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As vehicles have become increasingly automated, novel vehicular applications have emerged to enhance the

safety and security of the vehicles and improve user experience. This brings ever-increasing data and resource

requirements for timely computation by the vehicle’s on-board computing systems. To meet these demands,

prior work proposes deploying vehicular edge computing (VEC) resources in road-side units (RSUs) in the

traffic infrastructure with which the vehicles can communicate and offload compute-intensive tasks. Due to

the limited communication range of these RSUs, the communication link between the vehicles and the RSUs

— and, therefore, the response times of the offloaded applications — are significantly impacted by vehicle

mobility through road traffic. Existing task offloading strategies do not consider the influence of traffic lights

on vehicular mobility while offloading workloads onto the RSUs. This causes deadline misses and quality-of-

service (QoS) reduction for the offloaded tasks. In this article, we present a novel task model that captures time

and location-specific requirements for vehicular applications. We then present a deadline-based strategy that

incorporates traffic light data to opportunistically offload tasks. Our approach allows up to 33% more tasks

to be offloaded onto RSUs compared with existing work without causing deadline misses, maximizing the

resource utilization of RSUs.
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1 INTRODUCTION

The presence of smart vehicles with varying levels of connectivity and autonomy is rapidly be-

coming prominent on today’s roads. Vehicles are now equipped with advanced sensing, communi-

cation, and computation capabilities as they transition from being human driven (Level 0) to fully
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autonomous (Level 5) as per vehicular automation standards [36]. These capabilities will enable ad-

vanced driving assistance (ADAS) applications that will help vehicles make precise driving maneu-

vers and enhance overall safety, security, and user experience in complex road traffic scenarios [42].

Examples of such ADAS applications include (but are not limited to) lane keeping assist (LKA), lane

change assist (LCA) [8], and cooperative advanced cruise control (CACC) [30]. While the vehicles

have dedicated on-board sensing and processing to support safety-critical driving applications, it

is also necessary to support other data and computationally intensive vehicular applications that

enhance passenger experience. Applications involving media-rich infotainment, augmented real-

ity (AR)–based media streaming, collaborative data aggregation, and interactive user applications

are resource intensive [16] and have timeliness and quality-of-service (QoS) requirements even

though they may not be safety-critical applications.

Cloud servers provide additional storage and computational resources to satisfy these increasing

demands. However, the latency of wireless channels for such long-range communications tends to

be a bottleneck [23]. The upcoming vehicular edge computing (VEC) paradigm provides an attrac-

tive alternative to cloud computing solutions. Under the VEC framework, edge servers are deployed

near the vehicles and provide additional compute and storage resources. Additionally, VEC relies

on network technologies such as dedicated short-range communication (DSRC) and 5G-based cel-

lular vehicle-to-everything (CV2X) connectivity that enable high-throughput short distance com-

munication between vehicles and the edge servers deployed along the roadways [1]. Data and

connectivity among the entities within the traffic ecosystem —such as roadside sensors, vehicles,

and traffic lights —can now be leveraged to implement novel algorithms that enhance the overall

QoS and performance of various automotive applications [15, 46]. Such localized data can be made

available on an edge platform. Therefore, VEC is a promising approach to handle the data and

computationally intensive vehicular tasks with soft real-time requirements.

In a typical VEC network, road-side units (RSUs; e.g., traffic lights, cameras, detectors) are

equipped with additional storage and compute resources. Vehicles can communicate and offload

workloads onto the edge-enabled RSUs via V2X communication with significantly reduced com-

munication latency when they are within communication range of a nearby RSU. Recent stud-

ies are focused on finding appropriate RSU resources to opportunistically offload tasks to meet

the timeliness and resource requirements as the vehicles drive in and out of RSU communication

range [18, 47, 51, 52]. Figure 1 depicts a typical task-offloading scenario such that the timeliness

requirements of the task are met. In Figure 1, as the vehicle travels along a road link, it communi-

cates with the nearby RSUs to upload a task. The task is then processed at one of the RSUs and the

results are downloaded back to the vehicle. As the vehicle travels, the traffic light status changes,

which impacts the speed of the vehicle and, hence, the location where the task is uploaded to and

downloaded from the RSUs. The timeline graph in Figure 1 depicts the total offload time, including

processing time and communication delays, details of which are discussed in later sections.

A vehicle can successfully communicate, exchange data and offload tasks with an RSU while it is

within the communication range of the RSU. In dense traffic networks, the time during which the

vehicles can maintain communication with a nearby RSU changes frequently. A vehicle cruising

through a green light may spend very little time within the range of one RSU but can communicate

for a significantly longer time with another RSU while waiting at a red traffic light. Therefore,

traffic conditions and vehicular mobility significantly impact the communication link between

vehicles and RSUs and, therefore, the choice of RSUs to offload the tasks.

In addition to influencing the communication between vehicles and RSUs, vehicular mobility

and traffic conditions also affect the requirements of many novel vehicular applications [11, 14].

For example, consider a dynamic routing application on a vehicle that finds an optimized route to

a preferred destination based on collaborative data from surrounding vehicles. If an optimal route
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Fig. 1. Offloading scenario of task τi uploaded at RSUu , computed at RSUc and then downloaded at RSUd ,

with completion time of the task as tul
i + ρuc + t

c
i + ρcd + t

w
i + t

dl
i .

for the upcoming intersection is to be calculated and the vehicle is waiting at a red traffic light,

the routing task need not be completed until the light turns green and the vehicle starts moving to

cross the intersection. Traditional VEC task models do not account for such tasks whose deadlines

depend on traffic flow and traffic light data when the task arrives. To support emerging applica-

tions [46], we propose a comprehensive task model comprising tasks that have static deadlines,

as in traditional task models, while other tasks have location- or distance-specific deadlines along

with the computation requirements. Figure 2 shows an example in which light timings influence

the vehicular mobility characteristics, which, in turn, affect the communication times and tasks

with dynamic deadlines. As shown, consider a vehicle traveling through a road link devoid of traf-

fic, controlled by a traffic light. If the traffic light is green, it will spend similar amounts of time

within the communication range of each RSU along its way as it drives at a constant speed. How-

ever, if the traffic light is red, the same vehicle will spend a much longer time within the range of

the RSUs closer to the traffic light as it slows down to come to a stop.

Existing offloading strategies select RSUs based on an underlying goal of minimizing task com-

putation [50], resource utilization [34], bandwidth usage [38], or access costs [26]. As vehicles

enter a lane in a sequential manner and RSUs are only accessible once the vehicle is in communi-

cation range, greedy approaches offload the tasks for the earlier-arriving vehicles on the RSUs that

are located closer to them when the tasks arrive even if they have a later deadline. This blocks the

later-arriving tasks (and vehicles) from accessing these resources even if they have earlier dead-

lines. For example, in Figure 3, an earlier-arriving vehicle (Vi , marked in red) ends up utilizing the

first available resource (RSU1) due to a greedy offloading mechanism even though its task, τi , has

a later deadline. When a later-arriving vehicle (Vi+1, marked in blue) has a more urgent task (τi+1)

to offload, the resources are blocked by τi , leading to τi+1 missing its deadline. Therefore, existing

approaches fail to maximize the number of tasks that can be offloaded onto the edge.

By offloading as many resource-intensive tasks with less stringent timing requirements onto

RSUs, vehicles not only maximize resource utilization at RSUs, but also allow on-board processors

to prioritize on time- and safety-critical applications. Since VEC tasks have soft real-time require-

ments, the system accrues minimal benefit in completing tasks well before the deadline. Missing

the deadline, however, leads to reduced QoS. By using our deadline-based task-offloading strat-

egy in which we offload tasks such that they complete closer to the deadline, we ensure that the
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Fig. 2. Influence of traffic lights on dwell times: Vehicle spends significantly longer time within the range of

RSUm when the light is red (top) in comparison with a situation in which the light is green (bottom). δi j is

the dwell time of vehicle Vi in the communication range of RSUj .

