
and K2 are related as 

ho(K1) + N/2 = ho(K2), 

the sequence for K1 traces the same positions as the 
sequence for K2 only after one-half of  the table posi- 
tions have been searched. By considering the length of 
search, the author has drawn the conclusion that  the 
method is practically free from "pr imary  clustering." 
I would like to suggest the following modification 
for generating the key sequence. The method is as 
follows: 

For  any table of  size N = 2 ", half  the key indices 
can be obtained f rom a complementary relation, 

h, '  = ( N - -  1 ) - h , ,  i =  O, 1 , 2 , , . . , ( ( N / 2 ) - -  1). 

Instead of going through a sequence of 

i = 1, 2, 3 , . . . , N - -  1 

for generating the hash addresses f rom relation (4) in 
Luccio's method, we can generate hi' as next key ad- 
dress once hi is calculated and all the positions will 
be visited by using the relation (4) only ((N/2) -- 1) 
times. For  example, if we take N = 16, the sequence 
of generation for different initial hash functions for 
two typical cases will be as follows: 

Initial Key index sequence for table size = 16 function 
h0=(K) modN h i ~ i  = 0 , 1 , 2 , . . .  15 

0 0 1 5 1 1 4  213 312 411 510 69  7 8  
8 8 7 9  610 511 412 313 2 1 4 1 1 5 0  
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It  is thus found that  even if K1 a n d / ( 2  are related 
as h0(K1) + N/2 = h0(K2), the sequence does not 
trace the same positions and hence the method is fully 

t 
free f rom primary clustering. Generat ion of hl will 
involve one subtraction in the main loop since (N - 1) 
is calculated outside the loop. Hence apart  f rom mak-  
ing the sequence of indices free f rom primary cluster- 
ing, this modification will also make the computat ion 
faster. Radke [2] has used the concept of complemen- 
tary relations for probing all the positions of the table. 
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1. Introduction 

In the course of a parallel computat ion,  individual 
processors need to distribute their results to other  proc- 
essors and complicated data flow problems may arise. 
One way to handle this problem is by sorting "destina- 
tion tags" attached to each data element  [2]. Hence 
efficient sorting algorithms for parallel machines with 
some fixed processor interconnection pat tern are rele- 
vant to almost any use of these machines.  

In this paper  we present two algorithms for sorting 
N = n 2 elements  on an n × n mesh-type processor array 
that require O(n) unit-distance routing steps and O(n) 
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comparison steps (n is assumed to be a power of 2). 
The best previous algorithm takes time O(n log n) [7]. 
One of our algorithms, the s2-way merge sort, is shown 
optimal within a factor of 2 in time for sufficiently large 
n, if one comparison step takes no more than twice the 
time of a routing step. Our other O(n) algorithm, an 
adaptation of Batcher 's bitonic merge sort, is much less 
complex but optimal under the same assumption to 
within a factor of 4.5 for all n, and is more efficient for 
moderate n. 

We believe that the algorithms of this paper will 
give the most efficient sorting algorithms for ILLIAC 
IV-type parallel computers.  

Our algorithms can be generalized to higher-dimen- 
sional array interconnection patterns. For example,  our 
second algorithm can be modified to sort N elements on 
a j-dimensionally mesh-connected N-processor com- 
puter in O(N u~) time, which is optimal within a small 
constant factor. 

Efficient sorting algorithms have been developed 
for interconnection patterns other  than the "mesh"  
considered in this paper. Stone [8] maps Batcher 's  
bitonic merge sort onto the "perfect  shuffle" intercon- 
nection scheme, obtaining an N-element  sort time of 
O(logZN) on N processors. The odd-even transposition 
sort (see Appendix) requires an optimal O(N) time on a 
linearly connected N-processor computer.  Sorting time 
is thus seen to be strongly dependent  on the intercon- 
nection pattern. Exploration of this dependence for a 
given problem is of interest from both an architectural 
and an algorithmic point of view. 

In Section 2 we give the model of computation.  The 
sorting problem is defined precisely in Section 3. A 
lower bound on the sorting time is given in Section 4. 
Batcher 's 2-way odd-even merge is mapped on our 2- 
dimensional mesh-connected processor array in the 
next section. Generalizing the 2-way odd-even merge, 
we introduce a 2s-way merge algorithm in Section 6. 
This is further generalized to an s2-way merge in Sec- 
tion 7, from which our most efficient sorting algorithm 
for large n is developed. Section 8 shows that Batcher 's  
bitonic sort can be performed efficiently on our model 
by, choosing an appropriate processor indexing scheme. 
Some extensions and implications of our results are 
discussed in Section 9. The Appendix contains a de- 
scription of the odd-even transPosition sort. 

