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ABSTRACT
The development of robust, generalized models for human activity
recognition (HAR) has been hindered by the scarcity of large-scale,
labeled data sets. Recent work has shown that virtual IMU data
extracted from videos using computer vision techniques can lead to
substantial performance improvements when training HAR models
combined with small portions of real IMU data. Inspired by recent
advances in motion synthesis from textual descriptions and con-
necting Large Language Models (LLMs) to various AI models, we
introduce an automated pipeline that first uses ChatGPT to generate
diverse textual descriptions of activities. These textual descriptions
are then used to generate 3D human motion sequences via a mo-
tion synthesis model, T2M-GPT, and later converted to streams of
virtual IMU data. We benchmarked our approach on three HAR
datasets (RealWorld, PAMAP2, and USC-HAD) and demonstrate
that the use of virtual IMU training data generated using our new
approach leads to significantly improved HAR model performance
compared to only using real IMU data. Our approach contributes
to the growing field of cross-modality transfer methods and illus-
trate how HAR models can be improved through the generation of
virtual training data that do not require any manual effort.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computing methodologies→ Artificial intelligence.
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1 INTRODUCTION
The development of accurate and robust predictive models for hu-
man activity recognition (HAR) is essential for, e.g., monitoring
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fitness, analyzing health-related behavior, and improving industrial
processes [2, 4, 14, 23]. However, one of the major challenges in
HAR research is the scarcity of labeled activity data, which hinders
the effectiveness of supervised learning methods [5].

To address this challenge, researchers have explored methods for
acquiring labeled data that are more flexible and cost-effective. One
such method is the automated generation of virtual IMU data. In
recent years, effective cross-modality transfer approaches [10–12]
have been developed for extracting virtual IMU data from 2D RGB
videos of human activities. Virtual IMU data can expand training
datasets for motion exercise recognition and can be used to build
personalized HAR systems that meet the diverse needs of individual
users [28]. By leveraging the advantages of virtual IMU data, re-
searchers can improve the accuracy and robustness of HAR models
and facilitate the widespread adoption of sensor-based HAR in a
variety of domains.

In this work, we present a method that can generate diverse tex-
tual descriptions of activities that can then be converted to streams
of virtual IMU data. In our automated pipeline, the name of an
activity is first passed to ChatGPT to automatically generate tex-
tual prompts that describe–in plain language–a person doing the
activity.

The generated textual prompts are then used to generate 3D
human motion using a motion synthesis model, which can then
be converted to streams of virtual IMU data. By using ChatGPT to
generate the diverse textual descriptions of activities, we can gen-
erate virtual IMU data that capture the different variations of how
activities can be performed. With ChatGPT, no prompt engineering
is needed and essentially unlimited amounts of virtual IMU data
can be generated.

The contributions of this paper are two-fold:
- We leverage ChatGPT’s natural language generation capabil-
ities to automatically generate textual descriptions of activi-
ties, which are then used in conjunction with motion synthe-
sis and signal processing techniques to generate virtual IMU
data streams. By using this approach, we can significantly
reduce the time and cost required for data collection, while
covering a wide range of activity variations.

- We evaluate our approach on three standard HAR datasets–
Realworld, Pamap2, and USC-HAD–and demonstrate the
overall effectiveness through improved activity recognition
results across the board for models that utilize virtual IMU
data generated through our approach.

The results of our approach are significant – they contribute
to the growing field of cross-modality transfer that promises to
alleviate the much lamented lack of annotated training data in
HAR, thereby requiring virtually no manual effort at all.
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Figure 1: Overview of the proposed approach. The activ-
ity name and general description of prompts are provided
to ChatGPT for prompts generation. Using the generated
prompts, T2M-GPT generates 3D human motion sequences.
Using the motion sequences, virtual IMU data are generated
using inverse kinematics and IMUSim. After calibrating the
virtual IMU data with a small amount of real IMU data, the
virtual IMU data can be used to train a deployable classifier.
2 RELATEDWORK
Virtual IMU Data Generation: Recently, IMUTube [11] was intro-
duced to extract virtual IMU from 2D RGB videos. IMUTube uses
computer vision methods such as 2D/3D pose tracking to extract
the 3D human motion in the given video. The extracted 3D human
motion information is used to estimate 3D joint rotations and global
motion, which is then used generate the virtual IMU data. Previous
studies [10, 12] have shown that the extracted virtual IMU data lead
to improved model performance when mixed with the real IMU
data and allowed for effective training of more complex models.

