Check for
Updates

ReactCOP Supporting Layer Parameter Management for
Front-End Web Applications

Hiroki Hashimoto
Tokai University
Information and Telecommunication Engineering
Tokyo, Japan
hasihiro1117@gmail.com

Nobuhiko Ogura
Tokyo City University
Faculty of Informatics

Yokohama, Japan
ogura@tcu.ac.jp

ABSTRACT

In modern software, including web applications, context-dependent
behavior is one of the most important features. Context-oriented
programming (COP) is a suitable programming technique for
developing such software. However, we often need to work on
handling parameter values in layers. This problem which we
experience during the development of web application means
inconvenience in setting parameters by each layer. We call it “layer
parameter problem.” Especially front-end web applications use a
component-based approach with a DOM tree, making the layer
parameter problem more complicated because they cannot handle
COPs in class-in-layer and layer-in-class models. We propose
ReactCOP, an implementation of an idea that applies COP to React,
one of the front-end web application libraries. ReactCOP solves the
parameter problem on a layer-in-component model. As the solution
to this problem, we present Layer Parameter Management that
dynamically switches values in a variable within a layer. In this

paper, we propose ReactCOP with Layer Parameter Management.

Finally, we investigate our proposed approach through two case
studies.

CCS CONCEPTS

- Software and its engineering — Object oriented languages.

KEYWORDS
React, Context-Oriented Programming, Web Application

ACM Reference Format:

Hiroki Hashimoto, Ikuta Tanigawa, Nobuhiko Ogura, and Harumi
Watanabe. 2023. ReactCOP Supporting Layer Parameter Management
for Front-End Web Applications. In Companion Proceedings of the 7th
International Conference on the Art, Science, and Engineering of Programming

This work is licensed under a Creative Commons Attribution International
4.0 License.

<Programming>’23 Companion, March 1317, 2023, Tokyo, Japan
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0755-1/23/03.
https://doi.org/10.1145/3594671.3594684

Ikuta Tanigawa
Change Vision Inc.
Fukui, Japan
ikuta.tanigawa@change-vision.com

Harumi Watanabe
Tokai University
Information and Telecommunication Engineering
Tokyo, Japan
harumi-w@tsc.u-tokai.ac.jp

(<Programming>"23 Companion), March 13-17, 2023, Tokyo, Japan. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3594671.3594684

1 INTRODUCTION

1.1 Context-Dependent Behavior Adaptation in
Web Application

In front-end web application development, a technology for
dynamically adapting behavior and contents on the context is
required for cases such as differences in location or time. For
example, a web application that automatically analyzes stock
markets in real-time is expected to dynamically change analysis
methods that match the market situation based on the stock price.

For the adaptation of dynamic context-dependent behavior, there
is Context-oriented programming (COP) [1, 3-5]. Layers provided
by COP support the modularization of context-dependent behaviors,
and COP applications de-/activate layers to adapt those behaviors
at runtime.

Web application development frameworks and libraries are
used for effectively developing web applications. React [10] is a
JavaScript library for building user interfaces and one of the most
popular libraries in the field. React app builds a complex UI by
combining modules called components. Rendering is the key point
of React application. Rendering is a process that decides whether the
component has to be reloaded when there is a change in the state of
the component, React checks each component by the Reconciliation
process using virtual DOM, and React reloads only the components
that need to be updated.

1.2 COP in Web Application Development

Various COP languages and libraries are proposed [2, 13-15],
and there are a few COP libraries proposed for web application
development, such as ContextJS[9] and EMAjs[8].

ContextJS is a JavaScript library
based on an open implementation for layer activation, allowing
customized adaptation rules. In the research, Jens Lincke et al.
proposed a holistic approach that integrates new scoping strategies
with existing strategies based on an open implementation [6, 7] in
which layer composition strategies are encapsulated into objects.

https://orcid.org/0009-0007-9910-4895
https://orcid.org/0009-0002-8241-6319
https://orcid.org/0009-0006-6355-9612
https://orcid.org/0009-0004-9640-0937
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3594671.3594684
https://doi.org/10.1145/3594671.3594684
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3594671.3594684&domain=pdf&date_stamp=2023-09-12

<Programming>'23 Companion, March 13-17, 2023, Tokyo, Japan

EMAjs is a JavaScript implementation based on an expressive
and modular activation mechanism for COP. The mechanism allows
developers to implement their own activation mechanism matching
their needs.