2. Model of Computation 

We assume a parallel computer  with N = n X n 
identical processors. The architecture of the machine is 
similar to that of the ILLIAC IV [1]. The major as- 
sumptions are as follows: 

(i) The interconnections between the processors 
are a subset of those on the ILLIAC IV, and are de- 
fined by the two dimensional array shown in Figure 1, 
where the p 's  denote the processors. That  is, each 

Fig. 1. 
d 

- I 1  -I 

processor is connected to all its neighbors. Processors 
at the perimeter have two or three rather than four 
neighbors; there are no "wrap-around"  connections as 
found on the ILLIAC IV. 

The bounds obtained in this paper would be af- 
fected at most by a factor of 2 if "wrap-around"  con- 
nections were included, but we feel that this addition 
would obscure the ideas of this paper without substan- 
tially strengthening the results. 

(ii) It is a SIMD (Single Instruction stream Muhi- 
pie Data  stream) machine [4]. During each time unit, a 
single instruction is broadcast to all processors, but only 
executed by the set of processors specified in the in- 
struction. For the purpose of the paper,  only two in- 
struction types are needed: the routing instruction for 
interprocessor data moves, and the comparison instruc- 
tion on two data elements in each processor. The com- 
parison instruction is a conditional interchange on the 
contents of two registers in each processor. Actually, 
we need both " types"  of such comparison instructions 
to allow either register to receive the minimum; nor- 
mally both types will be issued during "one  comparison 
step."  

(iii) Define tR = time required for one unit-distance 
routing step, i.e. mOving one item from a processor to 
one of its neighbors, tc = time required for  one com- 
parison step. Concurrent  data movement  is allowed, so 
long as it is all in the same direction; also any number 
(up to N) of concurrent comparisons may be performed 
simultaneously. This means that a comparison, inter- 
change ste p between two items in adjacent processors 
can be done in time 2tn + tc (route left, compare,  route 
right). A number of these comparison-interchange 
steps may  be performed concurrently in time 2in + tc if 
they are all between distinct, vertically adjacent proces- 
sors. A mixture of horizontal and vertical comparison- 
interchanges will require at least time 4tn + tc, 

3. The Sorting Problem 

T h e  processors may be indexed by any function that 
is a one-to-one mapping from {1, 2 . . . . .  n} × {1, 
2 . . . . .  n} onto {0, 1, . . . , N - 1}. Assume that N 
elements from a linearly ordered set are initially loaded 
in the N processors, each receiving exactly one ele- 
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ment.  With respect to any index function, the sorting 
problem is defined to be the problem of moving the j th  
smallest element to the processor indexed by j for all j 
= 0 , 1  . . . .  , N - 1 .  

Example 3.1 
Suppose that n = 4 (hence N = 16) and that we 

want to sort 16 elements initially loaded as shown in 
Figure 2. Three ways of indexing the processors will 
be considered in this paper. 

(i) Row-major indexing. After sorting we have the 
indexing shown in Figure 3. 

(ii) Shuffled row-major indexing. After  sorting we 
have the indexing shown in Figure 4. Note that this 
indexing is obtained by shuffling the binary representa- 
tion of the row-major index. For example, the row- 
major index 5 has the binary representation 0101. 
Shuffling the bits gives 0011 which is 3. (In general, 
the shuffled binary number,  say, "abcdefgh" is 
"aebfcgdh".)  

(iii) Snake-like row-major indexing. After  sorting 
we have the indexing shown in Figure 5. This indexing 
is obtained from the row-major indexing by reversing 
the ordering in even rows. 

The choice of a particular indexing scheme depends 
upon how the sorted elements will be used (or ac- 
cessed), and upon which sorting algorithm is to be used. 
For example, we found that the row-major indexing is 
poor  for merge sorting. 

It is clear that the sorting problem with respect to 
any index scheme can be solved by using the routing 
and comparison steps. We are interested in designing 
algorithms which minimize the time spent in routing 
and comparing. 

4. A Lower Bound 

Observe that for any index scheme there are situa- 
tions where the two elements initially loaded at the 
opposite corner processors have to be transposed dur- 
ing the sorting (Figure 6). 

It is easy to argue that even for this simple transpo- 
sition we need at least 4(n - 1) unit-distance routing 
steps. This implies that no algorithm can sort n 2 ele- 
ments in time less than O(n). In this paper,  we shall 
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show two algorithms which can sort n 2 elements in time 
O(n). One will be developed in Sections 5 through 7, 
the other in Section 8. 

A similar argument leads to an O(n) lower bound 
for the multiplication or inversion of n x n matrices on 
a mesh-connected computer  of n e processing elements 
[5]. 

