
and K2 are related as

ho(K1) + N/2 = ho(K2),

the sequence for K1 traces the same positions as the
sequence for K2 only after one-half of the table posi-
tions have been searched. By considering the length of
search, the author has drawn the conclusion that the
method is practically free from "pr imary clustering."
I would like to suggest the following modification
for generating the key sequence. The method is as
follows:

For any table of size N = 2 ", half the key indices
can be obtained f rom a complementary relation,

h, ' = (N - - 1) - h , , i = O, 1 , 2 , , . . , ((N / 2) - - 1).

Instead of going through a sequence of

i = 1, 2, 3 , . . . , N - - 1

for generating the hash addresses f rom relation (4) in
Luccio's method, we can generate hi' as next key ad-
dress once hi is calculated and all the positions will
be visited by using the relation (4) only ((N/2) -- 1)
times. For example, if we take N = 16, the sequence
of generation for different initial hash functions for
two typical cases will be as follows:

Initial Key index sequence for table size = 16 function
h0=(K) modN h i ~ i = 0 , 1 , 2 , . . . 15

0 0 1 5 1 1 4 213 312 411 510 69 7 8
8 8 7 9 610 511 412 313 2 1 4 1 1 5 0

Programming
Techniques

G. Manacher, S. L. G r a h a m
Editors

Sorting on a Mesh-
Connected Parallel
Computer
C.D. Thompson and H.T. Kung
Carnegie-Mellon University

Two algorithms are presented for sorting n z
elements on an n × n mesh-connected processor array
that require O (n) routing and comparison steps. The
best previous algoritmhm takes time O(n log n). The
algorithms of this paper are shown to be optimal in time
within small constant factors. Extensions to higher-
dimensional arrays are also given.

Key Words and Phrases: parallel computer, parallel
sorting, parallel merge, routing and comparison steps,
perfect shuffle, processor interconnection pattern

CR Categories: 4.32, 5.25, 5.31

It is thus found that even if K1 a n d / (2 are related
as h0(K1) + N/2 = h0(K2), the sequence does not
trace the same positions and hence the method is fully

t
free f rom primary clustering. Generat ion of hl will
involve one subtraction in the main loop since (N - 1)
is calculated outside the loop. Hence apart f rom mak-
ing the sequence of indices free f rom primary cluster-
ing, this modification will also make the computat ion
faster. Radke [2] has used the concept of complemen-
tary relations for probing all the positions of the table.

Received November 1975; revised July 1976

References
1. Fabrizio, L. Weighted increment linear search for scatter
tables. Comm. ACM 15, 12 (Dec. 1972), 1045-1047.
2. Radke, C,E. The use of quadratic residue research. Comm.
ACM 13, 2 (Feb. 1970), 103-105.

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Author's address: Aeronautical Development Establishment,
Bangalore 560001, India.

263

1. Introduction

In the course of a parallel computat ion, individual
processors need to distribute their results to other proc-
essors and complicated data flow problems may arise.
One way to handle this problem is by sorting "destina-
tion tags" attached to each data element [2]. Hence
efficient sorting algorithms for parallel machines with
some fixed processor interconnection pat tern are rele-
vant to almost any use of these machines.

In this paper we present two algorithms for sorting
N = n 2 elements on an n × n mesh-type processor array
that require O(n) unit-distance routing steps and O(n)

Copyright O 1977, Association for Computing Machinery, Ine
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This research was supported in part by the National Science
Foundation under Grant MCS75-222-55 and the Office of Naval
Research under Contract N00014-76-C-0370, NR 044-422.

Authors' address: Department of Computer Science, Cam-
egie-Mellon University, Pittsburgh, PA 15213.

Communications April 1977
of Volume 20
the ACM Number 4

http://crossmark.crossref.org/dialog/?doi=10.1145%2F359461.359481&domain=pdf&date_stamp=1977-04-01

comparison steps (n is assumed to be a power of 2).
The best previous algorithm takes time O(n log n) [7].
One of our algorithms, the s2-way merge sort, is shown
optimal within a factor of 2 in time for sufficiently large
n, if one comparison step takes no more than twice the
time of a routing step. Our other O(n) algorithm, an
adaptation of Batcher 's bitonic merge sort, is much less
complex but optimal under the same assumption to
within a factor of 4.5 for all n, and is more efficient for
moderate n.

We believe that the algorithms of this paper will
give the most efficient sorting algorithms for ILLIAC
IV-type parallel computers.

Our algorithms can be generalized to higher-dimen-
sional array interconnection patterns. For example, our
second algorithm can be modified to sort N elements on
a j-dimensionally mesh-connected N-processor com-
puter in O(N u~) time, which is optimal within a small
constant factor.

