
Programming B. Wegbreit*
Languages Editor

Subgoal Induction
James H. Morris Jr. and Ben Wegbreit
Xerox Palo Alto Research Center

A proof method, subgoal induction, is presented as
an alternative or supplement to the commonly used
inductive assertion method. Its major virtue is that it
can often be used to prove a loop's correctness directly
from its input-output specification without the use of an
invariant. The relation between subgoal induction and
other commonly used induction rules is explored and, in
particular, it is shown that subgoal induction can be
viewed as a specialized form of computation induction.
A set of sufficient conditions are presented which guarantee
that an input-output specification is strong enough for
the induction step of a proof by subgoal induction to
be valid.

Key Words and Phrases: program verification,
proving programs correct, induction rule, computation
induction, inductive assertions, structural induction,
proof rule, recursive programs, iterative programs

CR Categories: 4.19, 4.22, 5.21, 5.24

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Authors' address: Xerox Palo Alto Research Center, 3333
Coyote Hill Road, Palo Alto, CA 94304.

* Note. This paper was submitted prior to the time that Weg-
breit became editor of the department, and editorial consideration
was completed under the former editor, Thomas Standish.

1 For emphasis, we use the delimiter ";" to separate the input
variable(s) from the output value. Thus ,I,(a, b, c; z) relates input
variables a, b, and c to the output z.

209

1. Introduction

We describe a technique, subgoal induction, for
proving programs correct. It may be used as an al-
ternative or supplement to the commonly used in-
ductive assertion method [4, 7]. Subgoal induction is a
proof rule which matches the problem solving heuristic:
"Transform a problem into a simpler one with the
same general characteristics, solve the simpler problem,
and use that solution to solve the original problem."

If we accept the premise that proof rules should
guide the way one thinks about programs, then sub-
goal induction is an important addition to our under-
standing of programming methodology. The method
of inductive assertions suggests that the programmer
concentrate on invariants, i.e. the things his program
does not change. The method of subgoal induction
suggests that he concentrate on the dynamics of program
segments, i.e. the relation between the current state and
the result to be computed. Our experience with these
two methods has shown both to be useful, and we later
describe circumstances advantageous to each.

For example, when the task is to prove that a while
loop satisfies a given input-output relation, subgoal
induction can be applied directly without the inter-
mediate step of framing an inductive assertion. This
simplifies the problem of discovering an adequate in-
duction hypothesis; the input-output relation must be
made demanding enough to be an induction hypothesis.

Subgoal induction presents a way of "thinking
recursively", i.e. assuming one's ability to solve simpler
problems and generating solutions to more complex
problems. Its application to loop programs shows that
one can program recursively without using function
definitions; push down stacks or the other trappings of
recursion.

We begin by presenting one particular case of
subgoal induction to illustrate the basic idea. Consider
the flowchart of Figure 1 which shows a simple loop.
x is a vector containing all the program variables.
Each execution of this loop will take place in one of
two ways: I f P is true the loop exits, as shown in Figure
2. If P is false then x is assigned N(x) and the loop
head is reached again, as shown in Figure 3.

Suppose the correctness condition for the loop is
specified by the following requirement: given input x
the loop is to produce output z such that xI,(x; z) for
some given predicate 1 ~. We consider the two cases
shown in Figures 2 and 3:

(1) If P(x) is true then control leaves the loop
with x unchanged. Thus the output is x. In order for
the loop specification to be satisfied, it must be that
,I,(x; x) in this case. That is,

P(x) ~ ,I,(x; x) (1.1)

(2) If P(x) is false then x is assigned N(x); let x'
denote the new value of x, i.e. x = N(x). The loop
head is now reached with x'. Suppose that eventually

Communications April 1977
of Volume 20
the ACM Number 4

http://crossmark.crossref.org/dialog/?doi=10.1145%2F359461.359466&domain=pdf&date_stamp=1977-04-01

the loop halts and that z is the output of the loop
started with x'. Further, suppose that the input/output
pair (x', z) satisfies the specification, i.e. ~(x ' ; z).
Observe that z is also the final output of the original
loop starting with x. In order for the original loop
specification to be satisfied, it must be that ,I,(x; z) in
this case. Therefore it suffices to prove:

,~P(x) h x' = N(x) h ~(x ' ; z) ---> ~(x; z) (1.2)

(1.1) and (1.2) are verification conditions. If they
are both valid, then it is guaranteed that the loop
meets its specification. Subgoal induction is a way of
constructing such verification conditions directly from a
loop's specification.

2. Rule of Subgoai Induction

In order to present subgoal induction in a more
precise and rigorous fashion, we employ a functional
view of programming in which programs are written as
recursive functions. We first show how the induction
rule can be coupled with the synthesis of a recursive
function, considering program construction and proof
of correctness simultaneously. Let the program be
specified by the requirement that given input x it is to
produce output z such that xI,(x; z) for some given
predicate xI,. We propose to construct a recursive pro-
gram F, as follows. For certain x, an appropriate z
can be computed using a previously defined function;
let P(x) test for those x and H(x) be the previously
defined function; this leads to the fragment:

if P(x) then H(x)

and the verification condition:

P(x) ~ xI,(x; H(x)) (2.1)

For all other x, we propose to replace x by a somewhat
simpler value, attempt to solve the problem for that
simpler value, and then modify that solution to obtain
a solution for x. Let N be the function which maps x
into the simpler value and L be the function which
uses x and the solution for N(x) to compute a solution
for x. This leads to the fragment:

else L(x, F(N(x)))

The corresponding verification condition is:

~P(x) A '~(N(x); z) ~ 9(x ; L(x, z)) (2.2)

This may be read as: if ~P(x) and if z is an acceptable
output for F with input N(x) then L(x, z) must be an
acceptable output for F with input x. The program is
then:

F(x) ~ if e(x) then H(x) else L(x, F(N(x))) (2.3)

If the two verification conditions (2.1) and (2.2) are
valid, then ~I,(x; F(x)) is valid. This is an example of

Fig. 1. A simple loop.

__~lrx~ YES

NO

x ~Nlx) I
]

Fig. 2. Test taken in the posi-
tive direction.

/

Fig. 3. Test taken once in the
negative direction.

()

NO

~ YES I=

JO

x *- N(x)

I

the rule of subgoal induction, applied to a recursive
function.

The above argument tacitly assumes that F(N(x))
actually returns a value. If, on the contrary, F(N(x))
fails to terminate, then F(x) fails to terminate. Proof of
termination may be treated separately, e.g. based upon
a well-ordering. In this paper, we will be concerned
only with partial correctness, i.e. consider only those
cases where F(x) terminates. A more precise statement
of subgoal induction reads: If (2.1) and (2.2) are valid,
then for each x if F(x) terminates ,I,(x; F(x)) is true.
We expand on this point and give a precise justification
below.

Observe that (2.2) is a stronger requirement than
actually needed to establish xI,(x; F(x)). It would, in
principle, suffice to prove the somewhat weaker im-
plication:

,~P(x) h ~I,(N(x); z) h z = F(N(x))
--~ qz(x;L(x,z)) (2.4)

This may be read as: If ~P(x) and if z is the output
of F(N(x)) and if the pair (N(x), z) satisfies ~(N(x); z),
then the pair (x, L(x, z)) must satisfy ,I,(x; L(x, z)).
(2.4) follows directly from expanding the definition of
F. It differs from (2.2) in that its hypothesis includes the
additional conjunct z = F(N(x)). The essential idea
of subgoal induction is the absence of this conjunct:
Provided that ~ is a strong enough specification, z is
adequately constrained by the requirement that ~(N(x); z)
be true. In such eases, the conjunct z = F(N(x)) is
unnecessary, and (2.2) is a valid theorem which, taken
together with (2.1), establishes ~(x; F(x)). We will
later discuss in detail and illustrate with examples the

210 Communications April 1977
of Volume 20
the ACM Number 4

conditions under which xI, is a strong enough specifi-
cation for this to work. Here it suffices to observe a
result we prove below: (2.1) and (2.2) are valid if and
only if the verification conditions for computation in-
duction [12] are valid.