However, no extensions have been proposed to work directly
with front-end web application libraries such as React to support
dynamic behavior adaptation. React uses a component-based
approach with a DOM tree. For adapting the COP mechanism
using layers in React components, it is important to implement
so that the rendering process and the layer operation processing
coexist. Especially after each de-/activation of layers, React should
execute rendering processes to switch the application’s behavior
and contents. useState, one of the functions provided by React, is
effective to be adapted into the layer mechanism and associated
layer update process and the rendering process call.

1.3 Layer Parameter Problem

As mentioned above, React uses rendering to update the UI caused
by data changes. Components that have been updated are reloaded
by rendering, and information other than values protected by
useState, etc., in the component will be reset at each update. The
prototype of ReactCOP realizes the idea of a layer in React. However,
to make layers and their associated behaviors even more effective,
we need the feature to protect layer-compliant variable values,
which we call Layer Parameters. For implementing this feature,
it is necessary to solve the problem of complex interrelationships

between layer activation states and rendering processing timings.

Therefore, a mechanism is required to prevent variable values
from reset by switching a layer’s active state. Implement this as a
custom Hook and combine it with the layer mechanism to allow
the implementation of dynamic variable value adapted to layers.

1.4 Implementation Goals

Our research aims to develop a COP extension of React that solves
the aforementioned problems. We illustrated a rough outline of the
extension in Figure 1.

1. Scope of layers
A class provides Layer information and layer controls within
the extension. By wrapping the top-level component of the
React application with a component (LayerProvider) that
contains an instance of that class, the layer mechanism is
shared throughout the application, and layer information
can be accessed from all child components.
2. Layer activation
Activation and deactivation of layers are performed using
class methods. Those methods can be called from anywhere
in React application.
3. Behavior adaptation
Behaviors are implemented by a custom hook inspired by
useEffect, and the callback is executed if the specified layer is
active. Also, a component (<Layer>) that changes the content
according to the layer state is provided to add behavior
within JSX.
The novel point of programming experience is to solve the layer
parameter problem of COP in the development of front-end web
applications. The source of ReactCOP is available at [11]. The

77

Hiroki Hashimoto, Ikuta Tanigawa, Nobuhiko Ogura, and Harumi Watanabe

remainder of this paper is structured as follows. Section 2 describes
our approach to COP with React. Section 3 introduces the notation
of ReactCOP. Its usage is presented by two case studies in Section
4. Finally, Section 5 provides the conclusion.

// Set scope of Layer mechanism
root.render(

@ <LayerProvider>] Provides Access to Layer Info
<App />
</LayerProvider> J

)s

// Layer Activation in <Ap.p4>/LayerA activated
“const_onClickA «) => {

layerManager}activateLayer("LayerA");
layerManager} deactivatelayer("LayerB");

.H
0 =>{

const onClickB =
layerManager.activatelLayer("LayerB");
layerManager.deactivatelLayer("LayerA");

s

// Codes in <ComponentA /> Executes callback
useEffectWithLayer(() => { ‘/

console.log("Layer A is active");
}, ["LayerA"]);

useEffectWithLayer(() => {
console.log("Layer B is acti
}, ["LayerB"]);
// ISX in <App /> //
return (
<div Displays JSX
<Layer cond]ﬁ(n- layer‘State LayerA
&& llayerState]LayerB}>
<button disabled>LayerA</button>
L <button onClick={onClickB}>LayerB</button>
</Layer>
<Layer condition={layerState.LayerB
&& !layerState.lLayerA}>
<button onClick={onClickA}>LayerA</button>
<button disabled>LayerB</button>
</Layer>
</div>
)5

Figure 1: Goal of COP in React

2 REACTCOP

2.1 Layer Mechanism

2.1.1 Layer & De-/Activation. React application is structured
as a component tree, and layer definitions are spread among
components in React application. According to the general
classification[12], Our approach is a layer-in-component model
where layers exist within components. With the layer-in-
component model, layer declarations are outside the lexical scope
of the code they modify. A layer can express by defining layer
information and layer operation processing in the LayerManger
class. Layers and their states are stored in JavaScript objects. The
layer name is used as a key, and the layer’s state is expressed as a
value (true/false). Activation/deactivation of a layer is a process of
exchanging the values of its objects. When updating the layer’s state,
it is necessary to change the rendering content in the application
to correspond to the activated layer behavior. There is a way to
intentionally trigger React rendering by adding a counter with