5. The 2-Way Odd-Even Merge 

Batcher's odd-even merge [2, 6] of two sorted se- 
quences {u(i)} and {v(i)} is performed in two stages. 
First, the "odd sequences" {u(1), u(3) ,  u(5) . . . . .  u(2] 
+ 1) . . . .  } and {v(1), v(3) . . . .  , v(2j + 1) . . . .  } are 
merged concurrently with the merging of the "even 
sequences" {u(2), u(4) ,  . . .  , u (2 j )  . . . .  } and {v(2), 
v(4) . . . .  , v(2j) . . . .  }. Then the two merged se- 
quences are interleaved, and a single parallel compari- 
son-interchange step produces the sorted result. The 
merges in the first stage are done in the same manner  
(that is, recursively). 

We first illustrate how the odd-even method can be 
performed efficiently on linearly connected processors, 
then the idea is generalized to 2-dimensionally con- 
nected arrays. If two sorted sequences {1, 3, 4, 6} and 
{0, 2, 5, 7} are initially loaded in eight linearly con- 
nected processors, then Batcher 's odd-even merge can 
be diagrammed as shown in Figure 7. 

Step L3 (p. 266) is the "perfect  shuffle" [8] and step 
L1 is its inverse, the "unshuffle ."  Note that the perfect 
shuffle can be achieved by using the triangular inter- 
change pattern shown in Figure 8, where the double- 
headed arrows indicate interchanges. Similarly, an in- 
verted triangular interchange pattern will do the un- 
shuffle. Therefore  both the perfect shuffle and unshuf- 
fie can be done in k - 1 interchanges (i.e. 2k - 2 
routing steps) when performed on a row of length 2k in 
our model. 

We now give an implementation of the odd-even 
merge on a rectangular region of our model. Let  M(j, 
k) denote our algorithm of merging two]  by k/2 sorted 
adjacent subarrays to form a sor ted]  by k array, where 
j ,  k are powers of 2, k > 1, and all the arrays are 
arranged in the snake-like row major  ordering. We first 
consider the case where k = 2. If j = 1, a single 
comparison-interchange step suffices to sort the two 
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unit "subarrays" .  Given two sorted columns of length 
j > 1, M(j ,  2) consists of the following steps: 
J1. Move all odds to the left column and all evens to the right. Time: 

2tn. 
J2. Use the "odd-even transposition sort" (see Appendix) to sort 

each column. Time: 2fin + tic. 
J3. Interchange on even rows. Time: 2tn. 
J4. One step of comparison-interchange (every "even" with the next 

"odd"). Time: 2tR + tc. 

Figure 9 illustrates the algorithm M(j,  2) fo r j  = 4. 
For k > 2, M(j,  k) is defined recursively in the 

following way. Steps M1 and M2 unshuffle the ele- 
ments,  step M3 recursively merges the "odd  se- 
quences" and the "even sequences,"  steps M4 and M5 
shuffle the "odds"  and "evens"  together ,  and step M5 
performs the final comparison-interchange.  The algo- 
ri thm M(4,  4) is given in Figure 10, where the two 
given sorted 4 by 2 subarrays are initially stored in 16 
processors as shown in the first figure. 

Let  T(j, k) be the time needed by M(j, k). Then we 
have 

T(j, 2) = (2j + 6)tn + (j + 1)tc, 

and f o r k  > 2, 

T(j, k) = (2k + 4)tn + tc + T(j,  k/2).  

These imply that 

T(j, k) <- (2j + 4k + 4 log k )tn + (j + log k )tc. 

(All logarithms in this paper  are taken to base 2.) 
An n x n sort may be composed of M(j, k) by 

sorting all columns in O(n) routes and compares  by, 
say, the odd-even transposition sort,  then using M(n, 
2), M(n, 4), M(n, 8) . . . . .  M(n, n), for a total of O (n log 
n) routes and compares .  This poor  performance may be 
assigned to two inefficiencies in the algorithm. First, the 
recursive subproblems (M(n,  n/2) ,  M(n,  n/4),  . . . , 
M(n, 1)) generated by M(n, n) are not decreasing in size 
along both dimensions: they are all O (n) in complexity.  
Second, the method is extremely " local"  in the sense 
that no comparisons are made between elements  ini- 
tially in different halves of the array until the last 
possible moment ,  when each half has already been 
independently sorted. 

The first inefficiency can be at tacked by designing 
an "upwards"  merge to complement  the "s ideways" 
merge just described. Even more  powerful  is the idea 
of combining many upwards merges with a sideways 
one. This idea is used in the next section. 

Fig. 6. 

. . . .  
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Fig. 7. 
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L1. Unshuffle: Odd-indexed elements to left, evens to right. 

| 4 0 5 3 6 2 7 

L2. Merge the "odd sequences" and the "even sequences." 

0 1 4 5 2 3 6 7 

L3. Shuffle. 