Example 1 (Subgoal induction). Let " / " denote in-
teger division (with truncation) and define

E(x) ~ i f x = 0 then 1 else L(x, E(x/2)) , and
L(x, y) ~ i f even(x) then y2 e l se 2. y2

The property to be proved is 9 (x ; E(x)) where 9 (x ; z)
-- z = 2 ~. The verification conditions are obtained
from (2.1) and (2.2):

x = 0--* 1 = 2 x (trivial)
x ~ 0 A z = 2 ~ / 2 ~ L (x , z) = 2 ~

Expanding L, this is x ~ 0 A z = 2 x/s ~ i f even(x)
then z 2 = 2 ~ else 2.z 2 = 2 x which may be proved by
cases on even(x). E]

In the case where H is the identity function and
L(x, z) = z, the recursive function F defined in (2.3) is
equivalent to the following while scheme:

whi l e ~P(x) do x ~-- N(x)

Let x0 and xf be the initial and final values of the state
vector x in this scheme. To establish 'I,(x0; xf) by sub-
goal induction, (2.1) and (2.2) require that we prove:

P(x) ---, ~,(x; x)
,'~P(x) h 9 (N(x) ; z) ~ xI,(x; z)

Observe that these verification conditions are identical
to the verification conditions for the simple flowchart
loop discussed in the introduction. Obtaining these as a
special case of the general rule for recursive functions
is an alternate derivation which may, perhaps, clarify
the method. Note that the idea of loop invariant or
inductive assertion does not appear. The output as-
sertion ,I, need not be true within the loop and likely
is not (otherwise we are wasting iterations!). Subgoal
induction allows the output assertion or intention of
the loop to be used directly in its own proof.

Example 2 (Subgoal induction on a while loop).
Consider the well-known iteration for finding the great-
est common divisor of two positive integers:

whi le x ~ y do i f x < y then y ~-- y - - x
e l se x ~-- x - - y

The output assertion is:

xI,(x0, Y0; xs) ---- xs = GCD(xo, Yo)

where GCD(x, y) = max { t I t divides x A t divides y}.
Let ~ be the state vector. To prove xI, by subgoal in-
duction, two verification conditions must be established.
The first is:

p(~) ---r xI,(~, ~) (2.5)

where ~ = (x, y) and P(~) ------ x = y. This becomes:

x = y ~ x = GCD(x ,y)

The second verification condition is:

~ P (~) ^ xI,(N(~); z) ---r ~,(~; z) (2.6)

where N (~) = i f x < y then (x, y - -x) e lse (x--y, y).
This becomes:

x ~ y A
z = (if x < y then G C D (x , y - - x)

e l se GC D(x-- y, y)) --~
z = GCD(x, y)

(2.5) is immediate and (2.6) follows easily from the
general observation that

z divides a A z divides b --~
z divides a q- b A z divides [a -- b [

Notice that it was not necessary to invent a loop in-
variant or inductive assertion to prove xI,; ,I, itself was a
sufficient inductive hypothesis.

It happens that the following is a good invariant:

GCD(xo, yo) = GCD(x, y)

However, it appears that a proof by inductive assertions
will be less direct than the foregoing proof. []

Because whi l e loops are a commonly occurring
syntactic form to which subgoal induction is directly
applicable, it is appropriate to introduce a simple nota-
tion for their output assertions. We propose:

whi le (Boolean expression) do (statement) thus
(output assertion)

The (output assertion) is to be true on exit from the
whi le loop. It uses the following notation: If x is a
free variable, then x0 (read as "original x") is an initial
value of the corresponding program variable x, other
free appearances of x are understood to denote the
final value of the corresponding program variable.
Hence the above program may be written:

whi l e x ~ y

do i f x < y t h e n y ~ - - y - - x e l s e x ~ - - x - - y
t h u s x = GCD(xo, yo)

The extension of this notation to for loops and multiple-
exit loops should be clear.

Example 3 (Multiple-exit loop). Consider searching
a table A[l:n] for the first entry which is equal to
key, returning the index of the entry if one exists or 0
otherwise. We wish to prove:

{1 < j _< n A A[j] = key} V
{j = 0 A (Vii 1 < i < n) A[i] ~ key}

We write a multiple-exit loop as: do (statement) end
with the understanding that the (statement) is to be
repeated until an exit is executed. An exit and the
(output assertion) associated with that exit is written:

ex i t thus (output assertion)

211 Communications April 1977
of Volume 20
the ACM Number 4

In this notation, the search loop is written:

j~--- 1;
do
if j > n then

begin j ~-- 0;
exit thus {j = 0 ^ (Vi IA < i < n) A[j] ~ key}
end

else if A[j] = key then
exit thus {j0 <_ j <_ n ^A[j] = key}

e l s e j ~--j + 1
end

Note that the two disjunets of the specification are
associated with distinct exit conditions. Note also that
j0 is used as the lower limit of the range conditions.
The verification conditions for the case which exits on
j > n are:

j > n --, 0 = 0 ^ (' ¢ i l j < i < n) A[i] ~ key

j0_< n A a[j0] ~ key ^ j = 0 A (Vi I j0 + 1 < i < n)
A[i] ~ key

--, j = 0 ^ (vi IJ <_i<n)A[i] ~ key

both of which are valid. The verification conditions
for the ease which exits on A [j] = key are:

j <_ n A A[j] = k e y ~ j <_j <_ n ^ A[j] = key

jo _< n ^ A [j 0] ~ k e y ^ jo q- 1 <_ j < n ^ A[j] = key
jo <_J < n ^ A[j] = key

which are also valid. Because the loop specification
has been decomposed into two disjuncts, each associ-
ated with a distinct exit, the verification conditions are
relatively simple.

As a final comment on this example, we stress the
use ofjo as the lower limit of the range conditions, e.g.
on the first exit, the output specification (Vi [jo _< i _< n)
A[i] ~ key. This expresses the final outcome, if control
leaves via this exit, in terms of the input state j0 on
each iteration through the loop. []

Subgoal induction can be applied to more general
program structures involving nested reeursive calls and
mutually reeursive functions. For example, consider:

F(x) ~ if Po(x) then Lo(G(No(x)))
else if Px(x) then Lx(G(N2(F(Ni(x)))))
else ~(F(Ns(x)), F(N4(x)))

G(y) ~ if Ps(Y) then H(y) else F(y)

with output assertions i%(x; F(x)) and 9o(y; G(y)).
To form the verification conditions for proof by sub-
goal induction, three additional concepts are required.
We state and illustrate these in turn.

(1) Mutual recursion is handled by using the output
predicate for the called function in forming the verifica-
tion condition for the calling function. Thus the verifi-
cation condition for the first path through F is:

Po(x) ^ ,~o(No(x); zo) --* ~,(x; Lo(zo))

212

This is obtained as follows: let F be called with argu-
ment x and suppose that P0(x); to compute F's value,
G is called with argument N0(x); let that result be zo
subject to the constraint xI, o(N0(~c); zo); the result of F
is Lo(zo) ; to prove F correct, we must be able to show
that ~I,p(x; Lo(zo)).

(2) Multiple function calls on distinct functions are
handled by introducing additional individual variables--
one for each called function. Thus the verification con-
dition for the second path through F is:

~Po(x) A Pl(x) A xI, v(Nl(x); zr) A ~a(N2(z~,); zo)
-~ ,V,(x; L~(zo))

This is obtained as follows: let F be called with argu-
ment x and suppose that ~,Po(x) and P~(x) ; to compute
F's value, the first step is to call F recursively with
argument Nt(x); let that result be zp subject to the
constraint qr(Nl(x) ; zF); next, G is called with N2(zp) ;
let that result be zo subject to the constraint that
r~o(N2(zp); zo); the result of the original call on F is
Ll(zo); to prove F correct, we must be able to show
that ,I,p(x; L~(zo)).

(3) Multiple calls on the same function are handled
by introducing additional individual variables, subject to
the constraint of the output assertion and the further
constraint that when the arguments to the function are
equal, then the outputs are equal. Thus the verification
condition for the third path through F is:

~'.~Po(x) A ~Px(x) A ~r(N,(x); z3) ^ ~,(N4(x); z,) A
(N~(x) =N,(x) ---, z3=z4) ~ xI%(x; L~(z3, z4))

This is obtained as follows: let F be called with argu-
ment x and suppose that ~Po(x) and ~,Pl(x) ; to
compute F's value, F is recursively called twice, with
arguments N3(x) and N4(x); let the results be z3 and
z4, respectively, subject to the constraints ,I,r(N~(x) ; z3),
xI%(N4(x); z4) and the further constraint that if N3(x)
equals N4(x) then z3 equals z4; to prove F correct, we
must be able to show that the final result, L2(z3, z4),
satisfies xI, F(x; ~(z~, z4)).