ReactCOP Supporting Layer Parameter Management for Front-End Web Applications

useState. useState is a hook that triggers rendering when the value
is updated and reflects the latest value in the application. By adding
this hook to the activation process, rendering can occur after each
de-/activation process, and the contents can be switched to the
latest one. Importantly, the rendering process recursively renders
all child components within it once the parent component has been
rendered. Therefore, by adding the above processing to the top level
of the React application, changes in layer activation status can be
propagated throughout the application. We illustrated the relation
of the layer mechanism and the rendering process in Figure 2.

.

@,

SO

VO
O O

Layer
Mechanism

Layers

Figure 2: Relation of the layer mechanism and rendering
process

2.1.2 Scoping of Layer Composition. Layers should be accessible
from anywhere in the application. For extending the layer
mechanism’s scope to all components, React’s context feature can
be used to treat the layer mechanism as a global property. React
applications typically allow data to be shared by passing data from
parent components to child components (top-down). However, if
there is a property that is needed by many components in the
application, such an approach can lead to a loss of productivity. The
context feature is effective for the situation, and a component is
called Context.Provider and a hook called useContext are provided
from React. Context.Provider provides context values as global
properties to all child components. useContext is for getting
the context value in the child component. Combining these two
functions and the layer mechanism allows layer information to be
accessed and controlled from anywhere.

2.1.3 Behavior Adaptation. In a React application, we believe that
adding behavior should be done to internal processing and JSX of
components. For describing the behavior in internal processing,
a custom Hook (useEffectWithLayer) that applies useEffect can
be used. useEffect is a function provided by React that executes
a callback when the specified variable value changes. (1) Use this
feature to implement a custom Hook that will execute a callback
when the specified layer is activated. (2) Set the behavior as a
callback, and (3) Pass the layer state as the second argument to
the custom hook so that the active layer behavior (callback) will
be executed when the layer state is updated. Behavior description
for JSX is made possible by enclosing it in a React component
(<Layer>) that operates (adds/deletes) the behavior according to

78

<Programming>'23 Companion, March 13-17, 2023, Tokyo, Japan

the layer status. The component returns a behavior if the layer is
active and returns empty data if the layer is inactive. We believe
that these processes can be easily implemented using conditional
branching.

2.2 Layer Parameter Management

While discussing ReactCOP further and putting the functionality
into practical applications, we encountered a situation where the
value needed to revert to the previous value of the layer variable.
In this section, we describe the problems extracted from the design
and implementation process of ReactCOP and our solutions. In
React, the values held by variables will revert to their initial values
with re-rendering unless protected. In a regular React app, we can
use useState to persist values after rendering. However, when we
combine the concept of layers with React apps, there are values
that need to protect separately for each layer. In some situations,
variables within layers should be retained and changed for each
layer, and variables within layers should be switched to layer-
specific values by layer switching. We call such variable Layer
Parameter and introduce Layer Parameter Management to solve
this problem.

Figure 3 shows changes in Layer Parameter values using Layer
Parameter Management. There are two layers, A and B, and a
variable x is in a React component under a layer. As an initial value,
1 is stored in x of Layer A, and 10 is stored in x of Layer B. After
initialization, Layer A is activated, and 2 is stored in x, and update
the value to 2 with the setter method. When Layer B becomes active
(Layer A is deactivated), x’s value changes to 10, which is the initial
value of Layer B. When Layer A has been activated again, the value
of x will be 2, which was set at the previous activation. The above
process can be realized by defining an object using useState in a
custom hook and implementing the process of substituting each
variable value with the layer as a key.

setX(2)
x=1

setX(15)

x =10 x=15 x=2

Initial Value

Layer A

Layer B

Activate
Layer B

GET SET

GET SET GET

Figure 3: Value Flow with Layer Parameter

3 NOTATIONS OF REACTCOP

In the following section, we introduce ReactCOP to achieve
the above goal. ReactCOP is a specialized contextual behavioral
adaptation of React components that could be considered as
dynamic cross-cutting concerns. ReactCOP helps to deploy context-
dependent behavior at JSX and the rest of the components. For
JSX to reflect de/activation, it simply checks the activation status
of layers, and based on the status, it returns empty <Fragment>
tag or child components to the parent component. For the rest of
the components to reflect de/activation, we implement a custom

<Programming>'23 Companion, March 13-17, 2023, Tokyo, Japan

Hook named useEffectWithLayer. We explain the notation of the
methods and other methods that support the implementation of
context-aware react applications.