Fig. 3. Offloading tasks without considering the traffic lights affecting vehicular mobility. Task τi+1 would

miss its deadline; hence, the existing strategies would drop the task and choose not to be offloaded.

offloaded tasks meet their deadlines and that more tasks can be offloaded onto the edge without

blocking resources for later-arriving tasks.

To summarize, our contributions are as follows:

• To combat the shortcomings of the existing VEC models that only consider tasks with static

deadlines, we present a comprehensive model that consists of tasks with fixed time-based

as well as dynamic distance-based deadlines based on traffic flow, traffic lights, and the

location requirements of the task.

• We incorporate traffic light timing data to calculate (i) the mobility characteristics and

travel time for vehicles and (ii) timing requirements for tasks with dynamic distance-based

deadlines.
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• We propose a task-offloading strategy that allocates RSUs to complete tasks as close to the

deadlines as possible, thereby maximizing the tasks offloaded without violating the task

deadlines.

• We evaluate our proposed approach against existing offloading strategies using VISSIM [10],

a microscopic traffic simulator.

1.1 Article Structure

The remainder of this article is divided into the following sections. Section 2 provides a survey of

prior work in task-offloading techniques on the VEC platform. Section 3 presents our system model

with details on the traffic infrastructure, task model, and assumptions in our communication frame-

work. In Section 4, we provide details on our proposed deadline-based task offloading approach

and the algorithm used to find appropriate computing resources to process the tasks. In Section 5,

we evaluate the performance of our proposed approach when compared with other existing task-

offloading algorithms. Section 6 contains concluding remarks and insights into future work.

2 RELATED WORK

With increasing demands for performance, data- and compute-hungry processes on mobile de-

vices induced breakthroughs in small-cell network, multi-antenna, and millimeter-wave commu-

nications to provide highly reliable and gigabit wireless access to next-generation systems [44].

Due to these advancements it became possible to utilize external network–based storage and com-

pute resources to satisfy the demands. Mobile cloud computing (MCC) was a promising solution

for offloading workloads from a plethora of connected devices. Many existing works have focused

on tackling various connectivity, resource, mobility, and network latency constraints to optimize

the utilization of MCC [4, 21, 37].

As connectivity penetrated vehicles and traffic infrastructure, vehicular cloud computing (VCC)

became prevalent to enhance safety, security, and user experience for vehicular application-specific

workloads [25]. Various architectures were proposed to enable cloud-based computation for vehic-

ular applications [3, 19]. Efforts have also been made to make VCC more efficient via optimized

resource allocation techniques [48], and more secure [40] and more energy-efficient [43] to allow

its widespread adoption. However, many emerging vehicular applications require large amounts

of data to be processed with strict response times and network bandwidth constraints. To meet

these demands, the vehicular edge computing (VEC) paradigm was introduced [41], in which stor-

age and compute nodes were brought closer to the proximity of the end user, greatly reducing the

network latency [7] and energy consumption [35].

Recent studies have proposed various task-offloading mechanisms to offload more tasks from

the vehicle onto the edge platform [13, 41]. In addition to offloading tasks, many researchers have

also provided resource allocation mechanisms to maximize the utilization of the limited compute

resources available at the edge [9, 49]. The authors of [41] propose an offloading mechanism for

complex vehicular tasks with dependencies. In [26], a matching-based approach was proposed to

jointly offload vehicular tasks and allocate resources on the edge. While most of these techniques

focus on offloading tasks and utilizing the edge resources deployed along the RSUs of the traffic

infrastructure, many researchers also propose a vehicular fog computing (VFC) architecture in

which the resources available on other vehicles driving in the vicinity or parked vehicles are uti-

lized to meet demands. Solutions proposed for utilizing the VFC framework are out of the scope

of our work; interested readers can refer to existing literature [22, 27]. None of these proposed

solutions, however, considers the mobility constraints in a vehicular environment.

Vehicular mobility can significantly impact resource utilization as well as task allocation onto

the edge. Novel task offloading and resource allocation mechanisms have been proposed that
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incorporate a driving model for vehicles [2, 5, 52]. However, the driving models used in these work

are simplistic and do not accurately represent vehicular mobility in urban driving conditions.

In a highly dynamic urban environment, vehicles’ mobility is heavily affected by speed limits,

traffic density, traffic lights, and more. A holistic solution is required that is applicable in varying

traffic conditions by incorporating mobility constraints to accurately offload tasks and allocate

resources. To that end, in our proposed work, we overcome the shortcomings of existing task of-

floading strategies by using a robust driving model that utilizes traffic light timings to estimate a

vehicle’s mobility. Additionally, we propose a task model that closely represents vehicular work-

loads and provide a task-offloading strategy that meets the timeliness constraints of the tasks.

3 SYSTEM MODEL

We now look at the VEC system model and its individual components pertaining to traffic

infrastructure, vehicular maneuverability, edge computing tasks, and the VEC communication

framework.

3.1 Traffic Infrastructure

We represent a single road link that connects two consecutive intersections as link L. This link

L has length dL with a posted speed limit of ν l im for traffic flowing along link L to approach

an intersection within an urban traffic network. Link L can have one or more lanes {l1, . . . , lk },
where each lane li is individually controlled using a traffic light (si ) located downstream of the

traffic flow. The traffic lights follow a cycle of green-yellow-red lights and are enabled with edge

connectivity, resembling a traffic light with a fixed cycle time or a state-of-the-art traffic controller

for which timings are known for a fixed prediction horizon [31]. The traffic lights have connectivity

to broadcast traffic light data to the connected infrastructure. This traffic light data consists of its

current state (ψsi
= {red,дreen,yellow }), remaining time in current state (tr em

si
), maximum red

(tr
si

), green (t
д
si

) and yellow phase time (t
y
si

), and the cycle time (t
cycle
si

= tr
si
+ t

д
si
+ t

y
si

).

3.2 VEC Task Model

As introduced in Section 1, existing task models consider only those tasks with fixed time-based

deadlines. In this work, in addition to tasks with static deadlines, we introduce dynamic distance-

based tasks that represent novel VEC applications and workloads. Such tasks have dynamic dead-

lines based on distance-specific requirements specifying that the tasks need to be completed

before the vehicle has travelled a certain distance from the time the task arrives. Based on traf-

fic flow, lights status, and vehicular maneuvering characteristics, the time requirement for such

tasks changes dynamically.

We therefore consider a task model in which a task can be either of the following:

(1) Regular task: Similar to prior methodologies, such a task has a fixed deadline based on a time

before which the task must be executed.

(2) Distance-based task: Such a task has a deadline based on a distance before which the task

must be executed.

Any task τi originating from vehicle Vi has an arrival time (ai ), upload size (σul
i Mb), computa-

tional requirement (Ci clock cycles), download size (σdl
i Mb) and a deadline (di ). Note that di = d

x
i

or di = d
t
i depending on whether it is a distance-based task or regular task, respectively. Therefore,

τi is represented as a 5-tuple τi = (ai ,σ
ul
i ,Ci ,σ

dl
i ,di ).

A distance-based deadline can be translated into a regular time-based deadline based on the

vehicle’s maneuvering capabilities. When the same distance-based task is spawned from two
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different vehicles, the task spawned from a slower-moving vehicle that needs to go through multi-

ple red lights will have a later time-based deadline compared with the task spawned from a faster

moving vehicle that always gets a green signal at the traffic lights. Note that our model assumes

that all offloaded tasks are independent tasks. In the case of tasks with dependencies, our model

can be utilized by decomposing interdependent tasks into multiple independent subtasks with lo-

cal deadline assignments [29]. Further, the tasks are assumed to have negligible or bounded jitter

and additional buffers can be added to task execution times to account for it. However, the analysis

of our model with such tasks is beyond the scope of this discussion and is left for future work.

3.3 VEC Infrastructure

A typical VEC framework consists of (i) a main base station (MBS), (ii) edge-enabled RSUs, and

(iii) connected vehicles requiring edge resources.

