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1. Introduction 

We describe a technique, subgoal induction, for 
proving programs correct. It may be used as an al- 
ternative or supplement to the commonly used in- 
ductive assertion method [4, 7]. Subgoal induction is a 
proof  rule which matches the problem solving heuristic: 
"Transform a problem into a simpler one with the 
same general characteristics, solve the simpler problem, 
and use that solution to solve the original problem." 

If  we accept the premise that proof  rules should 
guide the way one thinks about  programs, then sub- 
goal induction is an important addition to our under- 
standing of programming methodology. The method 
of  inductive assertions suggests that the programmer 
concentrate on invariants, i.e. the things his program 
does not change. The method of  subgoal induction 
suggests that he concentrate on the dynamics of  program 
segments, i.e. the relation between the current state and 
the result to be computed. Our experience with these 
two methods has shown both to be useful, and we later 
describe circumstances advantageous to each. 

For  example, when the task is to prove that a while 
loop satisfies a given input-output relation, subgoal 
induction can be applied directly without the inter- 
mediate step of framing an inductive assertion. This 
simplifies the problem of  discovering an adequate in- 
duction hypothesis; the input-output relation must be 
made demanding enough to be an induction hypothesis. 

Subgoal induction presents a way of  "thinking 
recursively", i.e. assuming one's ability to solve simpler 
problems and generating solutions to more complex 
problems. Its application to loop programs shows that 
one can program recursively without using function 
definitions; push down stacks or the other trappings of  
recursion. 

We begin by presenting one particular case of 
subgoal induction to illustrate the basic idea. Consider 
the flowchart of  Figure 1 which shows a simple loop. 
x is a vector containing all the program variables. 
Each execution of  this loop will take place in one of  
two ways: I f P  is true the loop exits, as shown in Figure 
2. If P is false then x is assigned N(x) and the loop 
head is reached again, as shown in Figure 3. 

Suppose the correctness condition for the loop is 
specified by the following requirement: given input x 
the loop is to produce output  z such that xI,(x; z) for 
some given predicate 1 ~. We consider the two cases 
shown in Figures 2 and 3: 

(1) If P(x) is true then control leaves the loop 
with x unchanged. Thus the output is x. In order for 
the loop specification to be satisfied, it must be that 
,I,(x; x) in this case. That  is, 

P(x)  ~ ,I,(x; x) (1.1) 

(2) If  P(x) is false then x is assigned N(x);  let x' 
denote the new value of x, i.e. x = N(x). The loop 
head is now reached with x'. Suppose that eventually 
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the loop halts and that z is the output of the loop 
started with x'. Further, suppose that the input/output  
pair (x', z) satisfies the specification, i.e. ~(x ' ;  z). 
Observe that z is also the final output of the original 
loop starting with x. In order for the original loop 
specification to be satisfied, it must be that ,I,(x; z) in 
this case. Therefore it suffices to prove: 

,~P(x) h x' = N(x) h ~(x ' ;  z) ---> ~(x;  z) (1.2) 

(1.1) and (1.2) are verification conditions. If  they 
are both valid, then it is guaranteed that the loop 
meets its specification. Subgoal induction is a way of 
constructing such verification conditions directly from a 
loop's specification. 

2. Rule of  Subgoai Induction 

In order to present subgoal induction in a more 
precise and rigorous fashion, we employ a functional 
view of programming in which programs are written as 
recursive functions. We first show how the induction 
rule can be coupled with the synthesis of a recursive 
function, considering program construction and proof 
of correctness simultaneously. Let the program be 
specified by the requirement that given input x it is to 
produce output z such that xI,(x; z) for some given 
predicate xI,. We propose to construct a recursive pro- 
gram F, as follows. For certain x, an appropriate z 
can be computed using a previously defined function; 
let P(x) test for those x and H(x) be the previously 
defined function; this leads to the fragment: 

if P(x) then H(x) 

and the verification condition: 

P(x) ~ xI,(x; H(x)) (2.1) 

For  all other x, we propose to replace x by a somewhat 
simpler value, attempt to solve the problem for that 
simpler value, and then modify that solution to obtain 
a solution for x. Let N be the function which maps x 
into the simpler value and L be the function which 
uses x and the solution for N(x) to compute a solution 
for x. This leads to the fragment: 

else L(x, F(N(x))) 

The corresponding verification condition is: 

~P(x)  A '~(N(x); z) ~ 9(x ;  L(x, z)) (2.2) 

This may be read as: if ~P(x)  and if z is an acceptable 
output for F with input N(x) then L(x, z) must be an 
acceptable output for F with input x. The program is 
then: 

F(x) ~ if  e(x) then H(x) else L(x, F(N(x))) (2.3) 

If the two verification conditions (2.1) and (2.2) are 
valid, then ~I,(x; F(x)) is valid. This is an example of 

Fig. 1. A simple loop. 
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Fig. 2. Test taken in the posi- 
tive direction. 
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Fig. 3. Test taken once in the 
negative direction. 
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the rule of subgoal induction, applied to a recursive 
function. 

The above argument tacitly assumes that F(N(x)) 
actually returns a value. If, on the contrary, F(N(x)) 
fails to terminate, then F(x) fails to terminate. Proof of 
termination may be treated separately, e.g. based upon 
a well-ordering. In this paper, we will be concerned 
only with partial correctness, i.e. consider only those 
cases where F(x) terminates. A more precise statement 
of subgoal induction reads: If (2.1) and (2.2) are valid, 
then for each x if F(x) terminates ,I,(x; F(x)) is true. 
We expand on this point and give a precise justification 
below. 

Observe that (2.2) is a stronger requirement than 
actually needed to establish xI,(x; F(x)). It would, in 
principle, suffice to prove the somewhat weaker im- 
plication: 

,~P(x) h ~I,(N(x); z) h z = F(N(x)) 
--~ qz(x;L(x,z)) (2.4) 

This may be read as: If ~P(x)  and if z is the output 
of F(N(x)) and if the pair (N(x), z) satisfies ~(N(x);  z), 
then the pair (x, L(x, z)) must satisfy ,I,(x; L(x, z)). 
(2.4) follows directly from expanding the definition of 
F. It differs from (2.2) in that its hypothesis includes the 
additional conjunct z = F(N(x)). The essential idea 
of subgoal induction is the absence of this conjunct: 
Provided that ~ is a strong enough specification, z is 
adequately constrained by the requirement that ~(N(x);  z) 
be true. In such eases, the conjunct z = F(N(x)) is 
unnecessary, and (2.2) is a valid theorem which, taken 
together with (2.1), establishes ~(x;  F(x)). We will 
later discuss in detail and illustrate with examples the 
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conditions under which xI, is a strong enough specifi- 
cation for this to work. Here it suffices to observe a 
result we prove below: (2.1) and (2.2) are valid if and 
only if  the verification conditions for computation in- 
duction [12] are valid. 

Example 1 (Subgoal induction). Let " / "  denote in- 
teger division (with truncation) and define 

E(x) ~ i f  x = 0 then 1 else L(x, E(x/2)) ,  and 
L(x, y) ~ i f  even(x) then y2 e l se  2. y2 

The property to be proved is 9 (x ;  E(x)) where 9 (x ;  z) 
-- z = 2 ~. The verification conditions are obtained 
from (2.1) and (2.2): 

x = 0--* 1 = 2 x (trivial) 
x ~ 0  A z = 2 ~ / 2 ~ L ( x , z )  = 2 ~ 

Expanding L, this is x ~ 0 A z = 2 x/s ~ i f  even(x) 
then z 2 = 2 ~ else 2.z 2 = 2 x which may be proved by 
cases on even(x). E] 

In the case where H is the identity function and 
L(x, z) = z, the recursive function F defined in (2.3) is 
equivalent to the following while scheme: 

whi l e  ~P(x)  do x ~-- N(x) 

Let x0 and xf be the initial and final values of the state 
vector x in this scheme. To establish 'I,(x0; xf) by sub- 
goal induction, (2.1) and (2.2) require that we prove: 

P(x) ---, ~,(x; x) 
,'~P(x) h 9 (N(x) ;  z) ~ xI,(x; z) 

Observe that these verification conditions are identical 
to the verification conditions for the simple flowchart 
loop discussed in the introduction. Obtaining these as a 
special case of the general rule for recursive functions 
is an alternate derivation which may, perhaps, clarify 
the method. Note that the idea of loop invariant or 
inductive assertion does not appear. The output as- 
sertion ,I, need not  be true within the loop and likely 
is not  (otherwise we are wasting iterations!). Subgoal 
induction allows the output assertion or intention of 
the loop to be used directly in its own proof. 

