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1. Introduction 

A quick survey of current computers  reveals a great 
variation in the structure of  Instruction Set Processors. 1. 
This observation is true even for computers  intended 
for the same general market.  Current  ISPs designed 
with the scientific market  in mind, for example, have 
word lengths ranging from 24 to 64 bits; the number  of  
different instructions varies f rom about  70 to over 400; 
register structures span the area f rom one accumulator 
plus a few index registers, through designs with 8 to 
24 general or specialized registers, to designs with up 
to 64 registers, again relatively general. A natural  con- 
clusion from such a survey is that very little is known 
about  the optimal structure of ISPs. Further study re- 
veals that very little has been published about  measur- 
ing techniques or other methods designed to obtain 
such knowledge. 

This paper presents a step towards the development 
of  such measuring techniques. It  describes methods 
designed to study the detailed behavior of  programs as 
they are executing on some ISP. Experimental results 
are presented which reflect the behavior of  one particu- 
lar set of  programs on one particular ISP. 

The need for such measures and their utility is 
vindicated by the results found by the designers of  the 
Burroughs B1700 central processor [14, 15]. These 
results clearly show the dependence of program effi- 
ciency on a good ISP. 

Previous authors have measured the frequency of 
execution of the individual instructions or groups of 
instructions [7 (The Gibson mix), 8, 4, 12, and 9]. 

Only a few more comprehensive studies are known to 
this author: Foster et al. [5, 6] have developed measures 

of  opcode utilization and studied alternative encodings 
of  the opcodes into fewer bits than those required by a 
conventional encoding. Similar results are presented 
by Wilner [15]. Winder [16, 17] has gathered miscel- 
laneous statistics on ISP usage. Alexander [1] has 
made extensive study of how one particular program- 
ming language uses ISP features. 

None of the above studies report  on ISP behavior 
reflecting more than two or three consecutive instruc- 
tions. Also, register use is barely touched upon. The 
methods described in this paper improve this situ- 
ation. They are only to a small extent, or not at all, 
restricted to the study of a small fixed length sequence 
of instructions. On the contrary, we may follow a 
phenomenon for as many instructions as seems rele- 
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vant, while at the same time retaining full knowledge 
about every instruction executed. 

otherwise measured or estimated by the ISP architect 
before he makes his decisions. 

2. Basic Methodology 

The basic idea of the methods is to analyze traces 
of a representative set of programs, the subject set, 
written as these are executed by an interpreter for the 
ISP being studied. Information is recorded for every 
instruction executed by the subject program. The 
major advantages of this approach are: 

--ISP behavior may be studied in great detail. 
--The methods are not restricted to special languages 

or compilers. 
--Analysis programs are easily written, and programs 

for new analysis methods may be developed after 
the data have been collected. 

--All analyses of the same program (trace) see exactly 
the same instruction stream; hence the results 
are not perturbed by random influences caused 
by external devices or by multiprogramming of 
jobs. 
Each individual analysis, therefore, studies the 

behavior of a user program running on the user ISP 
and the suitability of this ISP to that particular pro- 
gram, as opposed to studying the suitability of the full 
ISP to a collection of multiprogrammed programs. 
For the latter purpose a device is needed to trace execu- 
tive mode programs, probably at full speed. Statistical 
validity comes from studying many programs indi- 
vidually. 

The methods are easily modifiable to apply to all 
register structured ISPs, and to some extent even to 
stack ISPs or other ISPs. The specific results obtained 
are, however, strongly dependent on the structure of 
the ISP analyzed. The extent to which they can be ap- 
plied to similar ISPs depends on the degree of simi- 
larity and on the result in question. On the other hand, 
the results are relatively independent of technology; 
hence they may be used by ISP architects to compare 
thb cost/utility ratios of different structures across dif- 
ferent technologies. 

Our methods evaluate ISP features in terms of their 
associated time cost, i.e. the change in execution time 
or instruction count caused by including or removing 
the feature. Of these, the instruction count is most in- 
dependent of technology, but it hides the fact that 
certain operations take a longer time than others, 
regardless of technology. Hence execution time is 
also computed in some cases by summing the individual 
instruction execution times. 

Other relevant costs are the space occupied in pri- 
mary memory by program and data, and the cost of 
designing, coding, and debugging programs. Both of 
these are highly dependent on the ISP, and are as im- 
portant to a good design as the time cost. They are not, 
however, measured by our methods, but should be 
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3. Experimental Environment 

3.1 ISP Studied 
The emphasis of our experimental work was on 

studying the methods, and estimating the dependence 
of the results on the major parameters of the subject 
set. In order to reduce the work, experiments were 
performed on one ISP only: the DECsysteml0 (KA- 
10). The structure of this ISP is unusually general; 
some of its properties are: 

(1) It has a large instruction repertoire of about 420 
user instructions including: 
- -A rich set of instructions for arithmetic and bitwise 

comparison. These compare memory, register, im- 
mediate or implicit (0) operands, and all 6 arith- 
metic conditions are available. 

--Programmer defined stacks. 
--Three different mechanisms for subroutine calls. 
--All 16 Boolean functions of two variables. 
--Immediate operands and several result destinations 

(register, memory or both) for arithmetic and logic 
instructions. 

--31 Monitor calls and 32 user-definable trap in- 
structions (UUOs). 

(2) The register structure is equally general. The 16 
registers are part of the memory address space. All of 
them may be used for all standard purposes with only 
insignificant exceptions. 
(3) Indirection may be carried to any depth, with in- 
dexing at each level. 

Hence this ISP is a good starting point for detection 
of unnecessary generality or superfluous features. This 
is vindicated by our results reported here and in [10]. 
We did, however, also discover features which we would 
like to see incorporated into this ISP. Some of these 
have, in fact, been included in later processors of the 
DECsysteml0 family. 

3.2 Subject Set 
Another restriction on our experiments was that 

we analyzed programs only from a scientific environ- 
ment. On the other hand, we tried to choose a subject 
set which would show the influence of the choice of 
algorithm, programming language, and compiler. 

Hence one part of our subject set consisted of six 
algorithms from Collected Algorithms of the ACM 
(CALGO). These were selected to contain as many as 
possible of the commonly used program structures, 
and to give a reasonable covering of the modified 
SHARE classification for algorithms. Each of these 
algorithms was coded in four languages: ALGOL, 
BASIC, BLISS, and FORTRAN. Two different 
FORTRAN systems were used. BLISS [18] is a high- 
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Table I. Distribution of Lives by Lifelength, Unweighted Sum of 
All Programs--Logarithmic Table Division. 