The two verification conditions for the two paths
through G are obtained analogously:

Ps(y) ~ '~o(y; H(y))
~P~(y) A ~, (y ; z ,) ~ ,~o(y; z ,) []

Now let us state the general rule for reeursively
defined functions. Consider a definition of the form:

F(x) ~ ifPx then E1 else if P2 t h e n . . , else E, (2.7)

where x is a vector of variables, the E~ are terms made
up from constants, x, primitive functions, and F,
and the P~ are predicates applied to terms made up
from constants, x, primitive functions, but not F.
(The generalization allowing the E~ to contain con-
ditionals and the P~ to contain F is easy but unil-
luminating, as is the generalization to mutually re-
cursive definitions.)

The rule of subgoal induction establishes the partial

Communications April 1977
of Volume 20
the ACM Number 4

i--1

A "~'Pj" A

A (' r ,
l ~ 8 < t < m

correctness relation ,I,(x; F(x)) by proving n state-
ments, one for each El. Each statement has the form:

m

P~ h A ~(gk;zk) A
k=x (2.8)

= ~/~ ~ z, = z,) ~ ~,(x; "r0)

where the 5'k are derived f rom E~ by replacing all terms
of the form F(3,) with some new zj in an inside-out
manner. To be more precise, suppose El contains m
occurrences of the function letter F. I f m = 0, simply
choose "r0 = El, otherwise find a subterm of the form
F(3,) where 3' does not contain F, choose 3,,, = 3',
replace the occurrence of F(7) in E~ by zm, and repeat.

Consider the specific function definition:

F(x, y) ~ if P(x) then H(x) else F(M(x), F(N(x), y))

then the two clauses to be proved are:

P(x) ~ x~(x, y; H(x))

and

~ P (x) A ~(N(x) , y; z2) A ~(M(x) , z2; Zl) A
((N(x), y) = (M(x), z2) ~ z2=z1) --)" xXt(x, y; zl)

This rule is essentially the same as Manna and Pnueli 's
in [11] except for the equality "cross t e rm" in the
premise:

A (3', = "r, ~ z , = z,)
l < s < t < m

which requires that there be a functional relationship
between the 3,'s and z's. This fact was implicit in the
functional notation but was lost when the function
letter F disappeared. The functionality can be impor-
tant. Consider the definition:

H (x) ~ i f x = 0 then 1 e l s e H (x - 1) -- H (x - 1)

and suppose one wants to prove H(x) # 2. The rule
of subgoal induction requires one to prove:

x = 0--> 1 # 2

and

~-~(x = 0) A zl # 2 A z2 # 2 A
((x - - 1) = (x - l) ~ z x = z ~) ~ z l - z 2 # 2

I t is clear that the equality cross term is essential in prov-
ing the second clause.

In the Appendix we show that this rule is sound
and in fact equivalent to the rule of computat ion in-
duction specialized to proofs of partial correctness.

Example 4 (Nested recursive function calls). The
following function flattens an S-expression x, in the
sense that it creates a one-level list whose elements
are the atoms of x in print order, appended to y.

F(x,y) ~ if atom (x) then cons (x, y)
else F(car(x) F(cdr(x), y))

We wish to show that F(x, NIL) is identical to the
result of a simpler procedure G, which flattens a list

in a slower but more obvious way, as follows:

G(x) ~ if atom(x) then cons(x, NIL)
else A)G(car(x)),G(cdr(x))).

The auxiliary function A (i.e. Append) is defined:

A(x,y) ~ if null(x) then y else cons(car(x),A(cdr(x),y)).

I t suffices to prove the following output assertion for
F: qv(x, y; z) -- {z = A(G(x), y)}. The verification
conditions are:

atom(x) ~ cons(x, y) = A(G(x), y)

which is obviously valid, upon expansion of G and A:

,~atom(x) A zl = A(G(cdr(x)), y)
A z2 = A(G(car(x)), zl)
A [(car(x), y) = (car(x), zl) ---> Za = z2] --->

z2 = A(C(x) , y)

Substituting for equals and expanding G for a non-
atomic argument, this simplifies to

~-~atom(x) A [(car(x), y) = (car(x), z l) ~ Zl = z2]
A {A(G(car(x)), G(cdr(x))), y}
= A { G(car(x)), A(G(cdr(x), y) }

an instance of a simple fact about A- -A(A(u , v), w)
= A(u, A(v, w)), i.e. that A is associative. []

3. Comparison with Inductive Assertion Method

Subgoal induction and the inductive assertion
method are symmetric alternatives for proving the
following sort of statement: For all computat ions which
start at A and end at B, relation ~I, holds between the
beginning and final states of the data. The inductive
assertion method is based upon an induction on the
number of steps since the computat ion started at A.
Subgoal induction is based upon the number of steps
until it halts at B.

Consider the flow chart in Figure 4. Q, R, and S
are input-output relations describing the effect of their

Fig. 4. A loop scheme.

?
I o I

)

NO

" I

213 Communications
of
the ACM

April 1977
Volume 20
Number 4

respective boxes. P is a predicate. Suppose one wishes
to show that a relation A(xA; Xc) holds for any path
from A to C. A conceivable approach might be to
prove that A holds for A-to-C computations which
visit point B once, twice, etc. This approach does not
work out for the following reason: An A-to-C compu-
tation of length n -t- 1 does not contain any A-to-C
computation of length n. An inductive method based
on path length seems to work only when the longer
paths contain the shorter ones. There are three families
of paths one might consider: those from A to B, those
from B to C, or those from B to B (i.e. ones which
start and end at point B).

The inductive assertion method chooses the first
family by inventing the subproblem of proving that a
relation I'(x,t; xB) holds for all paths from A to B, and
then using I" to prove that A holds between A and C.
Thus, one must prove (for all xa, x~, xc) :

Q(xA; xB) --* I'(x~; xB) (3.1)
P(xA; xs) h ~P(xB) h g(xB; x'B) ---~I'(xA; X'B) (3.2)
P(Xa; X~) h P(xB) h S(xB; xc) --* A(x,~; xc) (3.3)

Figure 5 shows how Figure 4 can be expanded into an
infinite flow chart containing all the paths under dis-
cussion. (3.1) and (3.2) establish that r holds between
A and Bi for i = l, 2, (3.3) finishes the proof by
showing that A holds between A and each Ci.

The subgoal induction method decomposes the
problem in the reverse way: Invent a relation ,I,(xs; xc)
and prove that it holds for all B-to-C paths and then
use ,Is to prove A holds between A and C, i.e. prove:

Q(xA; x~) h xI,(x~; xc) --* A(XA; Xc) (3.4)
"~P(xs) A R(xB; X'l~) A '~(x'B; xc) ---~,I,(x~; xc) (3.5)
P(xB) ^ S(xB; xc) ~ ~(x~; Xc) (3.6)

Figure 6 shows the flow chart of Figure 4 expanded in
the reverse way so that point C occurs only once and
there are an infinite number of starting points. Clauses
(3.6) and (3.5) serve to show that ~ holds between B~
and C for i = 1, 2, Clause (3.4) shows that A
holds between points A~ and C, for i = 1, 2,

Formally speaking, a proof by either of these two
methods can be used to produce a proof by the other.

Suppose one has a proof by inductive assertions;
i.e. proofs of (3.1), (3.2), and (3.3). To prove A by
subgoal induction, define:

~,(x~; xc) --- (Vx~)[r(x~; x~) --, A(x~; xc)]

This formula is a sort of circumlocution of (3.2) and
(3.3). It asks us to prove, for any path from B to C,
and a state xa such that r(x,~; x~) holds, that A(xA; xc)
holds. Since (3.2) proves that r will be maintained as
one passes around the loop, we need only consider the
path directly from B to C; and (3.3) proves that A
will hold if the B -- C path is followed. Finally, to
complete the proof, one uses (3.1) to show that I'(xA;
x~) does hold if point B is reached through Q. To sum-
marize: A can be proved by subgoal induction be-

Fig. 5. A forward expansion of Fig. 4.

I °

s

s

s

Fig. 6. A backward expansion of Fig. 4.