Efficient sorting algorithms have been developed
for interconnection patterns other than the "mesh"
considered in this paper. Stone [8] maps Batcher 's
bitonic merge sort onto the "perfect shuffle" intercon-
nection scheme, obtaining an N-element sort time of
O(logZN) on N processors. The odd-even transposition
sort (see Appendix) requires an optimal O(N) time on a
linearly connected N-processor computer. Sorting time
is thus seen to be strongly dependent on the intercon-
nection pattern. Exploration of this dependence for a
given problem is of interest from both an architectural
and an algorithmic point of view.

In Section 2 we give the model of computation. The
sorting problem is defined precisely in Section 3. A
lower bound on the sorting time is given in Section 4.
Batcher 's 2-way odd-even merge is mapped on our 2-
dimensional mesh-connected processor array in the
next section. Generalizing the 2-way odd-even merge,
we introduce a 2s-way merge algorithm in Section 6.
This is further generalized to an s2-way merge in Sec-
tion 7, from which our most efficient sorting algorithm
for large n is developed. Section 8 shows that Batcher 's
bitonic sort can be performed efficiently on our model
by, choosing an appropriate processor indexing scheme.
Some extensions and implications of our results are
discussed in Section 9. The Appendix contains a de-
scription of the odd-even transPosition sort.

2. Model of Computation

We assume a parallel computer with N = n X n
identical processors. The architecture of the machine is
similar to that of the ILLIAC IV [1]. The major as-
sumptions are as follows:

(i) The interconnections between the processors
are a subset of those on the ILLIAC IV, and are de-
fined by the two dimensional array shown in Figure 1,
where the p 's denote the processors. That is, each

Fig. 1.
d

- I 1 -I

processor is connected to all its neighbors. Processors
at the perimeter have two or three rather than four
neighbors; there are no "wrap-around" connections as
found on the ILLIAC IV.

The bounds obtained in this paper would be af-
fected at most by a factor of 2 if "wrap-around" con-
nections were included, but we feel that this addition
would obscure the ideas of this paper without substan-
tially strengthening the results.

(ii) It is a SIMD (Single Instruction stream Muhi-
pie Data stream) machine [4]. During each time unit, a
single instruction is broadcast to all processors, but only
executed by the set of processors specified in the in-
struction. For the purpose of the paper, only two in-
struction types are needed: the routing instruction for
interprocessor data moves, and the comparison instruc-
tion on two data elements in each processor. The com-
parison instruction is a conditional interchange on the
contents of two registers in each processor. Actually,
we need both " types" of such comparison instructions
to allow either register to receive the minimum; nor-
mally both types will be issued during "one comparison
step."

(iii) Define tR = time required for one unit-distance
routing step, i.e. mOving one item from a processor to
one of its neighbors, tc = time required for one com-
parison step. Concurrent data movement is allowed, so
long as it is all in the same direction; also any number
(up to N) of concurrent comparisons may be performed
simultaneously. This means that a comparison, inter-
change ste p between two items in adjacent processors
can be done in time 2tn + tc (route left, compare, route
right). A number of these comparison-interchange
steps may be performed concurrently in time 2in + tc if
they are all between distinct, vertically adjacent proces-
sors. A mixture of horizontal and vertical comparison-
interchanges will require at least time 4tn + tc,

3. The Sorting Problem

T h e processors may be indexed by any function that
is a one-to-one mapping from {1, 2 n} × {1,
2 n} onto {0, 1, . . . , N - 1}. Assume that N
elements from a linearly ordered set are initially loaded
in the N processors, each receiving exactly one ele-

264 Communications April 1977
of Volume 20
the ACM Number 4

Fig. 2. Fig. 3.

J

Fig. 4. Fig. 5.

[
E
E

Row 1

Row 2

Row 3

Row 4

ment. With respect to any index function, the sorting
problem is defined to be the problem of moving the j th
smallest element to the processor indexed by j for all j
= 0 , 1 , N - 1 .

Example 3.1
Suppose that n = 4 (hence N = 16) and that we

want to sort 16 elements initially loaded as shown in
Figure 2. Three ways of indexing the processors will
be considered in this paper.

(i) Row-major indexing. After sorting we have the
indexing shown in Figure 3.

(ii) Shuffled row-major indexing. After sorting we
have the indexing shown in Figure 4. Note that this
indexing is obtained by shuffling the binary representa-
tion of the row-major index. For example, the row-
major index 5 has the binary representation 0101.
Shuffling the bits gives 0011 which is 3. (In general,
the shuffled binary number, say, "abcdefgh" is
"aebfcgdh".)

(iii) Snake-like row-major indexing. After sorting
we have the indexing shown in Figure 5. This indexing
is obtained from the row-major indexing by reversing
the ordering in even rows.