Example 2 (Subgoal induction on a while loop). 
Consider the well-known iteration for finding the great- 
est common divisor of  two positive integers: 

whi le  x ~ y do i f  x < y then y ~-- y - -  x 
e l se  x ~-- x - -  y 

The output assertion is: 

xI,(x0, Y0; xs) ---- xs = GCD(xo, Yo) 

where GCD(x, y) = max { t I t divides x A t divides y}. 
Let ~ be the state vector. To prove xI, by subgoal in- 
duction, two verification conditions must be established. 
The first is: 

p(~) ---r xI,(~, ~) (2.5) 

where ~ = (x, y) and P(~) ------ x = y. This becomes: 

x = y ~ x  = GCD(x ,y )  

The second verification condition is: 

~ P ( ~ )  ^ xI,(N(~); z) ---r ~,(~; z) (2.6) 

where N ( ~ )  = i f  x < y then (x, y - -x)  e lse  (x--y,  y). 
This becomes: 

x ~ y A  
z = (if x < y then G C D ( x , y - - x )  

e l se  GC D(x--  y, y) ) --~ 
z = GCD(x, y) 

(2.5) is immediate and (2.6) follows easily from the 
general observation that 

z divides a A z divides b --~ 
z divides a q- b A z divides [ a -- b [ 

Notice that it was not necessary to invent a loop in- 
variant or inductive assertion to prove xI,; ,I, itself was a 
sufficient inductive hypothesis. 

It happens that the following is a good invariant: 

GCD(xo, yo) = GCD(x, y) 

However,  it appears that a proof  by inductive assertions 
will be less direct than the foregoing proof. [ ]  

Because whi l e  loops are a commonly occurring 
syntactic form to which subgoal induction is directly 
applicable, it is appropriate to introduce a simple nota- 
tion for their output  assertions. We propose: 

whi le  (Boolean expression) do (statement) thus 
(output  assertion) 

The (output assertion) is to be true on exit from the 
whi le  loop. It uses the following notation: If  x is a 
free variable, then x0 (read as "original x")  is an initial 
value of the corresponding program variable x, other 
free appearances of x are understood to denote the 
final value of  the corresponding program variable. 
Hence the above program may be written: 

whi l e  x ~ y 

do i f x  < y t h e n y ~ - - y - -  x e l s e x ~ - - x - -  y 
t h u s  x = GCD(xo, yo) 

The extension of  this notation to for loops and multiple- 
exit loops should be clear. 

Example 3 (Multiple-exit loop). Consider searching 
a table A[l:n] for the first entry which is equal to 
key, returning the index of the entry if one exists or 0 
otherwise. We wish to prove: 

{1 < j  _< n A A[j] = key} V 
{j = 0 A (Vii  1 < i < n) A[i] ~ key} 

We write a multiple-exit loop as: do (statement) end 
with the understanding that the (statement) is to be 
repeated until an exit is executed. An exit and the 
(output assertion) associated with that exit is written: 

ex i t  thus  (output assertion) 
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In this notation, the search loop is written: 

j~--- 1; 
do 
if j > n then 

begin j ~-- 0; 
exit thus {j = 0 ^ (Vi IA < i < n) A[j] ~ key} 
end 

else if A[j] = key then 
exit thus {j0 <_ j <_ n ^A[j]  = key} 

e l s e j  ~--j + 1 
end 

Note that the two disjunets of  the specification are 
associated with distinct exit conditions. Note also that 
j0 is used as the lower limit of the range conditions. 
The verification conditions for the case which exits on 
j > n are: 

j > n --, 0 = 0 ^ ( ' ¢ i l j  < i < n) A[i] ~ key 

j0_< n A a[j0] ~ key ^ j = 0 A (Vi I j0 + 1 < i < n) 
A[i] ~ key 

--, j = 0 ^ (vi  IJ <_i<n)A[i] ~ key 

both of which are valid. The verification conditions 
for the ease which exits on A [j] = key are: 

j <_ n A A[j] = k e y ~ j  <_j <_ n ^ A[j] = key 

jo _< n ^ A [ j 0 ] ~ k e y  ^ jo q- 1 <_ j < n ^ A[j] = key 
jo <_J < n ^ A[j] = key 

which are also valid. Because the loop specification 
has been decomposed into two disjuncts, each associ- 
ated with a distinct exit, the verification conditions are 
relatively simple. 

As a final comment on this example, we stress the 
use ofjo as the lower limit of the range conditions, e.g. 
on the first exit, the output specification (Vi [jo _< i _< n) 
A[i] ~ key. This expresses the final outcome, if control 
leaves via this exit, in terms of the input state j0 on 
each iteration through the loop. [ ]  

Subgoal induction can be applied to more general 
program structures involving nested reeursive calls and 
mutually reeursive functions. For example, consider: 

F(x) ~ if Po(x) then Lo(G(No(x))) 
else if  Px(x) then Lx(G(N2(F(Ni(x))))) 
else ~(F(Ns(x)), F(N4(x))) 

G(y) ~ if  Ps(Y) then H(y) else F(y) 

with output assertions i%(x; F(x)) and 9o(y; G(y)). 
To form the verification conditions for proof by sub- 
goal induction, three additional concepts are required. 
We state and illustrate these in turn. 

(1) Mutual recursion is handled by using the output 
predicate for the called function in forming the verifica- 
tion condition for the calling function. Thus the verifi- 
cation condition for the first path through F is: 

Po(x) ^ ,~o(No(x); zo) --* ~,(x;  Lo(zo)) 

212 

This is obtained as follows: let F be called with argu- 
ment x and suppose that P0(x); to compute F's value, 
G is called with argument N0(x); let that result be zo 
subject to the constraint xI, o(N0(~c); zo); the result of F 
is Lo(zo) ; to prove F correct, we must be able to show 
that ~I,p(x; Lo(zo)). 

(2) Multiple function calls on distinct functions are 
handled by introducing additional individual variables-- 
one for each called function. Thus the verification con- 
dition for the second path through F is: 

~Po(x) A Pl(x) A xI, v(Nl(x); zr) A ~a(N2(z~,); zo) 
-~ ,V,(x; L~(zo)) 

This is obtained as follows: let F be called with argu- 
ment x and suppose that ~,Po(x) and P~(x) ; to compute 
F's value, the first step is to call F recursively with 
argument Nt(x); let that result be zp subject to the 
constraint qr(Nl(x) ; zF); next, G is called with N2(zp) ; 
let that result be zo subject to the constraint that 
r~o(N2(zp); zo); the result of the original call on F is 
Ll(zo); to prove F correct, we must be able to show 
that ,I,p(x; L~(zo)). 

(3) Multiple calls on the same function are handled 
by introducing additional individual variables, subject to 
the constraint of  the output assertion and the further 
constraint that when the arguments to the function are 
equal, then the outputs are equal. Thus the verification 
condition for the third path through F is: 

~'.~Po(x) A ~Px(x) A ~r(N,(x);  z3) ^ ~,(N4(x); z,) A 
(N~(x) =N,(x)  ---, z3=z4) ~ xI%(x; L~(z3, z4)) 

This is obtained as follows: let F be called with argu- 
ment x and suppose that ~Po(x) and ~,Pl(x) ;  to 
compute F's  value, F is recursively called twice, with 
arguments N3(x) and N4(x); let the results be z3 and 
z4, respectively, subject to the constraints ,I,r(N~(x) ; z3), 
xI%(N4(x); z4) and the further constraint that if N3(x) 
equals N4(x) then z3 equals z4; to prove F correct, we 
must be able to show that the final result, L2(z3, z4), 
satisfies xI, F(x; ~(z~, z4)). 