Length No. of lives Fraction Cum. fraction 

1 - 1 174927 O.O9 0.09 

2 - 3 728346 0.38 0.48 

4 - 7 547072 0.29 0.77 

8 - 15 252508 O.13 0.90 

16 - 31 116404 0.06 0.96 

32 - 63 41673 0.02 0.98 

64 - 127 17790 O°O1 0.99 

128 - UD 15603 O.O1 i.OO 

Total number of lives 1894323 

level language for systems programming. The other 
languages should be well known. The six algorithms 
were: 

No. 30: Polynomial roots by Bairstow's method 
(Bairstow) 

No. 43: Linear equations by Crout 's  method (Crout) 

No. 113: Treesort 

No. 119: PERT 

No. 257:Numerical  integration by H~vies method 
(H~vie) 

No. 355: Generation of  Ising configurations (Ising). 

The latter could not easily be coded in BASIC, hence 
that version was omitted. 

To investigate the influence of coding style, we in- 
eluded an algorithm for polynomial interpolation (Ait- 
ken) as coded in BLISS by four different programmers, 
plus a carefully tuned version of this algorithm. These 
are denoted E (efficient), B, A, L, and G. A medium- 
sized numeric F O R T R A N  program, SEC, was also 
analyzed. Again both F O R T R A N  systems were used. 
Finally we analyzed the five compilers used for the 
CALGO set: these are denoted ALGOL,  BASIC, 
BLISS, FORFOR,  and FORTEN.  ALGOL,  BASIC, 
and F O R F O R  are written in MACRO (the assembly 
language), BLISS and F O R T E N  are written in BLISS. 

Thus our final subject set consisted of 41 programs, 
comprising about  5.3 million instructions or 16.8 sec- 
onds of  CPU time. 38 of these were written in high- 
level languages. One would a priori expect that such 
programs do not  make as good use of the ISP as do 
assembly language programs. On the other hand, we 
are already restricted to the user ISP, and certainly the 
majority of user programs are written in high-level 
languages. 

4. Register Structure 

Methods were developed for two problems con- 
nected with register structure: 

- - H o w  many registers are used efficiently? 
- - W h a t  is the need for generality of  registers? 

Both are attacked through the concept of  a register 
life. A register life consists of  all activity associated 
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with a given register during a period of  time starting 
with a load into that register, and terminating with the 
last use of  the register before the next load into it. A 
register is loaded when a new value is brought into it 
which is unrelated to its old value. Use of  the old value 
during address calculation is not considered a relation 
in this context. 

The start of  a register life is analogous to the "open 
effects" situation described by Tjaden and Flynn [13]. 
The terms live and dead now have obvious meanings. A 
register is dormant when it is live but not  used. The 
resolution of our time measure is one instruction. Hence 
two successive lives of  the same register may overlap if 
the old value is used to load the new one. Usually there 
will be a dead period between two consecutive lives of 
a register. Finally we note that for a machine with 
several registers, any number of them may be live at 
any given time. 

It  seems unreasonable to use these concepts unmodi- 
fied for registers which have long dormant  periods. 
Hence the results below were obtained under the as- 
sumption that a register was dead when it had been 
dormant  for 200 or more instructions. This is discussed 
further below. 

4.1 Analysis Program 
The analysis program detects register lives, classi- 

fies them according to the operations they contain, and 
finds the number of live registers at each point in time 
during program execution. 

As the trace is read, one can not in general tell 
whether a register is dead or live until the next LOAD 
into it is encountered. This may be any length of  time 
after the register actually died. Hence the analysis of 
register usage is a two-phase process. In the first phase 
register lives are detected and classified. Phase I also 
writes a file of descriptions of each life which is used by 
phase II. Phase II then finds how many registers were 
live at each point in time, and computes various results 
based on this. 

In the analysis a relatively fine classification was 
used for the lives. For  purposes of presentation the 
following seven classes were considered: 

- -Al l  lives (the total class--TOT).  
- -Lives  used for indexing (INX). 
- -Lives  used for temporary storage only (TMP). 
- - T h e  four classes defined by the "strongest" arithmetic 

used: 
No arithmetic (NOA). 
Fixed-point additions and subtractions (FAS). 
Fixed-point multiplications and divisions (FMD).  
Floating-point operations (FLO). 

The latter four classes are disjoint and their union is 
the class TOT. 

4.1.1 Phase I. As the trace is read, phase I keeps 
track of the times of the most recent load and the most 
recent use of  each register. Hence each time a register 
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Table II. Average Lifelength in Instructions. 

Language: ALGOL BASIC BLISS FORFOR 

8airstow 12.3 12.3 11.2 12.9 

Crout 13.6 11.3 18.2 15.1 

Treesort 6.1 11.9 9.0 4.2 

PERT 10.9 11.4 8.4 5.0 

Havie 16.6 11.2 13.5 14.3 

Ising 16.5 - 9.7 5.5 

Secant - 8.1 

FORTEN Mean 

12.9 12.3 

15.9 14.8 

5.8 7.4 

7.9 8.7 

20.0 15.1 

9.2 10.2 

9.6 8.9 

Programmer: E 8 A G L Mean 

Aitken 14.3 14.7 13.O 8.9 11.9 12.6 

Compiler: ALGOL BASIC BLISS FORFOR FORTEN Mean 

17.4 23.8 9.7 14.9 11.4 15.4 

Language: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean 

Mean 18.7 12.7 11.6 11.8 9.3 11.6 11.9 

Table III. Usages per Register Life. 

Table V. Memory References per Instruction Excluding Instruc- 
tion Fetches. 

Language: ALGOL BASIC 

Bairstow .61 .52 

Crout .44 .59 

Treesort .65 .50 

PERT .51 .47 

H~vie .30 .45 

Ising .40 

Secant 

BLISS FOPFOR FORTEN 

.50 .62 .60 

.50 55 .64 

.51 57 .63 

.53 69 .63 

.31 44 .35 

.60 67 .60 

60 .53 

Mean 

.57 

.54 

.57 

.57 

.37 

.57 

.57 

Programmer: E B A G L Mean 

Aitken .45 .48 .52 .50 .53 .50 

Compiler: ALGOL BASIC BLISS FOBFOR FORTEN Mean 

.40 .32 .45 .42 ,40 .40 

Lanquaqe: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean 

Mean .38 .49 .51 .48 .59 .57 .51 

Table VI. Register References per Instruction. 