[R l

+

214 Communications April 1977
of Volume 20
the ACM Number 4

cause (3.4) follows from (3.1), (3.5) from (3.2), and
(3.6) from (3.3).

Suppose one has a proof by subgoal induction;
i.e. proofs of (3.4), (3.5), and (3.6). To prove A by
inductive assertions define:

r(x~; x~) = (Vx~)[~,(x.; xc) ~ A(x~; xc)]

Then A can be proved by the inductive method because
(3.1) follows from (3.4), (3.2) follows from (3.5), and
(3.3) follows from (3.6). This translation technique is
discussed in [19].

Despite this formal equivalence between the methods
it appears that choosing the right one can sometimes
make both the discovery of an induction hypothesis
and the subsequent proof simpler.

First, if Q is a null operation then (3.4) becomes
xI,(xa; xc) --> A(xa; Xc) so A itself is a good candidate
for the subgoal hypothesis xI,. Therefore subgoal in-
duction seems like a better choice. On the other hand,
when S is a null operation the corresponding ad-
vantage does not accrue to the inductive assertion
method. (3.3) becomes:

V(xa; xs) h P(xB) ~ A(xA; xB)

and A is not a reasonable choice for r except in the
unlikely case that it does not depend upon the test P.
In other words, there is a special case where the sub-
goal induction method does not require any new as-
sertions to be invented, and there is no such special
case for the inductive assertion method.

A drawback of subgoal induction is that it cannot
be used to prove invariants about nonterminating
programs. For example, to prove that i is always posi-
tive in the program:

i ~-- 1 ; while true do i ~-- i Jr- 1

one just proves (3.1) and (3.2) for F(i0; i) ---- i > 0.
The fact that subgoal induction can be used to prove
invariants about programs which halt but never start
is not much consolation.

Finally, let us consider two examples which illus-
trate the advantages of the methods. Consider the
program:

j ~--- 1;
while T[j] ~ 0 do j ~-- j q- 1 ;
T[j] *-- 2

The relation to be proved is:

A -- (Vi)[T:[i] = if i = m then 2 else T0[i]]

where m = min {i] i _> 1 A T0[i] = 0}, i.e. T h a s had
its first 0 changed to a 2. To prove this by the inductive
assertion method, one might employ the loop assertion:

F(T0; T, j) --= To = T A (V1 <_ i <j)[T[i] ~ 0]

Having established it, one then must show that the
final step achieves A. On the other hand, the induction
hypothesis needed for a subgoal induction proof is

the minor generalization one gets by replacing 1 in A
by j, i.e.

~ (T , j ; T:) =-- (Vi)[T:[i] = i f / = m then 2 else T0[i]]

where m = min { i[i >_ j A T[i] = 0} Once this is
proved, it is trivial to show that a itself holds by
specializing to the case j = 1. The subgoal induction
approach is doubly beneficial here: first, the effort to
devise an induction hypothesis is less, and second, the
final step of the proof is much simpler.

In other cases, the use of an inductive assertion
proof seems more natural. Consider the program:

i ~--- I
w h i l e i < 1 0 d o i = i q - 1

To prove that the final value of i is 10, one uses the
inductive assertion i < 10. If one wanted to use the
subgoal induction method he would use the relation:

xI,(i0;iy) ---- io <_ 1 0 ~ i y = l0

This hypothesis contains the inductive assertion as a
subpart and seems to be less intuitive than the former.

4. Combining the Methods

The techniques of subgoal induction and inductive
assertion provide alternative methodologies for stating
and proving properties of programs--by "going back-
ward" and "going forward" respectively. Because each
of these directions is most natural for certain sorts of
properties an obvious consideration is to combine
them. A proof can then be partitioned and carried out
partly with inductive assertions and partly with sub-
goal induction. Just how this can be done and under
what circumstances it is a good strategy can best be
understood by examining a special case of subgoal
induction which leads very naturally to a partitioning.

It is commonly the case that an output specification
takes a particular form which may be read as follows:
If the input x satisfies certain constraints, then the out-
put is to have certain specified properties; if the input
constraints are violated, the output is unspecified
(usually because such inputs can never occur in pro-
gram operation). That is, xI,(x; z) has the form:

• (x; z) - ®(x) ~ o(x; z)

The constraint ~I, is usually referred to as an input
specification.

For simplicity, we discuss the schema F(x) ~ if
P(x) then H(x) else L(x,F(N(x))); the general case of
multiple recursive functions is analogous. Writing the
verification conditions (2.1) and (2.2) for ~I,, and re-
arranging, we obtain:

P(x) A if(x) ---> O(x; H(x)) (4.1)

,~P(x) A ,I,(x) A [q,(N(x)) --~ O(N(x); z)] (4.2)
O(x; L(x, z))

215 Communications April 1977
of Volume 20
the ACM Number 4

(4.1) is straightforward: it requires that if the input
constraint is satisfied and the program terminates im-
mediately then the output, H(x), be an acceptable
output. (4.2), however, is more complex. Suppose the
left-hand side of (4.2) is true, and consider proving the
right-hand side, O(x; L(x, z)). Observe that O(x;
L(x, z)) involves the free variable z, but that z is re-
stricted in the left-hand side only by the conjunct

[':D(N(x)) ---+ 0(N(x); z)]

Since it is the case that this conjunct could con-
ceivably be true by virtue of ,~(N(x)) being false,
nothing necessarily is known about 0(N(x); z) and
hence nothing is known about z. A plausible proof
strategy would be to establish that this cannot occur,
i.e. to first prove:

N P (x) ^ ~(x) --~ &(N(x)) (4.3)

If true, (4.3) would guarantee that whenever the left-
hand side of (4.2) is true, &(N(X)) is true and hence
O(N(x); z)) is true. It would then suffice to prove:

,~P(x) ^ ¢(x) h O(N(x); z)
--~ O(x; L(x, z)) (4.4)

Example 5 (Binary search). Consider the loop:

maintain {x < y ^ (Vi lx < i < y) A[i]<A[i+l]l
while x ~ y
do begin w *-- (xq-y)/2;

if key > A[w] then x~-- w -b 1 else y ~-- w
end

thus {key = A[x] =- ("4i' [xo<_i' < yo) key = A[i']}

(Note that the output assertion does not require that
the key be present in the table: it specifies that the key
will be found if and only if it is present.)

Proving that the maintain clause is, in fact, an in-
variant is straightforward. Let ~(x, y) denote this
invariant, then the other verification conditions are:

x = y ^ ~(x,y)
--~ {key = A[x] =---- (3 i ' [x < i' <_ y) key = A[i']}

{X
^

(x
^

y A ~ (x , y) A w = (x - q - y) / 2 A key > A[w]
(key = A[z] -- (3i I w q- 1 < i < y) key = A[i])}
{key = a[z] = (3 i ' [x < i' < y) key = A[i']}

y A cb(x,y) A w = (x - q - y) / 2 ^ key < A[w]
(key = a[z] ~ (3 i lx _ < i <_ w) key = A[i])}
{key = A[z] - ("4{ I x < i' < y) key = A[i']} []

Some insight may be gained by inspecting (4.3).
It requires that • be an invariant precondition for the
function F: If • is true for some initial value of x given
as input to F, then it must be true for all subsequent
nested calls in F. Alternatively, it is useful to look at
the syntactic form of (4.3) and observe that it has the
form of a verification condition for the inductive as-
sertion ,I, around the loop:

while ,~P(x) do x *- N(x).

Viewed in this way, • behaves as a normal invariant
which, once established, may be used to assist the
proof of (4.4). This is somewhat surprising in that
cI, and (4.3) were obtained from a subgoal induction
proof using a "backwards going" induction. It il-
lustrates that the two methods are really duals and
that translation between them can be carried out on a
very local level. As a first guideline as to how a proof
should be partitioned, we observe that this sort of
decomposition may be useful whenever it is possible
to state a relatively simple invariant • describing which
inputs are acceptable. Proof of this invariant is then
decoupled from the remainder of the proof concerned
with O.