The two verification conditions for the two paths 
through G are obtained analogously: 

Ps(y) ~ '~o(y; H(y) ) 
~P~(y) A ~, (y ;  z ,)  ~ ,~o(y; z ,)  [] 

Now let us state the general rule for reeursively 
defined functions. Consider a definition of  the form: 

F(x) ~ ifPx then E1 else if P2 t h e n . . ,  else E, (2.7) 

where x is a vector of variables, the E~ are terms made 
up from constants, x, primitive functions, and F, 
and the P~ are predicates applied to terms made up 
from constants, x, primitive functions, but not F. 
(The generalization allowing the E~ to contain con- 
ditionals and the P~ to contain F is easy but unil- 
luminating, as is the generalization to mutually re- 
cursive definitions.) 

The rule of subgoal induction establishes the partial 
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i--1 

A "~'Pj" A 

A ( ' r ,  
l ~ 8 < t < m  

correctness relation ,I,(x; F(x)) by proving n state- 
ments, one for each El. Each statement has the form:  

m 

P~ h A ~(gk;zk) A 
k=x (2.8) 

= ~/~ ~ z, = z,) ~ ~,(x; "r0) 

where the 5'k are derived f rom E~ by replacing all terms 
of the form F(3,) with some new zj in an inside-out 
manner.  To be more precise, suppose El contains m 
occurrences of  the function letter F. I f  m = 0, simply 
choose "r0 = El, otherwise find a subterm of the form 
F(3,) where 3' does not contain F, choose 3,,, = 3', 
replace the occurrence of F(7) in E~ by zm, and repeat. 

Consider the specific function definition: 

F(x, y) ~ if P(x) then H(x) else F(M(x),  F(N(x), y)) 

then the two clauses to be proved are: 

P(x) ~ x~(x, y; H(x)) 

and 

~ P ( x )  A ~(N(x) ,  y; z2) A ~(M(x) ,  z2; Zl) A 
((N(x), y) = (M(x), z2) ~ z2=z1) --)" xXt(x, y; zl) 

This rule is essentially the same as Manna  and Pnueli 's 
in [11] except for the equality "cross t e rm"  in the 
premise: 

A (3', = "r, ~ z ,  = z,) 
l < s < t < m  

which requires that there be a functional relationship 
between the 3,'s and z's. This fact was implicit in the 
functional notation but was lost when the function 
letter F disappeared. The functionality can be impor-  
tant. Consider the definition: 

H ( x ) ~ i f x  = 0 then  1 e l s e H ( x - 1 )  -- H ( x - 1 )  

and suppose one wants to prove H(x) # 2. The rule 
of  subgoal induction requires one to prove: 

x = 0--> 1 # 2  

and 

~-~(x = 0) A zl # 2 A z2 # 2 A 
( ( x - -  1) = ( x -  l ) ~ z x  = z ~ ) ~ z l - z 2  # 2  

I t  is clear that the equality cross term is essential in prov- 
ing the second clause. 

In the Appendix we show that this rule is sound 
and in fact equivalent to the rule of  computat ion in- 
duction specialized to proofs of partial correctness. 

Example 4 (Nested recursive function calls). The 
following function flattens an S-expression x, in the 
sense that it creates a one-level list whose elements 
are the atoms of x in print order, appended to y. 

F(x,y) ~ if atom (x) then cons (x, y) 
else F(car(x) F(cdr(x), y)) 

We wish to show that  F(x, NIL) is identical to the 
result of  a simpler procedure G, which flattens a list 

in a slower but more obvious way, as follows: 

G(x) ~ if  atom(x) then cons(x, NIL) 
else A)G(car(x) ),G(cdr(x) ) ). 

The auxiliary function A (i.e. Append) is defined: 

A(x,y) ~ if null(x) then y else cons(car(x),A(cdr(x),y) ). 

I t  suffices to prove the following output  assertion for 
F: qv(x,  y; z) -- {z = A(G(x), y)}. The verification 
conditions are: 

atom(x) ~ cons(x, y) = A(G(x), y) 

which is obviously valid, upon expansion of G and A: 

,~atom(x) A zl = A(G(cdr(x)), y) 
A z2 = A(G(car(x)), zl) 
A [(car(x), y) = (car(x), zl) ---> Za = z2] ---> 

z2 = A(C(x ) ,  y) 

Substituting for equals and expanding G for a non- 
atomic argument,  this simplifies to 

~-~atom(x) A [(car(x), y)  = (car(x), z l )  ~ Zl = z2] 
A {A(G(car(x)), G(cdr(x))), y} 
= A { G(car(x)), A(G(cdr(x), y) } 

an instance of a simple fact about  A- -A(A(u ,  v), w) 
= A(u, A(v, w)), i.e. that A is associative. [ ]  

3. Comparison with Inductive Assertion Method 

Subgoal induction and the inductive assertion 
method are symmetric alternatives for proving the 
following sort of statement: For  all computat ions which 
start  at A and end at B, relation ~I, holds between the 
beginning and final states of the data. The inductive 
assertion method is based upon an induction on the 
number  of  steps since the computat ion started at A. 
Subgoal induction is based upon the number  of  steps 
until it halts at B. 

Consider the flow chart in Figure 4. Q, R, and S 
are input-output  relations describing the effect of their 

Fig. 4. A loop scheme. 
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respective boxes. P is a predicate. Suppose one wishes 
to show that a relation A(xA; Xc) holds for any path 
from A to C. A conceivable approach might be to 
prove that A holds for A-to-C computations which 
visit point B once, twice, etc. This approach does not 
work out for the following reason: An A-to-C compu- 
tation of length n -t- 1 does not contain any A-to-C 
computation of length n. An inductive method based 
on path length seems to work only when the longer 
paths contain the shorter ones. There are three families 
of paths one might consider: those from A to B, those 
from B to C, or those from B to B (i.e. ones which 
start and end at point B). 

The inductive assertion method chooses the first 
family by inventing the subproblem of proving that a 
relation I'(x,t; xB) holds for all paths from A to B, and 
then using I" to prove that A holds between A and C. 
Thus, one must prove (for all xa, x~, xc) : 

Q(xA; xB) --* I'(x~; xB) (3.1) 
P(xA; xs) h ~P(xB) h g(xB; x'B) ---~I'(xA; X'B) (3.2) 
P(Xa; X~) h P(xB) h S(xB; xc) --* A(x,~; xc) (3.3) 

Figure 5 shows how Figure 4 can be expanded into an 
infinite flow chart containing all the paths under dis- 
cussion. (3.1) and (3.2) establish that r holds between 
A and Bi for i = l, 2, . . . .  (3.3) finishes the proof by 
showing that A holds between A and each Ci. 

The subgoal induction method decomposes the 
problem in the reverse way: Invent a relation ,I,(xs; xc) 
and prove that it holds for all B-to-C paths and then 
use ,Is to prove A holds between A and C, i.e. prove: 

Q(xA; x~) h xI,(x~; xc) --* A(XA; Xc) (3.4) 
"~P(xs) A R(xB; X'l~) A '~(x'B; xc) ---~,I,(x~; xc) (3.5) 
P(xB) ^ S(xB; xc) ~ ~(x~; Xc) (3.6) 

Figure 6 shows the flow chart of Figure 4 expanded in 
the reverse way so that point C occurs only once and 
there are an infinite number of starting points. Clauses 
(3.6) and (3.5) serve to show that ~ holds between B~ 
and C for i = 1, 2, . . . .  Clause (3.4) shows that A 
holds between points A~ and C, for i = 1, 2, . . . .  

Formally speaking, a proof by either of these two 
methods can be used to produce a proof by the other. 

Suppose one has a proof by inductive assertions; 
i.e. proofs of (3.1), (3.2), and (3.3). To prove A by 
subgoal induction, define: 

~,(x~; xc) --- (Vx~)[r(x~; x~) --, A(x~; xc)] 

This formula is a sort of circumlocution of (3.2) and 
(3.3). It asks us to prove, for any path from B to C, 
and a state xa such that r(x,~; x~) holds, that A(xA; xc) 
holds. Since (3.2) proves that r will be maintained as 
one passes around the loop, we need only consider the 
path directly from B to C; and (3.3) proves that A 
will hold if the B -- C path is followed. Finally, to 
complete the proof, one uses (3.1) to show that I'(xA; 
x~) does hold if point B is reached through Q. To sum- 
marize: A can be proved by subgoal induction be- 

Fig. 5. A forward expansion of Fig. 4. 
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Fig. 6. A backward expansion of Fig. 4. 
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cause (3.4) follows from (3.1), (3.5) from (3.2), and 
(3.6) from (3.3). 