3.1 Layer Description

This section describes adding behavior within a layer. <Layer> is a
method for JSX, and useEffectWithLayer is a method that describes
the behavior for internal processing of the component.

<Layer>

This tag shown in Listing 1 is a method for reflecting components
and tags according to the layer activation status within JSX. In the
JSX description, a part enclosed by the method is valid only when
the layer specified by the name attribute matches conditions which
are states of layer names. The second argument is children, which
are React components. By calling layerState LAYERNAME, the
Boolean value of whether the layer is active, will be returned. If the
condition is true, the Layer method returns the child components,
and if not, it returns nothing.

Listing 1: Notation of Layer method

<Layer condition={ layerState.LayerA
&& !layerState.LayerB }>
<CmpA />

</Layer>

<Layer condition={ layerState.LayerB
&& !layerState.LayerA }>
<CmpB />

</Layer>

useEffectWithLayer / useEffectWithoutLayer

This method shown in Listing 2 is a custom hook for implementing
processes that trigger based on the change of layer active status. It
takes a layer name as one of its arguments, and when React detects
an update of the layer name, it calls two useEffect methods inside
of this custom hook. It has three arguments, callback as the first
argument, layer state as the second argument, and dependency as
the third argument. A callback is executed only when the layer
given in the second argument is true. The third argument is the
same as the second argument of useEffect. This method helps to
implement partial methods and the de/activation process of layers.

Listing 2: Notation of useEffectWithLayer

useEffectWithLayer(() => {
// Some Processes here

}, layerState.LayerA, [dependencies]);

3.2 Layer De-/Activation

LayerProvider

This method shown in Listing 3 is used to set a scope of contextual
information and layers deployment. It defines LayerManager, a
class of managing layers and their status, and layerStateCount with
useState. This allows all child components of LayerProvider to use
layer information and activation processes stored in LayerManager.
Components that contain layer definition or layer de/activation
should be enclosed in LayerProvider as shown below. It often should
be set on the top level of components such as <App />.

79

Hiroki Hashimoto, Ikuta Tanigawa, Nobuhiko Ogura, and Harumi Watanabe

Listing 3: Notation of LayerProvider

const root =
ReactDOM. createRoot (document.getElementById('root'));
root.render(

<LayerProvider>
<App />
</LayerProvider>
)5
LayerManager

LayerManager provides the functionality of managing layer
definitions and activate information. Layer information is stored
in an object with layer names as keys and activation status as
values. Field variables contain layerStateCount and its setter to
detect de/activation calls on React application.

activateLayer(layerName)
A method to use for layer activation. Pass layer name
as a string argument. Set value of the layer name in
the object to ‘true’ and add 1 to layerStateCount using
notifyUpdatedLayerState.

deactivateLayer(layerName)
A method to use for layer deactivation. Pass layer name
as a string argument. Set value of the layer name in
the object to ‘false’ and add 1 to layerStateCount using
notifyUpdatedLayerState

getLayerState(layerName)
A method to return layerState. Returns an object containing
all layer information. By calling this method, layer
information can be accessed from anywhere in React
components.

useLayerManager

This method shown in Listing 4 is for getting access to
LayerManager instance. It returns LayerManager instance and by
using the instance, methods for de/activation and getting layer
status, shown in above, can be implemented in React application.
It stores layerStateCount’s value and setLayerStateCount method
when it is called and integrates layerStateCount and its setter into
LayerManger.