Lanquaqe: ALGOL BASIC BLISS FORFOR FORTEN Mean 

Bails tow 4.6 3.6 4.6 4.6 4.4 4.4 

Clout 3.8 3.7 6.6 3.7 3.9 4.3 

Treesort 3.9 3.5 4.8 2.9 2.9 3.6 

PERT 4.1 3.4 3.8 3.1 3.2 3.5 

H~vie 4.4 3.7 5.8 5.4 5.2 4.9 

Ising 4.0 4.5 3.1 3.3 3.7 

Secant - 3.8 3.8 3 . 8 

Programmer : E B A G L Mean 

Aitken 5.4 5.5 5.2 3.9 5.2 5.0 

Compiler: ALGOL BASIC BLISS FORFOR FORTEN M~ean 

3.7 6.0 3.5 4.1 3.2 4.1 

Language: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean 

Mean 4.6 4.1 3.6 4.8 3.8 3.8 4.2 

Lanquaqe: ALGOL BASIC BLISS FORFOR FORTEN Mean 

Bairstow 1.66 1.O5 1.58 1.35 1.37 1.40 

Crout 1.67 1.21 1.67 1.56 1.46 1.51 

Treesort 1.62 1.O4 1.65 1.28 1.32 1.38 

PERT 1.58 1.O5 1.61 1.25 1.22 1.34 

B~vie 1.57 1.14 1.61 1.36 1.16 1.37 

Isinq 1.58 1.66 i.II 1.13 1.37 

Secant - 1.39 1.33 1.36 

Programmer: E B A G L Mean 

Aitken 1.66 1.67 1.69 1.69 1.64 1.67 

Compiler: ALGOL BASIC BLISS FORFOR FORTEN Mean 

1.O9 1.13 1.32 1.39 1.17 1.22 

Language: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean 

Mean 1.20 1.61 I.IO 1.59 1.33 1.28 1.40 

Table IV. Average Number of Live Registers, Computed as (Sum 
of Lifelengths>/(Program Length). 

Language: ALGOL BASIC BLISS FORFOR FORTEN Mean 

Bairstow 4 .4 3.6 3.8 3.8 4.0 3.9 

Crout 6.0 3.7 4.7 6.4 6.O 5.4 

Treesort 2.5 3.5 3.1 1.8 2.7 2.7 

PERT 4.2 3.6 3.6 2.0 3.0 3.3 

H~vie 6.0 3.5 3.7 3.6 4.5 4.3 

Isinq 6.5 3.6 1.9 3.2 3.8 

Secant - 3.O 3.4 3.2 

Programmer: E B A G L Mean 

Aitken 4.4 4.5 4.2 3.9 3.7 4.1 

Compiler: ALGOL BASIC BLISS FORFOR FORTEN Mean 

5.1 4.5 3.6 5.1 4.2 4.5 

Lanquaqe: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean 

Mean 4.9 4.9 3.6 3.9 3.2 3.8 3.9 

Table VII. Fraction of Lives with No Arithmetic. 

Language: ALGOL BASIC 

Bairstow .213 .637 

Crout .528 .716 

T~eesort .315 .686 

PERT , 5 9 7  . 7 3 5  

H ~ v i e  . 6 2 8  . 6 8 0  

Isina .695 

Secant 

BLISS FORFOR FORTEN 

.574 .494 .470 

.214 349 .440 

.257 784 .585 

.547 457 .416 

.482 496 .412 

.620 744 .622 

- 263 .266 

Mean 

.478 

449 

.521 

.550 

.540 

67O 

.265 

Proarammer: E B A G L Mean 

Aitken .317 .390 .402 .475 .391 .395 

Compiler: ALGOL BASIC BLISS FORFOR FORTEN Mean 

.844 .744 .921 .802 .886 .839 

Languaqe: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean 

Mean .797 .496 .691 .498 .512 .456 .538 

is loaded, the endpoints of its previous life are immedi- 
ately available. For each register life, phase I determines 
its class, and also the number of  references to it. Finally 
phase I computes the total number of register references 
and memory references. The data items written on the 
file for phase II contain most of this information, to- 
gether with the register name. 

Some results from phase I are given in Tables I 
through XII. Results are given for each individual 
program, as well as the averages for each algorithm, 
for all the compilers, and for all programs written in 
each language. All the programs are equally weighted 
in these averages. 

We note that most lives (68 % of the total) are be- 
tween 2 and 7 instructions long. Only 4 % are 32 instruc- 
tions or longer. For each individual program over half 
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the lives are less than 8 instructions long. Only 3 pro- 
grams have more than l0 % of their lives 32 instructions 
or longer. The average lifelength is 11.9 instructions, but 
ranges from 4 to 24 instructions for the individual 
programs. The average number of references to a life 
is 4.2, it ranges between 3 and 7 for the individual 
programs. The average number of simultaneously live 
registers ranges between 2 and 6. Operands, includ- 
ing indices and nominators (indirect addresses), are 
found in registers 2 to 4 times as often as in primary 
memory. 

The classes FLO and F M D  are significant only for 
those algorithms that use floating-point arithmetic, or 
where F M D  arithmetic is used to access data. This is 
as one would expect. Even for highly numeric programs 
at most 50 % of the lives are in class FLO, less than 
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Table VIII. Fraction of Lives with Fixed Point Add/Subtract. 

Lanquage: ALGOL BASIC BLISS FORFOR FORTEN Mean 

Bairstow 504 .iO6 .O54 .i18 .141 .185 

Crout .304 .OO9 .O96 186 .122 143 

Treesort .355 .103 .710 .208 .O56 ,286 

PERT .380 .122 .397 .516 .552 ,393 

H~vie .278 .O85 .149 .123 ,156 ,158 

Isinq .300 .373 .250 ,370 .323 

Secant - .359 .303 331 

Programme[: E B A G L Mean 

Aitken .210 .202 .302 .423 .389 .305 

Compile[: ALGOL BASIC BLISS FORFOR FORTEN Mean 

.130 .234 ,O74 .190 .IO8 ,147 

Language: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean 

Mean .185 .354 .085 .268 .251 .243 .245 

Table IX. Fraction of Lives with Fixed Point Multiply/Divide. 

Lanauaqe: ALGOL BASIC BLISS FOiFOR FORTEN Mean 

Bai[stow .009 .OO1 .O18 .042 .O19 .O18 

C[out .006 .064 .433 .156 .142 .160 

Treesort .317 .OOO .O11 .OOO .370 .140 

PERT .OO2 .OOO .004 .OO6 .006 .OO4 

H~vie .002 .OO1 .O31 .O18 .O15 .O13 

Iaina .OO6 .OO7 .006 .O08 ,OO7 

Secant - .175 .199 .187 

P[oaramme[: E B A G L Mean 

Aitken .OOO .OOO .OOO .OOO .085 .O17 

Compiler: ALGOL BASIC BLISS FORFOR FORTEN Mean 

.026 .O19 .005 .009 .008 .O13 

Lan~uaqe: MACRO ~LGOL BASIC BLISS FORFOR FORTEN Mean 

Mean .O18 .057 .O13 .O46 .058 .108 .054 

Table X. Fraction of Lives with Floating Point Arithmetic. 