Suppose one has a proof  by subgoal induction; 
i.e. proofs of (3.4), (3.5), and (3.6). To prove A by 
inductive assertions define: 

r(x~; x~) = (Vx~)[~,(x.; xc) ~ A(x~; xc)] 

Then A can be proved by the inductive method because 
(3.1) follows from (3.4), (3.2) follows from (3.5), and 
(3.3) follows from (3.6). This translation technique is 
discussed in [19]. 

Despite this formal equivalence between the methods 
it appears that choosing the right one can sometimes 
make both the discovery of an induction hypothesis 
and the subsequent proof  simpler. 

First, if Q is a null operation then (3.4) becomes 
xI,(xa; xc) --> A(xa; Xc) so A itself is a good candidate 
for the subgoal hypothesis xI,. Therefore subgoal in- 
duction seems like a better choice. On the other hand, 
when S is a null operation the corresponding ad- 
vantage does not accrue to the inductive assertion 
method. (3.3) becomes: 

V(xa; xs) h P(xB) ~ A(xA; xB) 

and A is not a reasonable choice for r except in the 
unlikely case that it does not depend upon the test P. 
In other words, there is a special case where the sub- 
goal induction method does not require any new as- 
sertions to be invented, and there is no such special 
case for the inductive assertion method. 

A drawback of subgoal induction is that it cannot 
be used to prove invariants about nonterminating 
programs. For  example, to prove that i is always posi- 
tive in the program: 

i ~-- 1 ; while true do i ~-- i Jr- 1 

one just proves (3.1) and (3.2) for F(i0; i) ---- i > 0. 
The fact that subgoal induction can be used to prove 
invariants about programs which halt but never start 
is not much consolation. 

Finally, let us consider two examples which illus- 
trate the advantages of the methods. Consider the 
program: 

j ~--- 1; 
while T[j] ~ 0 do j ~-- j q- 1 ; 
T[j] *-- 2 

The relation to be proved is: 

A -- (Vi)[T:[i] = if i = m then 2 else T0[i]] 

where m = min {i] i _> 1 A T0[i] = 0}, i.e. T h a s  had 
its first 0 changed to a 2. To prove this by the inductive 
assertion method, one might employ the loop assertion: 

F(T0; T, j )  --= To = T A (V1 <_ i <j)[T[i] ~ 0] 

Having established it, one then must show that the 
final step achieves A. On the other hand, the induction 
hypothesis needed for a subgoal induction proof  is 

the minor generalization one gets by replacing 1 in A 
by j,  i.e. 

~ ( T , j ;  T:) =-- (Vi)[T:[i] = i f /  = m then 2 else T0[i]] 

where m = min { i[ i  >_ j A T[i] = 0} Once this is 
proved, it is trivial to show that a itself holds by 
specializing to the case j = 1. The subgoal induction 
approach is doubly beneficial here: first, the effort to 
devise an induction hypothesis is less, and second, the 
final step of the proof  is much simpler. 

In other cases, the use of an inductive assertion 
proof  seems more natural. Consider the program: 

i ~--- I 
w h i l e i <  1 0 d o i  = i q -  1 

To prove that the final value of i is 10, one uses the 
inductive assertion i < 10. If one wanted to use the 
subgoal induction method he would use the relation: 

xI,(i0;iy) ---- io <_ 1 0 ~ i y  = l0 

This hypothesis contains the inductive assertion as a 
subpart and seems to be less intuitive than the former. 

4. Combining the Methods  

The techniques of subgoal induction and inductive 
assertion provide alternative methodologies for stating 
and proving properties of programs--by "going back- 
ward"  and "going forward"  respectively. Because each 
of these directions is most natural for certain sorts of 
properties an obvious consideration is to combine 
them. A proof  can then be partitioned and carried out 
partly with inductive assertions and partly with sub- 
goal induction. Just how this can be done and under 
what circumstances it is a good strategy can best be 
understood by examining a special case of subgoal 
induction which leads very naturally to a partitioning. 

It is commonly the case that an output specification 
takes a particular form which may be read as follows: 
If the input x satisfies certain constraints, then the out- 
put is to have certain specified properties; if the input 
constraints are violated, the output is unspecified 
(usually because such inputs can never occur in pro- 
gram operation). That  is, xI,(x; z) has the form: 

• (x; z) - ®(x) ~ o(x; z) 

The constraint ~I, is usually referred to as an input 
specification. 

For simplicity, we discuss the schema F(x) ~ if  
P(x) then H(x) else L(x,F(N(x))); the general case of  
multiple recursive functions is analogous. Writing the 
verification conditions (2.1) and (2.2) for ~I,, and re- 
arranging, we obtain: 

P(x) A if(x) ---> O(x; H(x))  (4.1) 

,~P(x)  A ,I,(x) A [q,(N(x)) --~ O(N(x); z)] (4.2) 
O(x; L(x, z)) 
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(4.1) is straightforward: it requires that if the input 
constraint is satisfied and the program terminates im- 
mediately then the output, H(x),  be an acceptable 
output. (4.2), however, is more complex. Suppose the 
left-hand side of (4.2) is true, and consider proving the 
right-hand side, O(x; L(x, z)). Observe that O(x; 
L(x, z)) involves the free variable z, but that z is re- 
stricted in the left-hand side only by the conjunct 

[':D(N(x)) ---+ 0(N(x); z)] 

Since it is the case that this conjunct could con- 
ceivably be true by virtue of ,~(N(x)) being false, 
nothing necessarily is known about 0(N(x); z) and 
hence nothing is known about z. A plausible proof 
strategy would be to establish that this cannot occur, 
i.e. to first prove: 

N P ( x )  ^ ~(x) --~ &(N(x)) (4.3) 

If  true, (4.3) would guarantee that whenever the left- 
hand side of (4.2) is true, &(N(X)) is true and hence 
O(N(x); z)) is true. It would then suffice to prove: 

,~P(x)  ^ ¢(x) h O(N(x); z) 
--~ O(x; L(x,  z)) (4.4) 

Example 5 (Binary search). Consider the loop: 

maintain {x < y ^ (Vi lx  < i < y) A[i]<A[i+l]l  
while x ~ y 
do begin w *-- (xq-y)/2; 

if  key > A[w] then x~-- w -b 1 else y ~-- w 
end 

thus {key = A[x] =- ("4i' [ xo<_i' < yo) key  = A[i']} 

(Note that the output assertion does not require that 
the key be present in the table: it specifies that the key 
will be found if and only if it is present.) 

Proving that the maintain clause is, in fact, an in- 
variant is straightforward. Let ~(x, y) denote this 
invariant, then the other verification conditions are: 

x = y  ^ ~(x,y) 
--~ {key = A[x] =---- ( 3 i ' [ x  < i' <_ y) key = A[i']} 

{X 
^ 

(x 
^ 

y A ~ ( x , y )  A w = ( x - q - y ) / 2  A key > A[w] 
(key = A[z] -- (3i  I w q- 1 < i < y) key = A[i])} 
{key = a[z] = ( 3 i ' [ x  < i' < y) key = A[i']} 

y A cb(x,y) A w = ( x - q - y ) / 2  ^ key < A[w] 
(key = a[z] ~ (3 i lx  _ < i <_ w) key = A[i])} 
{key = A[z] - ("4{ I x < i' < y) key = A[i']} [ ]  

Some insight may be gained by inspecting (4.3). 
It requires that • be an invariant precondition for the 
function F: If  • is true for some initial value of x given 
as input to F,  then it must be true for all subsequent 
nested calls in F. Alternatively, it is useful to look at 
the syntactic form of (4.3) and observe that it has the 
form of a verification condition for the inductive as- 
sertion ,I, around the loop: 

while ,~P(x)  do x *-  N(x). 