The choice of a particular indexing scheme depends
upon how the sorted elements will be used (or ac-
cessed), and upon which sorting algorithm is to be used.
For example, we found that the row-major indexing is
poor for merge sorting.

It is clear that the sorting problem with respect to
any index scheme can be solved by using the routing
and comparison steps. We are interested in designing
algorithms which minimize the time spent in routing
and comparing.

4. A Lower Bound

Observe that for any index scheme there are situa-
tions where the two elements initially loaded at the
opposite corner processors have to be transposed dur-
ing the sorting (Figure 6).

It is easy to argue that even for this simple transpo-
sition we need at least 4(n - 1) unit-distance routing
steps. This implies that no algorithm can sort n 2 ele-
ments in time less than O(n). In this paper, we shall

265

show two algorithms which can sort n 2 elements in time
O(n). One will be developed in Sections 5 through 7,
the other in Section 8.

A similar argument leads to an O(n) lower bound
for the multiplication or inversion of n x n matrices on
a mesh-connected computer of n e processing elements
[5].

5. The 2-Way Odd-Even Merge

Batcher's odd-even merge [2, 6] of two sorted se-
quences {u(i)} and {v(i)} is performed in two stages.
First, the "odd sequences" {u(1), u(3) , u(5) u(2]
+ 1) } and {v(1), v(3) , v(2j + 1) } are
merged concurrently with the merging of the "even
sequences" {u(2), u(4) , . . . , u (2 j) } and {v(2),
v(4) , v(2j) }. Then the two merged se-
quences are interleaved, and a single parallel compari-
son-interchange step produces the sorted result. The
merges in the first stage are done in the same manner
(that is, recursively).

We first illustrate how the odd-even method can be
performed efficiently on linearly connected processors,
then the idea is generalized to 2-dimensionally con-
nected arrays. If two sorted sequences {1, 3, 4, 6} and
{0, 2, 5, 7} are initially loaded in eight linearly con-
nected processors, then Batcher 's odd-even merge can
be diagrammed as shown in Figure 7.

Step L3 (p. 266) is the "perfect shuffle" [8] and step
L1 is its inverse, the "unshuffle ." Note that the perfect
shuffle can be achieved by using the triangular inter-
change pattern shown in Figure 8, where the double-
headed arrows indicate interchanges. Similarly, an in-
verted triangular interchange pattern will do the un-
shuffle. Therefore both the perfect shuffle and unshuf-
fie can be done in k - 1 interchanges (i.e. 2k - 2
routing steps) when performed on a row of length 2k in
our model.

We now give an implementation of the odd-even
merge on a rectangular region of our model. Let M(j,
k) denote our algorithm of merging two] by k/2 sorted
adjacent subarrays to form a sor ted] by k array, where
j , k are powers of 2, k > 1, and all the arrays are
arranged in the snake-like row major ordering. We first
consider the case where k = 2. If j = 1, a single
comparison-interchange step suffices to sort the two

Communications April 1977
of Volume 20
the ACM Number 4

unit "subarrays" . Given two sorted columns of length
j > 1, M(j , 2) consists of the following steps:
J1. Move all odds to the left column and all evens to the right. Time:

2tn.
J2. Use the "odd-even transposition sort" (see Appendix) to sort

each column. Time: 2fin + tic.
J3. Interchange on even rows. Time: 2tn.
J4. One step of comparison-interchange (every "even" with the next

"odd"). Time: 2tR + tc.

Figure 9 illustrates the algorithm M(j, 2) fo r j = 4.
For k > 2, M(j, k) is defined recursively in the

following way. Steps M1 and M2 unshuffle the ele-
ments, step M3 recursively merges the "odd se-
quences" and the "even sequences," steps M4 and M5
shuffle the "odds" and "evens" together , and step M5
performs the final comparison-interchange. The algo-
ri thm M(4, 4) is given in Figure 10, where the two
given sorted 4 by 2 subarrays are initially stored in 16
processors as shown in the first figure.

Let T(j, k) be the time needed by M(j, k). Then we
have

T(j, 2) = (2j + 6)tn + (j + 1)tc,

and f o r k > 2,

T(j, k) = (2k + 4)tn + tc + T(j, k/2).

These imply that

T(j, k) <- (2j + 4k + 4 log k)tn + (j + log k)tc.