Lanquaqe: ALGOL BASIC BLISS FORFOR FORTEN Mean 

Bai[stow .274 .256 .354 .347 .369 .320 

Crout .163 .211 .257 .306 .296 .247 

Treesort .O14 .211 .022 .008 .009 .053 

PERT .O21 .143 .O53 .O21 .O26 .O53 

H~vie .092 .233 .339 .363 .418 .289 

Isinq .OOO .OOO .OOO .OOO .OOO 

Secant - .203 .232 .218 

Proq[ammer: E B A G L Mean 

Aitken .473 .408 .296 .IO2 .136 .238 

Compiler: ALGOL BASIC BLISS FORFOR FORTEN Mean 

.OOO .OO3 .OOO .OOO .OOO .OO1 

Lanquaqe: MACRO ALGOL ~ASIC BLISS FORFOR FORTEN Mean 

Mean .OO1 .094 .211 .188 .178 .193 .162 

40% in all but two programs. In spite of the fact that 
all variables in BASIC are floating point, the per- 
centage of FLO lives in the BASIC programs is never 
above 25. 

For  the classes FAS and NOA, the dependence on 
language is larger than the dependence on algorithm. 
This is in particular true for ALGOL and BASIC, 
which enforce a stronger regimen on programs than 
do the other languages. 

Between 18% and 68% of the lives, 39% on the 
average, are used for indexing. 

4.1.2 Phase II. Phase II reads the file written by 
phase I in reverse order, and simulates a backwards 
execution of  the subject program. Initially the descrip- 
tions of the last lives of each register are read. For  each 
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register the program keeps the description of one life, 
viz. that which is now valid, or will next be valid, during 
the backwards simulation. The loading and final uses 
of each register are entered in a list sorted by decreasing 
time. This list is processed in order, and a counter of 
live registers is suitably updated. 

Each time a loading use of a register is processed, 
all information about that life may be discarded. The 
program is then ready to receive the description of the 
previous (at execution) life for that register. This 
description was written by phase I as it processed the 
same load instruction which is now being processed 
by phase II. Hence the desired data item is in the correct 
position to be read off the file. 

We now know exactly how many registers were 
live at each point in time, and the fraction of the total 
time when exactly N registers were live can easily be 
computed for each N. Since the usage class was written 
on the intermediate file, this analysis may be done 
simultaneously for any suitably defined classes of lives. 
The results for the 7 classes previously defined are 
given in Tables XIII through XV. 

As is seen, no program uses more than 15 registers 
simultaneously. 17 of the 41 programs would get by 
with 10 or fewer registers. This maximum is only used 
for short periods of time. Thus 10 registers would 
suffice 90% of the time for all 41 programs, 98% of 
the time for 36 of the 41 programs. The results for the 
compilers and for the BLISS programs (BLISS has a 
highly optimizing compiler) show that neither the size 
and complexity of the programs nor their efficiency 
imply the use of many registers. On the contrary, the 
BLISS results seem to indicate the opposite conclusion. 
Hence we would attribute the relatively high number of 
live registers for the other compilers to the fact that 
these are written in assembly language. If  specialized 
registers were to be used, it would seem appropriate to 
have 2 floating point accumulators, 2 fixed-point ac- 
cumulators, and 8 index registers with simple fixed- 
point operations. 

4.2 Reducing the Register Block 
The results just presented suggest that programs 

might run almost equally time-efficiently on an ISP 
with fewer registers than the one analyzed, but other- 
wise having the same structure. Increased execution 
time would ensue from having to store and reload 
registers whenever the number of lives in the original 
version was too high. We use two methods, called 
interleaving and bedding, to compute an upper bound 
on this increase in execution time. 

4.2.1 Interleaving. Interleaving is applied in phase 
II. Assume that our reduced ISP has M registers. For  
each period when the program requires N registers, 
N > M, we select the N -- M l e a s t  useful lives as 
described below, and assume the associated values to 
be stored in memory. Each time one of these values is 
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Table XI. Fraction of Lives Used as Temporaries Only. 

Lanquaqe: ALGOL BASIC BLISS FORFOR FORTEN Mean 

Bairstow .028 ,O67 .179 .IO1 .121 099 

Crout .O18 .IO1 .049 .137 .142 .098 

Treesort .OO1 .107 .OOO .OOO .OO1 .022 

PERT .O16 ,128 .188 .O69 .IO4 .IO1 

H~vie .072 .279 .062 .250 .O19 .136 

Isina .059 .O86 .147 .067 .090 

Secant - - .O41 .030 .036 

Proq[ammer: E B A G L Mean 

Aitken .O62 .078 .092 .112 .O15 .072 

ComPile[: ALGOL BASIC BLISS FORFOR FORTEN Mean 

.096 .O89 .180 151 153 134 

Lan~uaqe: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean 

Mean .112 .O32 .136 .097 .106 .069 .090 

Table XII. Fraction of Lives Used for Indexing. 

Lanquage: ALGOL BASIC 

Bairstow .513 .407 

Clout .519 .374 

T[eesort .482 .412 

PERT .592 .421 

H~vie .524 .365 

Isinq .571 

Secant 

BLISS 

226 

520 

683 

556 

387 

484 

FORFOR FORTEM 

.341 251 

.195 244 

.431 476 

.445 497 

.278 203 

.267 249 

.376 406 

Mean  

. 3 4 7  

. 3 7 0  

. 4 9 7  

.502 

.351 

.393 

.392 

P r o a ~ a m m e r :  E B A G L M e a n  

Aitken .185 .196 .232 .318 .474 .281 

Compiler: ALGOL BASIC BLISS FORFOR FORTEN Mean 

.401 .364 .341 .509 .313 .386 

Lanoua~e: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean 

Mean .425 .534 .396 .378 .333 .332 .391 

needed, some register has to be temporarily stored, 
and the required value loaded into it. Hence each 
reference to one of the selected lives costs at most 
two STORE LOAD pairs. 

The following four criteria were used for usefulness 
of  lives: 

- - T h e  number of references to the life was high. 
- - T h e  density of  references to the life was high. 
- - T h e  life was long. 
- - T h e  life was short. 

The fourth criterion never gave the lowest cost. The 
third one rarely gave a low cost, the first two gave the 
lowest cost almost equally often. Furthermore the 
criterion that gave the lowest cost often changed with 
M within the same analysis. The interleaving cost is 
computed only when needed, i.e. when N > M. On 
the other hand, neither the selection of useless lives 
nor the cost computation takes local properties of the 
lives into account; both are based on their global char- 
acteristics. 

4.2.2 Bedding. The bedding method, on the other 
hand, is based on the local properties of lives. The idea 
is to store ("bed")  registers in memory when they have 
long dormant periods. In each such period the number 
of  live registers is reduced by one, at the cost of one 
STORE LOAD pair. Such periods are known during 
phase I, but the information is not easily carried into 
phase lI. In phase I, however, we do not  know when 
registers are scarce (N > M). Hence bedding must 

be applied each time a life has been dormant  longer 
than some time K, regardless of the need for registers 
during that time. 

