
Computer
Systems

G. Bell, D. Siewiorek,
and S.H. Fuller, Editors

Empirical Evaluation of
Some Features of Instruction
Set Processor Architectures

o

Amund Lunde
Carnegie-Mellon University

This paper presents methods for empirical evaluation
of features of Instruction Set Processors (ISPs). ISP
features are evaluated in terms of the time used or
saved by having or not having the feature. The methods
are based on analysis of traces of program executions.
The concept of a register life is introduced, and used to
answer questions like: How many registers are used
simultaneously? How many would be sufficient all of
the time? Most of the time? What would the overhead
be if the number of registers were reduced? What are
registers used for during their lives? The paper also
discusses the problem of detecting desirable but non-
existing instructions. Other problems are briefly dis-
cussed. Experimental results are presented, obtained by
analyzing 41 programs running on the DECsys teml0
ISP.

Key Words and Phrases: computer architecture,
program behavior, instruction sets, opcode utilization,
register structures, register utilization, simultaneous
register lives, instruction tracing, execution time

CR Categories: 6.20, 6.21, 6.33

Copyright @ 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This work was supported in part by the Advanced Research
Projects Agency of the office of the Secretary of Defense (F44620-
73-C-0074) monitored by the Air Force Office of Scientific Re-
search, in part by The Norwegian Research Council for Science
and the Humanities (Norges Almenvitenskapelige Forskningsrf~d).
Author's present address: EDB-sentret, Universitetet i Oslo;
P.O. Box 1059, Blindern, Oslo 3, Norway.

* Notes for this article appear on p. 152.

1. Introduction

A quick survey of current computers reveals a great
variation in the structure of Instruction Set Processors. 1.
This observation is true even for computers intended
for the same general market. Current ISPs designed
with the scientific market in mind, for example, have
word lengths ranging from 24 to 64 bits; the number of
different instructions varies f rom about 70 to over 400;
register structures span the area f rom one accumulator
plus a few index registers, through designs with 8 to
24 general or specialized registers, to designs with up
to 64 registers, again relatively general. A natural con-
clusion from such a survey is that very little is known
about the optimal structure of ISPs. Further study re-
veals that very little has been published about measur-
ing techniques or other methods designed to obtain
such knowledge.

This paper presents a step towards the development
of such measuring techniques. It describes methods
designed to study the detailed behavior of programs as
they are executing on some ISP. Experimental results
are presented which reflect the behavior of one particu-
lar set of programs on one particular ISP.

The need for such measures and their utility is
vindicated by the results found by the designers of the
Burroughs B1700 central processor [14, 15]. These
results clearly show the dependence of program effi-
ciency on a good ISP.

Previous authors have measured the frequency of
execution of the individual instructions or groups of
instructions [7 (The Gibson mix), 8, 4, 12, and 9].

Only a few more comprehensive studies are known to
this author: Foster et al. [5, 6] have developed measures

of opcode utilization and studied alternative encodings
of the opcodes into fewer bits than those required by a
conventional encoding. Similar results are presented
by Wilner [15]. Winder [16, 17] has gathered miscel-
laneous statistics on ISP usage. Alexander [1] has
made extensive study of how one particular program-
ming language uses ISP features.

None of the above studies report on ISP behavior
reflecting more than two or three consecutive instruc-
tions. Also, register use is barely touched upon. The
methods described in this paper improve this situ-
ation. They are only to a small extent, or not at all,
restricted to the study of a small fixed length sequence
of instructions. On the contrary, we may follow a
phenomenon for as many instructions as seems rele-

143 Communications March 1977
of Volume 20
the ACM Number 3

http://crossmark.crossref.org/dialog/?doi=10.1145%2F359436.359442&domain=pdf&date_stamp=1977-03-01

vant, while at the same time retaining full knowledge
about every instruction executed.

otherwise measured or estimated by the ISP architect
before he makes his decisions.

2. Basic Methodology

The basic idea of the methods is to analyze traces
of a representative set of programs, the subject set,
written as these are executed by an interpreter for the
ISP being studied. Information is recorded for every
instruction executed by the subject program. The
major advantages of this approach are:

--ISP behavior may be studied in great detail.
--The methods are not restricted to special languages

or compilers.
--Analysis programs are easily written, and programs

for new analysis methods may be developed after
the data have been collected.

--All analyses of the same program (trace) see exactly
the same instruction stream; hence the results
are not perturbed by random influences caused
by external devices or by multiprogramming of
jobs.
Each individual analysis, therefore, studies the

behavior of a user program running on the user ISP
and the suitability of this ISP to that particular pro-
gram, as opposed to studying the suitability of the full
ISP to a collection of multiprogrammed programs.
For the latter purpose a device is needed to trace execu-
tive mode programs, probably at full speed. Statistical
validity comes from studying many programs indi-
vidually.

The methods are easily modifiable to apply to all
register structured ISPs, and to some extent even to
stack ISPs or other ISPs. The specific results obtained
are, however, strongly dependent on the structure of
the ISP analyzed. The extent to which they can be ap-
plied to similar ISPs depends on the degree of simi-
larity and on the result in question. On the other hand,
the results are relatively independent of technology;
hence they may be used by ISP architects to compare
thb cost/utility ratios of different structures across dif-
ferent technologies.

Our methods evaluate ISP features in terms of their
associated time cost, i.e. the change in execution time
or instruction count caused by including or removing
the feature. Of these, the instruction count is most in-
dependent of technology, but it hides the fact that
certain operations take a longer time than others,
regardless of technology. Hence execution time is
also computed in some cases by summing the individual
instruction execution times.

Other relevant costs are the space occupied in pri-
mary memory by program and data, and the cost of
designing, coding, and debugging programs. Both of
these are highly dependent on the ISP, and are as im-
portant to a good design as the time cost. They are not,
however, measured by our methods, but should be

144

3. Experimental Environment

3.1 ISP Studied
The emphasis of our experimental work was on

studying the methods, and estimating the dependence
of the results on the major parameters of the subject
set. In order to reduce the work, experiments were
performed on one ISP only: the DECsysteml0 (KA-
10). The structure of this ISP is unusually general;
some of its properties are:

(1) It has a large instruction repertoire of about 420
user instructions including:
- -A rich set of instructions for arithmetic and bitwise

comparison. These compare memory, register, im-
mediate or implicit (0) operands, and all 6 arith-
metic conditions are available.

--Programmer defined stacks.
--Three different mechanisms for subroutine calls.
--All 16 Boolean functions of two variables.
--Immediate operands and several result destinations

(register, memory or both) for arithmetic and logic
instructions.

--31 Monitor calls and 32 user-definable trap in-
structions (UUOs).

(2) The register structure is equally general. The 16
registers are part of the memory address space. All of
them may be used for all standard purposes with only
insignificant exceptions.
(3) Indirection may be carried to any depth, with in-
dexing at each level.

Hence this ISP is a good starting point for detection
of unnecessary generality or superfluous features. This
is vindicated by our results reported here and in [10].
We did, however, also discover features which we would
like to see incorporated into this ISP. Some of these
have, in fact, been included in later processors of the
DECsysteml0 family.