0 2 C I  3 C 4  6 C 5 7 

L4. Comparison-interchange (the C's indicate comparison- 
interchanges). 

0 1 2 3 4 5 6 7 

6. The 2s-Way Merge 

In this section we give an algorithm M'(j, k,  s) for 
merging 2s arrays of sizej/s by k /2  in a j  by k region of 
our processors,  where / ,  k,  s are powers  of 2 , s  ~ 1, and 
the arrays are in the snake-like row-major  ordering. 
The algorithm M'( j ,  k, s) is almost the same as the 
algorithm M(j ,  k) described in the previous section, 
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Fig. 8. 
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except that M'(j ,  k, s) requires a few more comparison- 
interchanges during step M6. These steps are exactly 
those per formed in the initial port ion of the odd-even 
transposition sort mapped  onto our " snake"  (see Ap-  
pendix). More precisely, for k > 2, M1 and M6 are 
replaced by 
M I ' .  Single interchange step on even rows i f . / >  s, so that columns 

contain either all evens or all odds. If./ = s, do nothing: the 
columns are already segregated. Time: 2tn.  

M6'. Perform the first 2s - 1 parallel comparison-interchange steps 
of the odd-even transposition sort on the "snake."  It is not 
difficult to see that the time needed is at most 
s(4tn + tc) + (s - 1)(2tn + tc) = (6S -- 2)tR + (2S -- 1)tc. 

Note that the original step M6 is just the first step of an 
odd-even transposition sort. Thus the 2-way merge is 
seen to be a special case of the 2s-way merge.  Similarly; 
for M'(j, 2, s) , j  > s, J4 is replaced by M6 ' ,  which takes 
t ime (2s - 1)(2tR + tc). M'(s, 2, s) is a special case 
analogous to M(1, 2), and may be per formed by the 
odd-even transposition sort (see Appendix)  in t ime 4stn 
+ 2Stc. 

The validity of this algorithm may be demonst ra ted  
by use of the 0-1 principle [6]: if a network sorts all 
sequences of O's and l ' s ,  then it will sort any arbitrary 
sequence of elements  chosen f rom a linearly ordered 
set. Thus, we may assume that the inputs are O's and 
l ' s .  It  is easy to check that there may be as many as 2s 
more zeros on the left as on the right after unshuffling 
(i.e. after step J1 or step M2). Af ter  the shuffling, the 
first 2s - 1 steps of an odd-even transposition sort 
suffice to sort the resulting array. 

Let  T'(j, k, s) be the time required by the algorithm 
M'(j,  k, s). Then we have that 

T'(j, 2, s) <- (2j + 4s + 2)tR + (j + 2s - 1)tc 

and that for k > 2, 

T'(j ,  k, s) -< (2k + 6s - 2)tn + (2S -- 1)tc + T'(], k/2,  s). 

These imply that 

T ' ( j , k , s )  = (2] + 4k + (6s)log k + O(s + logk))tn 
+ (j + (2s)log k + O(s + log k))to 

For s = 2, a merge sort may be derived that has the 
following time behavior:  

S'(n, n) = S'(n/2, n/2) + T'(n, n, 2). 

Thus 

S'(n, n) = (12n + O(log~n))tn + (2n + O(logZn))to 

Suddenly, we have an algorithm that sorts in linear 
time. In the following section, the constants will be 
reduced by a factor of 2 by the use of  a more compli- 
cated multiway merge algorithm. 

7. The s2-Way Merge 

ThesZ-way merge M"(j, k, s) to be introduced in this 
section is a generalization of the 2-way merge M(j, k). 
Input  to M"(j, k) iss ~ sortedj/s by k/s arrays in a j  by k 
region of our processors,  where j ,  k,  s are powers of 2 
ands  > 1. Steps M1 and M2 still suffice to move odd- 
indexed elements  to the left and evens to the right so 
long a s j  > s and k > s; M"(j, s, s) is a special case 
analogous to M(j ,  2) of the 2-way merge.  Steps M1 and 
M6 are now replaced by 
MI". Single interchange step on even rows if i > s, so that columns 

contain either all evens or all odds. If i = s, do nothing: the 
columns are already segregated. Time: 2tn 

M6". Perform the first s 2 - 1 parallel comparison-interchange steps 
of the odd-even transposition sort on the "snake" (see Appen- 
dix). The time required for this is 

(s~/2) (4tR + tc) + (s2/2 - 1) (2tn + tc) 
= (3s 2 - 2 ) t  n + (s  2 - 1)tc. 

The motivation for this new step comes from the reali- 
zation that when the inputs are O's and l ' s ,  there may 
be as many ass  2 more zeros on the left half as the right 
after unshuffiing. 