An MBS communicates wirelessly with all vehicles via a high-throughput wired connectivity

with edge-enabled RSUs, within its communication range. MBSs have a larger communication

range than other edge-enabled RSUs, as they cover multiple intersections in a traffic network. RSUs

comprise infrastructure (e.g., traffic lights, sensors, cameras) that are equipped with additional

compute, storage, and communication resources. RSUs communicate with vehicles within their

range via short-range wireless connectivity (fe.g., 5G-CV2X). All RSUs are connected via a wired

backhaul network and are distributed along the roadside such that the entire road link is covered

without any blind spots. Additionally, in our model, the RSUs do not share the processing resources.

Therefore, tasks cannot be partially executed on different RSUs. Finally, the vehicles requiring edge

resources communicate with the MBS and the RSUs to offload VEC tasks. A detailed description

of such a framework can be found in [25].

Edge Infrastructure: The road link L will have RSUs deployed alongside to cover the entirety

of the link L, including all of its lanes. Further, the RSUs are located such that there is no overlap in

the communication radius of two contiguous RSUs. Any ith RSU along the link L has a fixed com-

munication radius (ri ), number of parallel processors (pi ), and a clock speed (zi ). The RSUs have

strict power consumption requirements as they are deployed at remote locations due to which the

transmission power is limited [20]. The communication radius is therefore determined using Friis’s

equation [39] to ensure a stable link between the vehicles and the RSU. The number of processors

and the clock speeds of each processor at an RSU are also chosen based on the power consump-

tion requirements and edge resource demands. Optimal placement of RSUs and edge services is

an ongoing research problem [17] and is beyond the scope of this work. In short, our system con-

siders m RSUs (i.e., RSU1, . . . ,RSUm), which are deployed alongside link L of length dL such that∑m
i=1 2ri = dL (since no overlap in RSU range) where ri is the communication range radius of RSU i .
Channel Bandwidth and Connectivity: The VEC framework consists of (i) a wired optical

fiber-based backhaul network connecting all of the RSUs and the MBS, (ii) a low-latency short-

range wireless network between the vehicles and RSUs, and (iii) a wireless long-range connectivity

between the vehicles and MBS.

Based on the upload (σul
i ) and download (σdl

i ) size of the task, there is a corresponding up-

load (tul
i j ) and download (tdl

i j ) time based on RSU j’s channel characteristics. For simplicity, we con-

sider that all RSUs have similar noise conditions and transmit power, and hence a fixed and equal

η. We also assume that the transmit power is adjusted such that the signal-to-noise ratio remains

constant within the short range of communication of an RSU. However, in a more comprehensive

setting that is significantly impacted by noise with varying channel conditions, existing formu-

lations [33] can be used to determine the data transmission rate η between the communicating

entities.
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Alternately, the wired backhaul network is a high-throughput channel with minimal latency.

Due to high bit rates, for smaller workloads, the relay time (ρ jk ) between two RSUs, RSUj and

RSUk , depends on the distance between the RSUs. It can be defined as

ρ jk = ηbh · cbh (k − j ),∀j,k ∈ [1,m], j < k, (1)

where cbh is the minimum transmission relay time between two consecutive RSUs [13] and ηbh is

the data rate for backhaul network.

3.4 Vehicle Maneuver Model

We consider that all vehicles within our system are fully connected and have automation capabil-

ities of level 3 and beyond as per automation standards [36]. Such vehicles can drive and perform

maneuvers in an automated manner with some (level 3) to no (level 5) intervention from the human

driver. Such vehicles have already started operating on today’s roads [12] and have an increased

demand for edge resources as they need the on-board processors for performing real-time driving

maneuvers. These vehicles deploy an advanced driving assistance and maneuvering model to estab-

lish real-time control of the vehicle and navigate it through the traffic network. The vehicles also

broadcast body safety messages (BSMs) to the MBS and other infrastructure in the vicinity. BSMs

are safety messages that the connected vehicles broadcast periodically to inform the infrastructure

of their driving characteristics.

We denote the ith vehicle in our system byVi . In our system,Vi will enter a lane within L driving

at a speed of νi and perform one of the following driving maneuvers at any point in time:

(1) Constant speed: Vi maintains a constant speed of (i) νi = ν l im if there is no leading vehicle

in front, (ii) νi = νi−1 in the presence of a leading vehicle Vi−1, or (iii) νi = 0 if the Vi is

stationary at the traffic light.

(2) Comfortable acceleration: Vi may need to accelerate due to a light turning green or a leading

vehicle accelerating, and it does so at a constant deceleration rate of a.

(3) Comfortable deceleration: Vi may need to slow down due to a red light or a slowly moving

leading vehicle and it does so at a constant deceleration rate of −b.

Similar driving maneuvering mechanisms were used in closely related work [26, 52] for task

assignments in urban scenarios, but without considering traffic lights.

The acceleration and deceleration rates are chosen with the comfort of the passengers within the

vehicles as well as the surrounding pedestrians and vehicles in mind [6]. The vehicles also maintain

a safe distance of x
saf e
i = hνi + xsaf e from their leading vehicle using CACC techniques, where h

denotes a constant time headway, νi is the driving speed ofVi , and xsaf e is the minimum safety gap

at standstill [45]. For consistency, we assume that all vehicles use the same maneuvering model

to allow for a realistic simulation setup. However, it should be noted that our proposed offloading

strategy is model agnostic.

Upon entering the linkL, a vehicle communicates its location and speed via BSMs to the MBS and

requests for RSU allocation to upload, compute, and download a task. In our model, we consider

worst-case task-offloading demands in which every vehicle, upon entering a link, will always have

a task to offload with varying timing, computation, and location requirements.

4 DEADLINE-BASED TASK OFFLOADING

This section describes our proposed task-offloading strategy for VEC systems. We first provide

highlights of the VEC task-offloading process.
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4.1 VEC Task Offloading

Based on the system model described so far, a typical task-offloading process from a vehicle onto

the edge is as follows:

(1) A vehicle requests the MBS to offload and compute any VEC tasks onto the RSU resources.

(2) The offloading request also consists of the task requirements, such as the arrival time, com-

putation requirement, deadline, and upload and download size of the data, which is commu-

nicated via the on-board cellular network capabilities.

(3) Optionally, the MBS checks whether the task can be completed before its deadline if offloaded

onto the processing units available at the RSUs, in a deadline-aware approach.

(4) If the task requirements are feasible, the MBS deploys a task-offloading strategy to assign

the requesting vehicle to RSUs where the task can be uploaded, computed, and downloaded

and accordingly reserves processing units to perform the computations.

(5) Upon entering the communication range of the assigned RSUs, the vehicle communicates

with the RSUs using short-range low-latency communication channels to upload and subse-

quently download the task and its results back onto the vehicle.

Therefore, the total completion time of a task (as shown in Figure 1) depends on (i) task upload

time (τul
i ); (ii) task relay time (ρuc ), that is, the time taken to relay the task data from the RSU

where the task was uploaded to the RSU where the task is to be computed; (iii) task compute time

(τ c
i ); (iv) task relay time (ρcd ) from RSU where the task is computed to the RSU from where the task

will be downloaded; (v) wait time (τw
i ) for the vehicle to enter the communication radius of the

RSU where the task is to be downloaded from; and, finally, (vi) task download time (τdl
i ). Figure 1

depicts a typical offloading scenario of task τi with an arrival time of ai and a deadline of di .

Selection of RSUs and Dwell Time Estimation: The total completion time of a task must

not exceed its deadline to ensure that it meets the deadline. Therefore, the MBS must select ap-

propriate RSUs to upload (RSUu ), compute (RSUc ), and download (RSUd ) the task so that the total

completion time meets its deadline constraint. To avoid communication interrupts and retries, the

vehicle requesting the VEC resource must remain within the range of RSUu and RSUd for a dura-

tion that is at least equal to the upload and download time of the task. This time duration is known

as dwell time, which indicates the approximate amount of time that a vehicle spends within the

communication range of each RSU. Dwell time for vehicle Vi within the communication range of

RSUj is denoted by δi j ,∀j = 1, . . . ,m. The MBS derives the dwell times based on the vehicle’s

mobility characteristics.