3.2 Subject Set
Another restriction on our experiments was that

we analyzed programs only from a scientific environ-
ment. On the other hand, we tried to choose a subject
set which would show the influence of the choice of
algorithm, programming language, and compiler.

Hence one part of our subject set consisted of six
algorithms from Collected Algorithms of the ACM
(CALGO). These were selected to contain as many as
possible of the commonly used program structures,
and to give a reasonable covering of the modified
SHARE classification for algorithms. Each of these
algorithms was coded in four languages: ALGOL,
BASIC, BLISS, and FORTRAN. Two different
FORTRAN systems were used. BLISS [18] is a high-

Communications March 1977
of Volume 20
the ACM Number 3

Table I. Distribution of Lives by Lifelength, Unweighted Sum of
All Programs--Logarithmic Table Division.

Length No. of lives Fraction Cum. fraction

1 - 1 174927 O.O9 0.09

2 - 3 728346 0.38 0.48

4 - 7 547072 0.29 0.77

8 - 15 252508 O.13 0.90

16 - 31 116404 0.06 0.96

32 - 63 41673 0.02 0.98

64 - 127 17790 O°O1 0.99

128 - UD 15603 O.O1 i.OO

Total number of lives 1894323

level language for systems programming. The other
languages should be well known. The six algorithms
were:

No. 30: Polynomial roots by Bairstow's method
(Bairstow)

No. 43: Linear equations by Crout 's method (Crout)

No. 113: Treesort

No. 119: PERT

No. 257:Numerical integration by H~vies method
(H~vie)

No. 355: Generation of Ising configurations (Ising).

The latter could not easily be coded in BASIC, hence
that version was omitted.

To investigate the influence of coding style, we in-
eluded an algorithm for polynomial interpolation (Ait-
ken) as coded in BLISS by four different programmers,
plus a carefully tuned version of this algorithm. These
are denoted E (efficient), B, A, L, and G. A medium-
sized numeric F O R T R A N program, SEC, was also
analyzed. Again both F O R T R A N systems were used.
Finally we analyzed the five compilers used for the
CALGO set: these are denoted ALGOL, BASIC,
BLISS, FORFOR, and FORTEN. ALGOL, BASIC,
and F O R F O R are written in MACRO (the assembly
language), BLISS and F O R T E N are written in BLISS.

Thus our final subject set consisted of 41 programs,
comprising about 5.3 million instructions or 16.8 sec-
onds of CPU time. 38 of these were written in high-
level languages. One would a priori expect that such
programs do not make as good use of the ISP as do
assembly language programs. On the other hand, we
are already restricted to the user ISP, and certainly the
majority of user programs are written in high-level
languages.

4. Register Structure

Methods were developed for two problems con-
nected with register structure:

- - H o w many registers are used efficiently?
- - W h a t is the need for generality of registers?

Both are attacked through the concept of a register
life. A register life consists of all activity associated

145

with a given register during a period of time starting
with a load into that register, and terminating with the
last use of the register before the next load into it. A
register is loaded when a new value is brought into it
which is unrelated to its old value. Use of the old value
during address calculation is not considered a relation
in this context.

The start of a register life is analogous to the "open
effects" situation described by Tjaden and Flynn [13].
The terms live and dead now have obvious meanings. A
register is dormant when it is live but not used. The
resolution of our time measure is one instruction. Hence
two successive lives of the same register may overlap if
the old value is used to load the new one. Usually there
will be a dead period between two consecutive lives of
a register. Finally we note that for a machine with
several registers, any number of them may be live at
any given time.

It seems unreasonable to use these concepts unmodi-
fied for registers which have long dormant periods.
Hence the results below were obtained under the as-
sumption that a register was dead when it had been
dormant for 200 or more instructions. This is discussed
further below.

4.1 Analysis Program
The analysis program detects register lives, classi-

fies them according to the operations they contain, and
finds the number of live registers at each point in time
during program execution.

As the trace is read, one can not in general tell
whether a register is dead or live until the next LOAD
into it is encountered. This may be any length of time
after the register actually died. Hence the analysis of
register usage is a two-phase process. In the first phase
register lives are detected and classified. Phase I also
writes a file of descriptions of each life which is used by
phase II. Phase II then finds how many registers were
live at each point in time, and computes various results
based on this.

In the analysis a relatively fine classification was
used for the lives. For purposes of presentation the
following seven classes were considered:

- -Al l lives (the total class--TOT).
- -Lives used for indexing (INX).
- -Lives used for temporary storage only (TMP).
- - T h e four classes defined by the "strongest" arithmetic

used:
No arithmetic (NOA).
Fixed-point additions and subtractions (FAS).
Fixed-point multiplications and divisions (FMD).
Floating-point operations (FLO).

The latter four classes are disjoint and their union is
the class TOT.

4.1.1 Phase I. As the trace is read, phase I keeps
track of the times of the most recent load and the most
recent use of each register. Hence each time a register

Communications March 1977
of Volume 20
the ACM Number 3

Table II. Average Lifelength in Instructions.

Language: ALGOL BASIC BLISS FORFOR

8airstow 12.3 12.3 11.2 12.9

Crout 13.6 11.3 18.2 15.1

Treesort 6.1 11.9 9.0 4.2

PERT 10.9 11.4 8.4 5.0

Havie 16.6 11.2 13.5 14.3

Ising 16.5 - 9.7 5.5

Secant - 8.1

FORTEN Mean

12.9 12.3

15.9 14.8

5.8 7.4

7.9 8.7

20.0 15.1

9.2 10.2

9.6 8.9

Programmer: E 8 A G L Mean

Aitken 14.3 14.7 13.O 8.9 11.9 12.6

Compiler: ALGOL BASIC BLISS FORFOR FORTEN Mean

17.4 23.8 9.7 14.9 11.4 15.4

Language: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean

Mean 18.7 12.7 11.6 11.8 9.3 11.6 11.9

Table III. Usages per Register Life.

Table V. Memory References per Instruction Excluding Instruc-
tion Fetches.

Language: ALGOL BASIC

Bairstow .61 .52

Crout .44 .59

Treesort .65 .50

PERT .51 .47

H~vie .30 .45

Ising .40

Secant

BLISS FOPFOR FORTEN

.50 .62 .60

.50 55 .64

.51 57 .63

.53 69 .63

.31 44 .35

.60 67 .60

60 .53

Mean

.57

.54

.57

.57

.37

.57

.57

Programmer: E B A G L Mean

Aitken .45 .48 .52 .50 .53 .50

Compiler: ALGOL BASIC BLISS FOBFOR FORTEN Mean

.40 .32 .45 .42 ,40 .40

Lanquaqe: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean

Mean .38 .49 .51 .48 .59 .57 .51

Table VI. Register References per Instruction.