M"(j, s, s ) , j  >-s, can be per formed in the following 
way: 

N1. ( logs/2) 2-way merges: M ( j / s ,  2), M ( j / s ,  4) . . . . .  M ( j / s ,  s / 2 ) .  
N2. A single 2s-way merge: M ' ( j ,  s, s ) .  

If  T"(j, k, s) is the time taken by M"(j, k, s), we have 
f o r k  = s, 

T"(j, s, s) = (2j + O((s + j/s)log s))tn 
+ (j + O((s +]/s)logs))tc 

and f o r k  > s ,  

T"(j ,  k, s) = (2k + 3s 2 + O(1))tR 
+ (s 2 + O(1))tc + T"(j, k /2 ,  s). 

Therefore  

T"(}, k, s) = (4k + 2j + 3~log (k/s) 
+ O((s + j / s )  logs  + logk))tR + (j 
+s z log (k/s) + O((s + j/s) logs + log k))to 

Fig. 9. 
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A sorting algorithm may be developed from the s 2- 
way merge;  a good value for s is approximately n 1/3 
( remember  tha t s  must be a power of 2). Then the time 
of sorting n x n elements satisfies 

S"(n, n) = S"(n 2/3, n 2/a) + T"(n, n, n1/3). 

This leads immediately to the following result. 
THEOREM 7.1. I f  the snake-like row-major indexing 

is used, the sorting problem can be done in time: 

(6n + O(n 2/3 logn))tR + (n + O(n 2/3 logn))tc. 

If  t c <_ 2tg, Theorem 7.1 implies that (6n + 2n + 
O(n 2/3 log n) ) tg  is sufficient t ime for sorting. In Section 
4, we showed that 4(n - 1)tn t ime is necessary. Thus,  
for large enough n,  the sZ-way algorithm is optimal  to 
within a factor of 2. Preliminary investigation indicates 
that a careful implementat ion of the s2-way merge sort 
is optimal within a factor of 7 for all n, under  the 
assumption that tc <- 2tR. 

8. The Bitonic Merge 

In this section we shall show that Batcher 's  bitonic 
merge algorithm [2, 6] lends itself well to sorting on a 
mesh-connected parallel computer ,  once the proper  
indexing scheme has been selected. Two indexing 
schemes will be considered, the " row-ma jo r "  and the 
"shuffled row-major"  indexing schemes of Section 3. 

The bitonic merge of two sections of a bitonic array 
of j /2 elements  each takes log j passes, where pass i 
consists of a comparison-interchange between proces- 
sors with indices differing only in the ith bit of their 
binary representat ions.  (This operat ion will be te rmed 
"comparison-interchange on the ith bi t" . )  Sorting an 
entire array of 2 k elements  by the bitonic method re- 
quires k comparison-interchanges on the 0th bit (the 
least significant bit), k - 1 comparison-interchanges on 
the first bit . . . .  , (k - i) comparison-interchanges on 
the ith bit, . . . ,  and 1 comparison-interchange on the 
most  significant bit. For any fixed indexing scheme,  in 
general a comparison-interchange on the ith bit will 
take a different amount  of t ime than when done on the 
j th bit; an optimal processor indexing scheme for the 
bitonic algorithm minimizes the time spent on compari-  
son-interchange steps. A necessary condition for opti- 
mality is that a comparison-interchange on the j th  bit be 
no more expensive than the (j + 1)-th bit for all j. If  
this were not the case for some j, then a bet ter  in- 
dexing scheme could immediately be derived from the 
supposedly optimal one by interchanging the j th  and 
the (j + 1)-th bits of all processor indices (since more  
comparison-interchanges will be done on the original 
j th bit than on the (j + 1)-th bit). 

The bitonic algorithm has been analyzed for the 
row-major  indexing scheme: it takes 

O(n log n)tn + O(log 2 n)tc 

time to sort n 2 elements on n 2 processors (see Orcutt  

2 6 8  

[7]). However ,  the row-major  indexing scheme is 
decidedly nonopt imal .  For the case n 2 = 64, processor 
indices have six bits. A comparison-interchange on bit 
0 takes just 2tn + tc, for the processors are horizontally 
adjacent.  A comparison-interchange on bit 1 takes 4tR 
+ tc, since the processors are two units apart .  Similarly, 
a comparison-interchange on bit 2 takes 8tR + tc, but a 
comparison-interchange on bit 3 takes only 2tn + tc 
because the processors are vertically adjacent.  This 
phenomenon  may be analyzed by considering the row- 
major  index as the concatenation of a 'Y'  and an 'X '  
binary vector: in the case n 2 --- 64, the index is 
Y2Y1YoXzX1Xo. A comparison-interchange on X~ takes 
more time than one on Xj when i > j ;  however ,  a 
comparison-interchange on Y~ takes exactly the same 
time as on X~. Thus a bet ter  indexing scheme may be 
derived by "shuffl ing" the 'X '  and 'Y'  vectors,  obtain- 
ing (in the case n 2 = 64) Y2X2Y1XIYoXo; this "shuffled 
row-major"  scheme satisfies our optimality condition. 