Viewed in this way, • behaves as a normal invariant 
which, once established, may be used to assist the 
proof of (4.4). This is somewhat surprising in that 
cI, and (4.3) were obtained from a subgoal induction 
proof using a "backwards going" induction. It il- 
lustrates that the two methods are really duals and 
that translation between them can be carried out on a 
very local level. As a first guideline as to how a proof 
should be partitioned, we observe that this sort of 
decomposition may be useful whenever it is possible 
to state a relatively simple invariant • describing which 
inputs are acceptable. Proof of this invariant is then 
decoupled from the remainder of the proof concerned 
with O. 

Some additional syntax will help to crystallize this 
combined method. We consider the case of while loops 
and extend our earlier notation to propose: 

maintain ~(x) while ~ P ( x )  do x *-- N(x) thus O(x0 ; x) 

Proving (4.1), (4.3), and (4.4) then establishes the 
input-output relation: 

xI/(x0; x$) ~ ~(Xo) --+ [~(xy) ^ P(x$) ^ 0(x0; xy)] 

Let us now consider a more technical aspect of this 
combined method: Is it "as powerful" as subgoal 
induction in the sense that (4.2) implies (4.3) and 
(4.4)? The answer, roughly speaking, is yes, except in 
cases which should never occur. More precisely, we 
reason as follows: 

Definition. xI,(x; z) ------ ~(x) -* O(x; z) is said to be 
"well-behaved" with respect to F if: 

( V x ) ( ~ P ( x )  ^ ~(x) ---, (3z) ~ O(x; L(x, z))) 

That is, if,t, is well-behaved, then whenever ~I, is true and 
P is false of some x, there is some z such that L(x, z) 
is rejected by O. An output predicate ,I, which is not 
well-behaved has at least one x' which is acceptable 
input (~(x') = true) and for which the function recurs 
(P(x') = false), but for which any outcome whatever 
is acceptable according to O. This means that the func- 
tion is needlessly continuing to recur. We cannot think 
of any real examples in which such a situation occurs. 

TI-I~OREM 1. I f  x~ is well-behaved with respect to 
F and i f  (4.2) is valid, then (4.3) and (4.4) are valid. 

PROOF (by contrapositive). First note that (4.2) 
implies (4.4) immediately. Suppose that 4.2 is valid 
but that (4.3) is not valid; we will show that ,I, is not 
well-behaved. Since (4.3) is not valid, it is false for 
some x, say x ' :  

,,.~P(x') A ~b(x') ^ , ~ ( N ( x ' ) )  (~4.3)  

is true. Consider (4.2) for x': 

,--,P(x') ^ ~(x') ^ [®(N(x'))~ O(N(x,);z)] 
O(x'; L(x', z)) 

Using the truth of (~-~4.3), this simplifies to: 
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o(x ' ;  L(x', z)) 

Since (4.2) is valid, this must  be true for all z. Thus ,I, 
is not well-behavedP [ ]  

The combined use of  subgoal induction and in- 
ductive assertions may be applied, of  course, to com- 
plete programs as well as simple loops. In general, a 
procedure has an input assertion, and an output as- 
sertion; intermediary points may be labeled with in- 
variant assertions; while  and  for loops may be tagged 
with mainta in  invariants and thus subgoals. The in- 
ductive assertion method can be used to establish the 
correctness of  the input assertion and the invariants 
by a "going forward"  induction on program flow. 
Once established, a valid loop invariant can be used 
in the proof  of  a verification condition for a subgoal 
induction. 

In particular, a while or for loop is treated as a 
recursive function in the sense that  its output condition 
is used in forming the verification condition for a path 
which passes through the loop. For  example, consider 
some while  loop W: 

mainta in  ~ ( x )  while  ~-~P(x) do x ~-- N(x)  thus 0 (x0; x) 

and consider some case of  a recursive function F 
which passes through IV: 

F(x) ~ i f  P'(x)  then L(x, F(N2(IV(x)))) else . . . 

The verification condition can be treated as being 
formed in two steps: 

(1) Remove occurrences of  F, by using ~e :  

P'(x) A '~e(N2(W(x)); z~) ~ ff'F(x; L(x, ZF)) 

(2) Remove occurrences of  W, by using xI, w: 

P'(x) A ~rv(x; zw) A ~v(N2(zw); Zv)---~xI, F(x; L(x, z , ))  

where the loop specification 'I,w is defined as: 

~,w(x; z) ~ ¢(x) ~ [¢(z) A P(z) A O(x; z)]. 

(The treatment of  for loops is analogous.) In practice, 
it is convenient to carry this out in a single step and 
regard,I,,v as specifying the semantics of  a loop. 

Subgoal induction can be used to establish the 
correctness of  output  assertions on recursive functions 
by a "going backward"  induction. Once established, a 
valid output  assertion describing the result returned by 
a called function can be asserted in a normal  flowchart 
program. This allows a direct t reatment of  recursion 
mixed with normal  program constructs such as loops, 

As a somewhat digressional point, we observe that this result 
may be employed in one other way. In mechanical program verifi- 
cation there is the possibility that a specification supplied by the 
programmer is incomplete and not strong enough to carry itself 
through the induction. (4.2) is then invalid and detecting this situ- 
ation is necessary. Suppose that,I,(x; z) has the form ,I,(x) ~ O(x; z) 
and that O is well-behaved. In many cases, it is possible to test for 
this syntactically, (e.g. if O(x; z) has the form z = g(x)). Because 
(4.3) does not depend on O, it is less complex than (4.2). If the 
difference in complexity is significant, (4.3) may provide a useful 
filter for testing whether ,I, is complete. If (4.3) can be shown to 
be invalid, then the above theorem establishes that ,I, is incomplete, 
without further consideration of O. 

jumps,  and exits. We illustrate this mixed case with 
an example. 

Example 6 (Partition sort). So as to present the al- 
gorithm and its proof  as simply as possible, we use a 
rather high-level notat ion--essential ly Algol 68. Pro- 
cedures may be passed and may return arrays; if  A is 
an array, A[j:k] is the subarray between A[j] and A[k] 
inclusive; length(A) returns the length of A; the infix 
operator  "o" denotes concatenation of arrays. 

real array procedure PSort(A), real array A; value A; 
begin int n; n ~- length(A); 
i fn  = 1 return A; 
begin real array [1 :n] S, M, B; int s, m, b; real x; 

s*--m*--b*--O; x*--^In~2]; 
for j from 1 to n flo 

maintain (Vi I l<_i<s) (S[i]<x) A (Vi[ l<_i<m) (M[i]=x) 
A ( V i [  l<_i<b) (x<B[i]) 
A perm(A[1 :j-- 1], S[1 :s] o M[1 :m] o B[1 :b]); 

if A[j] <x  then S[s~--s+ l] <--- A[j] 
else if A[j] = x then M[m~-m+l] ~-- A[j] 
else B[b~-b+l] ~-- Aft]; 

return PSort(S[1 :s]) o M[1 :m] o PSort(B[1 :b]) 
end 
end PSort output assertion ordered( PSort( A) ) A perm( A,PSort( A) ) 

where ordered and perm are defined: 

ordered(A) -- (Vi I 1 < i < length(A)) A[i] <_ A[i + 1] 
perm(A, B) =-- length(A) = length(B) A "4R 
( ( V i i i  < i < length(A)) (1 _< R[i] <_ length(A)) 
^ (Vi, i ' l  1 < i < i' <_ length(A)) (R[i] # R[i']) 
^ (Vii 1 < i < length(A)) (AIR[i]] = B[i])) 

Consider the proof  by subgoal induction of the 
output  assertion ~Vs(A; PSort(A))  where: 

• s(A; z) -- ordered(z) A perm(A, z) 

Let ~ be the state vector. There are two cases. The first 
is: 

P(~) ~ ~'s(~; H(~)) 

where P(~) -- length(A) = 1 and H(~) ---- A. This 
becomes: 

length(A) = 1 ~ ordered(A) A perm(A, A) 

which is easily proved by expanding the definitions of  
ordered and perm. To  prove the second case, assume 
that the invariant on the for loop has been validated 
by the inductive assertion technique. Further,  observe 
that  the invariant is initially true. Thus the verified 
input /ou tpu t  specification for the for loop is: 