(All logarithms in this paper are taken to base 2.)
An n x n sort may be composed of M(j, k) by

sorting all columns in O(n) routes and compares by,
say, the odd-even transposition sort, then using M(n,
2), M(n, 4), M(n, 8) M(n, n), for a total of O (n log
n) routes and compares . This poor performance may be
assigned to two inefficiencies in the algorithm. First, the
recursive subproblems (M(n, n/2) , M(n, n/4), . . . ,
M(n, 1)) generated by M(n, n) are not decreasing in size
along both dimensions: they are all O (n) in complexity.
Second, the method is extremely " local" in the sense
that no comparisons are made between elements ini-
tially in different halves of the array until the last
possible moment , when each half has already been
independently sorted.

The first inefficiency can be at tacked by designing
an "upwards" merge to complement the "s ideways"
merge just described. Even more powerful is the idea
of combining many upwards merges with a sideways
one. This idea is used in the next section.

Fig. 6.

. . . .

l; g !

SORTING

~, n _l 7

Fig. 7.

1 3 4 6 0 2 5 7

L1. Unshuffle: Odd-indexed elements to left, evens to right.

| 4 0 5 3 6 2 7

L2. Merge the "odd sequences" and the "even sequences."

0 1 4 5 2 3 6 7

L3. Shuffle.

0 2 C I 3 C 4 6 C 5 7

L4. Comparison-interchange (the C's indicate comparison-
interchanges).

0 1 2 3 4 5 6 7

6. The 2s-Way Merge

In this section we give an algorithm M'(j, k, s) for
merging 2s arrays of sizej/s by k /2 in a j by k region of
our processors, where / , k, s are powers of 2 , s ~ 1, and
the arrays are in the snake-like row-major ordering.
The algorithm M'(j , k, s) is almost the same as the
algorithm M(j , k) described in the previous section,

266

Fig. 8.

0 1 4 5 2 3 6 7

0 t 4 2 5 3 6 7

0 | 2 4 3 5 6 7

0 2 1 3 4 6 5 7

Communications April 1977
of Volume 20
the ACM Number 4

except that M'(j , k, s) requires a few more comparison-
interchanges during step M6. These steps are exactly
those per formed in the initial port ion of the odd-even
transposition sort mapped onto our " snake" (see Ap-
pendix). More precisely, for k > 2, M1 and M6 are
replaced by
M I ' . Single interchange step on even rows i f . / > s, so that columns

contain either all evens or all odds. If./ = s, do nothing: the
columns are already segregated. Time: 2tn.

M6'. Perform the first 2s - 1 parallel comparison-interchange steps
of the odd-even transposition sort on the "snake." It is not
difficult to see that the time needed is at most
s(4tn + tc) + (s - 1)(2tn + tc) = (6S -- 2)tR + (2S -- 1)tc.

Note that the original step M6 is just the first step of an
odd-even transposition sort. Thus the 2-way merge is
seen to be a special case of the 2s-way merge. Similarly;
for M'(j, 2, s) , j > s, J4 is replaced by M6 ' , which takes
t ime (2s - 1)(2tR + tc). M'(s, 2, s) is a special case
analogous to M(1, 2), and may be per formed by the
odd-even transposition sort (see Appendix) in t ime 4stn
+ 2Stc.

The validity of this algorithm may be demonst ra ted
by use of the 0-1 principle [6]: if a network sorts all
sequences of O's and l ' s , then it will sort any arbitrary
sequence of elements chosen f rom a linearly ordered
set. Thus, we may assume that the inputs are O's and
l ' s . It is easy to check that there may be as many as 2s
more zeros on the left as on the right after unshuffling
(i.e. after step J1 or step M2). Af ter the shuffling, the
first 2s - 1 steps of an odd-even transposition sort
suffice to sort the resulting array.

Let T'(j, k, s) be the time required by the algorithm
M'(j, k, s). Then we have that

T'(j, 2, s) <- (2j + 4s + 2)tR + (j + 2s - 1)tc

and that for k > 2,

T'(j , k, s) -< (2k + 6s - 2)tn + (2S -- 1)tc + T'(], k/2, s).

These imply that

T ' (j , k , s) = (2] + 4k + (6s)log k + O(s + logk))tn
+ (j + (2s)log k + O(s + log k))to

For s = 2, a merge sort may be derived that has the
following time behavior:

S'(n, n) = S'(n/2, n/2) + T'(n, n, 2).

Thus

S'(n, n) = (12n + O(log~n))tn + (2n + O(logZn))to

Suddenly, we have an algorithm that sorts in linear
time. In the following section, the constants will be
reduced by a factor of 2 by the use of a more compli-
cated multiway merge algorithm.