Lanquaqe: ALGOL BASIC BLISS FORFOR FORTEN Mean

Bails tow 4.6 3.6 4.6 4.6 4.4 4.4

Clout 3.8 3.7 6.6 3.7 3.9 4.3

Treesort 3.9 3.5 4.8 2.9 2.9 3.6

PERT 4.1 3.4 3.8 3.1 3.2 3.5

H~vie 4.4 3.7 5.8 5.4 5.2 4.9

Ising 4.0 4.5 3.1 3.3 3.7

Secant - 3.8 3.8 3 . 8

Programmer : E B A G L Mean

Aitken 5.4 5.5 5.2 3.9 5.2 5.0

Compiler: ALGOL BASIC BLISS FORFOR FORTEN M~ean

3.7 6.0 3.5 4.1 3.2 4.1

Language: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean

Mean 4.6 4.1 3.6 4.8 3.8 3.8 4.2

Lanquaqe: ALGOL BASIC BLISS FORFOR FORTEN Mean

Bairstow 1.66 1.O5 1.58 1.35 1.37 1.40

Crout 1.67 1.21 1.67 1.56 1.46 1.51

Treesort 1.62 1.O4 1.65 1.28 1.32 1.38

PERT 1.58 1.O5 1.61 1.25 1.22 1.34

B~vie 1.57 1.14 1.61 1.36 1.16 1.37

Isinq 1.58 1.66 i.II 1.13 1.37

Secant - 1.39 1.33 1.36

Programmer: E B A G L Mean

Aitken 1.66 1.67 1.69 1.69 1.64 1.67

Compiler: ALGOL BASIC BLISS FORFOR FORTEN Mean

1.O9 1.13 1.32 1.39 1.17 1.22

Language: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean

Mean 1.20 1.61 I.IO 1.59 1.33 1.28 1.40

Table IV. Average Number of Live Registers, Computed as (Sum
of Lifelengths>/(Program Length).

Language: ALGOL BASIC BLISS FORFOR FORTEN Mean

Bairstow 4 .4 3.6 3.8 3.8 4.0 3.9

Crout 6.0 3.7 4.7 6.4 6.O 5.4

Treesort 2.5 3.5 3.1 1.8 2.7 2.7

PERT 4.2 3.6 3.6 2.0 3.0 3.3

H~vie 6.0 3.5 3.7 3.6 4.5 4.3

Isinq 6.5 3.6 1.9 3.2 3.8

Secant - 3.O 3.4 3.2

Programmer: E B A G L Mean

Aitken 4.4 4.5 4.2 3.9 3.7 4.1

Compiler: ALGOL BASIC BLISS FORFOR FORTEN Mean

5.1 4.5 3.6 5.1 4.2 4.5

Lanquaqe: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean

Mean 4.9 4.9 3.6 3.9 3.2 3.8 3.9

Table VII. Fraction of Lives with No Arithmetic.

Language: ALGOL BASIC

Bairstow .213 .637

Crout .528 .716

T~eesort .315 .686

PERT , 5 9 7 . 7 3 5

H ~ v i e . 6 2 8 . 6 8 0

Isina .695

Secant

BLISS FORFOR FORTEN

.574 .494 .470

.214 349 .440

.257 784 .585

.547 457 .416

.482 496 .412

.620 744 .622

- 263 .266

Mean

.478

449

.521

.550

.540

67O

.265

Proarammer: E B A G L Mean

Aitken .317 .390 .402 .475 .391 .395

Compiler: ALGOL BASIC BLISS FORFOR FORTEN Mean

.844 .744 .921 .802 .886 .839

Languaqe: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean

Mean .797 .496 .691 .498 .512 .456 .538

is loaded, the endpoints of its previous life are immedi-
ately available. For each register life, phase I determines
its class, and also the number of references to it. Finally
phase I computes the total number of register references
and memory references. The data items written on the
file for phase II contain most of this information, to-
gether with the register name.

Some results from phase I are given in Tables I
through XII. Results are given for each individual
program, as well as the averages for each algorithm,
for all the compilers, and for all programs written in
each language. All the programs are equally weighted
in these averages.

We note that most lives (68 % of the total) are be-
tween 2 and 7 instructions long. Only 4 % are 32 instruc-
tions or longer. For each individual program over half

146

the lives are less than 8 instructions long. Only 3 pro-
grams have more than l0 % of their lives 32 instructions
or longer. The average lifelength is 11.9 instructions, but
ranges from 4 to 24 instructions for the individual
programs. The average number of references to a life
is 4.2, it ranges between 3 and 7 for the individual
programs. The average number of simultaneously live
registers ranges between 2 and 6. Operands, includ-
ing indices and nominators (indirect addresses), are
found in registers 2 to 4 times as often as in primary
memory.

The classes FLO and F M D are significant only for
those algorithms that use floating-point arithmetic, or
where F M D arithmetic is used to access data. This is
as one would expect. Even for highly numeric programs
at most 50 % of the lives are in class FLO, less than

Communications March 1977
of Volume 20
the ACM Number 3

Table VIII. Fraction of Lives with Fixed Point Add/Subtract.

Lanquage: ALGOL BASIC BLISS FORFOR FORTEN Mean

Bairstow 504 .iO6 .O54 .i18 .141 .185

Crout .304 .OO9 .O96 186 .122 143

Treesort .355 .103 .710 .208 .O56 ,286

PERT .380 .122 .397 .516 .552 ,393

H~vie .278 .O85 .149 .123 ,156 ,158

Isinq .300 .373 .250 ,370 .323

Secant - .359 .303 331

Programme[: E B A G L Mean

Aitken .210 .202 .302 .423 .389 .305

Compile[: ALGOL BASIC BLISS FORFOR FORTEN Mean

.130 .234 ,O74 .190 .IO8 ,147

Language: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean

Mean .185 .354 .085 .268 .251 .243 .245

Table IX. Fraction of Lives with Fixed Point Multiply/Divide.

Lanauaqe: ALGOL BASIC BLISS FOiFOR FORTEN Mean

Bai[stow .009 .OO1 .O18 .042 .O19 .O18

C[out .006 .064 .433 .156 .142 .160

Treesort .317 .OOO .O11 .OOO .370 .140

PERT .OO2 .OOO .004 .OO6 .006 .OO4

H~vie .002 .OO1 .O31 .O18 .O15 .O13

Iaina .OO6 .OO7 .006 .O08 ,OO7

Secant - .175 .199 .187

P[oaramme[: E B A G L Mean

Aitken .OOO .OOO .OOO .OOO .085 .O17

Compiler: ALGOL BASIC BLISS FORFOR FORTEN Mean

.026 .O19 .005 .009 .008 .O13

Lan~uaqe: MACRO ~LGOL BASIC BLISS FORFOR FORTEN Mean

Mean .O18 .057 .O13 .O46 .058 .108 .054

Table X. Fraction of Lives with Floating Point Arithmetic.