• e(; A, S,  B, s, b, x)  - (Viii < i _< s) (S[i]  < x) 
A (Viii < i < m) (M[i] = x) 
^ (Viii < i < b) (x < B[i]) 
A perm(A, S[1 :s]oM[1 :m]oB[1 :b]) 

Let Ze be the state vector after the for loop terminates, 
let N I ( Z F ) =  S[l:s], let N~(ZF)= B[l:b], and let 
L(c, d, e) = codoe; then the second verification con- 
dition may be written: 
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~e(~)  A q,,(~; z,) A ~'s(Nl(Z,); Zl) 
A qls(Ns(z,); z2) ~ ~s(~; L(z~, M[1 :m], z2)) 

That is, 

length(A) ~ 1 A xI, j,(; A, S, B, s, b, x) A ordered(zx) 
A perm(S[1 :s], zl) A ordered(z2) A perm(B[1 :hi, z2) 

ordered(zloM[1 :m]oz2) ^ perm(A, zloM[1 :m]oz2) 

Proof of this reduces to establishing two results: 

perm(A, UoVoW) A perm(U, zl) A perm(W, z2) 
perm( A, zlo Voz~) 

ordered(zO A ordered(z2) A perm(U, zO A perm(W, z2) 
(Vii 1 < i < length(U)) (U[i] < x) 
^ (Vii 1 < i < length(V)) (x = V[i]) 
A ( V i i i  < i < length(W)) (x < W[i]) 

ordered(zlo Voz2) 

which may be proved using the definitions of perm and 
ordered. [ ]  

5. A Completeness Result 

We have previously touched upon a question 
which we now consider more fully: Under what circum- 
stances is a specification strong enough to carry itself 
through an induction? Common experience has shown 
that input-output specifications are often too weak 
to be induction hypotheses, i.e. the resulting verifica- 
tion conditions are not valid. Section 4 presents a 
negative result: If xI,(x; z) has the form ~(x) ~ O(x; z), 
if xI, is well-behaved, and if cI, is not an invariant, then 
the induction formula is not valid. In this section we 
present a positive result, establishing a completeness 
result for subgoal induction. For simplicity, we con- 
sider the schema F(x) ~ if P(x) then H(x) else 
L(x, F(N(x))); conditions for more general forms are 
analogous. 

We begin by considering a particularly straight- 
forward ease. Suppose that the relation xI,(x; z) is a 
function: For  every x there is at most one z which satis- 
fies xI,(x; z). Further suppose that F is total and that 
xI,(x; F(x)) is valid; then it follows that F = ,I,, i.e. 
9(x;  z) = z = F(x). Expanding the definition of F 
in the valid formula xI,(x; F(x)), it follows that: 

~ P ( x )  A 9(N(x);  z) A z = F(N(x)) ---)xI,(x; L(x, z)) 

is valid. Since ~I,(x; z) -- z = F(x), the third conjunct 
on the left-hand side is subsumed by the second con- 
junet. Simplifying, this yields the valid formula: 

He(x)  A ~,(N(x); z) --* q,(x; L(x, z)). 

But this is exactly (2.2). We may therefore conclude 
that if ,I,(x; z) is a total function then the induction 
formula is valid. 

The following definition and theorem extend this 
argument to a larger class of specifications. 

Definition. xI,(x; z) -- ~(x) ~ O(x; z) is said to be a 
tight specification if both 

• (x) A ~P(x )  ~ ~(N(x)) 
(5.1) 

,~P(x) A ~(x) A O(N(x); z,) A 0(N(x); z2) 
---) L(x, Zl) = L(x, z2) (5.2) 

Essentially, xI, is a tight specification if 4, is a loop in- 
variant and two z's that are both accepted by O pro- 
duce identical outputs from L. 

THEOREM 2. I f  xI,(x; z) ---- ~(X) ---) O(X; z) is a 
tight specification, i f  F is total on the domain {x I ~(x) }, 
and/ fg(x;  F(x)) is valid, then 

~P(x )  A xI,(U(x); z) ---) ,I,(x; L(x, z)) (2.2) 

is valid. 
PROOF. Rewrite (2.2) as: 

,.~P(x) h cI,(x) h [~(N(x)) ~ O(N(x); z)] (5.3) 
--. O(x; L(x, z)) 

Consider some x', z' for which the left-hand side is true: 

~ P(x ' )  A ~(x') A [~(N(x'))--, O(N(x'); z')] 

Since • is an invariant, ~(x') A ~ P ( x ' )  ~ ~(N(x'));  
hence it follows that: 

~?(x ' )  A ~(x') A ~(N(x')) A O(x'); z') 

Since F is correct and F(N(x')) is defined, ~(N(x')) 
O(N(x'); F(N(x'))); hence it follows that:  

~,~e(x') A ~b(x') A ,b(N(x')) A O(N(x'); z') (5.4) 
A O(N(x'); F(N(x'))) 

From the definition of tight specification, this implies: 

L(x', z') = L(x', F(N(x'))) (5.5) 

Since ~(x)  ~ O(x; F(x)) is valid, upon expanding the 
definition of F we obtain: 

~P(x ' )  A ~(x') ---) O(x'; L(x', F(N(x')))) 

This, taken together with (5.4) and (5.5), implies: 

O(x'; L(x', z')) 

which istheright-hand side of (5.1). Thus (3.5) isvalid. [ ]  

Observe that if q, is everywhere true and O char- 
acterizes z by a function, O(x; z) --- z = g(x), then 
,I, is surely a tight specification. In particular, consider 
the case of proving two programs F ~ r[F] and G 
a[G] equivalent. Let the output assertion for F be 
~I,~(x; z) - z = G(x). This is a tight specification and 
it therefore follows that the verification conditions for 
subgoal induction are valid. Thus this theorem can be 
viewed as a generalization of results in [1] and [14]. 

Example 7 (Under-constrained specification). An 
example may serve to make these considerations more 
concrete. Consider 

F(x) ~ if x _< 1 then (0, x) else (F(x-- 1)[2], F(x-- 1)[1] 
-t- F(x-- 1)[21) 
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where angle brackets denote the forming of ordered 
pairs and subscripts denote the decomposit ion of 
ordered pairs. We wish to prove xP(x; F(x)) where 

• (x; z) ~ x > 0 ~ z[2] = Fib(x) 

Here, Fib is the standard Fibonacci function defined as 
Fib(n) ~ if n = 0 then 0 else if n = 1 then 1 else 
Fib(n--l)  -k Fib(n--2). Referring to the schema of  
the theorem, if(x) -- x >_ 0, O(x; z) =-- z[2] = Fib(x), 
and L(x, z) =-- (z[2], z[1] + z[2]). Referring to the 
definition, ~ is an invariant, F is total on the domain 
{x [ x >_ 0}, and ~ ( x ;  F(x)) is valid. However,  • is 
not a tight specification: since ,I, constrains only the 
second component  of  z, it is possible to have two dif- 
ferent z 's which satisfy O; e.g. x = 2, zl = (1,1), and 
z2 = (13,1) is an assignment of  values for which the 
left-hand side of  (5.2) is true but  the right-hand side 
is false. As ~I, is not tight, Theorem 2 does not apply. 

In fact, (2.2) is not valid; it reads: 

x _> 2 A z[2] = Fib(x -- 1) ~ z[1] q- z[2] = Fib(x) 

Since the left-hand side in no way constrains z[1], the 
right-hand side does not  follow logically f rom the left? 
Indeed, x = 2, and z = (13,1) is a counterexample.  
Intuitively, the trouble is that ~I, is incomple te- - i t  
does not  sufficiently constrain the value of z. 

A tight specification is given by: 

xI, (x;z)  --- x _> 0---+z[2] = Fib(x) A z[l] = Fib'(x -- 1) 

where Fib'(x) ~ if x < 0 then 0 else Fib(x). This 
satisfies the definition and, using it, (2.2) is valid. Of  
course, tight specifications are not unique and other 
extensions of  ~I, are possible. [ ]  

Returning to the definition of  tight specification, it 
is useful to examine the other requi rement- - tha t  cI, 
be an invariant. Suppose the contrary, then if(x0) = 
true but ~(Nk(xo)) = false for some k and x0. Let 
x = Nk(xo). For  such x, z is effectively unconstra ined--  
any value whatever will do. In consequence, the va- 
lidity of  (2.2) is not guaranteed. 