Some additional syntax will help to crystallize this
combined method. We consider the case of while loops
and extend our earlier notation to propose:

maintain ~(x) while ~ P (x) do x *-- N(x) thus O(x0 ; x)

Proving (4.1), (4.3), and (4.4) then establishes the
input-output relation:

xI/(x0; x$) ~ ~(Xo) --+ [~(xy) ^ P(x$) ^ 0(x0; xy)]

Let us now consider a more technical aspect of this
combined method: Is it "as powerful" as subgoal
induction in the sense that (4.2) implies (4.3) and
(4.4)? The answer, roughly speaking, is yes, except in
cases which should never occur. More precisely, we
reason as follows:

Definition. xI,(x; z) ------ ~(x) -* O(x; z) is said to be
"well-behaved" with respect to F if:

(V x) (~ P (x) ^ ~(x) ---, (3z) ~ O(x; L(x, z)))

That is, if,t, is well-behaved, then whenever ~I, is true and
P is false of some x, there is some z such that L(x, z)
is rejected by O. An output predicate ,I, which is not
well-behaved has at least one x' which is acceptable
input (~(x') = true) and for which the function recurs
(P(x') = false), but for which any outcome whatever
is acceptable according to O. This means that the func-
tion is needlessly continuing to recur. We cannot think
of any real examples in which such a situation occurs.

TI-I~OREM 1. I f x~ is well-behaved with respect to
F and i f (4.2) is valid, then (4.3) and (4.4) are valid.

PROOF (by contrapositive). First note that (4.2)
implies (4.4) immediately. Suppose that 4.2 is valid
but that (4.3) is not valid; we will show that ,I, is not
well-behaved. Since (4.3) is not valid, it is false for
some x, say x ' :

,,.~P(x') A ~b(x') ^ , ~ (N (x ')) (~4.3)

is true. Consider (4.2) for x':

,--,P(x') ^ ~(x') ^ [®(N(x'))~ O(N(x,);z)]
O(x'; L(x', z))

Using the truth of (~-~4.3), this simplifies to:

216 Communications April 1977
of Volume 20
the ACM Number 4

o(x ' ; L(x', z))

Since (4.2) is valid, this must be true for all z. Thus ,I,
is not well-behavedP []

The combined use of subgoal induction and in-
ductive assertions may be applied, of course, to com-
plete programs as well as simple loops. In general, a
procedure has an input assertion, and an output as-
sertion; intermediary points may be labeled with in-
variant assertions; while and for loops may be tagged
with mainta in invariants and thus subgoals. The in-
ductive assertion method can be used to establish the
correctness of the input assertion and the invariants
by a "going forward" induction on program flow.
Once established, a valid loop invariant can be used
in the proof of a verification condition for a subgoal
induction.

In particular, a while or for loop is treated as a
recursive function in the sense that its output condition
is used in forming the verification condition for a path
which passes through the loop. For example, consider
some while loop W:

mainta in ~ (x) while ~-~P(x) do x ~-- N(x) thus 0 (x0; x)

and consider some case of a recursive function F
which passes through IV:

F(x) ~ i f P'(x) then L(x, F(N2(IV(x)))) else . . .

The verification condition can be treated as being
formed in two steps:

(1) Remove occurrences of F, by using ~e :

P'(x) A '~e(N2(W(x)); z~) ~ ff'F(x; L(x, ZF))

(2) Remove occurrences of W, by using xI, w:

P'(x) A ~rv(x; zw) A ~v(N2(zw); Zv)---~xI, F(x; L(x, z ,))

where the loop specification 'I,w is defined as:

~,w(x; z) ~ ¢(x) ~ [¢(z) A P(z) A O(x; z)].

(The treatment of for loops is analogous.) In practice,
it is convenient to carry this out in a single step and
regard,I,,v as specifying the semantics of a loop.

Subgoal induction can be used to establish the
correctness of output assertions on recursive functions
by a "going backward" induction. Once established, a
valid output assertion describing the result returned by
a called function can be asserted in a normal flowchart
program. This allows a direct t reatment of recursion
mixed with normal program constructs such as loops,

As a somewhat digressional point, we observe that this result
may be employed in one other way. In mechanical program verifi-
cation there is the possibility that a specification supplied by the
programmer is incomplete and not strong enough to carry itself
through the induction. (4.2) is then invalid and detecting this situ-
ation is necessary. Suppose that,I,(x; z) has the form ,I,(x) ~ O(x; z)
and that O is well-behaved. In many cases, it is possible to test for
this syntactically, (e.g. if O(x; z) has the form z = g(x)). Because
(4.3) does not depend on O, it is less complex than (4.2). If the
difference in complexity is significant, (4.3) may provide a useful
filter for testing whether ,I, is complete. If (4.3) can be shown to
be invalid, then the above theorem establishes that ,I, is incomplete,
without further consideration of O.

jumps, and exits. We illustrate this mixed case with
an example.

Example 6 (Partition sort). So as to present the al-
gorithm and its proof as simply as possible, we use a
rather high-level notat ion--essential ly Algol 68. Pro-
cedures may be passed and may return arrays; if A is
an array, A[j:k] is the subarray between A[j] and A[k]
inclusive; length(A) returns the length of A; the infix
operator "o" denotes concatenation of arrays.

real array procedure PSort(A), real array A; value A;
begin int n; n ~- length(A);
i fn = 1 return A;
begin real array [1 :n] S, M, B; int s, m, b; real x;

s*--m*--b*--O; x*--^In~2];
for j from 1 to n flo

maintain (Vi I l<_i<s) (S[i]<x) A (Vi[l<_i<m) (M[i]=x)
A (V i [l<_i<b) (x<B[i])
A perm(A[1 :j-- 1], S[1 :s] o M[1 :m] o B[1 :b]);

if A[j] <x then S[s~--s+ l] <--- A[j]
else if A[j] = x then M[m~-m+l] ~-- A[j]
else B[b~-b+l] ~-- Aft];

return PSort(S[1 :s]) o M[1 :m] o PSort(B[1 :b])
end
end PSort output assertion ordered(PSort(A)) A perm(A,PSort(A))

where ordered and perm are defined:

ordered(A) -- (Vi I 1 < i < length(A)) A[i] <_ A[i + 1]
perm(A, B) =-- length(A) = length(B) A "4R
((V i i i < i < length(A)) (1 _< R[i] <_ length(A))
^ (Vi, i ' l 1 < i < i' <_ length(A)) (R[i] # R[i'])
^ (Vii 1 < i < length(A)) (AIR[i]] = B[i]))

Consider the proof by subgoal induction of the
output assertion ~Vs(A; PSort(A)) where:

• s(A; z) -- ordered(z) A perm(A, z)

Let ~ be the state vector. There are two cases. The first
is:

P(~) ~ ~'s(~; H(~))

where P(~) -- length(A) = 1 and H(~) ---- A. This
becomes:

length(A) = 1 ~ ordered(A) A perm(A, A)

which is easily proved by expanding the definitions of
ordered and perm. To prove the second case, assume
that the invariant on the for loop has been validated
by the inductive assertion technique. Further, observe
that the invariant is initially true. Thus the verified
input /ou tpu t specification for the for loop is:

• e(; A, S, B, s, b, x) - (Viii < i _< s) (S[i] < x)
A (Viii < i < m) (M[i] = x)
^ (Viii < i < b) (x < B[i])
A perm(A, S[1 :s]oM[1 :m]oB[1 :b])

Let Ze be the state vector after the for loop terminates,
let N I (Z F) = S[l:s], let N~(ZF)= B[l:b], and let
L(c, d, e) = codoe; then the second verification con-
dition may be written:

217 Communications April 1977
of Volume 20
the ACM Number 4

~e(~) A q,,(~; z,) A ~'s(Nl(Z,); Zl)
A qls(Ns(z,); z2) ~ ~s(~; L(z~, M[1 :m], z2))

That is,

length(A) ~ 1 A xI, j,(; A, S, B, s, b, x) A ordered(zx)
A perm(S[1 :s], zl) A ordered(z2) A perm(B[1 :hi, z2)

ordered(zloM[1 :m]oz2) ^ perm(A, zloM[1 :m]oz2)

Proof of this reduces to establishing two results:

perm(A, UoVoW) A perm(U, zl) A perm(W, z2)
perm(A, zlo Voz~)

ordered(zO A ordered(z2) A perm(U, zO A perm(W, z2)
(Vii 1 < i < length(U)) (U[i] < x)
^ (Vii 1 < i < length(V)) (x = V[i])
A (V i i i < i < length(W)) (x < W[i])

ordered(zlo Voz2)

which may be proved using the definitions of perm and
ordered. []

5. A Completeness Result

We have previously touched upon a question
which we now consider more fully: Under what circum-
stances is a specification strong enough to carry itself
through an induction? Common experience has shown
that input-output specifications are often too weak
to be induction hypotheses, i.e. the resulting verifica-
tion conditions are not valid. Section 4 presents a
negative result: If xI,(x; z) has the form ~(x) ~ O(x; z),
if xI, is well-behaved, and if cI, is not an invariant, then
the induction formula is not valid. In this section we
present a positive result, establishing a completeness
result for subgoal induction. For simplicity, we con-
sider the schema F(x) ~ if P(x) then H(x) else
L(x, F(N(x))); conditions for more general forms are
analogous.