Our deadline-based offloading strategy consists of offloading tasks such that they complete as

close to the deadline as possible by using the following example.

4.2 Motivating Example

Consider a VEC system described in Section 3.m RSUs are deployed along the link L of lengthdL , of

which RSU2, . . . ,RSUm−1 are occupied by other compute-intensive tasks. The only two resources

available for offloading tasks are RSU1, located at the entry of link L, and RSUm , located at the

end of link L near the traffic light sL . Vehicle Vi enters link L at time t0 and requests to offload τi ,

followed byVi+1 entering link L at time t1 = t0 + 1 requesting to offload τi+1. τi is a distance-based

task such that it must complete before Vi crosses the traffic light sL and, therefore, exits RSUm ’s

range. Alternately, τi+1 is a time-sensitive task with a deadline of 3 seconds with reference to its

arrival time. The characteristics of both tasks are as follows: tul
i = 0.2 s, tc

i = 3 s, and tdl
i = 0.2 s,

and tul
i+1 = 0.1 s, tc

i+1 = 2 s, and tdl
i+1 = 0.1 s. Both vehicles enter the link driving at the speed limit

(νi = νi+1 = ν l im ). The travel time between RSU1 and RSUm is 25 seconds when driving at the
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Fig. 4. Task offloading with mobility characteristics using traffic light data. Both tasks meet their respective

deadlines.

speed limit. Dwell times for vehicles Vi and Vi+1 within the range of RSUs 1 andm are δi1 = δim =

δ (i+1)1 = δ (i+1)m = 3.7 seconds.

4.2.1 Offloading with Existing Approach. As shown in Figure 3, an existing approach such

as that described in [26] offloads tasks to minimize the total completion time but does not account

for traffic lights. Since the total completion time for τi if uploaded, computed, and downloaded

at RSU1 is 3.4 seconds (as per task characteristics), which is less than δi1, RSU1 will be selected

for upload, compute, and download. When τi+1 arrives, the only available RSU to offload is RSUm .

Offloading τi+1 onto RSUm requires Vi+1 to travel for 25 seconds, which adds to the completion

time of the task. This leads to a deadline miss for τi+1. Therefore, with an existing strategy, only τi

task will be offloaded onto the RSU.

4.2.2 Offloading with Deadline-Based Approach. When τi arrives at t0, ψsi
= red and has a re-

maining time of 45 seconds. Since the travel time from RSU1 to RSUm is 25 seconds, the vehicleVi

will travel through the link and wait at the traffic light until it turns green. Since τi is a distance-

based task with the deadline coinciding to when it crosses the link and the vehicle will take

45 seconds (until the light turns green) to cross the link, the estimated deadline for the task τi will

be 45 seconds. As per our strategy, the task must be completed closer to the deadline. Therefore,

RSUm will be selected for offloading the task τi , even though uploading, computing, and down-

loading τi onto RSUm incurs a higher completion time (28.4 seconds, including travel time). Note

that τi still meets its deadline. When τi+1 arrives at t1, RSU1 will be available. Hence, τi+1 will be

uploaded, computed, and downloaded on RSU1. Therefore, with our deadline-based, just-in-time

task-offloading strategy, (i) we maximize the number of tasks that can be offloaded onto the RSUs

and (ii) meet deadlines for all offloaded tasks, see Figure 4.

In a typical urban traffic environment with multiple traffic intersections, traffic conditions evolve

continuously. In a connected environment, real-time traffic data are made available to monitor

and predict as vehicular traffic evolves. We have shown in Section 3 that in VEC applications,

tasks have a strong dependency on vehicle maneuvers. By offloading tasks closer to the deadline,

it allows making scheduling decisions based on real-time traffic conditions, which minimizes re-

computation of tasks in case the vehicle’s state changes after uploading the task. Additionally, since

most VEC tasks utilize data from vehicles and their surroundings delaying processing closer to the
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deadline enables utilization of the most recent data. Furthermore, prior works that utilize just-in-

time scheduling in IoT applications have shown better bandwidth and resource utilization, with

increased QoS [28]. When network conditions are known, approaches with just-in-time scheduling

have shown reduced deadline miss ratio and packet drop ratio [24]. Network routing and vehicular

traffic routing draw many similarities in their functions [47], which motivates us to explore our

proposed deadline-based task-offloading approach.

4.3 Deadline-Based Approach

Elaborating on the motivation, we propose a deadline-based task-offloading strategy that (i) in-

corporates traffic light data to estimate the dwell time for the vehicles within each RSU’s range;

(ii) ensures that all task requirements, including distance-based deadlines, are met for offloaded

tasks; and (iii) offloads tasks such that they complete closer to the deadline, thereby maximizing

the number of tasks being offloaded.

We break down the task offloading strategy deployed over the MBS) into three phases: (i) esti-

mating the mobility and timing characteristics of the vehicles, (ii) calculating the dwell times based

on the mobility characteristics, and (iii) finding the appropriate RSUs to meet the task deadlines

and offload tasks closer to the deadline.

4.3.1 Estimating Mobility Characteristics. We consider that link L consists of a single lane con-

trolled by a traffic light s . However, our model can be extended to multiple lanes and traffic lights.

The MBS acquires the traffic light data consisting of its current state (ψs ), remaining time in current

state (tr em
s ), and maximum times for green, yellow, and red phases, that is, t

д
s , t

y
s , and tr

s , respec-

tively. Based on the driving model and its maneuvers — that is, (i) constant speed, (ii) accelerating

at the rate of a m/s2, or (iii) decelerating at a rate of −b m/s2 — the MBS determines the trajectory

of vehicleVi while driving through link L of lengthdL with a speed limit of ν l im . The rate of change

in speed is denoted by α ∈ {a,−b} based on the maneuver. To determine the distance and timings

within each driving maneuver, the MBS utilizes commonly known kinematics Equations (2), (3),

and (4), where ν0, t0, and x0 determine the initial speed, time, and position at the beginning of a

maneuver while νf , tf , and xf determine the speed, time, and position at the end of a maneuver.

tf = (νf − ν0)/α , (2)

xf = ν0t0 − 0.5αt2
0 , (3)

ν2
f = ν

2
0 + 2αx0 (4)

We then determine the safe stopping distance (x
stop
i ), which denotes the distance required for

vehicle Vi to come to a complete stop from driving at the speed limit ν l im with a deceleration of

−b (Equation (5)). t
stop
i denotes the time spent in traveling x

stop
i distance (Equation (6)).

x
stop
i = (0 − (ν l im )2)/(−2b), (5)

t
stop
i = (0 − ν l im )/(−b). (6)

In a typical traffic infrastructure, the yellow light time t
y
s is tuned such that t

y
s = t

stop
i , which

allows vehicles to safely decelerate and come to a halt upon encountering a traffic light. Any

vehicle that is more than x
stop
i distance away from the traffic light will consider the yellow phase

as red and would decelerate to come to a stop. Alternately, vehicles less than x
stop
i distance away

from the traffic light will perceive the yellow phase as a green light and would continue driving at

their current speed to avoid sudden uncomfortable deceleration and/or acceleration. Therefore, to
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avoid ambiguity in formulation, a yellow phase of the traffic light is considered a part of the green

phase in our formulation.

A vehicle’s mobility in a single lane link will be influenced only by the traffic light or another

leading vehicle in the lane. To simplify the formulation of the mobility characteristics, we first

consider the case in which a vehicle enters an empty link with no vehicles in front and, therefore,

its maneuvering decision is solely dependent on the traffic light timings.

Case 1: A vehicle enters an empty link controlled by a traffic light. Based on the traffic light

status and timings acquired by the MBS upon the arrival of the vehicle Vi , we define Property 1.