In summary,  the definition of  tight specification 
has been constructed so as to rule out two common 
defects of  a specification: 

(1) xI,(x; z) only specifies certain properties of z, so 
that  additional conjuncts are needed to specify 
other properties. 

(2) ~I,(x; z) only specifies the outcome z for certain 
values of  x, so that  additional specification is 
needed for the remaining values. 

3 As a digressional point, we may observe that this can be sim- 
plified to x _> 2 ~ z[l] = Fib(x--2) (by expanding the definition 
of Fib(n)). If the program is to be verified, this formula must be 
valid. Thus this formula can be added to the specification. In this 
way, it is sometimes possible to build up a complete specification 
by extracting information from proofs which fail. Details of this 
idea and its implementation in a program verifier are discussed in 
[5]. It should be noted that such techniques do not always yield a 
complete specification within a reasonable number of steps [19]. 
They are heuristics with certain circumscribed utility. 
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Because of the intertranslatability of  subgoal in- 
duction, inductive assertions, and computat ion induc- 
tion, as established in Section 3, it follows that results 
analogous to Theorem 3 apply to these other p roof  
methods as well. Thus we have established a sufficient 
(but not of  course) necessary criteria for judging when 
a specification is strong enough, so that the induction 
step is valid. Proof  of this valid theorem depends, of  
course, on the decidability of the domain- -which  is a 
separate issue. 

6. Other Classes of Specifications 

Thus far, we have considered only specifications 
of  the form (Vx)~(x;  F(x)) where F is a p rogram and 
xI, is a predicate. That  is, our specifications have been 
concerned solely with establishing which input /ou tpu t  
pairs (x, F(x)) are acceptable. 

There are assertions one may  wish to prove which 
do not have this form. For  example, the requirement  
that  F be monotonic  may be expressed as: 

('¢'x) (Vy) I x <  y--~ F(x) < F(y)] 

This has two occurrences of  F and so does not fall 
neatly into the preceding paradigm. Similarly, the 
requirement that some binary operator  be commuta-  
tive or associative is not directly expressed as a set of  
acceptable input /output  pairs. The purpose of this 
section is to discuss how cases such as these can be 
handled within the f ramework of subgoal induction. 

The essential idea is to distinguish one occurrence 
of the function letter F. Subgoal induction is applied 
to the distinguished occurrence of F and used to con- 
struct verification conditions in the normal way. These 
conditions may contain the other occurrences of  F. 
Thus, to prove these conditions are valid, it will then 
be necessary to reason about  the properties of these 
other occurrences of  F - - b y  appealing to the definition. 
I f  this appeal is straightforward, the p roof  will go 
through without difficulty. An example will illustrate 
this. 

Example 8 (Associativity of Append).  Consider Ap- 
pend defined by: 

A(u, v ) ~  if null(u) then v else cons(car(u), A(cdr(u), v) ) 

The assertion we wish to prove is: 

A(A(u, v), w) = A(u, A(v, w)) 

We choose to distinguish the second appearance of 
A and, for the purpose of exposition, designate this as 
A*. Thus, our goal is to prove that  A* satisfies: 

A(A*(u, v) w) = A(u, A(v, w)) 

Written as an input /ou tpu t  assertion, this is ,I'a.(u, v; 
A*(u, v)) where 

• ~.(u, v; z) - A(z, w) = A(u, A(v, w)) 
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Applying the subgoal induction rule to this specifica- 
tion, we obtain two verification conditions. The first is: 

null(u) ~ A(v, w) = A(u, A(v, w)) 

This is valid since A(u, a) = a when u is null. The 
second is: 

,~null(u) A A(z, w) = A(cdr(u), A(v, w)) 
A(cons(car(u), z), w) = A(u, A(v, w)) 

Since A(cons(a, fl), ~/) -- cons (a, A(/3, 3')), the right- 
hand side of the implication is equal to: 

cons(car(u), A(z, w) ) = cons(car(u), A(cdr(u), A(v, w) ) ) 

which is an immediate consequence of the left-hand 
side of the implication. Thus the verification condi- 
tions are valid, establishing ,I,a(u, v; A(u, v)), i.e. that 
A is associative. [] 

7. Related Work 

Several papers have suggested related proof meth- 
ods. Manna and Pnueli [11] showed how to transform 
a recursive function definition and specification into a 
first order formula containing an unspecified predicate 
Q, so that the function is partially correct with respect 
to the specification if a Q can be found which makes 
the formula true. By choosing Q based on the specifi- 
cation, this method can be viewed as a slightly weaker 
variant of subgoal induction. Manna in [20] applied 
the method of [11] to a flowchart, program and noted 
that the resulting verification condition differed from 
that produced by the inductive assertion technique. 
The work of Basu, Misra [1], and Mills [14] has a 
similar rule, except that their specification is always a 
function rather than a general relation. Other authors 
[3, 7, 17] have presented similar ideas. Finally, subgoal 
induction can be viewed as a specialization of the rule 
of computation induCtion which was developed in the 
context of pure recursive functions [12]. 

subgoal induction lies not in formal power, but rather 
in its applicability, its directness, in the relative sim- 
plicity of the assertions it requires, and in the simplicity 
of the verification conditions it produces. 

Subgoal induction may be useful in preference to 
structural induction in cases where the structure to be 
inducted on is complex. Structural induction requires 
an explicit determination of the structure so that the 
induction can be setup. Such explicit determination 
may be difficult to mechanize where the well ordering 
is complex, e.g. binary search, or partition sort. In 
such cases it may be easier to use subgoal induction 
which uses the computation sequence directly to es- 
tablish the induction. 

Subgoal induction may be preferable to computa- 
tion induction since it has, in effect, "compiled" the 
computation induction rule into an equivalent but  
simpler form. In particular, subgoal induction gene- 
rates first-order formulas as verification conditions 
whereas computation induction generates second- 
order formulas--due to the quantification over func- 
tion letters. Thus subgoal induction avoids certain 
issues in the mechanization of higher-order logic which 
must be addressed when using computation induction. 

With respect to inductive assertions, we regard sub- 
goal induction as simply complementary. Subgoal 
induction can be used to generate the verification con- 
ditions for function calls, thus allowing use of recursive 
functions in a flowchart program. Further, the rule of  
subgoal induction specialized to while loops can be 
used to verify such loops without explicit inductive 
assertions or with weaker-than-normal inductive as- 
sertions inside the loops. Finally, invariants verified 
by the inductive assertion method can be used as 
auxiliary information in proving subgoal induction 
verification conditions. Thus the two methods fit well 
together and each somewhat simplifies the work of 
the other. 

Appendix 

8. Conclusion 

Currently, there are three induction methods in 
common use for mechanical program verification: 
structural induction [2, 16], inductive assertions [6, 8, 
18], and computation induction [15]. In proposing a 
fourth, subgoal induction, it is perhaps worthwhile to 
discuss just why it might be used in preference to one 
of the current methods. 

At a formal level, all are equivalent when appli- 
cable: the results of Appendix A and Section 3 es- 
tablish the formal equivalence of computation induction 
to subgoal induction and of inductive assertions to 
subgoal induction restricted to flowchart programs; 
further, [12] establishes the formal equivalence of 
structural and computational induction. The utility of 

In this section 4 we shall prove that the rule of sub- 
goal induction is equivalent to the rule of computation 
induction specialized to proofs of partial correctness. 
Thus we show not only that it is sound but also that 
there is no need to use the apparently more general rule. 

In order to treat termination questions carefully 
we shall adopt the view that a partiaJ function is a 
special case of a relation. Instead of saying "F(x) is 
defined and F(x) = z" we say "F(x; z)" which means 
"(x, z) C F". The use of the semicolon serves to dis- 
tinguish this from an application of F to two argu- 
ments. A major convenience of this approach is that 
the partial correctness of F with respect to ,I, can be 

4 This section was written in collaboration with Howard Sturg- 
is of Xerox, Palo Alto Research Center. 
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stated quite succinctly by "F  c xI," which means 
"(Vx,  z)[F(x; z) -~ ~I'(x; z)]". 