We begin by considering a particularly straight-
forward ease. Suppose that the relation xI,(x; z) is a
function: For every x there is at most one z which satis-
fies xI,(x; z). Further suppose that F is total and that
xI,(x; F(x)) is valid; then it follows that F = ,I,, i.e.
9(x; z) = z = F(x). Expanding the definition of F
in the valid formula xI,(x; F(x)), it follows that:

~ P (x) A 9(N(x); z) A z = F(N(x)) ---)xI,(x; L(x, z))

is valid. Since ~I,(x; z) -- z = F(x), the third conjunct
on the left-hand side is subsumed by the second con-
junet. Simplifying, this yields the valid formula:

He(x) A ~,(N(x); z) --* q,(x; L(x, z)).

But this is exactly (2.2). We may therefore conclude
that if ,I,(x; z) is a total function then the induction
formula is valid.

The following definition and theorem extend this
argument to a larger class of specifications.

Definition. xI,(x; z) -- ~(x) ~ O(x; z) is said to be a
tight specification if both

• (x) A ~P(x) ~ ~(N(x))
(5.1)

,~P(x) A ~(x) A O(N(x); z,) A 0(N(x); z2)
---) L(x, Zl) = L(x, z2) (5.2)

Essentially, xI, is a tight specification if 4, is a loop in-
variant and two z's that are both accepted by O pro-
duce identical outputs from L.

THEOREM 2. I f xI,(x; z) ---- ~(X) ---) O(X; z) is a
tight specification, i f F is total on the domain {x I ~(x) },
and/ fg(x; F(x)) is valid, then

~P(x) A xI,(U(x); z) ---) ,I,(x; L(x, z)) (2.2)

is valid.
PROOF. Rewrite (2.2) as:

,.~P(x) h cI,(x) h [~(N(x)) ~ O(N(x); z)] (5.3)
--. O(x; L(x, z))

Consider some x', z' for which the left-hand side is true:

~ P(x ') A ~(x') A [~(N(x'))--, O(N(x'); z')]

Since • is an invariant, ~(x') A ~ P (x ') ~ ~(N(x'));
hence it follows that:

~?(x ') A ~(x') A ~(N(x')) A O(x'); z')

Since F is correct and F(N(x')) is defined, ~(N(x'))
O(N(x'); F(N(x'))); hence it follows that:

~,~e(x') A ~b(x') A ,b(N(x')) A O(N(x'); z') (5.4)
A O(N(x'); F(N(x')))

From the definition of tight specification, this implies:

L(x', z') = L(x', F(N(x'))) (5.5)

Since ~(x) ~ O(x; F(x)) is valid, upon expanding the
definition of F we obtain:

~P(x ') A ~(x') ---) O(x'; L(x', F(N(x'))))

This, taken together with (5.4) and (5.5), implies:

O(x'; L(x', z'))

which istheright-hand side of (5.1). Thus (3.5) isvalid. []

Observe that if q, is everywhere true and O char-
acterizes z by a function, O(x; z) --- z = g(x), then
,I, is surely a tight specification. In particular, consider
the case of proving two programs F ~ r[F] and G
a[G] equivalent. Let the output assertion for F be
~I,~(x; z) - z = G(x). This is a tight specification and
it therefore follows that the verification conditions for
subgoal induction are valid. Thus this theorem can be
viewed as a generalization of results in [1] and [14].

Example 7 (Under-constrained specification). An
example may serve to make these considerations more
concrete. Consider

F(x) ~ if x _< 1 then (0, x) else (F(x-- 1)[2], F(x-- 1)[1]
-t- F(x-- 1)[21)

218 Communications April 1977
of Volume 20
the ACM Number 4

where angle brackets denote the forming of ordered
pairs and subscripts denote the decomposit ion of
ordered pairs. We wish to prove xP(x; F(x)) where

• (x; z) ~ x > 0 ~ z[2] = Fib(x)

Here, Fib is the standard Fibonacci function defined as
Fib(n) ~ if n = 0 then 0 else if n = 1 then 1 else
Fib(n--l) -k Fib(n--2). Referring to the schema of
the theorem, if(x) -- x >_ 0, O(x; z) =-- z[2] = Fib(x),
and L(x, z) =-- (z[2], z[1] + z[2]). Referring to the
definition, ~ is an invariant, F is total on the domain
{x [x >_ 0}, and ~ (x ; F(x)) is valid. However, • is
not a tight specification: since ,I, constrains only the
second component of z, it is possible to have two dif-
ferent z 's which satisfy O; e.g. x = 2, zl = (1,1), and
z2 = (13,1) is an assignment of values for which the
left-hand side of (5.2) is true but the right-hand side
is false. As ~I, is not tight, Theorem 2 does not apply.

In fact, (2.2) is not valid; it reads:

x _> 2 A z[2] = Fib(x -- 1) ~ z[1] q- z[2] = Fib(x)

Since the left-hand side in no way constrains z[1], the
right-hand side does not follow logically f rom the left?
Indeed, x = 2, and z = (13,1) is a counterexample.
Intuitively, the trouble is that ~I, is incomple te- - i t
does not sufficiently constrain the value of z.

A tight specification is given by:

xI, (x;z) --- x _> 0---+z[2] = Fib(x) A z[l] = Fib'(x -- 1)

where Fib'(x) ~ if x < 0 then 0 else Fib(x). This
satisfies the definition and, using it, (2.2) is valid. Of
course, tight specifications are not unique and other
extensions of ~I, are possible. []

Returning to the definition of tight specification, it
is useful to examine the other requi rement- - tha t cI,
be an invariant. Suppose the contrary, then if(x0) =
true but ~(Nk(xo)) = false for some k and x0. Let
x = Nk(xo). For such x, z is effectively unconstra ined--
any value whatever will do. In consequence, the va-
lidity of (2.2) is not guaranteed.

In summary, the definition of tight specification
has been constructed so as to rule out two common
defects of a specification:

(1) xI,(x; z) only specifies certain properties of z, so
that additional conjuncts are needed to specify
other properties.

(2) ~I,(x; z) only specifies the outcome z for certain
values of x, so that additional specification is
needed for the remaining values.

3 As a digressional point, we may observe that this can be sim-
plified to x _> 2 ~ z[l] = Fib(x--2) (by expanding the definition
of Fib(n)). If the program is to be verified, this formula must be
valid. Thus this formula can be added to the specification. In this
way, it is sometimes possible to build up a complete specification
by extracting information from proofs which fail. Details of this
idea and its implementation in a program verifier are discussed in
[5]. It should be noted that such techniques do not always yield a
complete specification within a reasonable number of steps [19].
They are heuristics with certain circumscribed utility.

219

Because of the intertranslatability of subgoal in-
duction, inductive assertions, and computat ion induc-
tion, as established in Section 3, it follows that results
analogous to Theorem 3 apply to these other p roof
methods as well. Thus we have established a sufficient
(but not of course) necessary criteria for judging when
a specification is strong enough, so that the induction
step is valid. Proof of this valid theorem depends, of
course, on the decidability of the domain- -which is a
separate issue.

6. Other Classes of Specifications

Thus far, we have considered only specifications
of the form (Vx)~(x; F(x)) where F is a p rogram and
xI, is a predicate. That is, our specifications have been
concerned solely with establishing which input /ou tpu t
pairs (x, F(x)) are acceptable.

There are assertions one may wish to prove which
do not have this form. For example, the requirement
that F be monotonic may be expressed as:

('¢'x) (Vy) I x < y--~ F(x) < F(y)]

This has two occurrences of F and so does not fall
neatly into the preceding paradigm. Similarly, the
requirement that some binary operator be commuta-
tive or associative is not directly expressed as a set of
acceptable input /output pairs. The purpose of this
section is to discuss how cases such as these can be
handled within the f ramework of subgoal induction.