Property 1 (Case 1). A vehicleVi entering an empty link L of length dL with no vehicles in front

that has a safe stopping distance and corresponding time of x
stop
i and t

stop
i , respectively, will drive at

the speed limit ν l im until the vehicle is x
stop
i distance and correspondingly t

stop
i time away from the

traffic light, irrespective of the traffic light state and timings.

Based on Property 1, we calculate the distance xconst
i and the corresponding time tconst

i for

which the vehicle drives at the speed limit in a link L of length dL with traffic lights located at the

end of the link using Equations (7) and (8).

xconst
i = dL − xstop

i , (7)

tconst
i = xconst

i /vl im . (8)

Based on the traffic light state and timings, the vehicle will Case 1(a), drive through the entire

link at the speed limit; Case 1(b), drive at the speed limit until it encounters a red traffic light

when it decelerates to a halt; or Case 1(c), drive at the speed limit until it encounters a red light to

decelerate and accelerate again without coming to a halt because of the light changing to green.

We now define the conditions for the traffic light timings and the distance traveled based on which

the vehicle will acquire one of the driving characteristics using Lemmas 4.1, 4.2, and 4.3. The proof

for Lemma 4.1 and 4.2 can be derived in a similar manner as Lemma 4.3.

Lemma 4.1 (Case 1(a): The Vehicle Drives through the Link at the Speed Limit). A vehicle

Vi entering an empty link L of length dL with a traffic light s and bound by the acceleration and

deceleration rate of a and −b, respectively, will traverse the entire link L at the speed of ν l im if one

of the following conditions are satisfied: (i) ψs = red and tr em
s ≤ tconst

i or (ii) ψs = дreen and

tr em
s > tconst

i . Here, ψs and tr em
s are the light state and remaining time in current state of traffic

light s , and tconst
i is the time for whichVi drives at a constant speed before reaching the safe stopping

distance from the traffic light.

Lemma 4.2 (Case 1(b): The Vehicle Comes to a Halt at the Traffic Light). A vehicleVi en-

tering an empty link L of lengthdL with a traffic light s and bound by the acceleration and deceleration

rate of a and −b, respectively, will come to a complete stop at the traffic light if one of the following

conditions are satisfied: (i) ψs = red and tr em
s > tconst

i + t
stop
i or (ii) ψs = дreen and tr em

s ≤ tconst
i .

Here, ψs and tr em
s denote the light state and remaining time in current state of traffic light s , t

stop
i

denotes the duration needed for Vi to come to a complete stop at the traffic light, and tconst
i denotes

the time for which Vi drives at a constant speed before decelerating at the traffic light.

Lemma 4.3 (Case 1(c): Vehicle Initially Decelerates, then Accelerates without Coming

to a Complete Stop). A vehicle Vi entering an empty link L of length dL with a traffic light s and

bound by the acceleration and deceleration rate of a and −b, respectively, will initially decelerate for

tdec
i time and then accelerate for tacc

i time to cross the traffic light without coming to a halt ifψs = red

and tconst
i < tr em

s < tconst
i + t

stop
i . Here, ψs and tr em

s denote the light state and remaining time in

current state of traffic light s , t
stop
i denotes the duration needed for Vi to come to a complete stop at
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the traffic light, and tconst
i denotes the time for whichVi drives at a constant speed before decelerating

at the traffic light.

Proof. Upon Vi ’s arrival, ψs = red and tr em
s is the time after which the light turns green. If

tr em
s > tconst

i , then the vehicle starts to decelerate at the red light when it is x
stop
i distance away

from the traffic light. However, if tr em
s < tconst

i + t
stop
i , then the traffic light will turn green

before the vehicle comes to a complete stop and starts accelerating. Therefore, the vehicle only

decelerates for tdec
i = tr em

s − tconst
i time. As the light turns green, the vehicle starts accelerat-

ing at the rate of a. The speed achieved after deceleration is denoted by νdec
i = ν l im − tdec

i · b
(Equation (2)). The distance travelled during deceleration is given by xdec

i = (νdec
i )2−(ν l im )2/(−2b)

(Equation (4)). Now, the vehicle will continue accelerating until either it reaches maximum speed

limit, that is, for tacc
i = (ν l im − νdec

i )/a duration, or crosses the traffic light, that is, upon traveling

xacc
i = dL − xconst

i − xdec
i , achieving a speed of νacc

i =

√
(νdec

i )2 + 2 · a · xacc
i (Equation (4)) and

the corresponding time will be tacc
i = (νacc

i − νdec
i )/a (Equation (2)), whichever is shorter.

Therefore, vehicle Vi drives at the speed limit for tconst
i time, then decelerating for tdec

i =

tr em
s −tconst

i time followed by acceleration for tacc
i = min((ν l im−νdec

i )/a, (νacc
i −νdec

i )/a) time. �

Before discussing Case 2, in which the vehicle’s mobility is also influenced by the leading vehicle

in front, we present the algorithm used to estimate the dwell times in a scenario such as Case 1 in

which a vehicle enters an empty link. We describe the Algorithm 4.1 that the MBS will utilize to

calculate the mobility characteristics of the vehicles and then assign dwell times for each RSU. The

MBS also finds the time-based deadline for the traffic-dependent tasks with location requirements,

based on the derived mobility characteristics of the vehicles.

4.3.2 Dwell Time Assignment Algorithm. The MBS takes (i) traffic light data from traffic light s ,
that is, current state (ψs ), remaining time in current state (tr em

s ), maximum red phase time (tr
s ), and

maximum green phase time (t
д
s ); (ii) vehicle and link data, that is, speed limit (ν l im ) and length (dL)

of linkL, index i for vehicleVi , and location-based deadlinedx
i depending on the task to be offloaded

by Vi ; and (iii) RSU information, including the number of RSUs (m) and the communication radii

of allm RSUs (r j , j = 1, . . . ,m). We consider all RSUs to have equal communication radii; therefore,

r j = r ,∀j ∈ 1, . . . ,m. Using Algorithm 4.1, the MBS then calculates the dwell times δi j ,∀j =
1, . . . ,m for vehicleVi in allm RSUs. It also finds the time at which the location-based deadline will

be met (dt
i ), the RSU (RSUend ) where the vehicle will be located when its task meets the deadline,

and the time duration tend
i within the range of RSUend left before the deadline is met.

When vehicle Vi enters the link L and requests to offload τi , the MBS receives the relevant data

from the infrastructure (Lines 1–3). The MBS is aware of the driving controller on Vi and hence

tstep , which determines the time granularity at which the control decisions are taken by the driv-

ing controllers (Line 4). The safe stopping distance, the distance driven at speed limit, and their

corresponding times are calculated using Equations (5), (7), (6), and (8) (Line 6). Then, until the

vehicle is estimated to cross the traffic light (Line 7), the MBS, using the driving maneuver model,

decides whether to perform a constant speed, deceleration, or acceleration maneuver (Lines 8–15)

and then calculates the corresponding acceleration, speed, and position for the next time step

(Line 16). During the entire calculation process, the MBS also accumulates the time (Tδ ), and as-

signs the dwell time δi j for RSUj when the calculated position exceeds the coverage boundary of

an RSU, after which Tδ is reset (Lines 17–19). During the calculation process, when the MBS en-

counters that the estimated position equals the distance-based deadline or time duration equals the

time-based deadline, the corresponding time Ti is assigned as the time-based deadline of the task,

and the corresponding RSUend and the duration within the range of RSUend before the deadline is
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met are noted for RSU allocation (Lines 20 and 21). As the calculated driving time and distance

satisfies Property 1 (Line 22), it checks the traffic light state and timings to find which conditions

are met as per Lemmas 4.1, 4.2, and 4.3 (Lines 23–34). Based on the condition, the MBS then se-

lects the appropriate driving maneuver (f laдs ) influenced by the traffic light s and also sets the

time check points, t
stop
i , tdec

i , tacc
i , and tw

i when the MBS must change the maneuvering calcula-

tions (Lines 35–43). The chosen maneuver f laдs is then selected as an action for the next iteration.