Geometrical ly,  "shuffling" the 'X '  and 'Y'  vectors 
ensures that all arrays encountered in the merging 
process are nearly square, so that routing time will not 
be excessive in either direction. The standard row- 
major  indexing causes the bitonic sort to contend with 
subarrays that are always at least as wide as they are 
tall; the aspect ratio can be as high as n on an n x n 
processor array. 

Programming the bitonic sort would be a little 
tricky, as the "direct ion"  of a comparison-interchange 
step depends on the processor index. Orcutt  [7] covers 
these gory details for row-major  indexing; his algorithm 
may easily be modified to handle the shuffled row- 
major  indexing scheme. An example of the bitonic 
merge sort on a 4 x 4 processor array for the shuffled 
row-major  indexing is presented below and in Figure 
12; the comparison "direct ions" were derived f rom 
Figure 11 (see [6], p. 237). 
Stage 1. Merge pairs of adjacent 1 x 1 matrices by the comparison- 

interchange indicated. Time: 2tR + tc. 
Stage 2. Merge pairs of 1 x 2 matrices; note that one member of a 

pair is sorted in ascending order, the other in descending order. 
This will always be the case in any bitonic merge. Time: 4tR + 2tc. 

Stage 3. Merge pairs of 2 x 2 matrices. Time: 8tn + 3tc. 
Stage 4. Merge the two 2 x 4 matrices. Time: 12tR + 4tc. 

Let  T" (T)  be the time to merge the bitonically 
sorted elements  in processors 0 through 2 i - 1, where 
the shuffled row-major  indexing is used. Then after one 
pass of comparison-interchange,  which takes t ime 
2u~21tn + tc, the problem is reduced to the bitonic merge 
of elements  in processors 0 through 2 H - 1, and that 
of elements in processors T -1 to 2 ~ - 1. It  may be 
observed that the latter two merges can be done con- 
currently. Thus we have 

T ' ( 1 )  = 0, T ' ( 2  ~) = T ' ( 2  i-1) + 2[~/21tR + tc. 

Hence 

T'"(2~) = (3*2 ~i+1)/2 - 4)tR + itc, if i is odd,  
= (4*T/2 - 4)tR + itc, if i is even. 

Let  S"'(2 ~) be the time taken by the corresponding 
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M1. Single interchange step on 
even rows if j > 2, so that 
columns contain either all 
evens or all odds. If./ = 2, 
do nothing: the columns are 
already segregated. 
Time: 2t n. 

M2. Unshuffle each row. 
Time: (k - 2)tn. 

M3. Merge by calling M(/', k/2) 
on each half. 
Time: T(j, k/2). 

M4. Shuffle each row. 
Time: (k - 2)t R. 

M5. Interchange on even rows. 
Time: 2tn. 

M6. Comparison-interchange of 
adjacent elements (every 
"even" with the next "odd"). 
Time: 4tn + tc. 

sor t ing a lgo r i t hm (for  a square  a r r ay ) .  Then  

S " ( 1 )  = 0, 
S ' ( 2 ' ~ )  = S " ( 2 2 j - ' )  + 7""(2~) 

= S , , , (22u- , , )  + T(2 zj) + T ( 2 ~ - ' ) .  

H e n c e  S"(22j) = (14(2 j - 1) - 8j)tR + (2j 2 + j)tc. 
In  our  m o d e l ,  we have  2 a = N = n 2 p rocesso r s ,  

l ead ing  to the  fo l lowing  t h e o r e m .  
THEOREM 8.1.  I f  the shuffled row-major indexing is 

used, the bitonic sort can be done in time 

(14(n - 1) - 8log n)tR + (21ogZ n + log n)tc. 

I f t c  <- 2tn, it m a y  be  seen  tha t  the  b i tonic  m e r g e  sor t  
a lgo r i thm is op t ima l  to within a f ac to r  of  4.5 for  all n 
(since 4(n - 1)tR t ime  is necessa ry ,  as shown in Sect ion  
4).  P r e l im ina ry  inves t iga t ion  ind ica tes  tha t  the  b i ton ic  
merge  sort  is fas te r  than  the sZ-way o d d - e v e n  m e r g e  
sort  for  n -< 512,  u n d e r  the  a s sumpt ion  tha t  tc -< 2tn. 

9. Extensions and Implications 

In this  sec t ion  the  fo l lowing ex tens ions  and  impl ica-  
t ions are  p r e s e n t e d .  