The essential idea is to distinguish one occurrence
of the function letter F. Subgoal induction is applied
to the distinguished occurrence of F and used to con-
struct verification conditions in the normal way. These
conditions may contain the other occurrences of F.
Thus, to prove these conditions are valid, it will then
be necessary to reason about the properties of these
other occurrences of F - - b y appealing to the definition.
I f this appeal is straightforward, the p roof will go
through without difficulty. An example will illustrate
this.

Example 8 (Associativity of Append). Consider Ap-
pend defined by:

A(u, v) ~ if null(u) then v else cons(car(u), A(cdr(u), v))

The assertion we wish to prove is:

A(A(u, v), w) = A(u, A(v, w))

We choose to distinguish the second appearance of
A and, for the purpose of exposition, designate this as
A*. Thus, our goal is to prove that A* satisfies:

A(A*(u, v) w) = A(u, A(v, w))

Written as an input /ou tpu t assertion, this is ,I'a.(u, v;
A*(u, v)) where

• ~.(u, v; z) - A(z, w) = A(u, A(v, w))

Communications April 1977
of Volume 20
the ACM Number 4

Applying the subgoal induction rule to this specifica-
tion, we obtain two verification conditions. The first is:

null(u) ~ A(v, w) = A(u, A(v, w))

This is valid since A(u, a) = a when u is null. The
second is:

,~null(u) A A(z, w) = A(cdr(u), A(v, w))
A(cons(car(u), z), w) = A(u, A(v, w))

Since A(cons(a, fl), ~/) -- cons (a, A(/3, 3')), the right-
hand side of the implication is equal to:

cons(car(u), A(z, w)) = cons(car(u), A(cdr(u), A(v, w)))

which is an immediate consequence of the left-hand
side of the implication. Thus the verification condi-
tions are valid, establishing ,I,a(u, v; A(u, v)), i.e. that
A is associative. []

7. Related Work

Several papers have suggested related proof meth-
ods. Manna and Pnueli [11] showed how to transform
a recursive function definition and specification into a
first order formula containing an unspecified predicate
Q, so that the function is partially correct with respect
to the specification if a Q can be found which makes
the formula true. By choosing Q based on the specifi-
cation, this method can be viewed as a slightly weaker
variant of subgoal induction. Manna in [20] applied
the method of [11] to a flowchart, program and noted
that the resulting verification condition differed from
that produced by the inductive assertion technique.
The work of Basu, Misra [1], and Mills [14] has a
similar rule, except that their specification is always a
function rather than a general relation. Other authors
[3, 7, 17] have presented similar ideas. Finally, subgoal
induction can be viewed as a specialization of the rule
of computation induCtion which was developed in the
context of pure recursive functions [12].

subgoal induction lies not in formal power, but rather
in its applicability, its directness, in the relative sim-
plicity of the assertions it requires, and in the simplicity
of the verification conditions it produces.

Subgoal induction may be useful in preference to
structural induction in cases where the structure to be
inducted on is complex. Structural induction requires
an explicit determination of the structure so that the
induction can be setup. Such explicit determination
may be difficult to mechanize where the well ordering
is complex, e.g. binary search, or partition sort. In
such cases it may be easier to use subgoal induction
which uses the computation sequence directly to es-
tablish the induction.

Subgoal induction may be preferable to computa-
tion induction since it has, in effect, "compiled" the
computation induction rule into an equivalent but
simpler form. In particular, subgoal induction gene-
rates first-order formulas as verification conditions
whereas computation induction generates second-
order formulas--due to the quantification over func-
tion letters. Thus subgoal induction avoids certain
issues in the mechanization of higher-order logic which
must be addressed when using computation induction.

With respect to inductive assertions, we regard sub-
goal induction as simply complementary. Subgoal
induction can be used to generate the verification con-
ditions for function calls, thus allowing use of recursive
functions in a flowchart program. Further, the rule of
subgoal induction specialized to while loops can be
used to verify such loops without explicit inductive
assertions or with weaker-than-normal inductive as-
sertions inside the loops. Finally, invariants verified
by the inductive assertion method can be used as
auxiliary information in proving subgoal induction
verification conditions. Thus the two methods fit well
together and each somewhat simplifies the work of
the other.

Appendix

8. Conclusion

Currently, there are three induction methods in
common use for mechanical program verification:
structural induction [2, 16], inductive assertions [6, 8,
18], and computation induction [15]. In proposing a
fourth, subgoal induction, it is perhaps worthwhile to
discuss just why it might be used in preference to one
of the current methods.

At a formal level, all are equivalent when appli-
cable: the results of Appendix A and Section 3 es-
tablish the formal equivalence of computation induction
to subgoal induction and of inductive assertions to
subgoal induction restricted to flowchart programs;
further, [12] establishes the formal equivalence of
structural and computational induction. The utility of

In this section 4 we shall prove that the rule of sub-
goal induction is equivalent to the rule of computation
induction specialized to proofs of partial correctness.
Thus we show not only that it is sound but also that
there is no need to use the apparently more general rule.

In order to treat termination questions carefully
we shall adopt the view that a partiaJ function is a
special case of a relation. Instead of saying "F(x) is
defined and F(x) = z" we say "F(x; z)" which means
"(x, z) C F". The use of the semicolon serves to dis-
tinguish this from an application of F to two argu-
ments. A major convenience of this approach is that
the partial correctness of F with respect to ,I, can be

4 This section was written in collaboration with Howard Sturg-
is of Xerox, Palo Alto Research Center.

220 Communications April 1977
of Volume 20
the ACM Number 4

stated quite succinctly by "F c xI," which means
"(Vx, z)[F(x; z) -~ ~I'(x; z)]".

First, let us specify precisely the function F defined
by (2.7) from Section 2. We assume that all the primi-
tive functions and predicates involved are total. Based
upon the right-hand side of (2.7) we define a functional
r, mapping partial functions into partial functions, as
follows:

r[F] = ;xx if P1 then Et else if P2 then E2 . . . else E.

where the Ei may contain F and the PC do not. In re-
lational notation this is:

r[F] -~ r~[F] U. . . U r ,[F]

where each r~ is defined by a statement of the form:
i - - 1

ri[F](x; z) -- /~ ~ P i
/ = 1

[" 1 ^ P~ ^ (3 z ~ . . . z m) A F(~,k; zk) ^ z = 3'0

where the m + 1 terms ~ 0 , . . . , ~'m are derived from
E~ by replacing subterms of the form F(~,) by z's in
an inside-out manner until no occurrences of F re-
main. To be more precise, suppose E~ contains m
occurrences of the function letter F. If m = 0, simply
choose 3'0 = E~, otherwise find a subterm of the form
F(~) where 7 does not contain F, choose ~,m = % re-
place the occurrence of F(~,) in E~ by zm, and repeat.
This is the same as the algorithm for constructing the
~,~'s given in Section 2.

For example, let us consider the specific function
definition:

K(x, y) ~ if P(x) then H(x) else K(M(x) , K(N(x) , y))

then

zx[F](x ,y ;z) -- P(x) h z = H(x)
r2[F](x, y; z) =- ,~,P(x) h (:lzl, z2)[F[N[x], y; z~)

h F(M(x) , z2 ; z t) h z = z~]

This definition of r properly captures the intuitive
notion of a functional mapping of a partial function F
into another partial function, assuming that all the
other functions involved are total.

Now define the family of functions {F~} by:

F0 = ~ , i.e. the everywhere undefined function
Fi+x = r[F~]

Then

F = U F i .
i~O

This way of defining F, and the fact that it corresponds
properly to our notion of how to compute Fis essentially
Kleene's first recursion theorem. Intuitively, F~ is
that defective version of F which one can compute
without ever using more than i stack frames; i.e. F~
is programmed to go into an infinite loop if it ever

~o F attempts to use the (i + 1)th frame. Then U~=0 ~ is

just the function one gets by letting the available stack
space get arbitrarily large.

For example,

K 0 = ~
K l (x , y ; z) =-- P(x) A z = H(x)
K2(x,y;z) =-- P(x) h z = H(x) Y , '~P(x) h P(N(x))
h P(M(x)) h z = H(M(x))

Note that this definition uses "call-by-value" se-
mantics. For example, if N is the identity function and
P(x) is false then K(x, y) is undefined even if P(M(x))
is true. If "call-by-name" semantics were used, K(x, y)
would be H(M(x)) .