Our results were obtained using a hybrid method. 
Registers were bedded by phase I whenever they were 
dormant more than 200 instructions, and interleaving 
was used in phase II. The results, given as relative 
increase in instruction count, are displayed in Table 
XVI. As is seen, the increase caused by a reduction to 
8 registers is less than 1% for 21 of the 41 programs, 
less than 5% for 30 of them, but  runs as high as 
50 % or more in a few cases. The average increase is 
7.9%. 

We investigated the bad cases further by using 
lower values for K, i.e. lives were bedded when they 
had been dormant  for as little as 22 instructions (in 
one case). Interleaving was applied in phase II as be- 
fore. As K is reduced the interleaving cost decreases, 
since there are fewer periods when N > M. On the other 
hand, the bedding cost increases since there are more 
dormant  periods. We have at present no way of telling 
which K will give the best result. In fact, in a similar 
analysis of two programs where the cost for K = 200 
was already low, we found that the cost was lower for 
K = 200 in one case, K = 100 in the other. To produce 
the results given in Table XVII, different values of K 
were tried until a minimum seemed close. As is seen, 
the cost has been dramatically reduced for all of  the 
programs, although it still is high for some. These 
results would reduce the mean of Table XVI from 
7.9 % to 2.7 %. 

The values obtained by bedding and interleaving 
are upper bounds, in the sense that any satisfactory 
compiler or programmer, knowing the local properties 
of the program, will select better "useless" lives, and 
only store them when N is high. He will also avoid un- 
necessary STOREs. On the other hand, the results 
were obtained using complete knowledge of  the path 
taken through the program. When the code is written, 
all possible paths have to be provided for. This implies a 
less than optimal use of registers in each particular 
execution. In view of the fact that most lives are short, 
it is reasonable to assume that the gain by the former 
factor far outweighs the loss by the latter. 

5. Operator Utifity 

We also used traces to study the utility of data types, 
data operators, and control operators. For  existing 
operators and types, frequency counts were used. Some 
desirable but nonexisting operators were detected by 
observing frequencies of dynamic sequences of instruc- 
tions. 

Frequency studies for individual instructions or 
groups of instructions have been reported by various 
authors [1, 2, 4, 8, 9, 12, 16, 17]. Our results agree well 
with those of  Gibson [7] (the Gibson mix), which 
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Table XIII. Number of Registers Sufficient 100%, 98%, and 90% 
of the Time (K = 200). 

Lanquaqe: ALGOL BASIC BLISS FORFOR FORTEN Mean 

Bairstow 1OO% 13 IO 9 13 12 11.4 

98% ii 7 6 iO 9 8.6 

90% 8 6 5 9 7 7 .O 

Crout 1OO% 13 7 7 13 12 10.4 

98% Ii 7 7 12 8 9.0 

90% iO 6 6 IO 7 7 . 8 

Treesort 1OO% 14 7 6 4 12 8.6 

98% 4 7 5 4 5 5.0 

90% 3 6 5 3 4 4.2 

PERT 1OO% 14 IO 7 ii 12 10.8 

98% IO 7 6 8 8 7.8 

90% 8 6 5 3 5 5.4 

H~vie 1OO% 14 iO 9 IO 13 11.2 

98% Ii 6 6 6 9 7.6 

90% 9 5 5 5 5 5.8 

Isinq 1OO% 14 7 ii 12 11 .O 

98% ii 5 7 9 8.0 

90% iO - 5 3 6 6 .O 

Secant 1OO% - - 13 12 12.5 

98% - - 6 6 6 .O 

90% - - 5 5 5 .O 

Pr oqramme[ : E B A G L Mean 

Aitken 1OO% 7 7 8 7 8 7.4 

98% 7 7 7 7 7 7 .O 

9O% 7 6 6 6 7 6.4 

Compile~: ALGOL BASIC BLISS FORFOR FORTEN Mean 

1OO% 15 ii 13 13 ii 12.6 

98% IO 9 6 8 8 8.2 

90% 8 7 5 7 6 6.6 

Lanquaqe: MACRO ALGOL BASIC BLISS PORFOR FORTEN Mean 

Mean 1OO% 13.O 13.7 8.8 8.2 10.7 12.1 10.4 

98% 9.0 9.7 6.8 6.5 7.6 7.7 7.6 

90% 7.3 8.0 5.8 5.7 5.4 5.6 6.1 

Table XIV. Number of Registers Sufficient 90% of the Time for 
the Arithmetic Classes FLO, FMD, and FAS (FLO = Floating, 
FMD = Fixed Mul/Div, FAS = Fixed Add/Sub). 

LanouaQe: ALGOL BASIC BLISS FORFOR FORTEN 

Sairstow FLO 2 1 2 2 2 

FMD 1 O O 1 O 

FAS 4 2 2 1 2 

C~out FLO 1 1 1 3 2 

FMD O 1 2 4 2 

FAS 5 1 3 3 3 

Tr eeso r t FLO O 1 O O O 

FMD 1 O O O 1 

FAS 1 2 3 1 2 

PERT FLO O 1 1 O O 

FMO O O O O O 

FAS 4 2 3 2 3 

H~vie FLO 1 2 2 2 2 

FMD O O 1 O O 

FAS 5 2 2 2 3 

Isina FLO O - O O O 

FMD O - O O O 

FAS 5 - 4 1 3 

Secant FLO - 2 1 

FMD - 1 1 

FAS - 2 4 

P[oqrammec: E B A G L 

Aitken FLO 2 2 2 2 2 

FMD O O O O 1 

FAS 3 2 3 4 3 

ComPiler: ALGOL BASIC 8LISS FORFOR FORTEN Mean 

FLO O O O O O 

FMD O 1 O O O 

FAS 3 2 2 2 2 

Lan~uaQe: MACRO ALGOL BASIC BLISS FORFO~ FORTEN Mean 

Mean FLO .O .7 1.2 1.2 1.3 I.O 

FMD .3 .3 .2 .3 .9 .6 

FAS 2.3 4.0 1.8 2.8 1.7 2.9 

should be well known.  We refer the reader to [10] and 
Jill .  

274 of  the over 400 instructions were used by our 
subject set. 75 % of  the instructions executed were ac- 
counted for by the 29 most  executed instructions. 133 
instructions accounted for 99% of  the executed in- 
structions. Over 40 % of  the executed instructions were 
moves between registers and primary memory,  almost 
30% were branching instructions, 12% were fixed- 
point adds or subtracts. The other categories of  [7] 
each accounted for less than 5 %. 