To improve the quality of the extracted virtual IMU data, Xia
et al. [28] proposed a spring-joint model to augment the extracted
virtual acceleration signal and trained a classifier on the augmented
virtual IMU data to recognize reverse lunge, warm up, and high
knee tap. Vision-based systems such as IMUTube are limited by
the quality of the input videos. In order for the extracted virtual
IMU data to be of suitable quality, the videos should exhibit little
to no camera egomotion and only include people performing the
desired activity. Hence, selecting videos of good quality can be time-
consuming. Since our system is text-based, the time-consuming
process of selecting videos is eliminated.

Text-driven Human Motion Synthesis: The goal of text-driven
Human Motion Synthesis is to generate 3D human motion using
textual descriptions. With the recently released HumanML3D [8],
the current largest 3D human motion dataset with textual descrip-
tions, numerous models have been introduced that can produce
significantly more realistic human motion sequences than previous
models. MDM [25], MLD [29], and MotionDiffuse [34] are three
recently introduced diffusion-based models. In this work, we use
T2M-GPT [33] as the motion synthesis model for our system.

Large Language Models: Large Language Models (LLMs) such
as PaLM [6], LLaMA [26], GPT-3 [3], and ChatGPT (built upon

Table 1: Real and virtual IMU datasets size for the three HAR
datasets we used for evaluation.

Dataset Real Size Virtual Size
RealWorld 1,107 min 41 min
PAMAP2 322 min 68 min
USC-HAD 469 min 69 min

InstructGPT [17]) have attracted enormous attention for their supe-
rior performances in many natural language processing (NLP) tasks.
However, LLMs alone cannot solve complex AI tasks that require
processing information from multiple modalities. Recently, Visual
ChatGPT [27] and HuggingGPT [22] were introduced to tackle com-
plex multi-modal tasks. Both use ChatGPT as a controller that can
divide user input into sub-tasks and select the relevent AI model
from a pool of models to solve the complex task. Inspired by this
idea, we use ChatGPT as a prompt generator to generate diverse
textual descriptions for activities that are then used as input for the
motion synthesis model in our system.

3 GENERATING VIRTUAL IMU DATA FROM
VIRTUAL TEXTUAL DESCRIPTIONS

The key idea of our approach lies in generating a wide range of
diverse textual descriptions for a given activity, and to then feed
those textual descriptions into a motion synthesis model that is
connected to a virtual IMU data generation pipeline. Fig. 1 provides
an overview of the developed approach. Human activities are inher-
ently variable; a person can walk happily, confidently, quickly, or in
many other ways. This variability is reflected in the IMU data col-
lected by wearable sensors, which must be accurately represented
in the training data to ensure HAR models generalize well. We
address this challenge by employing ChatGPT to–automatically–
create detailed and varied textual descriptions of activities, which
then serve as prompts for 3D human motion synthesis.

During prompt generation, the activity name, few example tex-
tual descriptions (not activity specific), and general description of
the desired prompts are provided to ChatGPT. The example textual
descriptions serves as few-shot examples that ChatGPT can learn
from. The prompt description is provided to help align ChatGPT’s
output with our desired prompts. Some descriptions that we used
include: prompts should be 15 words or less; prompts should only
include a single person performing the activity; prompts should not
contain extensive description of the environment. Example generated
prompts are shown in Table 2. 1

The generated prompts are then fed into the motion synthesis
model, T2M-GPT [33], to generate 3D human motion sequences.2
To do so, CLIP [18], a pre-trained text encoder, first extracts the
text embedding from the prompt. Using this, a learned transformer
generates code indices autoregressively until an end token is gen-
erated. The sequence of code indices is de-quantized into latent
vectors by looking up the corresponding vector in the codebook for
each index. Lastly, a learned decoder maps the sequence of latent
vectors to 3D human motion sequence, represented as a sequence
of 22 joints’ positions.

We estimate each joint’s rotation with respect to the parent joint
and the root joint’s (pelvis) translation using inverse kinematics [30]

1All generated prompts can be found at this link
2We used the same T2M-GPT model found in (link).
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Table 2: Example generated prompts from ChatGPT

Climb up stairs A person struggles to climb the stairs with a heavy load on their back.

Climb down stairs Someone holds onto the handrail while walking down a set of stairs.

Jumping A person jumps up to touch a basketball rim, feeling victorious.

Lying A man stretches out on a blanket, feeling the grass beneath him.

Running A girl tries to catch up with her siblings as they race around the house.

Sitting A man sits confidently while conducting a business meeting.

Standing A woman stands with her arms in front of her, crossed at the wrists.

Walking A retiree takes a long, therapeutic walk in the park.

with the joints’ positions and the skeleton’s hierarchical structure as
input.3 IMUSim [32] is then used to calculate the joint’s acceleration
movement and angular velocity using the estimated local joints’
rotations and root translation. This allows us to extract virtual
IMU data from 22 on-body sensor locations. Additionally, IMUSim
introduces noises to the generated virtual IMU data to simulate the
noises that real IMU data typically exhibit.