Associated with this way of assigning meaning to a
recursive definition is an induction rule for proving
things about the defined function, the rule of computa-
tion induction [12]: To prove c~[F], prove a [~] and
(VG)[a[G] --+ ~[r[G]]] where G ranges over all func-
tions. There are various restrictions on a which need
not concern us because we are interested only in the
specialization of this rule to the case where a[G] is
"G ___ xI,". The base case for this specialization, ~ ~ xI,,
is always true; and (VG)[G ___ • ---r z[G] c xI,] is equiva-
lent to

(V G) [~ ___ ~ --. (~,[O] U . . . U r , [a]) ___ ~,]

which in turn is equivalent to the conjunction of the
n statements

(VG)[G _ xI, ---, 7",[G] __. 9] (A1)

for i = 1 , . . . , n. Thus a computation induction proof
of F c xI, amounts to proving the n statements with
the form (A1). From now on let us concentrate on
proving one such statement.

At this point it is tempting to note that r~ can be
applied to any arbitrary relation and that z~[~] ~ xI,
implies (A1) since G ~ xI, ---r r~[G] ___ r~[xI,] by the
monotonicity of r~. The statement r~[~] ___ ,I, turns
out to be the ith clause of a subgoal induction proof
with its equality cross-terms missing. Thus it would
be easy to show that a slightly less powerful rule is
sound because it implies a proof by computation in-
duction. We are after bigger game, however.

We shall show that (A1) is equivalent to the ith
clause of a subgoal induction proof, i.e. :
i ~ 1 m

/~ ~ P j h Pi h / ~ (g k ; z k)
i=l k=l (2.8)

A A (~ = "n --* z , = z ,) ~ , I , (x ; ~0)
l<_s<t<m

from Section 2. To reduce the notational complexity
we shall use the abbreviation:

m

R(I'; Z) means /~ R(3'k; zk)
k = l

for any relation R.
First, we prove a lemma which shows how the

quantified function letter, G, can be dispensed with.

22t Communications April 1977
of Volume 20
the ACM Number 4

LEMMA A1. Let 3 ' 0 , . . . , 7~ be terms in variables
x, z l , . . . , zm. Let xI, be a relation. Then:

~,(r; z) ^ A (r , = 3,t ~ z, = z,) (A3)
l < s < t < m

is equivalent to

('ZIG) [G(F; Z) A G (: ,I,] (A4)

where G ranges over all partial functions.
PROOF. To show (A3) --* (A4) define G to be the

finite relation {('rl, z l) , . . . , (3,m, zm)}. First by

A (~, = ' y , - - * z , = z,),
l__< s < t__< ra

G is a function. Then by definition G(F; Z). Finally,
by xI,(F; Z), G ___ xI,.

To show (A4) ---> (A3): by G(F; Z) and G ___ xI,
we have xI,(F; Z). The fact that G is a function and
G(P; Z) imply:

A (~, = ~ , - - , z , = z,). []
l < s < t < _ m

THEOREM A1. The two statements (A1) and (2.8)
are equivalent.

PROOF. The proof proceeds by a sequence of equiva-
lence-preserving transformation to (A1) which lead
to (2.8). First, (A1) is equivalent to:

(VG)[G c x~ --~ (Vx , z)[T~[G](x; z) ~ xI,(x; z)]], by
the definition of c

(VG)[G ~ xI, ---+ ('fix, z) ~P~" A P~
LJ~I

"1

A (3 z l . . . z m) [G (r ; Z) A z = "r0] ~ ~ (x ; z)] J

t
by expanding r~. Henceforth, let us abbreviate
i = l

i "~P~" A Pi

by P*.

('¢G)[G___ ~ ~ [P* A G (r ; Z) ^ z = - r 0 ~ (x ; z)]],

by moving all quantifiers to the outside, and dropping
universals (except G).

(VG)[G ~ xI, ~ [p* A G(P; Z) ---~ xI,(x; 3,0)]]

by substitution for the lone occurrence of z.

P* A (3G)[GC~v A G(F;Z)] ~,(x;~0),

by moving the quantifier inward. G does not occur in
P* or xI,(x; "Vo).

P* A ~ (r ; z) A A ('r, = "r , --- z, = z ,)
l < s < t < m

xI,(x; 3'0), by Lemma A1.

This statement, except for the abbreviations, is identi-
cal to statement (2.8). []

Moore theorem prover to other proof techniques.
Numerous discussions with J. Moore helped to clarify
the relation and raised several of the questions ans-
wered here. D. Bobrow and L.P. Deutsch gave this
paper sympathetic readings and suggested several im-
provements in its presentation.

Received June 1975; revised October 1975

References
1. Basu, S., and Misra, J. Proving loop programs. IEEE Trans.
Software Eng. SE-1, 1 (March 1975), 76-86.
2. Boyer, R. and Moore, J.S. Proving theorems about LISP
functions. J. ACM22, 1 (Jan. 1975), 129-144.
3. Burstall, R.M. Proving properties of programs by structural
induction. Computer J. 12, 1 (Feb. 1969), 41-48.
4. Floyd, R.W. Assigning meanings to programs. Moth. Aspects
of Computer Science, J.T. Schwartz, Ed., Amer. Math. Soc.,
Providence, R.I., 1967, pp. 19-32.
5. German, S.M., and Wegbreit, B. A synthesizer of inductive
assertions. IEEE Trans. Software Eng., SE-1, 1 (March 1975),
68-75.
6. Good, D.I., London, R.L., and Bledsoe, W.W. An interactive
program verification system. Proc. Int. Conf. on Reliable Soft-
ware, Los Angeles, Calif., April 1975.
7. Hoare, C.A.R. Procedures and parameters: an axiomatic
approach. Lecture Notes in Mathematics 188, E. Engeler, Ed.,
Springer-Verlag, 1971.
8. Igarashi, S., London, R.L., and Luckham, D.C. Automatic
program verification I: Logical basis and its implementation.
AIM-200, Stanford Artificial Intelligence Proj., Stanford U.,
Stanford, Calif., 1972.
9. McCarthy, J. A basis for a mathematical theory of computa-
tion. In Computer Programming and Formal Systems, P. Braffort
and D.S. Hirschberg, Eds., North-Holland, Amsterdam, 1963,
pp. 33-70.
10. McCarthy, J. and Painter, J.A. Correctness of a compiler
for arithmetic expressions. Mathematical Aspects of Computer
Science, J.T. Schwartz, Ed., Amer. Math. Sot., Providence, R.I.,
1967, pp. 33-41.
11. Manna, Z., and Pnueli, A. Formalization of properties of
functional programs. J. ACM 17, 3 (July 1970), 555-569.
12. Manna, Z., Ness, S., and Vuillemin, J. Inductive methods for
proving properties of programs. Comm. ACM 16, 8 (Aug. 1973),
491-502.
13. Manna, Z. Mathematical Theory of Computation. McGraw-
Hill, New York, 1974.
14. Mills, H. The new math of computer programming. Comm.
ACM 18, 1 (Jan. 1975), 43--48.
I5. Milner, R. Implementation and applications of Scott's logic
for computable functions. SIGPLAN Notices (ACM) 7, 1 and
SIGACT News (ACM) 14 (Jan. 1972), 1-6.
16. Moore, J.S. Introducing prog into the pure lisp theorem
prover. CSL-74-3, Xerox Palo Alto Res. Center, Palo Alto,
Calif. (Dec. 1974).
17. Topor, R.W. Interactive program verification using virtual
programs. Ph.D. Th., University Of Edinburgh, Edinburgh, 1975.
18. Waldinger, R.J., and Levitt, K.N. Reasoning about programs.
Artificial b~telligence 5, 3 (Fall 1974), 235-316.
19. Wegbreit, B. Complexity of synthesizing inductive assertions.
Comptr. Sci. Lab., Xerox Palo Alto Res. Center, Palo Alto,
Calif., Jan. 1975.
20. Manna, Z. Mathematical theory of partial correctness.
J. Computer System Sci. 5, 3 (June 1971), 239-253.

Acknowledgments . The work reported here had its
origins in trying to relate the methods of the Boyer-

222 Communications April 1977
of Volume 20
the ACM Number 4