Listing 4: Notation of useLayerManager

const layerManager = uselLayerManager();
useEffect(() => {
layerManager.activatelLayer("LayerA")
layerManager.deactivateLayer("LayerB")

Y, D

3.3 Layer Parameter Management

useLayerParams

This method, shown at the top of Listing 5, is a custom React Hook
that lets us add a state variable to components at each layer. It is
mainly the same as useState hook, but the value switches with layer
status changes. This method allows developers to hold different
values for each layer with only one variable. The value in the
variable is replaced depending on the activation status by calling
getter method. The first argument is initial values, and the second
argument is an array of layer names that use the defining variable.
There are two return values which are getter and setter for the state

ReactCOP Supporting Layer Parameter Management for Front-End Web Applications

variable. To set values to the variable, requires to use of the setter,
and the getter needs to be called to get the value, as shown at the
bottom of Listing 5.

Listing 5: Notation of useLayerParams

const [getCount, setCount] =
useLayerParams(@, ["LayerA", "LayerB"1);

const onClick = () => {
setCount((ct) => ct + 1);
setText((pre) => pre + getButtonLabel());
3
// JSX
return (
<div>
<p>CountA: {getCount("LayerA")}</p>
<p>CountB: {getCount("LayerB")}</p>
<button onClick={onClick}>{getButtonLabel()}</button>
 {getText()}
</div>
)5

4 CASE STUDY

In the following section, we introduce two case studies to
investigate our ideas and approach with ReactCOP. First case study
in Section 4.1 shows the implementation of layers and de-/activation.
Second case study in Section 4.2 shows the implementation of Layer
Parameter Management.

4.1 Case Study for ReactCOP

The example is a chat application built with React, shown in Figure
4. It is a simple application that users can communicate with
each other using texts and calls. As a component tree diagram
of the application shown in Figure 5, this application is structured
with two main components, Navbar and ChatScreen. Navbar
component provides access to application functionalities and has
time or notification that is displayed based on context. ChatScreen
component provides general chat features such as a contact list,
text chat, and access to media and information.

<NavigationBar>

T oR <Notification> Cog
Al T @& couinsarens, veproens
Sla 2
] N
Hd
& | <FriendList> | @=D <ChatDisplay> <Chatinfo>
@ . OR
e <RingDisplay
?; . > OR
t <TalkDisplay>
®6

Figure 4: Image of Chat Application Display

80

<Programming>'23 Companion, March 13-17, 2023, Tokyo, Japan

Navbar ChatScreen
— —
B - % /
(— LayerCall
but(onsJ -
L Time | | Notification

N\ T — —
N ~ — / — —
LayerTalk Layer Talk C: LayerNormal LayerCall ayerTalk LayerTalk Call

—— ——— I
" Fnendust][chatD\smay
Notification |\ J J |Chatinfo| [caliDisplay| TalkDisplay| [TalkDisplay|

Figure 5: Component Tree Diagram of Chat Application

4.1.1 Context-Dependent Behaviors. As the application context,
the presence or absence of incoming and ongoing calls can
be considered. These contexts are represented by two Boolean
variables: isRinging and isTalking. Context-dependent behaviors
that provide functionalities for each situation can be implemented in
the two main components, Navbar and Chatscreen. Also, we think
that the creation of three layers is needed to express the behaviors.
The definition of each layer and the conforming components are
shown in the following items.

Normal layer (both isRinging and isTalking are “false”)

This layer provides functions and displays rendering when
there is no incoming call or no ongoing call. It is activated
when isRinging and isTalking are false. In ordinary COP
systems, this layer is defined as a base layer, but in React
app, due to the rendering position of components, we focus
on switching child components instead of adding partial
processing by layers. By activating this layer, Time compo-
nent, which displays the current time, will be rendered in
Navbar, and ChatInfo component, which provides access to
media and chats information, will be added in Chatscreen
component.
Ring layer
This layer is mainly for providing notification of incoming
calls in the application display. Whether or not there is
an incoming call determines whether this layer is active
or inactive. It is activated when isRinging is set to true.
By activating this layer, Notification component, which
displays user information, will be rendered on the left side of
Navbar component where Time was rendered with Normal
layer, and RingDisplay, which displays the user info and
provides functions for handling incoming calls in Chatscreen
component.
Talk layer

This layer provides functions and displays rendering if the
user is on a call. This layer is activated when the user
accepts an incoming call and isTalking is set to true. By
activating the layer, Time component will be rendered in
Navbar component, and TalkDisplay, which provides In-
call features such as video and mute functionality, will be
rendered in Chatscreen component.