Calculations for a vehicle Vi end when its calculated position exceeds the length of the link. The

algorithm then provides the dwell times of vehicle Vi in every RSU along the link as an output.

Now, let us consider a more complex situation in which the link is non-empty and there may be

leading vehicles that will influence vehicle Vi ’s mobility.

Case 2: A vehicle enters a non-empty link with existing vehicle(s) and is controlled by a

traffic light. We now consider a situation in which there will be existing vehicles in the link that

vehicle Vi enters. We refer to a vehicle immediately in front of Vi , that is, Vi−1 as lead vehicle, and

the vehicle under consideration, that is,Vi as ego vehicle. Based on the location of the lead vehicle

Vi−1, it may or may not affect the mobility characteristics of the ego vehicle Vi . We highlight that

an ego vehicle maintains a safety distance of x
saf e
i = hνi +xsaf e with its leading vehicle to enable

emergency braking and safe traffic movements, where νi is the speed of the ego vehicle, k is a

safety constant and xsaf e is the minimum distance between two vehicles at standstill. We now

define the following Property 2.

Property 2 (Case 2). An ego vehicle Vi entering a non-empty link L of length dL has at least one

vehicleVi−1 between itself and the traffic light s at the end of the link L.Vi has a safe stopping distance

and time of x
stop
i and t

stop
i , respectively, and a safety gap of x

saf e
i = hνi + xsaf e from the leading

vehicle. In this case, the ego vehicle will drive at a constant speed of ν l im until either of these conditions

is met: (i) the ego vehicle is x
saf e
i distance behind the lead vehicleVi−1 or (ii) the ego vehicle is within

x
stop
i distance and, correspondingly, t

stop
i time away from the traffic light irrespective of the traffic

light state and timings.

While driving, if the ego vehicle satisfies condition (i), it starts following the lead vehicle such

that x
saf e
i distance is always maintained. While following the lead vehicle, if condition (ii) is met,

and as per Lemmas 4.1, 4.2, and 4.3, the ego vehicle needs to reduce speed, then the traffic lights

take precedence over following the lead vehicle. This behavior is captured in Algorithm 4.2 by

extending the conditions in Algorithm 4.1.

As per Algorithm 4.2, in addition to the conditions mentioned in Algorithm 4.1 and, therefore,

the action suggested as per the traffic light using f laдs , the following conditions also need to be

checked to maintain a safe distance from the lead vehicle (Line 2). The MBS first acquires the

estimated positions of the lead vehicle from its previous calculations (Line 3). If the ego vehicle is

x
saf e
i distance away from the lead vehicle, it must continue maintaining its current speed (Lines 4

and 5). If the gap between the ego vehicle and the lead vehicle is less than x
saf e
i , the ego vehicle

must decelerate to increase the gap (Lines 6 and 7). Alternately, if the gap between the ego vehicle

and the lead vehicle is more than x
saf e
i , the lead vehicle does not impact the actions of the ego

vehicle and the ego vehicle may accelerate to increase the gap as long as it does not violate the

speed limit (Lines 8–12). f laдlead depicts the suggested maneuver based on the leading vehicle’s

mobility. f laдact then decides whether the traffic light (f laдs ) or the lead vehicle (f laдlead ) will

affect the ego vehicle’s maneuver (action) (Lines 13–18).

With the dwell times assigned and mobility estimates known, the MBS now assigns appropriate

RSUs for task τi of vehicleVi based on its deadline dt
i . Note that we also determine the RSU where

the vehicle will be when its task deadlines are met while estimating the mobility characteristics.
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ALGORITHM 4.1: Mobility Characteristics Estimation and Dwell Time Assignment for Ve-

hicles Entering an Empty Link L with No Vehicles in Front (Case 1)

1 Lights Data ψs , t r em
s , t r

s , t
д
s

2 Vehicle Data ν l im, dL, Vi , dx
i

3 RSU Data r, m

Result: {δi1, . . . , δim }, RSUend , t end
i , d t

i

4 Init: Ti ← 0, Xi ← 0, j ← 1, Tδ ← 0, νi ← ν l im, tst ep ← 1

5 Init: action ← f laдs (Algorithm 4.1) or f laдact (Algorithm 4.2)

6 Init: x
stop
i , t

stop
i , xconst

i , t const
i

/* Xi: variable to track distance traveled by i th vehicle, until the vehicle crosses the link (dL). */

7 while Xi ≤ dL do
8 if action = constant speed then
9 xst ep = νi × tst ep

10 if action = deceler ate then
11 In Equations (2) and (4), α ← −b, t0 ← tst ep

12 Get νst ep and xst ep

13 if action = acceler ate then
14 In Equations (2) and (4), α ← a, t0 ← tst ep

15 Get νst ep and xst ep

16 Xi ← Xi + xst ep, Ti ← Ti + tst ep, Tδ ← Tδ + tst ep

17 if X ≥ 2r then // end of range for jth RSU
18 δi j ← Tδ , j ← j + 1 // assign dwell time

19 Tδ ← 0 // reset counter

20 if Xi = dx
i or Ti = d t

i then

/* deadline expected to be met */

21 d t
i ← Ti , RSUend ← j, t end

i ← Tδ

22 if Ti = t const
i then

/* check conditions for Lemma 4.1, 4.2, and 4.3 */

23 if Lemma 4.1 condition (i) or (ii) met then
24 f laдs ← constant speed

25 if Lemma 4.2 condition (i) met then

26 Set wait time tw
i ← t r em

s − t const
i − t

stop
i

27 f laдs ← deceler ate

28 if Lemma 4.2 condition (ii) met then

29 Set wait time tw
i ← t r

s − (t const
i + t

stop
i − t r em

s )

30 f laдs ← deceler ate

31 if Lemma 4.3 condition met then

32 Set deceleration time tdec
i

33 Set wait time tw
i ← 0

34 f laдs ← deceler ate

35 if Ti = tdec
i then

36 if tw
i = 0 then

37 Set acceleration time t acc
i

38 f laдs ← acceler ate

39 else

/* wait time as RSU j’s dwell time */

40 δi j ← δi j + tw
i

41 break

42 if Ti = t acc
i then

/* speed limit reached */

43 f laдs ← constant speed

44 action ← f laдs

/* call Algorithm 4.2 */

45 Algorithm 4.2()
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ALGORITHM 4.2: Extension to Algorithm 4.1 to Account for the Influence of a Leading

Vehicle on the Ego Vehicle’s Maneuvering (Case 2)

1 Init: h : time headway, xsaf e : standstill distance

2 x
saf e
i ← hνi + xsaf e

3 XTi

i−1 ← estimated position of Vi−1 at Ti time

/* monitoring the gap with lead vehicle */

4 if Xi − XTi

i−1 = x
saf e
i then

5 f laдlead ← constant speed

6 if Xi − XTi

i−1 < x
saf e
i then

7 f laдlead ← decelerate

8 if Xi − XTi

i−1 > x
saf e
i then

9 if νi < ν l im then

10 f laдlead ← accelerate
/* lead vehicle does not influence ego vehicle actions. */

11 else

12 f laдlead ← constant speed
/* action influenced by traffic light or lead vehicle */

13 if f laдs = decelerate or f laдlead = decelerate then

14 f laдact ← decelerate

15 else

16 if f laдs = constant speed or f laдlead = constant speed then

17 f laдact ← constant speed

18 action ← f laдact

4.4 RSU Allocation for Task Offloading

We know that a task τi needs to be completed within dt
i time of the task’s arrival. We also deter-

mined dt
i corresponding to the distance-based deadline (dx

i ) and the RSUend where the vehicle will

be when its task meets the deadline. Therefore, the task has to be uploaded, computed, and down-

loaded within RSU1, . . . ,RSUend . The duration tend
i that vehicle Vi will spend within the range of

RSUend is also known.