We would also point out one particular result, relat- 
ing to the addressing problem for tests, where the rich 
set of  test instructions on the DECsys teml0  permitted 
some possibly new observations. The test instructions 
were divided into groups according to the form of  
their operands, as seen in Table XVIII. Similarly, the 
programs were divided into three obvious groups. The 
programs were weighted in inverse proportion to their 
instruction count, and the distribution of  the dif- 
ferent groups of  test instructions was observed. 

Table XVIII clearly shows that comparison of  two 
nonzero values is twice as c o m m o n  as comparison with 
zero. This is particularly true for recently computed 
values (contained in registers), in which case the factor 
is 3. Hence one is led to doubt the utility of  condition 
codes as compared with the more general test instruc- 
tions. Also noteworthy is the fact that compilers fre- 
quently test against small values known when the com- 
piler was written (immediate operands). 

Mean 5.1 Instruction Sequences 
1 . 8  

o.4 We now describe our attempt to detect data types 
2.2 and operators that could be included in the ISP at a 
1 . 6  

1.8 benefit. Such operators manifest themselves as sequences 
3.o of  instructions, viz. those sequences used to interpret the 

. 2  

• 4 desirable instructions in terms of  the existing instruc- 
1.8 tion set. Since such sequences may be of  considerable 

. 4  

.o length, a major difficulty is to limit the space and time 
2.8 used by the analysis program. Thus, for one of  our sub- 
1 . 8  

.2 ject programs, the number of  different pairs of  instruc- 
2.s tions was as high as 2000. If all these were to be ex- 

.0"° tended to triples, quadruples or longer sequences, both 
3.3 space and time required for the analysis would be 
1. s prohibitive. 
1 . O  

3 . 0  We avoided this problem by using a multipass al- 
Mean gorithm. Each pass scanned the whole trace; the first 

2 . 0  

.2 pass built the pairs, successive passes extended the 
3.0 existing sequences by one. After each pass the data 

.o structure was pruned; only those sequences thought to 

.2 be significant were retained. The program ran until 
3 . 2  

no sequences were retained, or until an arbitrary pre- 
1.o set length of  20 was reached (after 19 passes). Before 

.4 the results were printed, the counts for all those se- 2 . 4  

quences which had been extended were reduced by the 
counts of  the extensions. Hence only the unextendable 
fraction of  each sequence was included in the final 
counts. 
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Five heuristics were used to detect candidates for 
deletion: 
- - A l l  sequences whose counts were low compared to 

the most  frequent sequence of  the same length 
were deleted. 

- - A l l  sequences that were not  a significant extension of  
their leading and trailing longest subsequences were 
deleted. The intent was to isolate the c o m m o n  part 
o f  overlapping sequences as the interesting part. 

- - B y  the algorithm used, loops  of  length L may be 
represented at L different places in the data struc- 
ture. When sequences of  length L + 2 had been 
generated, all those for which the two last and two 
first instructions were the same, and which con- 
tained a jump instruction, were assumed to be loops  
of  length L. One representation of  such loops  was 
retained, the others deleted. 

- - A n  attempt was made to detect all but one of  several 
overlapping sequences representing the same longer 
sequence. Assume that the sequence A B C D E F G 
occurs frequently in the trace. At the end of  pass 4 
the sequences A B C D E, B C D E F, and C D E F G 
are observed to have approximately the same count. 
The latter two may be deleted, since the former 
will be extended in later passes. 

- - A n  attempt was made to detect all but the most  
frequent of  long sequences with a large degree o f  
overlap. 

Using these pruning heuristics, about half  the analyses 
produced one or more sequences of  length 20. All 
analyses produced sequences of  length 10 or more. 

The heuristics above, as used in our experiments, 
were not  as good  as one might desire. In particular, in 
most  analyses several o f  the sequences obviously over- 
lapped. This caused the reduced counts for the over- 
lapping parts to be much too  low. Other sequences 
were extended too  much, or they included only part of  
what was known from other considerations to be "the 
right" sequence. Hence a manual,  and therefore sub- 
jective, analysis was necessary to extract significant 
results. This was also needed to relate the results back 
to program fragments with more or less intuitive 
meaning. During this analysis, the final results were 
compared with the unreduced counts printed after 
each pass. This manual  analysis could be reduced by 
improving the existing heuristics and devising new 
ones. More accurate counts could be obtained by run- 
ning a second analysis, observing only predetermined 
sequences or classes of  sequences. This was, however,  
not  done. 

5.2 Sequence Results 
Specific results are presented in [10]. Below we give 

a survey of  those that seemed most  important, and a 
few specific examples. 

5.2.1 Subroutine calling sequences. Calling sequences 
for subroutines should be better supported by suitable 

Table XV. Number of Registers Sufficient 90% of the Time for 
the Classes NOA, INX, and TOT (NOA = No Arithmetic, INX = 
Indexing, TOT = Total Class). 

Language: ALGOL BASIC BLISS FORFOR FORTEN Mean 

Bai~stow NOA 4 4 3 7 5 4.6 

INX 6 3 2 5 5 4.2 

TOT 8 6 5 9 7 7 .O 

Crout NOA 6 4 2 3 5 4.0 

INX 9 3 3 2 3 4 .O 

' rOT iO 6 6 iO 7 7 . 8 

NOA 2 4 2 2 2 2.4 

INX 2 3 3 2 2 2.4 

TOT 3 6 5 3 4 4 . 2 

PEK~I ~ NOA 4 4 2 2 3 3 .O 

INX 7 3 3 2 2 3.4 

TOT 8 6 5 3 5 5.4 

H~vie NOA 5 3 2 2 2 2.8 

INX 8 3 2 2 2 3. 4 

TOT 9 5 5 5 5 5.8 

Isinq NOA 6 2 2 4 3.5 

INX 9 2 2 4 4. 3 

TOT 10 - 5 3 6 6 .O 

Secant NOA - 2 2 2 .O 

INX - 2 2 2 .O 

TOT - 5 5 5 .O 

Pr oq[ammer : E B A G L Mean 

Aitken NOA 4 4 4 3 2 3.4 

INX 4 3 3 2 5 3.4 

TOT 7 6 6 6 7 6.4 

ComDiler: ALGOL BASIC BLISS FORFOR FORTEN Mean 

NOA 6 5 4 6 4 5 .O 

INX 4 4 2 4 2 3.2 

TOT 8 7 5 7 6 6.6 

Language: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean 

Mean NOA 5.7 4.5 3.8 2.9 2.9 3.3 3.5 

INX 4.0 6.8 3.0 2.9 2.4 2.9 3.5 

TOT 7.3 8.0 5.8 5.7 5.4 5.6 6.1 

Table XVI. Sum Interleaving and Bedding Costs for K = 200 
When the Number of Registers is Reduced to 10, 8, or 7, Given as 
Relative Increase in Instruction Count. 