Lanquaqe: ALGOL BASIC BLISS FORFOR FORTEN Mean

Bai[stow .274 .256 .354 .347 .369 .320

Crout .163 .211 .257 .306 .296 .247

Treesort .O14 .211 .022 .008 .009 .053

PERT .O21 .143 .O53 .O21 .O26 .O53

H~vie .092 .233 .339 .363 .418 .289

Isinq .OOO .OOO .OOO .OOO .OOO

Secant - .203 .232 .218

Proq[ammer: E B A G L Mean

Aitken .473 .408 .296 .IO2 .136 .238

Compiler: ALGOL BASIC BLISS FORFOR FORTEN Mean

.OOO .OO3 .OOO .OOO .OOO .OO1

Lanquaqe: MACRO ALGOL ~ASIC BLISS FORFOR FORTEN Mean

Mean .OO1 .094 .211 .188 .178 .193 .162

40% in all but two programs. In spite of the fact that
all variables in BASIC are floating point, the per-
centage of FLO lives in the BASIC programs is never
above 25.

For the classes FAS and NOA, the dependence on
language is larger than the dependence on algorithm.
This is in particular true for ALGOL and BASIC,
which enforce a stronger regimen on programs than
do the other languages.

Between 18% and 68% of the lives, 39% on the
average, are used for indexing.

4.1.2 Phase II. Phase II reads the file written by
phase I in reverse order, and simulates a backwards
execution of the subject program. Initially the descrip-
tions of the last lives of each register are read. For each

147

register the program keeps the description of one life,
viz. that which is now valid, or will next be valid, during
the backwards simulation. The loading and final uses
of each register are entered in a list sorted by decreasing
time. This list is processed in order, and a counter of
live registers is suitably updated.

Each time a loading use of a register is processed,
all information about that life may be discarded. The
program is then ready to receive the description of the
previous (at execution) life for that register. This
description was written by phase I as it processed the
same load instruction which is now being processed
by phase II. Hence the desired data item is in the correct
position to be read off the file.

We now know exactly how many registers were
live at each point in time, and the fraction of the total
time when exactly N registers were live can easily be
computed for each N. Since the usage class was written
on the intermediate file, this analysis may be done
simultaneously for any suitably defined classes of lives.
The results for the 7 classes previously defined are
given in Tables XIII through XV.

As is seen, no program uses more than 15 registers
simultaneously. 17 of the 41 programs would get by
with 10 or fewer registers. This maximum is only used
for short periods of time. Thus 10 registers would
suffice 90% of the time for all 41 programs, 98% of
the time for 36 of the 41 programs. The results for the
compilers and for the BLISS programs (BLISS has a
highly optimizing compiler) show that neither the size
and complexity of the programs nor their efficiency
imply the use of many registers. On the contrary, the
BLISS results seem to indicate the opposite conclusion.
Hence we would attribute the relatively high number of
live registers for the other compilers to the fact that
these are written in assembly language. If specialized
registers were to be used, it would seem appropriate to
have 2 floating point accumulators, 2 fixed-point ac-
cumulators, and 8 index registers with simple fixed-
point operations.

4.2 Reducing the Register Block
The results just presented suggest that programs

might run almost equally time-efficiently on an ISP
with fewer registers than the one analyzed, but other-
wise having the same structure. Increased execution
time would ensue from having to store and reload
registers whenever the number of lives in the original
version was too high. We use two methods, called
interleaving and bedding, to compute an upper bound
on this increase in execution time.

4.2.1 Interleaving. Interleaving is applied in phase
II. Assume that our reduced ISP has M registers. For
each period when the program requires N registers,
N > M, we select the N -- M l e a s t useful lives as
described below, and assume the associated values to
be stored in memory. Each time one of these values is

Communications March 1977
of Volume 20
the ACM Number 3

Table XI. Fraction of Lives Used as Temporaries Only.

Lanquaqe: ALGOL BASIC BLISS FORFOR FORTEN Mean

Bairstow .028 ,O67 .179 .IO1 .121 099

Crout .O18 .IO1 .049 .137 .142 .098

Treesort .OO1 .107 .OOO .OOO .OO1 .022

PERT .O16 ,128 .188 .O69 .IO4 .IO1

H~vie .072 .279 .062 .250 .O19 .136

Isina .059 .O86 .147 .067 .090

Secant - - .O41 .030 .036

Proq[ammer: E B A G L Mean

Aitken .O62 .078 .092 .112 .O15 .072

ComPile[: ALGOL BASIC BLISS FORFOR FORTEN Mean

.096 .O89 .180 151 153 134

Lan~uaqe: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean

Mean .112 .O32 .136 .097 .106 .069 .090

Table XII. Fraction of Lives Used for Indexing.

Lanquage: ALGOL BASIC

Bairstow .513 .407

Clout .519 .374

T[eesort .482 .412

PERT .592 .421

H~vie .524 .365

Isinq .571

Secant

BLISS

226

520

683

556

387

484

FORFOR FORTEM

.341 251

.195 244

.431 476

.445 497

.278 203

.267 249

.376 406

Mean

. 3 4 7

. 3 7 0

. 4 9 7

.502

.351

.393

.392

P r o a ~ a m m e r : E B A G L M e a n

Aitken .185 .196 .232 .318 .474 .281

Compiler: ALGOL BASIC BLISS FORFOR FORTEN Mean

.401 .364 .341 .509 .313 .386

Lanoua~e: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean

Mean .425 .534 .396 .378 .333 .332 .391

needed, some register has to be temporarily stored,
and the required value loaded into it. Hence each
reference to one of the selected lives costs at most
two STORE LOAD pairs.

The following four criteria were used for usefulness
of lives:

- - T h e number of references to the life was high.
- - T h e density of references to the life was high.
- - T h e life was long.
- - T h e life was short.

The fourth criterion never gave the lowest cost. The
third one rarely gave a low cost, the first two gave the
lowest cost almost equally often. Furthermore the
criterion that gave the lowest cost often changed with
M within the same analysis. The interleaving cost is
computed only when needed, i.e. when N > M. On
the other hand, neither the selection of useless lives
nor the cost computation takes local properties of the
lives into account; both are based on their global char-
acteristics.

4.2.2 Bedding. The bedding method, on the other
hand, is based on the local properties of lives. The idea
is to store ("bed") registers in memory when they have
long dormant periods. In each such period the number
of live registers is reduced by one, at the cost of one
STORE LOAD pair. Such periods are known during
phase I, but the information is not easily carried into
phase lI. In phase I, however, we do not know when
registers are scarce (N > M). Hence bedding must

be applied each time a life has been dormant longer
than some time K, regardless of the need for registers
during that time.

Our results were obtained using a hybrid method.
Registers were bedded by phase I whenever they were
dormant more than 200 instructions, and interleaving
was used in phase II. The results, given as relative
increase in instruction count, are displayed in Table
XVI. As is seen, the increase caused by a reduction to
8 registers is less than 1% for 21 of the 41 programs,
less than 5% for 30 of them, but runs as high as
50 % or more in a few cases. The average increase is
7.9%.

We investigated the bad cases further by using
lower values for K, i.e. lives were bedded when they
had been dormant for as little as 22 instructions (in
one case). Interleaving was applied in phase II as be-
fore. As K is reduced the interleaving cost decreases,
since there are fewer periods when N > M. On the other
hand, the bedding cost increases since there are more
dormant periods. We have at present no way of telling
which K will give the best result. In fact, in a similar
analysis of two programs where the cost for K = 200
was already low, we found that the cost was lower for
K = 200 in one case, K = 100 in the other. To produce
the results given in Table XVII, different values of K
were tried until a minimum seemed close. As is seen,
the cost has been dramatically reduced for all of the
programs, although it still is high for some. These
results would reduce the mean of Table XVI from
7.9 % to 2.7 %.