4.1.2 Implementation of Chat Application. A flow diagram with
the layers and associated components and activation codes
described above is shown in Figure 6. For implementing the
context-dependent behaviors in Chat application, three steps
are required. The first step is to define the context value and
implement the process for updating the value. The context needs
to be accessed from anywhere in our case. Therefore, we used

<Programming>'23 Companion, March 13-17, 2023, Tokyo, Japan

createContext and Context.Provider to make the context variable
“global” The second step is the addition of activation processing
that activates and deactivates layers by updating context values.
These activation processes can be implemented anywhere within
the React component structure to update the activation status of
the layer. However, this time we implemented the process in the
top-level component (ChatApp component). The final step is to add
the component corresponding to the layer within JSX. This step
is for internal processing using useEffectWithLayer and drawing
processing using components, that is, for implementing behavior
for each layer. In the chat application, we only used Layer method
to describe the behaviors.

4.2 Case Study for useLayerParams

This section presents an application using useLayerParams to
confirm its functionality. The application is a simple counter app
that consists of three components, App, CmpA, and CmpB, and has
two parameters defined with useLayerParams method. There are
two layers, LayerA and LayerB. When LayerA is active, CmpA will
be rendered as a child component of App component. Inside CmpA
and CmpB are two buttons and functions handling the button click.

4.2.1 Implementation of Counter app. The layer, activation process,
and parameters described above are implemented in the App
component shown in Listing 6. The parameters are implemented
using the useLayerPrams method and named Pram1 and Pram?2.
Since the method returns a getter and setter for each parameter,
we created variables for each and passed them as arguments to
the child component. Also, implemented CmpA and CmpB as child
components, we will explain details using CmpA shown in Listing 7.
Processes to add 1 to the previous value of Param1 and add “World”
for Param2, are implemented using the getter and setter passed as
arguments. Variables that hold the return value of the getter need
to be added, and the setter is required to update the value at onClick
function.

Listing 6: Program of App component

function App() {
const layerManager = uselLayerManager();
const layerState = layerManager.getlLayerState();

const [paraml, setParaml] =
useLayerParams(@, ["LayerA", "LayerB"]);
const [param2, setParam2] =
useLayerParams("Hello", ["LayerA", "LayerB"1);

const [islLayerA, setlIslLayerA] =
useEffect(() => {
if(isLayerA) {
layerManager.activatelLayer("LayerA");
layerManager.deactivatelLayer("LayerB");
} else {
layerManager.activatelLayer("LayerB");
layerManager.deactivatelLayer("LayerA");
3
}, [isLayerAl);

useState(true);

return (
<div>

81

Hiroki Hashimoto, Ikuta Tanigawa, Nobuhiko Ogura, and Harumi Watanabe

<button onClick={() => setIsLayerA(!isLayerA)}>
{isLayerA?"LayerA":"LayerB"}
</button>
<Layer condition={layerState.LayerA}>
<CmpA paraml={param1} param2={param2}
setParamli={setParam1} setParam2={setParam2}/>
</Layer>
<Layer condition={layerState.LayerB}>
<CmpB parami={param1} param2={param2}
setParami={setParam1} setParam2={setParam2}/>
</Layer>
</div>
);
b

4.2.2 Result of Counter app. The purpose of this case study is
to confirm that variable values that exist within a layer revert to
their previous values when the same layer is reactivated. Figure
7 shows the execution result of the counter application as a flow
chart. After running the application, layer A becomes active, click
the button to add 1 to Param1, and add “World” to Param2. After
that, when pressing the button to activate LayerB, the initial values
are assigned to Param1 and Param2. When activating LayerA again,
Param1 has been re-assigned 1, which was the previous value in
LayerA, and “World” has been re-assigned to Param2. From the
above, it can be confirmed that using useLayerParams can prevent
the variable values from being reset by the layer-switching process.