7. The s2-Way Merge

ThesZ-way merge M"(j, k, s) to be introduced in this
section is a generalization of the 2-way merge M(j, k).
Input to M"(j, k) iss ~ sortedj/s by k/s arrays in a j by k
region of our processors, where j , k, s are powers of 2
ands > 1. Steps M1 and M2 still suffice to move odd-
indexed elements to the left and evens to the right so
long a s j > s and k > s; M"(j, s, s) is a special case
analogous to M(j , 2) of the 2-way merge. Steps M1 and
M6 are now replaced by
MI". Single interchange step on even rows if i > s, so that columns

contain either all evens or all odds. If i = s, do nothing: the
columns are already segregated. Time: 2tn

M6". Perform the first s 2 - 1 parallel comparison-interchange steps
of the odd-even transposition sort on the "snake" (see Appen-
dix). The time required for this is

(s~/2) (4tR + tc) + (s2/2 - 1) (2tn + tc)
= (3s 2 - 2) t n + (s 2 - 1)tc.

The motivation for this new step comes from the reali-
zation that when the inputs are O's and l ' s , there may
be as many ass 2 more zeros on the left half as the right
after unshuffiing.

M"(j, s, s) , j >-s, can be per formed in the following
way:

N1. (logs/2) 2-way merges: M (j / s , 2), M (j / s , 4) M (j / s , s / 2) .
N2. A single 2s-way merge: M ' (j , s, s) .

If T"(j, k, s) is the time taken by M"(j, k, s), we have
f o r k = s,

T"(j, s, s) = (2j + O((s + j/s)log s))tn
+ (j + O((s +]/s)logs))tc

and f o r k > s ,

T"(j , k, s) = (2k + 3s 2 + O(1))tR
+ (s 2 + O(1))tc + T"(j, k /2 , s).

Therefore

T"(}, k, s) = (4k + 2j + 3~log (k/s)
+ O((s + j / s) logs + logk))tR + (j
+s z log (k/s) + O((s + j/s) logs + log k))to

Fig. 9.

267

d!
D

[
E
[

I L
d3

i v
d4 ,~

!

Communications April 1977
of Volume 20
the ACM Number 4

A sorting algorithm may be developed from the s 2-
way merge; a good value for s is approximately n 1/3
(remember tha t s must be a power of 2). Then the time
of sorting n x n elements satisfies

S"(n, n) = S"(n 2/3, n 2/a) + T"(n, n, n1/3).

This leads immediately to the following result.
THEOREM 7.1. I f the snake-like row-major indexing

is used, the sorting problem can be done in time:

(6n + O(n 2/3 logn))tR + (n + O(n 2/3 logn))tc.

If t c <_ 2tg, Theorem 7.1 implies that (6n + 2n +
O(n 2/3 log n)) tg is sufficient t ime for sorting. In Section
4, we showed that 4(n - 1)tn t ime is necessary. Thus,
for large enough n, the sZ-way algorithm is optimal to
within a factor of 2. Preliminary investigation indicates
that a careful implementat ion of the s2-way merge sort
is optimal within a factor of 7 for all n, under the
assumption that tc <- 2tR.

8. The Bitonic Merge

In this section we shall show that Batcher 's bitonic
merge algorithm [2, 6] lends itself well to sorting on a
mesh-connected parallel computer , once the proper
indexing scheme has been selected. Two indexing
schemes will be considered, the " row-ma jo r " and the
"shuffled row-major" indexing schemes of Section 3.

The bitonic merge of two sections of a bitonic array
of j /2 elements each takes log j passes, where pass i
consists of a comparison-interchange between proces-
sors with indices differing only in the ith bit of their
binary representat ions. (This operat ion will be te rmed
"comparison-interchange on the ith bi t" .) Sorting an
entire array of 2 k elements by the bitonic method re-
quires k comparison-interchanges on the 0th bit (the
least significant bit), k - 1 comparison-interchanges on
the first bit , (k - i) comparison-interchanges on
the ith bit, . . . , and 1 comparison-interchange on the
most significant bit. For any fixed indexing scheme, in
general a comparison-interchange on the ith bit will
take a different amount of t ime than when done on the
j th bit; an optimal processor indexing scheme for the
bitonic algorithm minimizes the time spent on compari-
son-interchange steps. A necessary condition for opti-
mality is that a comparison-interchange on the j th bit be
no more expensive than the (j + 1)-th bit for all j. If
this were not the case for some j, then a bet ter in-
dexing scheme could immediately be derived from the
supposedly optimal one by interchanging the j th and
the (j + 1)-th bits of all processor indices (since more
comparison-interchanges will be done on the original
j th bit than on the (j + 1)-th bit).