The values obtained by bedding and interleaving
are upper bounds, in the sense that any satisfactory
compiler or programmer, knowing the local properties
of the program, will select better "useless" lives, and
only store them when N is high. He will also avoid un-
necessary STOREs. On the other hand, the results
were obtained using complete knowledge of the path
taken through the program. When the code is written,
all possible paths have to be provided for. This implies a
less than optimal use of registers in each particular
execution. In view of the fact that most lives are short,
it is reasonable to assume that the gain by the former
factor far outweighs the loss by the latter.

5. Operator Utifity

We also used traces to study the utility of data types,
data operators, and control operators. For existing
operators and types, frequency counts were used. Some
desirable but nonexisting operators were detected by
observing frequencies of dynamic sequences of instruc-
tions.

Frequency studies for individual instructions or
groups of instructions have been reported by various
authors [1, 2, 4, 8, 9, 12, 16, 17]. Our results agree well
with those of Gibson [7] (the Gibson mix), which

148 Communications March 1977
of Volume 20
the ACM Number 3

Table XIII. Number of Registers Sufficient 100%, 98%, and 90%
of the Time (K = 200).

Lanquaqe: ALGOL BASIC BLISS FORFOR FORTEN Mean

Bairstow 1OO% 13 IO 9 13 12 11.4

98% ii 7 6 iO 9 8.6

90% 8 6 5 9 7 7 .O

Crout 1OO% 13 7 7 13 12 10.4

98% Ii 7 7 12 8 9.0

90% iO 6 6 IO 7 7 . 8

Treesort 1OO% 14 7 6 4 12 8.6

98% 4 7 5 4 5 5.0

90% 3 6 5 3 4 4.2

PERT 1OO% 14 IO 7 ii 12 10.8

98% IO 7 6 8 8 7.8

90% 8 6 5 3 5 5.4

H~vie 1OO% 14 iO 9 IO 13 11.2

98% Ii 6 6 6 9 7.6

90% 9 5 5 5 5 5.8

Isinq 1OO% 14 7 ii 12 11 .O

98% ii 5 7 9 8.0

90% iO - 5 3 6 6 .O

Secant 1OO% - - 13 12 12.5

98% - - 6 6 6 .O

90% - - 5 5 5 .O

Pr oqramme[: E B A G L Mean

Aitken 1OO% 7 7 8 7 8 7.4

98% 7 7 7 7 7 7 .O

9O% 7 6 6 6 7 6.4

Compile~: ALGOL BASIC BLISS FORFOR FORTEN Mean

1OO% 15 ii 13 13 ii 12.6

98% IO 9 6 8 8 8.2

90% 8 7 5 7 6 6.6

Lanquaqe: MACRO ALGOL BASIC BLISS PORFOR FORTEN Mean

Mean 1OO% 13.O 13.7 8.8 8.2 10.7 12.1 10.4

98% 9.0 9.7 6.8 6.5 7.6 7.7 7.6

90% 7.3 8.0 5.8 5.7 5.4 5.6 6.1

Table XIV. Number of Registers Sufficient 90% of the Time for
the Arithmetic Classes FLO, FMD, and FAS (FLO = Floating,
FMD = Fixed Mul/Div, FAS = Fixed Add/Sub).

LanouaQe: ALGOL BASIC BLISS FORFOR FORTEN

Sairstow FLO 2 1 2 2 2

FMD 1 O O 1 O

FAS 4 2 2 1 2

C~out FLO 1 1 1 3 2

FMD O 1 2 4 2

FAS 5 1 3 3 3

Tr eeso r t FLO O 1 O O O

FMD 1 O O O 1

FAS 1 2 3 1 2

PERT FLO O 1 1 O O

FMO O O O O O

FAS 4 2 3 2 3

H~vie FLO 1 2 2 2 2

FMD O O 1 O O

FAS 5 2 2 2 3

Isina FLO O - O O O

FMD O - O O O

FAS 5 - 4 1 3

Secant FLO - 2 1

FMD - 1 1

FAS - 2 4

P[oqrammec: E B A G L

Aitken FLO 2 2 2 2 2

FMD O O O O 1

FAS 3 2 3 4 3

ComPiler: ALGOL BASIC 8LISS FORFOR FORTEN Mean

FLO O O O O O

FMD O 1 O O O

FAS 3 2 2 2 2

Lan~uaQe: MACRO ALGOL BASIC BLISS FORFO~ FORTEN Mean

Mean FLO .O .7 1.2 1.2 1.3 I.O

FMD .3 .3 .2 .3 .9 .6

FAS 2.3 4.0 1.8 2.8 1.7 2.9

should be well known. We refer the reader to [10] and
Jill .

274 of the over 400 instructions were used by our
subject set. 75 % of the instructions executed were ac-
counted for by the 29 most executed instructions. 133
instructions accounted for 99% of the executed in-
structions. Over 40 % of the executed instructions were
moves between registers and primary memory, almost
30% were branching instructions, 12% were fixed-
point adds or subtracts. The other categories of [7]
each accounted for less than 5 %.

We would also point out one particular result, relat-
ing to the addressing problem for tests, where the rich
set of test instructions on the DECsys teml0 permitted
some possibly new observations. The test instructions
were divided into groups according to the form of
their operands, as seen in Table XVIII. Similarly, the
programs were divided into three obvious groups. The
programs were weighted in inverse proportion to their
instruction count, and the distribution of the dif-
ferent groups of test instructions was observed.

Table XVIII clearly shows that comparison of two
nonzero values is twice as c o m m o n as comparison with
zero. This is particularly true for recently computed
values (contained in registers), in which case the factor
is 3. Hence one is led to doubt the utility of condition
codes as compared with the more general test instruc-
tions. Also noteworthy is the fact that compilers fre-
quently test against small values known when the com-
piler was written (immediate operands).

Mean 5.1 Instruction Sequences
1 . 8

o.4 We now describe our attempt to detect data types
2.2 and operators that could be included in the ISP at a
1 . 6

1.8 benefit. Such operators manifest themselves as sequences
3.o of instructions, viz. those sequences used to interpret the

. 2

• 4 desirable instructions in terms of the existing instruc-
1.8 tion set. Since such sequences may be of considerable

. 4

.o length, a major difficulty is to limit the space and time
2.8 used by the analysis program. Thus, for one of our sub-
1 . 8

.2 ject programs, the number of different pairs of instruc-
2.s tions was as high as 2000. If all these were to be ex-

.0"° tended to triples, quadruples or longer sequences, both
3.3 space and time required for the analysis would be
1. s prohibitive.
1 . O

3 . 0 We avoided this problem by using a multipass al-
Mean gorithm. Each pass scanned the whole trace; the first

2 . 0

.2 pass built the pairs, successive passes extended the
3.0 existing sequences by one. After each pass the data

.o structure was pruned; only those sequences thought to

.2 be significant were retained. The program ran until
3 . 2

no sequences were retained, or until an arbitrary pre-
1.o set length of 20 was reached (after 19 passes). Before

.4 the results were printed, the counts for all those se- 2 . 4

quences which had been extended were reduced by the
counts of the extensions. Hence only the unextendable
fraction of each sequence was included in the final
counts.