Lanauaqe: ALGOL BASIC BLISS FORFOR FORTEN Mean 

Bairstow IO rq .057 .OOO .005 .O17 .OO9 .O18 

8 rq .231 .OO1 .005 .136 .095 .094 

7 [q .371 .002 .009 .254 .184 .164 

Clout IO rq .077 .OOO .004 .440 .O16 .107 

8 [g .385 .OOO .004 .757 .022 .234 

7 [q .773 .OOO .004 1.O46 .097 .384 

Treesort iO rq .002 .OO0 .O11 .OOO .O15 .006 

8 [g .005 .ooo .O11 .OOO .o16 .006 

7 [g .007 .OOO .011 ~OOO .o16 .007 

PERT IO rg .O17 .OOO .OOO .004 .004 .005 

8 rg .133 .OOO .OOO .O36 .O38 .O41 

7 [q .213 .OO1 .OOO .O53 .O67 .070 

H~vie iO rq .060 .OOO .002 .OO1 .006 .O14 

8 [g .575 .OO1 .OO3 .005 .O45 .126 

7 [g .734 .003 .008 .O18 .O72 .167 

Isina iO rq .068 .005 .002 .005 .O20 

8 ~q .438 .005 .O10 .052 .127 

7 ~g .998 .005 .O31 .106 .285 

Secant iO rg - .004 .005 .005 

8 ~ q  - .012 .017 .O15 

7 rg - .O18 .023 .O21 

Proa[ammer: E B A G L Mean 

Aitken iO ra .003 .OO3 .002 .OO1 .002 .OO2 

8 ~q .003 .OO3 .OO2 .OO1 .OO2 .OO2 

7 [g .OO3 .OO3 .O13 .OO1 .005 .OO5 

Compiler: ALGOL BASIC BLISS FORFOR FORTEN Mean 

IO [g .O31 .OO4 .OOO .O13 .OO8 .O11 

8 ~o .O81 .O40 .OO2 .O72 .O16 .O42 

7 ~q .134 .085 .O10 .225 .030 .097 

Lanauaqe: MACRO ALGOL BASIC BLISS FORFOR FORTEN Mean 

Mean iO rq .O16 .047 .OOO .004 .067 .009 .035 

8 [q .064 .295 .OOO .004 .136 .O41 .079 

7 rq .148 .516 .OO1 .007 .202 .O81 .137 
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instructions to handle parameter transmission, return 
addresses, and to save and restore registers and other 
parts of the runtime representation. 

The cost of call administration is easily detected for 
BLISS programs, since stack instructions are used only 
in this context. There is, however, no reason to believe 
that this cost is less for other languages usually con- 
sidered to be "efficient." 

The BLISS compiler, which is written in BLISS, 
and which contains many small subroutines for trivial 
bookkeeping tasks, spent approximately 25% of its 
time (to compile the BLISS version of Treesort) in 
call administration. For  one of the F O R T R A N  com- 
pilers, which is also written in BLISS, the same number 
was approximately 15 %.5 

About ~ of the instructions executed by the BLISS 
compiler could be saved if the subroutine call and 
exit instructions (PUSHJ and POP J) were extended to 
manipulate the run-time registers, and to remove 
parameters from the stack on exit. 

This would reduce 6 or 8 instructions to 2, and 10 
or' 12 memory cycles to 5, for each subroutine call. 
This improvement would fit well into the existing in- 
struction format. In the case of F O R T R A N  programs 
it would be useful if parameter descriptors were recog- 
nized by the hardware, so that local copies of the actuals 
could be made by the calling instructions. 

The suggested improvements would force repre- 
sentations on the language implementors, and hence 
reduce flexibility. However, such representations are 
rarely changed once they are decided, so this would 
not be a serious objection, particularly not if the in- 
struction set were microprogrammed. 

Another observation is interesting in this context: 
From observing the use of the stack instructions, we 
know that the BLISS compiler saves and restores about 
16,000 registers per second (about 1.15 per routine 
call). This is the same number as would be saved and 
restored by 1,000 complete process swaps per second. 
We believe this to be a high frequency of process 
swaps for the KA-10 processor. Hence it seems that the 
cost of register saving caused by routine calls may be 
considerably larger than the corresponding cost caused 
by interrupts. 

One remark is in order: the BLISS compiler has 
very many small and frequently called subroutines, and 
is not typical of common or garden programs. We do 
not, however, consider this a deficiency. Subroutines 
are an important ingredient in structuring programs, 
and should be cheap to use. The experimental results 
support our plea for more efficient hardware to handle 
registers and state information in calling mechanisms. 

5.2.2 Vector descriptors and operands. A vector 
type should be introduced. This is motivated not only 
by the importance of vectors as a mathematical struc- 
ture, but also by the vector structure of central memory 
and the effect this has on program structure in general. 
A vector descriptor should be provided. This should 

Table XVII. Best Upper Bound for Relative Increase in Instruc- 
tion Count, Selected Subject Programs, Best K Tried. 

Lanquaqe: ALGOL FORFOR ALGOL FORFOR 

Algorithm Bairstow Bairstow Crout C~out 

Bedding cost .049 .O17 .078 .114. 

Interleavino cost .007 .O11 .OO1 .O15 

Total cost .O56 .028 .O79 .129 

K where obtained 25 40 27 22 

Same cost for K = 200 .231 .136 .385 .757 

Lanquaqe: ALGOL ALGOL ALGOL 

Alqorithm PERT H~vie Isinq 

Bedding cost .043 .065 .102 

Interleavinq cost .OO1 .OO5 .008 

Total cost .O44 .070 .iiO 

K where obtained 25 30 27 

S~me cost for K = 200 .133 .575 .438 

Table XVIII. Use of Test Instructions, Percentages of Total 
Instruction Count. 

Proqram type CooDilers 

Non- Highly Total 

numeric numeric subject 

programs programs s~t 

Instruction form 

Register vs. memory 3.0 4.9 4.5 4.5 

Reaister vs. immediate 7.7 1.7 I.O 2.1 

Memory vs. O 2.3 1.7 .9 1.3 

Reqister vs. O 2.5 1.8 2.1 2.0 

make no distinction between vectors allocated by the 
compilers, and those allocated at run time. Further- 
more, it should permit easy description of both row 
and column vectors of matrices. Operations should 
include common mathematical operators such as inner 
product, and also moves, summation, searches in 
ordered vectors etc. By permitting vectors of different 
lengths, and in particular length 1, interesting speciali- 
zations may be obtained, such as initialization by a 
constant value. 

Vector types would, in the extreme, change the 
ISP radically, as is exemplified by the CDC STAR. We 
do think, however, that some vector operations would 
be useful even in more conventional ISPs. Examples 
are frequent in our programs, although none are as 
dramatic as the others cited in this section. 