The bitonic algorithm has been analyzed for the
row-major indexing scheme: it takes

O(n log n)tn + O(log 2 n)tc

time to sort n 2 elements on n 2 processors (see Orcutt

2 6 8

[7]). However , the row-major indexing scheme is
decidedly nonopt imal . For the case n 2 = 64, processor
indices have six bits. A comparison-interchange on bit
0 takes just 2tn + tc, for the processors are horizontally
adjacent. A comparison-interchange on bit 1 takes 4tR
+ tc, since the processors are two units apart . Similarly,
a comparison-interchange on bit 2 takes 8tR + tc, but a
comparison-interchange on bit 3 takes only 2tn + tc
because the processors are vertically adjacent. This
phenomenon may be analyzed by considering the row-
major index as the concatenation of a 'Y' and an 'X '
binary vector: in the case n 2 --- 64, the index is
Y2Y1YoXzX1Xo. A comparison-interchange on X~ takes
more time than one on Xj when i > j ; however , a
comparison-interchange on Y~ takes exactly the same
time as on X~. Thus a bet ter indexing scheme may be
derived by "shuffl ing" the 'X ' and 'Y' vectors, obtain-
ing (in the case n 2 = 64) Y2X2Y1XIYoXo; this "shuffled
row-major" scheme satisfies our optimality condition.

Geometrical ly, "shuffling" the 'X ' and 'Y' vectors
ensures that all arrays encountered in the merging
process are nearly square, so that routing time will not
be excessive in either direction. The standard row-
major indexing causes the bitonic sort to contend with
subarrays that are always at least as wide as they are
tall; the aspect ratio can be as high as n on an n x n
processor array.

Programming the bitonic sort would be a little
tricky, as the "direct ion" of a comparison-interchange
step depends on the processor index. Orcutt [7] covers
these gory details for row-major indexing; his algorithm
may easily be modified to handle the shuffled row-
major indexing scheme. An example of the bitonic
merge sort on a 4 x 4 processor array for the shuffled
row-major indexing is presented below and in Figure
12; the comparison "direct ions" were derived f rom
Figure 11 (see [6], p. 237).
Stage 1. Merge pairs of adjacent 1 x 1 matrices by the comparison-

interchange indicated. Time: 2tR + tc.
Stage 2. Merge pairs of 1 x 2 matrices; note that one member of a

pair is sorted in ascending order, the other in descending order.
This will always be the case in any bitonic merge. Time: 4tR + 2tc.

Stage 3. Merge pairs of 2 x 2 matrices. Time: 8tn + 3tc.
Stage 4. Merge the two 2 x 4 matrices. Time: 12tR + 4tc.

Let T" (T) be the time to merge the bitonically
sorted elements in processors 0 through 2 i - 1, where
the shuffled row-major indexing is used. Then after one
pass of comparison-interchange, which takes t ime
2u~21tn + tc, the problem is reduced to the bitonic merge
of elements in processors 0 through 2 H - 1, and that
of elements in processors T -1 to 2 ~ - 1. It may be
observed that the latter two merges can be done con-
currently. Thus we have

T ' (1) = 0, T ' (2 ~) = T ' (2 i-1) + 2[~/21tR + tc.

Hence

T'"(2~) = (3*2 ~i+1)/2 - 4)tR + itc, if i is odd,
= (4*T/2 - 4)tR + itc, if i is even.

Let S"'(2 ~) be the time taken by the corresponding

Communications April 1977
of Volume 20
the ACM Number 4

Fig. 10.

cl

I

269

M1. Single interchange step on
even rows if j > 2, so that
columns contain either all
evens or all odds. If./ = 2,
do nothing: the columns are
already segregated.
Time: 2t n.

M2. Unshuffle each row.
Time: (k - 2)tn.

M3. Merge by calling M(/', k/2)
on each half.
Time: T(j, k/2).

M4. Shuffle each row.
Time: (k - 2)t R.

M5. Interchange on even rows.
Time: 2tn.

M6. Comparison-interchange of
adjacent elements (every
"even" with the next "odd").
Time: 4tn + tc.

sor t ing a lgo r i t hm (for a square a r r ay) . Then

S " (1) = 0,
S ' (2 ' ~) = S " (2 2 j - ') + 7""(2~)

= S , , , (22u- , ,) + T(2 zj) + T (2 ~ - ') .

H e n c e S"(22j) = (14(2 j - 1) - 8j)tR + (2j 2 + j)tc.
In our m o d e l , we have 2 a = N = n 2 p rocesso r s ,

l ead ing to the fo l lowing t h e o r e m .
THEOREM 8.1. I f the shuffled row-major indexing is

used, the bitonic sort can be done in time

(14(n - 1) - 8log n)tR + (21ogZ n + log n)tc.

I f t c <- 2tn, it m a y be seen tha t the b i tonic m e r g e sor t
a lgo r i thm is op t ima l to within a f ac to r of 4.5 for all n
(since 4(n - 1)tR t ime is necessa ry , as shown in Sect ion
4). P r e l im ina ry inves t iga t ion ind ica tes tha t the b i ton ic
merge sort is fas te r than the sZ-way o d d - e v e n m e r g e
sort for n -< 512, u n d e r the a s sumpt ion tha t tc -< 2tn.