149 Communications March 1977
of Volume 20
the ACM Number 3

Five heuristics were used to detect candidates for
deletion:
- - A l l sequences whose counts were low compared to

the most frequent sequence of the same length
were deleted.

- - A l l sequences that were not a significant extension of
their leading and trailing longest subsequences were
deleted. The intent was to isolate the c o m m o n part
o f overlapping sequences as the interesting part.

- - B y the algorithm used, loops of length L may be
represented at L different places in the data struc-
ture. When sequences of length L + 2 had been
generated, all those for which the two last and two
first instructions were the same, and which con-
tained a jump instruction, were assumed to be loops
of length L. One representation of such loops was
retained, the others deleted.

- - A n attempt was made to detect all but one of several
overlapping sequences representing the same longer
sequence. Assume that the sequence A B C D E F G
occurs frequently in the trace. At the end of pass 4
the sequences A B C D E, B C D E F, and C D E F G
are observed to have approximately the same count.
The latter two may be deleted, since the former
will be extended in later passes.

- - A n attempt was made to detect all but the most
frequent of long sequences with a large degree o f
overlap.

Using these pruning heuristics, about half the analyses
produced one or more sequences of length 20. All
analyses produced sequences of length 10 or more.

The heuristics above, as used in our experiments,
were not as good as one might desire. In particular, in
most analyses several o f the sequences obviously over-
lapped. This caused the reduced counts for the over-
lapping parts to be much too low. Other sequences
were extended too much, or they included only part of
what was known from other considerations to be "the
right" sequence. Hence a manual, and therefore sub-
jective, analysis was necessary to extract significant
results. This was also needed to relate the results back
to program fragments with more or less intuitive
meaning. During this analysis, the final results were
compared with the unreduced counts printed after
each pass. This manual analysis could be reduced by
improving the existing heuristics and devising new
ones. More accurate counts could be obtained by run-
ning a second analysis, observing only predetermined
sequences or classes of sequences. This was, however,
not done.

5.2 Sequence Results
Specific results are presented in [10]. Below we give

a survey of those that seemed most important, and a
few specific examples.

5.2.1 Subroutine calling sequences. Calling sequences
for subroutines should be better supported by suitable

Table XV. Number of Registers Sufficient 90% of the Time for
the Classes NOA, INX, and TOT (NOA = No Arithmetic, INX =
Indexing, TOT = Total Class).

Language: ALGOL BASIC BLISS FORFOR FORTEN Mean

Bai~stow NOA 4 4 3 7 5 4.6

INX 6 3 2 5 5 4.2

TOT 8 6 5 9 7 7 .O

Crout NOA 6 4 2 3 5 4.0

INX 9 3 3 2 3 4 .O

' rOT iO 6 6 iO 7 7 . 8

NOA 2 4 2 2 2 2.4

INX 2 3 3 2 2 2.4

TOT 3 6 5 3 4 4 . 2

PEK~I ~ NOA 4 4 2 2 3 3 .O

INX 7 3 3 2 2 3.4

TOT 8 6 5 3 5 5.4

H~vie NOA 5 3 2 2 2 2.8

INX 8 3 2 2 2 3. 4

TOT 9 5 5 5 5 5.8

Isinq NOA 6 2 2 4 3.5

INX 9 2 2 4 4. 3

TOT 10 - 5 3 6 6 .O

Secant NOA - 2 2 2 .O

INX - 2 2 2 .O

TOT - 5 5 5 .O

Pr oq[ammer : E B A G L Mean

Aitken NOA 4 4 4 3 2 3.4

INX 4 3 3 2 5 3.4

TOT 7 6 6 6 7 6.4

ComDiler: ALGOL BASIC BLISS FORFOR FORTEN Mean

NOA 6 5 4 6 4 5 .O

INX 4 4 2 4 2 3.2

TOT 8 7 5 7 6 6.6

Language: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean

Mean NOA 5.7 4.5 3.8 2.9 2.9 3.3 3.5

INX 4.0 6.8 3.0 2.9 2.4 2.9 3.5

TOT 7.3 8.0 5.8 5.7 5.4 5.6 6.1

Table XVI. Sum Interleaving and Bedding Costs for K = 200
When the Number of Registers is Reduced to 10, 8, or 7, Given as
Relative Increase in Instruction Count.

Lanauaqe: ALGOL BASIC BLISS FORFOR FORTEN Mean

Bairstow IO rq .057 .OOO .005 .O17 .OO9 .O18

8 rq .231 .OO1 .005 .136 .095 .094

7 [q .371 .002 .009 .254 .184 .164

Clout IO rq .077 .OOO .004 .440 .O16 .107

8 [g .385 .OOO .004 .757 .022 .234

7 [q .773 .OOO .004 1.O46 .097 .384

Treesort iO rq .002 .OO0 .O11 .OOO .O15 .006

8 [g .005 .ooo .O11 .OOO .o16 .006

7 [g .007 .OOO .011 ~OOO .o16 .007

PERT IO rg .O17 .OOO .OOO .004 .004 .005

8 rg .133 .OOO .OOO .O36 .O38 .O41

7 [q .213 .OO1 .OOO .O53 .O67 .070

H~vie iO rq .060 .OOO .002 .OO1 .006 .O14

8 [g .575 .OO1 .OO3 .005 .O45 .126

7 [g .734 .003 .008 .O18 .O72 .167

Isina iO rq .068 .005 .002 .005 .O20

8 ~q .438 .005 .O10 .052 .127

7 ~g .998 .005 .O31 .106 .285

Secant iO rg - .004 .005 .005

8 ~ q - .012 .017 .O15

7 rg - .O18 .023 .O21

Proa[ammer: E B A G L Mean

Aitken iO ra .003 .OO3 .002 .OO1 .002 .OO2

8 ~q .003 .OO3 .OO2 .OO1 .OO2 .OO2

7 [g .OO3 .OO3 .O13 .OO1 .005 .OO5

Compiler: ALGOL BASIC BLISS FORFOR FORTEN Mean

IO [g .O31 .OO4 .OOO .O13 .OO8 .O11

8 ~o .O81 .O40 .OO2 .O72 .O16 .O42

7 ~q .134 .085 .O10 .225 .030 .097

Lanauaqe: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean

Mean iO rq .O16 .047 .OOO .004 .067 .009 .035

8 [q .064 .295 .OOO .004 .136 .O41 .079

7 rq .148 .516 .OO1 .007 .202 .O81 .137

150 Communications March 1977
of Volume 20
the ACM Number 3

instructions to handle parameter transmission, return
addresses, and to save and restore registers and other
parts of the runtime representation.

The cost of call administration is easily detected for
BLISS programs, since stack instructions are used only
in this context. There is, however, no reason to believe
that this cost is less for other languages usually con-
sidered to be "efficient."