5.2.3 String handling. Introduction of a "character 
string" type would speed up the compilers by a sig- 
nificant amount. Instructions operating on this type 
should be controlled by a table, indexed by the set of 
possible characters. The options for each character 
should include substitution, removal, branching to a 
special action routine, and termination of the instruc- 
tion. It should be easy to use these instructions to 
change encodings, move strings, remove multiple 
blanks, remove extraneous characters etc. Analysis of 
routines for I /O  formatting, and of COBOL programs, 
would suggest further options. Typical examples which 
illustrate the need for such instructions come from the 
compilers, particularly from BASIC? 

5.2.4 Run-time support for languages. The routines 
for run-time space management, parameter transmis- 
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sion and similar functions in A L G O L  and similar 
languages are exceedingly expensive. They may con- 
sume as much as 50 % of the execution time of some 
A L G O L  programs? 

5.2.5 Miscellaneous data operators. Other data 
operators which could be included are: memory to 
memory moves (unless subsumed under the vector 
type), type conversions, and packing and unpacking of 
partwords. Some of these are already in the DECsys- 
teml0 ISP, but are not accessible to high-level language 
programmers. Hence this is a language problem as 
much as an ISP problem? 

5.2.6 Loop control. There should be an instruction 
for loop control which increments a fullword counter 
in one register and tests it against a fullword upper 
bound in another register. This instruction is also easily 
accommodated within the DECsysteml0 ISP structure. 
It would save up to 5 % of the execution time of some 
programs, reduce program size, and increase read- 
ability? 

6. C o n c l u s i o n s  

In spite of the restricted set of experiments per- 
formed, we believe some of the results produced to be 
valid, not only for the DECsysteml0, but for all 
register structured ISPs. This is in particular true for 
the results on simultaneous use of registers, and on the 
cost of  subroutine calls. 

It seems, for instance, that eight registers would be 
sufficient for a general register ISP similar to the 
DECsysteml0.  The result is no longer valid when the 
registers are used for other tasks than in this ISP, such 
as base register addressing, program counter, hard- 
ware defined stacks, etc. 

Similarly the results on overhead in subroutine 
calling are both important and portable. Results from 
other ISPs would often exhibit an even worse situation, 
since the handling of  return linkages for recursive or 
reentrant subprograms is more cumbersome. On the 
other" hand, the situation can easily be improved by 
introducing instructions tailored to the needs of the 
commonly used languages. An ideal solution would be 
to permit a restricted form of writable microprogram, 
defining special instructions for each language. This 
would also be helpful with respect to run-time support 
for A L G O L  and other languages. 

Some of the results presented here and in [10], 
particularly those stemming from unnecessary gen- 
erality, might seem like a severe criticism of the 
DECsysteml0. This is a consequence of the deplorable 
fact that our methods only measure the time cost of 
ISP features. The richness and generality of the 
DECsysteml0 ISP make it a good ISP to program for, 
and contribute to a low programming cost and a low 
memory space for programs. For our other points of  

criticism we note that although the DECsysteml0 
leaves room for improvement, the problems we point 
out are not solved in a better way in other common 
ISPs. 

Our work has barely scratched the surface of  a 
large area of investigation. In particular, it would be 
interesting to study information used for address calcu- 
lation and information used for control purposes. We 
would like to know more about how such information 
is computed, and how the two kinds interact. We hope 
to make this the subject of further research. The various 
solutions to the addressing problem for test instruc- 
tions should also be investigated. 
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Notes 
1. By an Instruction Set Processor, or ISP [3], we mean the 
logical processor which processes the instruction set, as divorced 
from its physical realization. Example: The IBM 360/370 is one 
ISP which has several physical realizations. 

2. This is illustrated by the following sequences from the BLISS 
compiler: 

P U S H  P U S H J  JSP P U S H  H R R Z  (14.3% of  the execution t ime) 
J R S T  POP POPJ  SUB (7.2% of  the execution time) 
J R S T  POP POP POPJ  SUB (3.5% of  the execution time) 

Only 3 of these 14 instructions are used in connection with pa- 
rameter transmission; the rest are used for state saving, environ- 
ment definition, and linkage handling. 

3. The sequence: 

SKIPE  I L D B  J R S T  CAIE C A I N  C A I N  C A I E  C A I N  CAIE C A I N  C A I G  C A I A  
C A I G E  IDPB SKIPE  SOSLE A O J A  

consumed 20.7% of the compilation time. Its purpose is to move a 
line while removing extraneous characters like TABs, LINEFEEDS, 
etc. Similarly the sequence 

ILDB C A I N  IDPB J R S T  

moves a line stopping at a RETURN. It consumed 8% of the com- 
pilation time. 
4. The following example is from the Ising program: 

AOBJP  M O V E  M O V E  A D D I  H L L Z  SETZB R O T C  E X C H  R O T C  R O T  A N D I  
H L R Z  H R R Z  A N D I  LSH A N D I  LSH 

It consumed 19% of the time. From PERT we have: 

X C T  P U S H J  P U S H J  M O V E  P U S H  M O V E I  M O V E  P U S H  H L R Z  P U S H J  
M O V E  A D D  M O V E  POPJ  POP POP T L N E  a o a J  M O V E  P O P J  

This is a complete call of a formal parameter by name (thunk), 
starting at the call within the procedure body (XCT) and ending 
at the POPJ back into it. The actual parameter is a vector element. 
Time consumed by this sequence was about 20% of the total. 

5. An example is the sequence MOVE IDIV, used to unpack left 
halfwords, which consumes 45% of the time for the FORTEN 
version of Treesort. The HLRZ instruction used for the same 
purpose in the BLISS version consumes only 7.5% of the time of 
that version. The rest of these routines are about equally efficient. 

6. The function shows up as: 

A D D I  A O J L  or G A M G E  A O J A  M O V E M  in F O R T R A N  
JRST AOS C A M L E  in A L G O L ,  
M O V E  F A D R  .1RST C A M L E  M O V E M  in BASIC, and 
A O J A  C A M L E  in BLISS. 
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This  paper  presents  a eomputa t iona l ly  t rac tab le  
methodology  for including accura te ly  the effects of  
finite memory  size and workload  memory  requirements  
in queueing network models  of  computer  systems.  
Empi r i ca l  ana lyses  and ana ly t ic  studies based on 
app ly ing  this methodology  to an ac tua l  mult iaccess 
interact ive sys tem a re  reported.  Relat ions  between 
work load  variables such as  memory  requirement  
dis tr ibut ion and job swap time, and performance measures  
such as  response t ime and memory  uti l izat ion are  
graphica l ly  displayed.  A mult iphase,  ana ly t i ca l ly  soluble 
model  is proposed as  being b road ly  appl icable  to the 
analys is  of  interact ive computer  systems which use 
nonpaged  memories.  
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