9. Extensions and Implications

In this sec t ion the fo l lowing ex tens ions and impl ica-
t ions are p r e s e n t e d .

(i) By T h e o r e m 7.1 or 8 .1 , the e l e m e n t s m a y be
so r t ed into snake - l ike r o w - m a j o r o rde r ing or in the
shuff led r o w - m a j o r o rde r ing in O(n) t ime . By the fol-
lowing l e m m a we know tha t they can be r e a r r a n g e d to
o b e y any o t h e r index func t ion with re la t ive ly insignifi-
cant ex t ra costs , p r o v i d e d each p roces so r has suff icient
m e m o r y size.

LEMMA 9.1. I f N = n × n elements have already
been sorted with respect to some index function and i f
each processor can store n elements, then the N elements
can be sorted with respect to any other index function by
using an additional 4(n - 1)tn units o f time.

The p r o o f fo l lows f rom the fact tha t all e l e m e n t s can
be m o v e d to the i r des t ina t ions by four sweeps of n - 1
rou t ing s teps in all four d i rec t ions .

(ii) I f the p rocesso r s a re c o n n e c t e d in a k x m
r ec t angu la r a r r a y (F igure 13) ins t ead of a square ar-
ray , s imi lar resul ts can still be o b t a i n e d . F o r e x a m p l e ,
c o r r e s p o n d i n g to T h e o r e m 7.1 , we have:

THEOREM 9.1. I f the snake-like row-major indexing
is used, the sorting problem for a k × m processor array
(k, m powers o f 2) can be done in time

(4m + 2k + O(h 2/3 log h))t R + (k + O(h 2/3 log h))tc,

where h = min (k, m), by using the s2-way merge sort
with s = O(hl/a).

(iii) The n u m b e r of e l e m e n t s to be so r t ed could be
l a rge r than N , the n u m b e r o f p rocesso r s . A n eff ic ient
m e a n s of hand l ing this s i tua t ion is to d i s t r ibu te an
a p p r o x i m a t e l y equa l n u m b e r of e l e m e n t s to each proc-
essor ini t ia l ly and to use a merge - sp l i t t i ng o p e r a t i o n for
each c o m p a r i s o n - i n t e r c h a n g e o p e r a t i o n . This i dea is
d iscussed by K n u t h [6], and used by B a u d e t and Ste-

Communications April 1977
of Volume 20
the ACM Number 4

Fig. 11.

Stage I Stoge 2

0 t il i i
II_ 2

? t _ !

a I I 9 1t_ l, 10

la I t
ta It 14 t5 t -I I -I ! t

Stoge B Stoge4
A A

t_~ L i . i . i
I I _ I I . I I . | I .

II1_ I | II1_ II1_ ~ |

| I _ I l l I. i
IIII1_ II I I _

HI I I I I | i_ i
I I l l l l l l l l II_ 11 ~11111

1 I Hil l II1_ I |

HI i_
II II I I .
i i | I

venson [3]. Baudet and Stevenson's results will be
immediately improved if the algorithms of this paper
are used, since they used Orcutt 's O(n log n) algorithm.

(iv) Higher-dimensional array interconnection pat-
terns, i.e. N = n j processors each connected to its 2]
nearest neighbors, may be sorted by algorithms gener-
alized from those presented in this paper. For example,
N = n j elements may be sorted in time

((3j 2 + j)(n - 1) - 2j log N)t n + (½)(log2N + log N)tc,

by adapting Batcher 's bitonic merge sort algorithm to
the "j-way shuffled row-major ordering." This new
ordering is derived from the binary representation of
the row-major indexing by a j-way bit shuffle. I fn = 2 3,

Fig. 12.

Initial data configuration. Stage 1.

j = 3, and Z2Z1ZoY2Y~YoX2X~Xo is a row-major index,
then the j-way shuffled index is ZzY2X2Z~Y1X1ZoYoXo.
This formula may be derived in the following way. The
tc term is not dimension-dependent: the same number
of comparisons are performed in any mapping of the
bitonic sort onto an N processor array. The tR term is
the solution of ~ ~_~i~log n 2i ~ l~k_~j ((log N) - ij + k) ,
where the 2 i term is the cost of a comparison-inter-
change on the (i-1)th bit of any of the "kth-dimension
indices" (i.e. Zi_~,Yi_~, and X/_I when j = 3 as in the
example above). The ((log N) - ij + k) term is the
number of times a comparison-interchange is per-
formed on the (i j-k)th bit of the j-way shuffled row-
major index during the bitonic sort. Therefore we have
the following theorem:

THEOREM 9.2. I f N processors are j-dimensionally
mesh-connected, then the bitonic sort can be performed
in time O(N11J), using the j-way shuffled row-major
index scheme.