Inevitably there will be a domain gap between the virtual IMU
data (source) and the real IMU data (target) due to potential differ-
ences in coordinate systems, sensor orientations and placements,
and the size of real human and virtual skeleton. We employ domain
adaptation to bridge the gap between the two domains. Following
Kwon et al. [11], we perform a distribution mapping between the
virtual IMU data and the real IMU data using the rank transforma-
tion approach [7]. To calibrate the virtual IMU data, only a small
amount (few minutes) of real IMU data is needed.

After calibration, the process of virtual IMU data generation is
complete. The extracted virtual IMU data can then be used to train
a HAR model either alone or in combination with some real IMU
data. Lastly, the trained model is deployed in the real world.

4 EXPERIMENTAL EVALUATION
We evaluated the effectiveness of our approach in a set of exper-
iments where we train activity recognizers for benchmark recog-
nition tasks and analyze the performance (F1 scores) for scenar-
ios where only real, only virtual, and mixtures of real and virtual
training data are used, respectively (similar to previous work, e.g.,
[10–12]).

4.1 Datasets
Real IMU Dataset: To evaluate the value of the virtual IMU data
generated by our proposed approach, we use the RealWorld [24],
PAMAP2 [19], and USC-HAD [35] datasets (details in Table 1). All
real IMU datasets were downsampled to 20 Hz to match the virtual
IMU datasets.

Virtual IMU Dataset: To generate the virtual IMU dataset, we
used our system to generate 50 clips of virtual IMU data for each ac-
tivity. Each clip corresponds to a different–automatically generated–
prompt from ChatGPT, The length of the clips ranges from five to
ten seconds, and the exact length of the clip depends on when the
transformer generates the end token, which in turn depends on
the textual prompt. The virtual IMU data was extracted from joint
locations of the virtual skeleton that were selected to be physically
closest to the sensor locations on the subjects.

3We converted 3D pose sequences to estimated joint rotations in BVH file format using
the BasicInverseKinematics method in this link

Table 3: Model performances (Macro F1) for the experimental
evaluation of our approach for the three HAR datasets.

(a) Random Forest

Dataset PAMAP2 RealWorld USC-HAD
Real 0.659 ± 0.003 0.715 ± 0.011 0.478 ± 0.002

Virtual 0.628 ± 0.003 0.746 ± 0.003 0.448 ± 0.003
Real+Virtual 0.699 ± 0.004 0.770 ± 0.004 0.486 ± 0.003

(b) DeepConvLSTM

Dataset PAMAP2 RealWorld USC-HAD
Real 0.687 ± 0.008 0.796 ± 0.015 0.646 ± 0.008

Virtual 0.626 ± 0.015 0.681 ± 0.005 0.453 ± 0.008
Real+Virtual 0.723 ± 0.007 0.820 ± 0.002 0.640 ± 0.002

4.2 Classifier Training
We perform our evaluation on a Random Forest classifier and on
DeepConvLSTM [16]. Sliding windows of two seconds duration and
with 50% overlap are used to segment the real and virtual IMU data.
For the Random Forest classifier, ECDF features [9] (15 components)
are extracted from the windows for training. We train a classifier
only on the real IMU data to establish a baseline. Additionally, we
trained a classifier on only virtual IMU data and another classifier
on both real and virtual IMU data. Only the accelerometry signal
is used following Kwon et al. [11]. For evaluation, we performed
leave-one-subject-out cross-validation on the test real IMU dataset.
The training real IMU set is not used when training a classifier only
on virtual IMU data. We report macro F1 scores averaged across all
folds over three runs and their normal approximation interval.

To evaluate the benefit of the virtual IMU data when different
amounts of real IMU data is available, we varied the amount of real
IMU data used for training. Starting with 2% of the available to real
IMU data, we gradually increased the size of the real IMU dataset
for training. The virtual IMU dataset and the testing dataset is left
unchanged.
4.3 Results
Results are listed in Table 3. The classifier trained on both real and
virtual IMU data shows significant improvement in F1 score com-
pared to a classifier trained only on real IMU data for the PAMAP2
and RealWorld dataset. Furthermore, on the RealWorld dataset, we
observe that the Random Forest classifier trained on only virtual
IMU data outperforms the classifier trained on real IMU data. We
find this surprising because the size of the virtual IMU dataset is less
than 4% of the size of the real IMU dataset. We attribute this perfor-
mance improvement to the diverse textual prompts that ChatGPT
generated, which led to a diverse set of virtual IMU clips. Using
such a diverse training data, the model learns to recognize the many
variations of each activity. Yet, when only virtual IMU dataset was
used for DeepConvLSTM, the performance significantly drop due
to too small training dataset.