(i) By T h e o r e m  7.1 or  8 .1 ,  the  e l e m e n t s  m a y  be 
so r t ed  into  snake - l ike  r o w - m a j o r  o rde r ing  or  in the  
shuff led  r o w - m a j o r  o rde r ing  in O(n) t ime .  By the  fol- 
lowing l e m m a  we know tha t  they  can be r e a r r a n g e d  to 
o b e y  any o t h e r  index  func t ion  with re la t ive ly  insignifi-  
cant  ex t ra  costs ,  p r o v i d e d  each  p roces so r  has suff icient  
m e m o r y  size. 

LEMMA 9.1.  I f  N = n × n elements have already 
been sorted with respect to some index function and i f  
each processor can store n elements, then the N elements 
can be sorted with respect to any other index function by 
using an additional 4(n - 1)tn units o f  time. 

The  p r o o f  fo l lows f rom the fact  tha t  all e l e m e n t s  can 
be m o v e d  to the i r  des t ina t ions  by  four  sweeps  of  n - 1 
rou t ing  s teps  in all four  d i rec t ions .  

(ii) I f  the  p rocesso r s  a re  c o n n e c t e d  in a k x m 
r ec t angu la r  a r r a y  (F igure  13) ins t ead  of  a square  ar- 
ray ,  s imi lar  resul ts  can still be  o b t a i n e d .  F o r  e x a m p l e ,  
c o r r e s p o n d i n g  to T h e o r e m  7.1 ,  we have:  

THEOREM 9.1.  I f  the snake-like row-major indexing 
is used, the sorting problem for a k × m processor array 
(k, m powers o f  2) can be done in time 

(4m + 2k + O(h 2/3 log h))t R + (k + O(h 2/3 log h))tc, 

where h = min (k, m), by using the s2-way merge sort 
with s = O(hl/a). 

(iii) The  n u m b e r  of  e l e m e n t s  to be  so r t ed  could  be  
l a rge r  than  N ,  the  n u m b e r  o f  p rocesso r s .  A n  eff ic ient  
m e a n s  of  hand l ing  this s i tua t ion  is to d i s t r ibu te  an 
a p p r o x i m a t e l y  equa l  n u m b e r  of  e l e m e n t s  to each  proc-  
essor  ini t ia l ly  and  to  use a merge - sp l i t t i ng  o p e r a t i o n  for  
each  c o m p a r i s o n - i n t e r c h a n g e  o p e r a t i o n .  This  i dea  is 
d iscussed  by  K n u t h  [6], and  used  by  B a u d e t  and  Ste- 
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venson [3]. Baudet  and Stevenson's results will be 
immediately improved if the algorithms of this paper 
are used, since they used Orcutt 's  O(n log n) algorithm. 

(iv) Higher-dimensional array interconnection pat- 
terns, i.e. N = n j processors each connected to its 2] 
nearest neighbors, may be sorted by algorithms gener- 
alized from those presented in this paper. For example, 
N = n j elements may be sorted in time 

((3j 2 + j)(n - 1) - 2j log N)t n + (½)(log2N + log N)tc, 

by adapting Batcher 's bitonic merge sort algorithm to 
the "j-way shuffled row-major ordering."  This new 
ordering is derived from the binary representation of 
the row-major indexing by a j-way bit shuffle. I fn  = 2 3, 

Fig. 12. 

Initial data configuration. Stage 1. 

j = 3, and Z2Z1ZoY2Y~YoX2X~Xo is a row-major index, 
then the j-way shuffled index is ZzY2X2Z~Y1X1ZoYoXo. 
This formula may be derived in the following way. The 
tc term is not dimension-dependent:  the same number  
of comparisons are performed in any mapping of the 
bitonic sort onto an N processor array. The tR term is 
the solution of ~ ~_~i~log n 2i ~ l~k_~j ((log N )  - ij + k ) ,  
where the 2 i term is the cost of a comparison-inter- 
change on the (i-1)th bit of any of the "kth-dimension 
indices" (i.e. Zi_~,Yi_~, and X/_I when j = 3  as in the 
example above). The ((log N)  - ij + k)  term is the 
number of times a comparison-interchange is per- 
formed on the (i j-k)th bit of the j-way shuffled row- 
major index during the bitonic sort. Therefore we have 
the following theorem: 

THEOREM 9.2. I f  N processors are j-dimensionally 
mesh-connected, then the bitonic sort can be performed 
in time O(N11J), using the j-way shuffled row-major 
index scheme. 

By using the argument of Section 4, one can easily 
check that the bound in the theorem is asymptotically 
optimal for large N. 

A p p e n d i x .  O d d - E v e n  T r a n s p o s i t i o n  Sort  

The odd-even transposition sort [6] may be mapped 
onto our 2-dimensional arrays with snake-like row- 

Stage 2. 

