤 (𝑠)] → 0𝑤→𝑤′

So, we have

𝑊 (𝑃𝑤 , 𝑃𝑤′ ) = 0 ⇔𝑊 (𝑓𝑤 (𝑠) , 𝑓𝑤′ (𝑠)) = 0

⇔ 𝑓𝑤 (𝑠) = 𝑓𝑤′ (𝑠) (satisfy the identity of indiscernibles)
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Finally, we have that
|𝑊 (P𝑒 , P𝑤) −𝑊 (P𝑒 , P𝑤′ ) | ≤𝑊 (P𝑤 , P𝑤′ ) (satisfy triangle in-

equality)
Next, we will prove the continuity and differentiable of

Wassertein metric.
Let 𝑓 be locally Lipschitz. Then, for a given pair (𝑤, 𝑠) there is a

constant 𝐿(𝑤, 𝑠) and an open set𝑈 such that (𝑤, 𝑠) ∈ 𝑈 , such that
for every (𝑤 ′, 𝑠′) ∈ 𝑈 we have

𝑓𝑤 (𝑠) − 𝑓𝑤′
(
𝑠′
)
≤ 𝐿 (𝑤, 𝑠)

(
𝑤 −𝑤 ′ + 𝑠 − 𝑠′

)

because (𝑤 ′, 𝑠) ∈ 𝑈 , so when take expections, we have 𝑠′ = 𝑠 and

E𝑆 [𝑓𝑤 (𝑠) − 𝑓𝑤′ (𝑠)] ≤ 𝑤 −𝑤 ′E𝑆 [𝐿 (𝑤, 𝑠)]
Therefore, we can define 𝑈𝑤 = {𝑤 ′ |𝑤 ′, 𝑠) ∈ 𝑈 }. It is easy to

see that since𝑈 is open,𝑈𝑤 is as well. Furthermore, we can define
𝐿(𝑤) = E𝑆 [𝐿(𝑤, 𝑠) and achieve

|𝑊 (P𝑒 , P𝑤) −𝑊 (P𝑒 , P𝑤′ ) | ≤𝑊 (P𝑤 , P𝑤′ ) ≤ 𝐿 (𝑤)𝑤 −𝑤 ′

for all𝑤 ′ ∈ 𝑈𝑤 meaning that𝑊 (P𝑒 , P𝑤) is locally Lipschitz. This
obviously implies that𝑊 (P𝑒 , P𝑤) is everywhere continuous, and
by Radamacher’s theorem we know it has to be differentiable
almost everywhere.
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