Download RSU: As explained in the motivating example, offloading tasks such that they complete

closer to the deadline improves the resource utilization at the RSUs. To complete τi closest to

the deadline, the most appropriate RSU to download would be RSUend if the duration for which

vehicleVi remains in the range of RSUend is at least equal to the download time of the task τi . The

download time tdl
i of task τi from any RSUj depends on the download size σdl

i of the task and

the communication data rate η such that tdl
i = η · σdl

i . Therefore, if tdl
i ≤ tend

i , then the task can

be downloaded at RSUd = RSUend . However, if the duration is not enough to download the task

at RSUend (tdl
i > tend

i ), any RSUj closest to RSUend whose dwell time δid ≥ tdl
i is chosen using

Equation (9) and its constraints.

maximize d (9)

subject to δid ≥ tdl
i , (9a)

1 ≤ d ≤ end. (9b)

Equation (9) ensures that we maximize the index d of the RSU and thereby choose an RSU closest

to RSUend , where we download the task with the following constraints. Constraint (9a): The dwell
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time of the chosen RSUd is at least equal to the download time tdl
i of the task. Constraint (9b): The

index d of the chosen RSU must be less than end to meet the deadline.

Compute RSU: Upon choosing RSUd , the MBS then finds RSUc , where the task can be computed.

The computation time (tc
i ) of τi depends on the compute requirement Ci of the task and the clock

speed zc of the processors at RSUc such that tc
i =

Ci

zc
and the processor availability pc at RSUc .

Note that the RSUs are connected via a backhaul network and incur an additional delay of ρcd

(Equation (1)) for relaying the data from RSUc to RSUd . Therefore, if there is sufficient time left

within the range of RSUd to also compute τi , that is, δid − tdl
i ≥ tc

i , then the task is computed

at RSUd without incurring any additional backhaul network delay. Otherwise, RSUc can be found

using Equation (10) and its constraints.

maximize c (10)

subject to

d∑
j=c

δi j ≥ tc
i + ρ jd + t

dl
i , (10a)

ρdd = 0, (10b)

pc ≥ 1, (10c)

1 ≤ c ≤ d . (10d)

Equation (10) maximizes the index c of the RSU chosen to compute the task so that the task is

computed as close as possible to where the task is to be downloaded, with the following constraints.

Constraint(10a): The sum of the dwell times of all RSUs from the chosen RSUc to RSUd where the

task is to be downloaded is at least equal to the sum of the compute time tc
i , relay time ρcd of the

backhaul network between RSUc and RSUd and the download time of the task tdl
i . This ensures

that the vehicle reaches the range of RSUd when the task is ready to download and that there is no

wait time incurred. Constraint(10b): If the dwell time ofRSUd is sufficient to compute and download

the task, then it will not add any additional relay time to the task’s completion time. Constraint(10c):

There has to be at least one processor available at RSUc to compute task τi . Constraint(10d): the

task must be computed before it is to be downloaded at RSUd .

Upload RSU: The MBS now determines the appropriateRSUu where the task needs to be uploaded

such that the task is computed and downloaded in time to meet its deadline. The upload time tul
i

of task τi from any RSUj depends on the upload size σul
i of the task and the communication data

rate η (as per the Shannon Hartley theorem [33]) such that tul
i = η ·σul

i . Therefore, RSUu is chosen

using Equation (9) and its constraints.

maximize u (11)

subject to δiu ≥ tul
i + ρuc , (11a)

ρcc = 0, (11b)

1 ≤ u ≤ c . (11c)

Equation (11) maximizes the index u so that the RSU with the highest index is chosen to upload

while constrained by the following. Constraint(11a): The dwell time in RSUu is sufficient to upload

the task and relay it to RSUc for computation. Constraint(11b): If RSUu = RSUc , no relay time is

incurred. Constraint(11c): The task must be uploaded before it is computed.

By solving Equations (9) to (11) using linear optimization techniques, RSUu ,RSUc , and RSUd can

be determined. Once the RSUs are assigned, the vehicle can upload the task as soon as it is in the

range of the assigned RSUu . The MBS then transmits the task to RSUc if needed, where the task is

computed and then relayed to RSUd . Finally, the vehicle enters the communication range of RSUd
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Table 1. Simulation Parameters

Parameter Values

Traffic Infrastructure

Link length dL [400,800] m

Speed limit ν l im [25,35] mph

Number of lanes l 1

Traffic Light s

Cycle time t
cycle
s 60 s

Max. green time t
д
s 26 s

Yellow time t
y
s 4 s

Max. red time tr
s 30 s

Vehicles

Comfortable acceleration a 1 m/s2

Comfortable deceleration −b −0.9 m/s2

Time headway h 0.9 s

Standstill gap xsaf e 1.5 m

VEC Task Model

Task type [time-based, location-based]

Upload size σul 1–100 MB

Compute requirement C 0.24–24 × 109 clock cycles

Download size σdl 1−100 MB

Time-based deadline dt 100 ms–5s

Distance-based deadline dx 1 m–dL m

VEC Communication Framework

Communication radius r 25 m

Number of processors [2, 4, 8]

Clock speed z 2.4 GHz

Wireless data rate η 500 Mbps

Backhaul data rate ηbh 1 Gbps

Backhaul relay constant cbh 10 ms

and starts downloading the task. The above formulation ensures that the task is completed as close

to the deadline as possible.

Complexity Analysis: The dwell time estimation algorithm (Algorithm 4.1) has a time complex-

ity of O (T × R), where V denotes total task-offloading requests in the queue and R denotes the

total RSUs along the link. Once the dwell times are estimated, the RSU assignment is a linear

optimization problem with a time complexity of O (R).

5 EVALUATION

In this section, we compare our proposed approach with the state-of-the-art task-offloading strate-

gies as baselines. Let us describe the simulation parameters used for the evaluation.

5.1 Evaluation Setup

Table 1 contains the parameters for traffic infrastructure, vehicles, task model, communication

model, and the VEC framework, It also summarizes the notations used in this article. These
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Fig. 5. Effect of varying traffic flow on task offloading. Increasing traffic flow leads to a reduction in the

percentage of tasks offloaded out of total task requests (colored). However, the existing approaches cause a

significant number of tasks to miss their deadlines (hatched).

parameters closely resemble common VEC workloads and network and traffic infrastructure con-

figurations [26, 52]. We emulate large-scale traffic moving through a link in an urban environment

using VISSIM [10], a microscopic traffic simulator. The vehicles arrive at random times as per de-

fault distribution in VISSIM. All vehicles that enter the traffic network in VISSIM follow the driving

maneuver model and its parameters considered in this article. An external communication frame-

work emulator based on Python 3 acts as an MBS that interacts with VISSIM to acquire vehicle

data, calculate dwell times, generate synthetic workloads based on the chosen task parameters,

and assign RSUs to the vehicles.

We compare our proposed deadline-based strategy that uses connected traffic lights (referred as

traffic lights-aware) with a closely related work [26] (referred as wait time-aware) which considers a

time-statistical model to account for the average delays over time due to a traffic light but does not

consider connected traffic lights with known traffic light timings. We also compare our work with

a mobility-aware task-offloading strategy [52] (referred as mobility-aware) that considers mobility

without traffic lights to minimize task-offloading times. Note that the proposed approach as well

as the wait time-aware [26] and mobility-aware [52] approaches offload tasks onto the RSUs only

if the task is expected to be completed before its deadline.

5.2 Performance in an Ideal Setting

We evaluate all three approaches on the basis of (i) the percentage of tasks out of the entire taskset

that a strategy deems feasible to offload onto the RSUs based on its estimation of the vehicular

mobility and task deadlines, and (ii) the percentage of tasks that miss their deadlines out of all

of the tasks offloaded onto the RSUs. In this set of experiments, we assume that the vehicles and

traffic flow behave ideally and follow the maneuvers as planned by the ADAS mobility planner.