Figure 2 shows the model performances when varying amount
real IMU data is used for training. We observe that the classifier
trained on both real and virtual IMU data consistently outperform
the classifier trained only on real IMU data for varying amount of
real IMU data. The performance improvement is especially apparent
when the size of the real IMU dataset is greatly reduced. This shows
the use of virtual IMU data for training is exceptionally beneficial
when the amount of available real IMU data is limited.
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Figure 2: Model performance on RealWorld [24], PAMAP2 [19], and USC-HAD [35] datasets when different amount of real IMU
data are used for training. The amount of virtual IMU data used remains the same.
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Figure 3: (a) Differences in F1 score for each activity between
the classifier trained on only real IMU data and the classifier
trained on both real and virtual IMU data evaluated on the
RealWorld [24] dataset. (b) Example where the motion syn-
thesis model confused waiting with lying.

5 DISCUSSION
The experimental evaluation demonstrates the effectiveness of our
proposed approach. In this section we explore current limitations
and outline future directio that could further enhance the utility of
our method.

First, the pipeline will only be able to generate virtual IMU data
for activities that are described in the HumanML3D dataset. If
the prompt contains activities that are not captured by the Hu-
manML3D dataset, our pipeline will fail to generate realistic virtual
IMU data for the activity. One potential solution would be to ex-
tend the HumanML3D dataset with new activities. A cost-effective
method for extension would be to use computer vision techniques
such as 3D human pose estimation [31] on existing videos to extract
the human motion sequence for the new activities.

Second, the motion synthesis model sometimes confuses closely
related activities or two verbs in the same prompt. For instance,
T2M-GPT sometimes generates a motion sequence for climbing up
the stairs when the input prompt is for climbing down the stairs
and vice versa. As per Fig. 3a, climbing up and down stairs gained
the least increase in per class F1 score from the addition of virtual
IMU data. Also, T2M-GPT confused frequently between walking
forward, walking counter-clockwise, and walking clockwise. Since
the USC-HAD dataset contains these activities, the classifier trained
on the USC-HAD dataset received the least performance improve-
ment from the virtual IMU data. Additionally, T2M-GPT sometimes
confuses another verb in the prompt for the activity. As shown
in Fig. 3b, T2M-GPT confuses "waiting" with "lies", which causes
the generated motion sequence to be more similar to sitting than
lying. In our study, we did not manually filter out those failure
cases of T2M-GPT, as our goal was to study the feasibility of using

text-generated virtual IMU data with minimum manual input to
the system.

Our experiment results successfully show that, although with the
presence of noisy virtual IMU data from T2M-GPT, the generated
virtual IMU data can significantly improve the model performance
overall, thus, suggesting the scalability of this approach. In future
work, we plan to study the effect of manual cleaning of those failure
cases on model performance and also explore other motion synthe-
sis methods based on diffusion-based models [25, 29, 34] regarding
potential biases associated between text prompts and generated
motions. This includes exploring motion style transfer [1] to apply
different motion styles to the generated motion sequences. Also, we
will also study the effect of using prompt weighting (often used in
text-to-image generation [20]), giving more weights to the activity-
related parts of the prompt, which allows the motion synthesis
model to focus more on the activity.

Our motivation to use ChatGPT was to generate diverse textual
descriptions of activities and eliminate the manual effort needed
for prompt engineering. Yet, further study is needed to understand
how much the ChatGPT-generated text descriptions help compared
to manually generated prompts for generating diverse movements
within each activity category. Moreover, there exists multiple LLMs
other than Chat-GPT. We used ChatGPT in this study for its user-
friendly API encouraging practitioners to use the proposed system.
But, we plan to explore other state-of-the-art LLMs [6, 26] to un-
derstand their capability of generating realistic, yet variable, text
prompts related to activity keywords provided.

Finally, our studies were mainly conducted for locomotion ac-
tivities. Although detecting locomotion is important due to its
relevance to individuals’ health, daily activities also involve spo-
radic and complex motions, such as washing dishes, bed making,
etc [13, 15], and even rare activities, for example in wet labs [21].
Thus, it still leaves a question for ChatGPT and T2M-GPT for its
capability to generate reasonable virtual IMU data for such complex
or sporadic activities.
6 CONCLUSION
We have introduced a method that uses ChatGPT to generate virtual
textual descriptions, which are subsequently used to generate 3D
human motion sequence and later streams of virtual IMU data. We
have demonstrated the effectiveness of our approach to generate
virtual IMU data through HAR experiments on three benchmark
datasets: RealWorld, PAMAP2, and USC-HAD. Virtual IMU data
generated through our approach can be used for significantly im-
proving the recognition performance of HAR models, thereby not
requiring any additional manual effort.
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