] 

3 
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Stage 3 .  

Stage 4. 
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ma jo r  order ing  in the following way. G iven  N pro- 

cessors init ially loaded with a data  value ,  repeat  N / 2  
t imes:  

01. "Expensive comparison-interchange" of processors #(2i + 1) 
with processors #(2i + 2), 0 -< i < N/2 - 1. Time: 4tR + tc if 
processor array has more than two columns and more than one 
row; 0 ifN = 2; and 2tn + tc otherwise. 

02. "Cheap comparison-interchange" of processors #(2i) with 
processors #(2i + 1), 0 ~_ i <- N/2 - 1. Time: 2tr + tc. 

If Toe(J, k )  is the t ime requ i red  to so r t jk  e lements  in 
a j x k region of our  processor by the odd-even trans- 
position sort into the snake-like row-major  ordering,  
then  

Toe (j, k) = O, if jk = 1 else 
2tn + tc , i f  j k  = 2 else 
j k ( 2 t n  + t c ) ,  i f j  = 1 or k = 2 else 
j k ( 3 t n  + tc) 

Step J2 of the 2-way odd-even  merge  (Section 5) 
canno t  be pe r fo rmed  by the vers ion of the odd-even  
t ranspos i t ion  sort indica ted  above .  Since N is even here 
(N = 2j), step 0 2  may be placed before  step O1 in the 
algori thm descr ipt ion above (see K n u t h  [6]). Now step 
0 2  may be per formed  in the no rma l  t ime of 2tR + tc,  
even star t ing from the n o n s t a n d a r d  init ial  conf igura t ion  
depicted in Section 5 as the result  of step J1. 

P r o g r a m m i n g  
Techniques  

G. Manacher ,  S.L. G r a h a m  

Editors  

Proof Techniques for 
Hierarchically 
Structured Programs 
Lawrence Robinson and Karl N. Levitt 
Stanford Research Institute 

A method for describing and structuring programs 
that simplifies proofs of their correctness is presented. 
The method formally represents a program in terms of 
levels of abstraction, each level of which can be 
described by a self-contained nonprocedural specifi- 
cation. The proofs, like the programs, are structured 
by levels. Although only manual proofs are described 
in the paper, the method is also applicable to semi- 
automatic and automatic proofs. Preliminary results 
are encouraging, indicating that the method can be 
applied to large programs, such as operating systems. 

Key Words and Phrases: hierarchical structure, 
program verification, structured programming, formal 
specification, abstraction, and programming meth- 
odology 

CR Categories: 4.0, 4.29, 4.9, 5.24 

Received March 1976; revised August 1976 

References 
1. Barnes, G.H., et al. The ILLIAC IV computer. IEEE Trans. 
Comptrs. C-17 (1968), 746-757. 
2. Batcher, K.E. Sorting networks and their applications. Proc. 
AFIPS 1968 SJCC, Vol. 32, AFIPS Press, Montvale, N.J., pp. 
307-314. 
3, Baudet, G., and Stevenson, D. Optimal sorting algorithms for 
parallel computers. Comptr. Sci. Dep. Rep., Carnegie-Mellon U., 
Pittsburgh, Pa., May 1975. To appear in IEEE Trans. Comptrs, 
1977. 
4, Flynn, M.J. Very high-speed computing systems. Proc. IEEE 
54 (1966), 1901-1909. 
5. Gentleman, W.M. Some complexity results for matrix 
computations on parallel processors. Presented at Syrup. on New 
Directions and Recent Results in Algorithms and Complexity, 
Carnegie-Mellon U., Pittsburgh, Pa., April 1976. 
6. Knuth, D.E. The Art of  Computer Programming, Vol. 3: Sorting 
and Searching, Addison-Wesley, Reading, Mass., 1973. 
7. Orcutt, S.E. Computer organization and algorithms for very- 
high speed computations. Ph.D. Th., Stanford U., Stanford, Calif., 
Sept. 1974, Chap. 2, pp. 20-23. 
8. Stone, H.S. Parallel processing with the perfect shuffle. IEEE 
Trans. Comptrs. C-20 (1971), 153-161. 

271 

Copyright © 1977, Association for Computing Machinery, Inc. 
General permission to republish, but not for profit, all or part 
of this material is granted provided that ACM's copyright notice 
is given and that reference is made to the publication, to its date 
of issue, and to the fact that reprinting privileges were granted 
by permission of the Association for Computing Machinery. 

The research described in this paper was partially sponsored 
by the National Science Foundation under Grant DCR74-18661. 
Authors' address: Stanford Research Institute, Menlo Park, 
CA 94025. 

Communications April 1977 
of Volume 20 
the ACM Number 4 