Listing 7: Program of CmpA

function CmpA({paraml, param2, setParaml, setParam2}) {

const paramlValue = param1();
const param2Value = param2();
const addNumber = () => {

setParaml(paramiValue + 1);
b
const addText = () => {
setParam2(param2Value + " World");
3
return (
<div>
<button onClick={addNumber}>
add 1 to paramil
</button>
<button onClick={addText}>
add "World" to param?2
</button>
<p>Paraml is {paramlValue}</p>
<p>Param2 is {param2Value}</p>
</div>
)5
b

5 CONCLUSION

In this paper, we introduced ReactCOP supporting to modularize
contextual behavioral variations for front-end web applications.
The research goals were (1) designing COP extension for front-
end web application development and (2) providing a solution to
the layer parameter problem. For the first goal, we implement

ReactCOP Supporting Layer Parameter Management for Front-End Web Applications

LAYERS

Activation Codes

const layerManager = uselLayerManager();
if(!isRinging && isTalking) {

layerManager.activateLayer(“Normal®);
} else {

if(isRinging) {
layerManager.activatelLayer(“Ring”);
} else {

layerManager.deactivateLayer(“Ring”);

¥

layerManager.deactivateLayer(“Normal”);

if(isTalking) {
layerManager.activatelLayer(“Talk”);

} else {
layerManager.deactivateLayer(“Talk”);

¥

(o]
£
isTalking: true o
isRinging: false
isTalking: true x
isRinging: true ©
isRinging: tru I
l [o)]
=
(14

When both Ring and Talk is true..

<Programming>'23 Companion, March 13-17, 2023, Tokyo, Japan

Activated Components

Navbar ChatScreen
<Layer
condition={layerState.Normal}>
<Time /> <Layer
</Layer> condition={layerState.Normal}>
<ChatInfo />
</Layer>
<Layer

condition={layerState.
&& !layerState.Talk}>

<Notification />
</Layer>

Ring
<Layer
condition={layerState.Ring
&& !layerState.Talk}>
<RingDisplay />
</Layer>

<Layer condition={layerState.Talk
&& !layerState.Ring}>
<Time />

</Layer> <Layer condition={layerState.Talk

&& !layerState.Ring}>
<TalkDisplay />
</Layer>

<Layer condition={layerState.Talk
&& layerState.Ring}>
<Notification />
</Layer> <Layer condition={layerState.Talk
&& layerState.Ring}>
<TalkDisplay />
</Layer>

Figure 6: Layer De-/Activation Flow

LayerA |

add 1 to param1 | add "World" to param2 ‘

Param1is 0

Param2 is Hello

Start app
LayerA is active
Displayed CmpA

LayerA |

add 1 to param1 | add "World" to param2 |

Param1is 1

Param2 is Hello World

Push “add” button
Added 1 to Param1l
Added “World” to Param?2

LayerB |

add 10 to param1 | add "Japan" to param2 ‘

Param1is 0

Param2 is Hello

Push “LayerA” button
LayerB is activated
Displayed CmpB

LayerA |

add 1 to param1 | add "World" to param2 ‘

Param1 is 1

Param2 is Hello World

Push “LayerB” button
Both Parameters kept
previous value

Figure 7: Execution Results of Counter App

ReactCOP with the layer-in-component model. To achieve the
second goal, we proposed layer parameter management that
dynamically switches values of a variable in a component on a

82

layer. We confirmed that ReactCOP achieved those goals with two
case studies. As future work, validation of ReactCOP, especially on
useLayerParam, whether it corresponds to multi-layer activation
and other situations, can be considered.

REFERENCES

(1]

[2

—

[3]

[4]

[5

—

G

—_

[7]
(8]

Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and Michael
Perscheid. 2009. A Comparison of Context-oriented Programming Languages.
Proceedings of the 1st ACM International Workshop on Context-Oriented
Programming (COP "09), 1-6. https://doi.org/10.1145/1562112.1562118

Malte Appeltauer, R. Hirschfeld, Michael Haupt, and H. Masuhara. 2011. Context]:
Context-oriented programming with Java. Information and Media Technologies 6,
2 (06 2011), 399-419. https://doi.org/10.11185/imt.6.399

Pascal Costanza and Robert Hirschfeld. 2005. Language constructs for context-
oriented programming: An overview of ContextL. Proceedings of the Dynamic
Languages Symposium, 1-10. https://doi.org/10.1145/1146841.1146842

Pascal Costanza, Robert Hirschfeld, and Wolfgang De Meuter. 2006. Efficient
Layer Activation for Switching Context-Dependent Behavior, D. E. Lightfoot and
C. A. Szyperski (Eds.). 7th Joint Modular Languages Conference, TMLC 2006 4228,
84-103. https://doi.org/10.1007/11860990_7

Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. 2008. Context-
oriented Programming. The Journal of Object Technology 7, 3 (03 2008), 125-151.
https://doi.org/10.5381/j0t.2008.7.3.a4

Gregor Kiczales. 1996. Beyond the Black Box: Open Implementation. Software,
IEEE 13, 1 (02 1996), 8-11. https://doi.org/10.1109/52.476280

Gregor Kiczales and Andreas Paepcke. 1996. Open Implementations and Metaobject
Protocols. MIT Press, Cambridge, MA, USA.