Effect of traffic flow on task offloading (Figure 5): As the traffic flow increases, the number

of vehicles on the link — and, therefore, the number of tasks to be offloaded — increase as well.

As shown in Figure 5, with traffic flow changing from light to heavy (400–1,000 vehicles per hour

per lane [vhphpl]), the dwell times of the vehicles increase within different RSU ranges due to an

increase in vehicle queues at the traffic light. Results show that under heavy traffic, the existing

approaches fail to adapt to these changing traffic patterns and lead to deadline misses. The wait

time-aware approach offloads 47% of all task requests and misses the deadlines for 23% of the
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Fig. 6. Effect of increasing processor availability on task offloading. With increase in the number of proces-

sors all approaches offload more tasks onto the RSUs (colored), however, the wait time-aware and mobility-

aware strategies lead to a significant number of tasks missing their deadlines (hatched).

offloaded tasks, whereas the mobility-aware approach finds 44% of the tasks feasible to offload

and misses the deadlines for 22% of the offloaded tasks. Location-based tasks comprise 53% and

59% of the offloaded tasks that missed their deadlines in time delay-aware and mobility-aware

approaches, respectively.

Effect of processor availability on task offloading (Figure 6): As more processors become

available at the RSUs, more tasks can be computed in parallel. As shown in Figure 6, with flow

fixed to medium traffic, with an increase in the number of available processors at each RSU, the

number of tasks offloaded for all three approaches increases. However, it is important to note that

as the number of available processors increases at each RSU, the existing approaches also show

an increase in deadline misses (up to 25% of deadlines missed with 8 parallel processors). As the

number of available processors at each RSU increases, the existing approaches have ample available

resources to offload the tasks as soon as they arrive. However, due to the lack of traffic-aware

mobility, the vehicles end up leaving the RSU range before the task execution completes, leading

to an increase in missed deadlines. For our proposed approach, increasing processor availability

increases the number of offloaded tasks, with all of them meeting their deadlines, maximizing RSU

resource utilization. We are not including a discussion on the effect of increasing link length as it

also leads to an increase in the number of RSUs and processor availability, and similar results were

obtained.

Effect of speed limit on task offloading (Figure 7): We choose two speed limits common for

urban traffic lights: 25 mph and 35 mph. With fixed traffic flow (700 vphpl) and number of proces-

sors (2 processors per RSU), as the speed increases, the vehicles have lesser dwell time within each

RSU, causing a drop in number of tasks offloaded for our proposed approach. However, with our

proposed approach, we still meet the deadlines for all offloaded tasks. In contrast, the wait time-

aware approach sees an increase in the number of offloaded tasks, as higher vehicle speeds causes

reduced travel times and wait times at the traffic light. However, an increase in speed also causes

an increase in the number of deadline misses for the wait time-aware approach due to an increase

in dwell time estimation errors. Similarly, the mobility-aware offloading also leads to increased

deadline misses as it relies on the average vehicle speeds. Note that with an increase in processor

availability, a similar trend as in Figure 6 was observed, in which at higher speeds, more processor

availability meant an increase in the number of tasks offloaded but it also led to an increase in

deadline misses.
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Fig. 7. Effect of changing speed limits on task offloading. Increases to the speed limit lead to a change in the

percentage of tasks offloaded (colored), with a significant increase in the deadline misses (hatched) for the

existing strategies.

5.3 Performance Under Uncertainty

So far, we have considered that the CAVs within our model perform known driving maneuvers

and behavior as the vehicle follows predefined constrained motion such as constant speeds, reduc-

ing speeds with known deceleration rates, and increasing speed with known acceleration rates.

However, in a realistic urban driving environment, the controllers in fully automated vehicles

are affected by noise and disturbances that do not allow the vehicles to follow precise mobility

constraints and maneuvers. To evaluate the efficacy of our model in a realistic setup with noise

and uncertainty, all vehicles in our simulated evaluation show a uniform distribution ranging be-

tween νl im − 5 to νl im instead of strictly following a target speed of νl im . Instead of the vehicles

following strict acceleration and deceleration rates, they are now modelled after the Weidemann

74 car-following model [32]. In this work, the Weidemann 74 model is preferred over other car-

following models as it accurately captures non-ideal driving conditions in which different drivers

show varying perception, reaction times, and driving behaviors in the same environment. With

the car-following model in place, the vehicles show maximum acceleration, ranging from 2.5 to

3 m/s2, and deceleration ranging from −2.5 to −3 m/s2. These parameter ranges are determined

based on driver reaction times and passenger comfort [32].

Now, changing traffic parameters such as traffic speeds and flow rate may lead to vehicles show-

ing increased stop-and-go motion and thereby significantly impact the deviation in modeled vehi-

cle speeds, acceleration and following distances. We therefore investigate the impact of (i) traffic

speeds (Figure 8) and (ii) traffic flow (Figure 9) on deadline misses in our proposed approach.

Speed limit and deadline misses in non-ideal conditions: As expected (from Figure 7), increas-

ing speed limits does cause a reduction in the tasks successfully offloaded onto the edge platform.

Under realistic conditions, however (Figure 8), about 5% of the offloaded tasks experience deadline

misses.

Traffic flow and deadline misses in non-ideal conditions: Increasing traffic flow from low to

heavy traffic leads to a reduction in tasks being offloaded onto the RSUs. However, highly varying

traffic (very low or very high flow rates) leads to an increase in stop-and-go motions and variations

in desired speed and acceleration. Therefore, as shown in Figure 9, under non-ideal conditions,

low traffic (in which vehicles can travel at higher speeds) or heavy traffic (in which vehicles are

known to show increased stop-and-go motions) leads to increased (up to 10%) deadline misses.
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Fig. 8. Effect of speed on deadline misses in our proposed approach.

Fig. 9. Effect of traffic flow on deadline misses in our proposed approach.

Under medium traffic, all vehicles have a more regularized traffic flow and, therefore, experience

very few (2%) deadline misses.

Effect of model (speed, acceleration, and car-following model) uncertainties on deadline

misses (Figure 10): Finally, we investigate the impact on non-ideal conditions in existing ap-

proaches when compared with our proposed approach. The uncertainty in speed, acceleration,

and following distance added in a realistic car-following model are not known a priori. Therefore,

they are not considered during dwell time estimation and RSU allocation phase in our proposed

approach as well as other existing state-of-the-art approaches. Because of this, deadline misses are

expected due to the model being an ideal version of the system. Figure 10 shows the effect of this

uncertainty on deadline misses with our proposed approach as well as the existing state-of-the-art

approaches under varying traffic flow. Note that as the traffic flow increases from low to heavy

traffic, the vehicles show increased stop-and-go motion with larger deviation from the ideal speeds,

acceleration, and following distances. As shown, our proposed approach, while still suffering from

estimation errors due to non-ideal conditions, causes up to 78% fewer deadline misses than the ex-

isting approaches, showing that our proposed dwell time estimation and RSU allocation approach,

by capturing traffic flow parameters and mobility behavior of the vehicles, is more resilient to

uncertainties and leads to significantly higher utilization of the edge compute platform.
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Fig. 10. Effect of model uncertainties on deadline misses.

6 CONCLUSION

In this article, we presented a comprehensive task model to support emerging VEC applications

that incorporates tasks with fixed time-based deadlines as well as traffic-dependent tasks whose

deadlines depend on traffic flow, location, and traffic lights. We then incorporated the traffic light

data by leveraging the connected infrastructure to accurately estimate the mobility characteristics

and dwell times of the vehicles. We then used the dwell time estimates to allocate appropriate

RSUs to upload, compute, and download the tasks such that they always meet their deadlines.

We also show that by completing tasks closer to their deadlines, we can improve on the resource

utilization of the edge resources. Finally, our evaluation using VISSIM, a traffic simulator, showed

that our proposed approach outperforms the existing approaches by consistently offloading more

tasks onto the RSUs and meeting 100% of the task deadlines. Extending the proposed model for a

network-wide edge resource optimization is left for future work.
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