The BLISS compiler, which is written in BLISS,
and which contains many small subroutines for trivial
bookkeeping tasks, spent approximately 25% of its
time (to compile the BLISS version of Treesort) in
call administration. For one of the F O R T R A N com-
pilers, which is also written in BLISS, the same number
was approximately 15 %.5

About ~ of the instructions executed by the BLISS
compiler could be saved if the subroutine call and
exit instructions (PUSHJ and POP J) were extended to
manipulate the run-time registers, and to remove
parameters from the stack on exit.

This would reduce 6 or 8 instructions to 2, and 10
or' 12 memory cycles to 5, for each subroutine call.
This improvement would fit well into the existing in-
struction format. In the case of F O R T R A N programs
it would be useful if parameter descriptors were recog-
nized by the hardware, so that local copies of the actuals
could be made by the calling instructions.

The suggested improvements would force repre-
sentations on the language implementors, and hence
reduce flexibility. However, such representations are
rarely changed once they are decided, so this would
not be a serious objection, particularly not if the in-
struction set were microprogrammed.

Another observation is interesting in this context:
From observing the use of the stack instructions, we
know that the BLISS compiler saves and restores about
16,000 registers per second (about 1.15 per routine
call). This is the same number as would be saved and
restored by 1,000 complete process swaps per second.
We believe this to be a high frequency of process
swaps for the KA-10 processor. Hence it seems that the
cost of register saving caused by routine calls may be
considerably larger than the corresponding cost caused
by interrupts.

One remark is in order: the BLISS compiler has
very many small and frequently called subroutines, and
is not typical of common or garden programs. We do
not, however, consider this a deficiency. Subroutines
are an important ingredient in structuring programs,
and should be cheap to use. The experimental results
support our plea for more efficient hardware to handle
registers and state information in calling mechanisms.

5.2.2 Vector descriptors and operands. A vector
type should be introduced. This is motivated not only
by the importance of vectors as a mathematical struc-
ture, but also by the vector structure of central memory
and the effect this has on program structure in general.
A vector descriptor should be provided. This should

Table XVII. Best Upper Bound for Relative Increase in Instruc-
tion Count, Selected Subject Programs, Best K Tried.

Lanquaqe: ALGOL FORFOR ALGOL FORFOR

Algorithm Bairstow Bairstow Crout C~out

Bedding cost .049 .O17 .078 .114.

Interleavino cost .007 .O11 .OO1 .O15

Total cost .O56 .028 .O79 .129

K where obtained 25 40 27 22

Same cost for K = 200 .231 .136 .385 .757

Lanquaqe: ALGOL ALGOL ALGOL

Alqorithm PERT H~vie Isinq

Bedding cost .043 .065 .102

Interleavinq cost .OO1 .OO5 .008

Total cost .O44 .070 .iiO

K where obtained 25 30 27

S~me cost for K = 200 .133 .575 .438

Table XVIII. Use of Test Instructions, Percentages of Total
Instruction Count.

Proqram type CooDilers

Non- Highly Total

numeric numeric subject

programs programs s~t

Instruction form

Register vs. memory 3.0 4.9 4.5 4.5

Reaister vs. immediate 7.7 1.7 I.O 2.1

Memory vs. O 2.3 1.7 .9 1.3

Reqister vs. O 2.5 1.8 2.1 2.0

make no distinction between vectors allocated by the
compilers, and those allocated at run time. Further-
more, it should permit easy description of both row
and column vectors of matrices. Operations should
include common mathematical operators such as inner
product, and also moves, summation, searches in
ordered vectors etc. By permitting vectors of different
lengths, and in particular length 1, interesting speciali-
zations may be obtained, such as initialization by a
constant value.

Vector types would, in the extreme, change the
ISP radically, as is exemplified by the CDC STAR. We
do think, however, that some vector operations would
be useful even in more conventional ISPs. Examples
are frequent in our programs, although none are as
dramatic as the others cited in this section.

5.2.3 String handling. Introduction of a "character
string" type would speed up the compilers by a sig-
nificant amount. Instructions operating on this type
should be controlled by a table, indexed by the set of
possible characters. The options for each character
should include substitution, removal, branching to a
special action routine, and termination of the instruc-
tion. It should be easy to use these instructions to
change encodings, move strings, remove multiple
blanks, remove extraneous characters etc. Analysis of
routines for I /O formatting, and of COBOL programs,
would suggest further options. Typical examples which
illustrate the need for such instructions come from the
compilers, particularly from BASIC?

5.2.4 Run-time support for languages. The routines
for run-time space management, parameter transmis-

151 Communications March 1977
of Volume 20
the ACM Number 3

sion and similar functions in A L G O L and similar
languages are exceedingly expensive. They may con-
sume as much as 50 % of the execution time of some
A L G O L programs?

5.2.5 Miscellaneous data operators. Other data
operators which could be included are: memory to
memory moves (unless subsumed under the vector
type), type conversions, and packing and unpacking of
partwords. Some of these are already in the DECsys-
teml0 ISP, but are not accessible to high-level language
programmers. Hence this is a language problem as
much as an ISP problem?

5.2.6 Loop control. There should be an instruction
for loop control which increments a fullword counter
in one register and tests it against a fullword upper
bound in another register. This instruction is also easily
accommodated within the DECsysteml0 ISP structure.
It would save up to 5 % of the execution time of some
programs, reduce program size, and increase read-
ability?

6. C o n c l u s i o n s

In spite of the restricted set of experiments per-
formed, we believe some of the results produced to be
valid, not only for the DECsysteml0, but for all
register structured ISPs. This is in particular true for
the results on simultaneous use of registers, and on the
cost of subroutine calls.

It seems, for instance, that eight registers would be
sufficient for a general register ISP similar to the
DECsysteml0. The result is no longer valid when the
registers are used for other tasks than in this ISP, such
as base register addressing, program counter, hard-
ware defined stacks, etc.

Similarly the results on overhead in subroutine
calling are both important and portable. Results from
other ISPs would often exhibit an even worse situation,
since the handling of return linkages for recursive or
reentrant subprograms is more cumbersome. On the
other" hand, the situation can easily be improved by
introducing instructions tailored to the needs of the
commonly used languages. An ideal solution would be
to permit a restricted form of writable microprogram,
defining special instructions for each language. This
would also be helpful with respect to run-time support
for A L G O L and other languages.

Some of the results presented here and in [10],
particularly those stemming from unnecessary gen-
erality, might seem like a severe criticism of the
DECsysteml0. This is a consequence of the deplorable
fact that our methods only measure the time cost of
ISP features. The richness and generality of the
DECsysteml0 ISP make it a good ISP to program for,
and contribute to a low programming cost and a low
memory space for programs. For our other points of

criticism we note that although the DECsysteml0
leaves room for improvement, the problems we point
out are not solved in a better way in other common
ISPs.

Our work has barely scratched the surface of a
large area of investigation. In particular, it would be
interesting to study information used for address calcu-
lation and information used for control purposes. We
would like to know more about how such information
is computed, and how the two kinds interact. We hope
to make this the subject of further research. The various
solutions to the addressing problem for test instruc-
tions should also be investigated.