Paul Leger, Nicolas Cardozo, and Hidehiko Masuhara. 2022. An expressive
and modular layer activation mechanism for Context-Oriented Programming.
Information and Software Technology 156 (12 2022), 107132. https://doi.org/10.
1016/j.infsof.2022.107132

[9] Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert Hirschfeld. 2011. An

(10]

open implementation for context-oriented layer composition in Context]S. Sci.
Comput. Program. 76 (12 2011), 1194-1209. https://doi.org/10.1016/j.scico.2010.
11.013

React [n. d.]. React — A JavaScript library for building user interfaces. reactjs.org.

https://doi.org/10.1145/1562112.1562118
https://doi.org/10.11185/imt.6.399
https://doi.org/10.1145/1146841.1146842
https://doi.org/10.1007/11860990_7
https://doi.org/10.5381/jot.2008.7.3.a4
https://doi.org/10.1109/52.476280
https://doi.org/10.1016/j.infsof.2022.107132
https://doi.org/10.1016/j.infsof.2022.107132
https://doi.org/10.1016/j.scico.2010.11.013
https://doi.org/10.1016/j.scico.2010.11.013
reactjs.org.

<Programming>'23 Companion, March 13-17, 2023, Tokyo, Japan

[11] ReactCOP [n.d.]. https://github.com/tanigawaikuta/react_cop

[12] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. 2012. Context-oriented
programming: A software engineering perspective. Journal of Systems and
Software 85, 8 (08 2012), 1801-1817. https://doi.org/10.1016/j.js5.2012.03.024

[13] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. 2012. ContextErlang:
Introducing context-oriented programming in the actor model. AOSD’12 -
Proceedings of the 11th Annual International Conference on Aspect Oriented
Software Development, 191-202. https://doi.org/10.1145/2162049.2162072

[14] Ikuta Tanigawa, Kenji Hisazumi, Nobuhiko Ogura, Midori Sugaya, Harumi
Watanabe, and Akira Fukuda. 2019. RTCOP: Context-Oriented Programming

83

[15]

Hiroki Hashimoto, Ikuta Tanigawa, Nobuhiko Ogura, and Harumi Watanabe

Framework based on C++ for Application in Embedded Software. ICISS 2019:
Proceedings of the 2019 2nd International Conference on Information Science and
Systems, 65-72. https://doi.org/10.1145/3322645.3322689

Benjamin Hosain Wasty, Amir Semmo, Malte Appeltauer, Bastian Steinert, and
Robert Hirschfeld. 2010. ContextLua: Dynamic Behavioral Variations in Computer
Games. In Proceedings of the 2nd ACM International Workshop on Context-
Oriented Programming (Maribor, Slovenia) (COP ’10). Association for Computing
Machinery, Article 5, 6 pages. https://doi.org/10.1145/1930021.1930026

https://github.com/tanigawaikuta/react_cop
https://doi.org/10.1016/j.jss.2012.03.024
https://doi.org/10.1145/2162049.2162072
https://doi.org/10.1145/3322645.3322689
https://doi.org/10.1145/1930021.1930026

	Abstract
	1 Introduction
	1.1 Context-Dependent Behavior Adaptation in Web Application
	1.2 COP in Web Application Development
	1.3 Layer Parameter Problem
	1.4 Implementation Goals

	2 ReactCOP
	2.1 Layer Mechanism
	2.2 Layer Parameter Management

	3 Notations of ReactCOP
	3.1 Layer Description
	3.2 Layer De-/Activation
	3.3 Layer Parameter Management

	4 Case Study
	4.1 Case Study for ReactCOP
	4.2 Case Study for useLayerParams

	5 Conclusion
	References