By using the argument of Section 4, one can easily
check that the bound in the theorem is asymptotically
optimal for large N.

A p p e n d i x . O d d - E v e n T r a n s p o s i t i o n Sort

The odd-even transposition sort [6] may be mapped
onto our 2-dimensional arrays with snake-like row-

Stage 2.

]

3

c c

Stage 3 .

Stage 4.

270 Communica t ions
of
the ACM

April 1977
Volume 20
Number 4

Fig. 13.

L d
F m I

ma jo r order ing in the following way. G iven N pro-

cessors init ially loaded with a data value , repeat N / 2
t imes:

01. "Expensive comparison-interchange" of processors #(2i + 1)
with processors #(2i + 2), 0 -< i < N/2 - 1. Time: 4tR + tc if
processor array has more than two columns and more than one
row; 0 ifN = 2; and 2tn + tc otherwise.

02. "Cheap comparison-interchange" of processors #(2i) with
processors #(2i + 1), 0 ~_ i <- N/2 - 1. Time: 2tr + tc.

If Toe(J, k) is the t ime requ i red to so r t jk e lements in
a j x k region of our processor by the odd-even trans-
position sort into the snake-like row-major ordering,
then

Toe (j, k) = O, if jk = 1 else
2tn + tc , i f j k = 2 else
j k (2 t n + t c) , i f j = 1 or k = 2 else
j k (3 t n + tc)

Step J2 of the 2-way odd-even merge (Section 5)
canno t be pe r fo rmed by the vers ion of the odd-even
t ranspos i t ion sort indica ted above . Since N is even here
(N = 2j), step 0 2 may be placed before step O1 in the
algori thm descr ipt ion above (see K n u t h [6]). Now step
0 2 may be per formed in the no rma l t ime of 2tR + tc,
even star t ing from the n o n s t a n d a r d init ial conf igura t ion
depicted in Section 5 as the result of step J1.

P r o g r a m m i n g
Techniques

G. Manacher , S.L. G r a h a m

Editors

Proof Techniques for
Hierarchically
Structured Programs
Lawrence Robinson and Karl N. Levitt
Stanford Research Institute

A method for describing and structuring programs
that simplifies proofs of their correctness is presented.
The method formally represents a program in terms of
levels of abstraction, each level of which can be
described by a self-contained nonprocedural specifi-
cation. The proofs, like the programs, are structured
by levels. Although only manual proofs are described
in the paper, the method is also applicable to semi-
automatic and automatic proofs. Preliminary results
are encouraging, indicating that the method can be
applied to large programs, such as operating systems.

Key Words and Phrases: hierarchical structure,
program verification, structured programming, formal
specification, abstraction, and programming meth-
odology

CR Categories: 4.0, 4.29, 4.9, 5.24

Received March 1976; revised August 1976

References
1. Barnes, G.H., et al. The ILLIAC IV computer. IEEE Trans.
Comptrs. C-17 (1968), 746-757.
2. Batcher, K.E. Sorting networks and their applications. Proc.
AFIPS 1968 SJCC, Vol. 32, AFIPS Press, Montvale, N.J., pp.
307-314.
3, Baudet, G., and Stevenson, D. Optimal sorting algorithms for
parallel computers. Comptr. Sci. Dep. Rep., Carnegie-Mellon U.,
Pittsburgh, Pa., May 1975. To appear in IEEE Trans. Comptrs,
1977.
4, Flynn, M.J. Very high-speed computing systems. Proc. IEEE
54 (1966), 1901-1909.
5. Gentleman, W.M. Some complexity results for matrix
computations on parallel processors. Presented at Syrup. on New
Directions and Recent Results in Algorithms and Complexity,
Carnegie-Mellon U., Pittsburgh, Pa., April 1976.
6. Knuth, D.E. The Art of Computer Programming, Vol. 3: Sorting
and Searching, Addison-Wesley, Reading, Mass., 1973.
7. Orcutt, S.E. Computer organization and algorithms for very-
high speed computations. Ph.D. Th., Stanford U., Stanford, Calif.,
Sept. 1974, Chap. 2, pp. 20-23.
8. Stone, H.S. Parallel processing with the perfect shuffle. IEEE
Trans. Comptrs. C-20 (1971), 153-161.

271

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

The research described in this paper was partially sponsored
by the National Science Foundation under Grant DCR74-18661.
Authors' address: Stanford Research Institute, Menlo Park,
CA 94025.

Communications April 1977
of Volume 20
the ACM Number 4