Acknowledgment. W.A. Wulf provided initial im-
petus to and considerable support and ideas throughout
the project that led to this paper.

Received April 1975, revised January 1976

Notes
1. By an Instruction Set Processor, or ISP [3], we mean the
logical processor which processes the instruction set, as divorced
from its physical realization. Example: The IBM 360/370 is one
ISP which has several physical realizations.

2. This is illustrated by the following sequences from the BLISS
compiler:

P U S H P U S H J JSP P U S H H R R Z (14.3% of the execution t ime)
J R S T POP POPJ SUB (7.2% of the execution time)
J R S T POP POP POPJ SUB (3.5% of the execution time)

Only 3 of these 14 instructions are used in connection with pa-
rameter transmission; the rest are used for state saving, environ-
ment definition, and linkage handling.

3. The sequence:

SKIPE I L D B J R S T CAIE C A I N C A I N C A I E C A I N CAIE C A I N C A I G C A I A
C A I G E IDPB SKIPE SOSLE A O J A

consumed 20.7% of the compilation time. Its purpose is to move a
line while removing extraneous characters like TABs, LINEFEEDS,
etc. Similarly the sequence

ILDB C A I N IDPB J R S T

moves a line stopping at a RETURN. It consumed 8% of the com-
pilation time.
4. The following example is from the Ising program:

AOBJP M O V E M O V E A D D I H L L Z SETZB R O T C E X C H R O T C R O T A N D I
H L R Z H R R Z A N D I LSH A N D I LSH

It consumed 19% of the time. From PERT we have:

X C T P U S H J P U S H J M O V E P U S H M O V E I M O V E P U S H H L R Z P U S H J
M O V E A D D M O V E POPJ POP POP T L N E a o a J M O V E P O P J

This is a complete call of a formal parameter by name (thunk),
starting at the call within the procedure body (XCT) and ending
at the POPJ back into it. The actual parameter is a vector element.
Time consumed by this sequence was about 20% of the total.

5. An example is the sequence MOVE IDIV, used to unpack left
halfwords, which consumes 45% of the time for the FORTEN
version of Treesort. The HLRZ instruction used for the same
purpose in the BLISS version consumes only 7.5% of the time of
that version. The rest of these routines are about equally efficient.

6. The function shows up as:

A D D I A O J L or G A M G E A O J A M O V E M in F O R T R A N
JRST AOS C A M L E in A L G O L ,
M O V E F A D R .1RST C A M L E M O V E M in BASIC, and
A O J A C A M L E in BLISS.

152 Communications March 1977
of Volume 20
the ACM Number 3

References
1. Alexander, W.G. How a programming language is used. Rep.
CSRG-10, Comptr. Res. Group, U. of Toronto, Toronto, Canada,
Feb. 1972.
2. Arbuckle, R.A. Computer analysis and thruput evaluation.
Computers and Automation (Jan. 1966), 12-15 and 19.
3. Bell, C.G., and Newell, A. Computer Structures, Readings
and Examples. McGraw-Hill, New York, 1971.
4. Connors, W.D., Mercer, V.S., and Sorlini, T.A. S/360 in-
struction usage distribution. Rep. TR 00.2025, IBM Systems
Development Div., Poughkeepsie, N.Y., May 8, 1970.
5. Foster, C.C., Gonter, R.H., and Riseman, E.M. Measures of
opcode utilization. IEEE Trans. Computers C-20, 5 (May 1971),
582-584.
6. Foster, C.C., and Gonter, R.M. Conditional interpretation
of operation codes. IEEE Trans. Computers C-20, 1 (Jan. 1971),
108-111.
7. Gibson, J.C. The Gibson mix. Rep. TR 00.2043, IBM Systems
Development Div., Poughkeepsie, N. Y., 1970.
8. Gonter, R.H. Comparison of the Gibson mix with the
UMASS mix. Pub. No. TN/RCC/004, Res. Comptg. Center, U.
of Massachusetts, Amherst, Mass.
9. Herbst, E.H., Metropolis, N., and Wells, M.B. Analysis of
problem codes on the MANIAC. Math. Tables and Other Aids to
Comput. 9 (Jan. 1955), 14-20.
10. Lunde, A. Evaluation of instruction set processor architecture
by program tracing. Ph.D. Th., Dep. Comptr. Sci., Carnegie-
Mellon U., Pittsburgh, Pa., July 1974 (available as AD A004824
from Nat. Tech. Inform. Service, Springfield, Va).
11. Lunde, .~.. More data on the O/W ratios. A note on a paper
by Flynn. Computer Architecture News 4, 1 (March 1975), 9-13.
12. Raichelson, E., and Collins, G. A method for comparing the
internal operating speeds of computers. Comm. ACM 7, 5 (May
1966), 309-310.
13. Tjaden, G.S., and Flynn, M.J. Detection and parallel execu-
tion of independent instructions. IEEE Trans. Computers C-19, 10
(Oct. 1970), 889-895.
14. Wilner, W.T. Design of the Burroughs B1700. Proc. AFIPS
1972 FJCC, Vol. 41, AFIPS Press, Montvale, N.J., pp. 489-497.
15. Wilner, W.T. Burroughs B1700 memory utilization. Proc.
AFIPS 1972 FJCC, Vol. 41, AFIPS Press, Montvale, N.J., pp.
579-586.
16. Winder, R.O. Data base for computer performance evalu-
ation. RCA-reprint PE-517, RCA David Sarnoff Res. Ctr., Prince-
ton, N.J., 1971.
17. Winder, R.O. A data base for computer evaluation. Computer
6, 3 (March 1973), 25-29.
18. Wulf, W.A., Russell, D.B., and Habermann, A.N. BLISS:
A language for systems programming. Comm. ACM 14, 12 (Dec.
1971), 780--790.

C o m p u t e r
Systems

G. Bell, D. Siewiorek,
and S.H. Ful ler , Ed i to r s

Memory Management
and Response Time
R.M. Brown, J.C. Browne, and K.M. Chandy
The University of Texas at Austin

This paper presents a eomputa t iona l ly t rac tab le
methodology for including accura te ly the effects of
finite memory size and workload memory requirements
in queueing network models of computer systems.
Empi r i ca l ana lyses and ana ly t ic studies based on
app ly ing this methodology to an ac tua l mult iaccess
interact ive sys tem a re reported. Relat ions between
work load variables such as memory requirement
dis tr ibut ion and job swap time, and performance measures
such as response t ime and memory uti l izat ion are
graphica l ly displayed. A mult iphase, ana ly t i ca l ly soluble
model is proposed as being b road ly appl icable to the
analys is of interact ive computer systems which use
nonpaged memories.

Key Words and Phrases : memory management ,
system performance, queueing network models,
in teract ive computer sys tems

CR Ca tegor ies : 4.32

1S3

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This research was partially supported by the National Science
Foundation under Grants GJ-1084 and DCR 74-13302. Authors'
address: Department of Computer Science, University of Texas,
Austin, TX 78712.

Communications March 1977
of Volume 20
the ACM Number 3