First, let us specify precisely the function F defined 
by (2.7) from Section 2. We assume that all the primi- 
tive functions and predicates involved are total. Based 
upon the right-hand side of (2.7) we define a functional 
r, mapping partial functions into partial functions, as 
follows: 

r[F] = ;xx if P1 then Et else if P2 then E2 . . . else E.  

where the Ei may contain F and the PC do not. In re- 
lational notation this is: 

r[F] -~ r~[F] U. . .  U r ,[F] 

where each r~ is defined by a statement of the form: 
i - - 1  

ri[F](x; z) -- /~ ~ P i  
/ = 1  

[" 1 ^ P~ ^ ( 3 z ~ . . . z m )  A F(~,k; zk) ^ z = 3'0 

where the m + 1 terms ~ 0 , . . . ,  ~'m are derived from 
E~ by replacing subterms of the form F(~,) by z's in 
an inside-out manner until no occurrences of F re- 
main. To be more precise, suppose E~ contains m 
occurrences of the function letter F. If m = 0, simply 
choose 3'0 = E~, otherwise find a subterm of the form 
F(~) where 7 does not contain F, choose ~,m = % re- 
place the occurrence of F(~,) in E~ by zm, and repeat. 
This is the same as the algorithm for constructing the 
~,~'s given in Section 2. 

For  example, let us consider the specific function 
definition: 

K(x, y) ~ if P(x) then H(x) else K(M(x) ,  K(N(x) ,  y)) 

then 

zx[F](x ,y ;z)  -- P(x) h z = H(x) 
r2[F](x, y; z) =- ,~,P(x) h (:lzl, z2)[F[N[x], y; z~) 

h F(M(x) , z2 ; z t )  h z = z~] 

This definition of r properly captures the intuitive 
notion of a functional mapping of a partial function F 
into another partial function, assuming that all the 
other functions involved are total. 

Now define the family of functions {F~} by: 

F0 = ~ ,  i.e. the everywhere undefined function 
Fi+x = r[F~] 

Then 

F =  U F i .  
i~O 

This way of defining F, and the fact that it corresponds 
properly to our notion of how to compute Fis  essentially 
Kleene's first recursion theorem. Intuitively, F~ is 
that defective version of F which one can compute 
without ever using more than i stack frames; i.e. F~ 
is programmed to go into an infinite loop if it ever 

~o F attempts to use the (i + 1)th frame. Then U~=0 ~ is 

just the function one gets by letting the available stack 
space get arbitrarily large. 

For  example, 

K 0 = ~  
K l ( x , y ; z )  =-- P(x) A z = H(x) 
K2(x,y;z)  =-- P(x) h z = H(x) Y , '~P(x) h P(N(x))  
h P(M(x) )  h z = H(M(x) )  

Note that this definition uses "call-by-value" se- 
mantics. For  example, if N is the identity function and 
P(x) is false then K(x, y) is undefined even if P(M(x) )  
is true. If "call-by-name" semantics were used, K(x, y) 
would be H(M(x) ) .  

Associated with this way of assigning meaning to a 
recursive definition is an induction rule for proving 
things about the defined function, the rule of computa- 
tion induction [12]: To prove c~[F], prove a [ ~ ]  and 
(VG)[a[G] --+ ~[r[G]]] where G ranges over all func- 
tions. There are various restrictions on a which need 
not concern us because we are interested only in the 
specialization of this rule to the case where a[G] is 
"G ___ xI,". The base case for this specialization, ~ ~ xI,, 
is always true; and (VG)[G ___ • ---r z[G] c xI,] is equiva- 
lent to 

( V G ) [ ~  ___ ~ --. (~,[O] U . . .  U r , [ a ] )  ___ ~,] 

which in turn is equivalent to the conjunction of the 
n statements 

(VG)[G _ xI, ---, 7",[G] __. 9]  (A1) 

for i = 1 , . . . ,  n. Thus a computation induction proof  
of  F c xI, amounts to proving the n statements with 
the form (A1). From now on let us concentrate on 
proving one such statement. 

At this point it is tempting to note that r~ can be 
applied to any arbitrary relation and that z~[~] ~ xI, 
implies (A1) since G ~ xI, ---r r~[G] ___ r~[xI,] by the 
monotonicity of r~. The statement r~[~] ___ ,I, turns 
out to be the ith clause of a subgoal induction proof  
with its equality cross-terms missing. Thus it would 
be easy to show that a slightly less powerful rule is 
sound because it implies a proof by computation in- 
duction. We are after bigger game, however. 

We shall show that (A1) is equivalent to the ith 
clause of a subgoal induction proof, i.e. : 
i ~ 1  m 

/~ ~ P j  h Pi  h / ~ ( g k ; z k )  
i=l k=l (2.8) 

A A ( ~  = "n --* z ,  = z , )  ~ , I , (x ;  ~0) 
l<_s<t<m 

from Section 2. To reduce the notational complexity 
we shall use the abbreviation: 

m 

R(I'; Z) means /~ R(3'k; zk) 
k = l  

for  any relation R. 
First, we prove a lemma which shows how the 

quantified function letter, G, can be dispensed with. 
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LEMMA A1. Let 3 ' 0 , . . . ,  7~ be terms in variables 
x, z l , . . . ,  zm. Let xI, be a relation. Then: 

~,(r; z )  ^ A (r ,  = 3,t ~ z, = z,) (A3) 
l < s < t < m  

is equivalent to 

('ZIG) [G(F; Z) A G ( :  ,I,] (A4) 

where G ranges over all partial functions. 
PROOF. To show (A3) --* (A4) define G to be the 

finite relation {('rl, z l ) , . . . ,  (3,m, zm)}. First by 

A (~, = ' y , - - * z ,  = z,),  
l__< s < t__< ra 

G is a function. Then by definition G(F; Z).  Finally, 
by xI,(F; Z),  G ___ xI,. 

To show (A4) ---> (A3): by G(F; Z) and G ___ xI, 
we have xI,(F; Z).  The fact that G is a function and 
G(P; Z)  imply: 

A (~, = ~ , - - , z ,  = z,). [ ]  
l < s < t < _ m  

THEOREM A1. The two statements (A1) and (2.8) 
are equivalent. 

PROOF. The proof  proceeds by a sequence of equiva- 
lence-preserving transformation to (A1) which lead 
to (2.8). First, (A1) is equivalent to: 

(VG)[G c x~ --~ (Vx ,  z)[T~[G](x; z) ~ xI,(x; z)]], by 
the definition of  c 

(VG)[G ~ xI, ---+ ('fix, z) ~P~" A P~ 
LJ~I 

"1 

A ( 3 z l . . . z m ) [ G ( r ;  Z)  A z = "r0] ~ ~ ( x ;  z ) ] J  

t 
by expanding r~.  Henceforth, let us abbreviate 
i = l  

i "~P~" A Pi  

by P*. 

('¢G)[G___ ~ ~ [P* A G ( r ;  Z)  ^ z = - r 0 ~ ( x ;  z)]], 

by moving all quantifiers to the outside, and dropping 
universals (except G). 

(VG)[G ~ xI, ~ [p* A G(P; Z) ---~ xI,(x; 3,0)]] 

by substitution for the lone occurrence of z. 

P* A (3G)[GC~v A G(F;Z)] ~,(x;~0),  

by moving the quantifier inward. G does not occur in 
P* or xI,(x; "Vo). 

P* A ~ ( r ; z )  A A ('r, = "r , --- z,  = z ,) 
l < s < t < m  

xI,(x; 3'0), by Lemma A1. 

This statement, except for the abbreviations, is identi- 
cal to statement (2.8). [ ]  

Moore  theorem prover to other proof  techniques. 
Numerous  discussions with J. Moore  helped to clarify 
the relation and raised several of  the questions ans- 
wered here. D. Bobrow and L.P. Deutsch gave this 
paper  sympathetic readings and suggested several im- 
provements  in its presentation. 
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