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ABSTRACT
Previous work has demonstrated that virtual accelerometry data,
extracted from videos using cross-modality transfer approaches like
IMUTube, is beneficial for training complex and effective human
activity recognition (HAR) models. Systems like IMUTube were
originally designed to cover activities that are based on substantial
body (part) movements. Yet, life is complex, and a range of activities
of daily living is based on only rather subtle movements, which
bears the question to what extent systems like IMUTube are of
value also for fine-grained HAR? In this work we first introduce a
measure to quantitatively assess the subtlety of human movements
that are underlying activities of interest–the motion subtlety index
(MSI)–which captures local pixel movements and pose changes in
the vicinity of target virtual sensor locations, and correlate it to the
eventual activity recognition accuracy. We explore for which activ-
ities with underlying subtle movements a cross-modality transfer
approach works, and for which not. As such, the work presented
in this paper allows us to map out the landscape for IMUTube-like
system applications in practical scenarios.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computing methodologies→ Computer vision.

KEYWORDS
Human activity recognition; Virtual IMU Data; Eating
ACM Reference Format:
Zikang Leng, Yash Jain, Hyeokhyen Kwon, and Thomas Plöetz. 2023. On
the Utility of Virtual On-body Acceleration Data for Fine-grained Human
Activity Recognition. In Proceedings of the 2023 International Symposium on
Wearable Computers (ISWC ’23), October 08–12, 2023, Cancun, Quintana Roo,
Mexico. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3594738.
3611364

1 INTRODUCTION
The effectiveness of supervised learning methods for deriving hu-
man activity recognition (HAR) systems for wearables depends
heavily on the availability of curated, i.e., annotated datasets [6].
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One major issue with current machine learning solutions in the
field is the paucity of labeled datasets. Annotating sensor data in
HAR is expensive, often privacy invasive, and often prone to errors
or has other practical limitations [7, 12, 16].

Recently, systems like IMUTube [18] have been introduced to
tackle the paucity of labeled datasets in developing human activity
recognition systems by generating virtual inertial measurement
unit (IMU) data from videos, which were used to train the model.
With the previous success of systems like IMUTube for recognizing
human activities with underlying coarse motions, the next step
now is to explore to what extent such approaches generalize to
activities with more subtle body movements.

We define a novel metric–the Motion Subtlety Index (MSI)–that
measures the subtlety of motion of human activities performed in a
video sequence by using optical flow and pose estimation methods.
With this newmeasure, we are now in the position to systematically
assess methods like IMUTube with regards to their effectiveness
on fine-grained activities. We study its effectiveness for virtual
wrist sensors focusing on activities with more subtle motions than
the coarse motions studied previously, including washing hands,
playing instruments, or driving, which are essential activities when
it comes to assessing an individual’s quality of life [22].

Our experimental evaluation on a range of activities of daily
living shows that the MSI extracted from human activity videos
is highly correlated to the eventual recognition accuracy of HAR
systems that were derived using virtual IMU data extracted from
videos (Pearson 𝑟 = −0.85, 𝑝 ≤ 0.001). As such, the MSI is an
excellent proxy that can be used for the a-priori prediction of the
potential effectiveness of cross-modal transfer approaches, and we
can gain a deeper understanding on when cross-modality transfer
approaches like IMUTube are likely to succeed – and when they
are likely to fail. The contributions of this paper are two-fold:

(1) We propose a new metric, MSI, to show that the subtlety
of movements involved in activities is measurable through
videos.

(2) Through the newly introduced quantification of the subtlety
of human movements and its correlation to the eventual
effectiveness of HAR systems that were derived based on
virtual IMU data, we can draw conclusions about application
cases for systems like IMUTube.

2 BACKGROUND
Virtual IMU Data from Videos: IMUTube was recently intro-
duced for automatically converting large-scale video datasets into
virtual IMU data that can be used for training sensor-based HAR sys-
tems [18]. Given a video, the IMUTube system automatically selects
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relevant activity clips, where 3D motion information is estimated
that is converted to virtual IMU data for model training. IMUTube
was mainly designed, deployed, and validated for human activities
with underlying coarse motions, such as locomotion or gym exer-
cises [17, 19]. Using the virtual IMU data collected from large-scale
videos, previous studies were able to train a very complex deep
learning model with parameters three orders of magnitude larger
than state-of-the-art deep learningmodels [25]. Similar to IMUTube,
Rey et al. [27] used deep neural networks to estimate IMU data from
3d poses. Xia et al. [31] introduced a spring-joint model to improve
the quality of the virtual IMU data. Lastly, Santhalingam et al. [28]
generated virtual IMU data from existing American Sign Language
video datasets and applied it to sign language recognition.

Sensor-Based Recognition of Daily Activities: Recent work
proposedwearable-based human activity recognition for fine-grained
daily activities to capture contexts for how users are situated [20,
22, 23]. For example, some work has focused on designing eating
detection systems using wearables, as daily eating behaviors were
found to be strongly associated with risks in physical and mental
health [2–4, 14, 24, 29, 30]. Many daily activities, including eating,
involve very subtle motions. While previous methods for recogniz-
ing daily activities were shown to be effective, they are still limited
by the amount of lab data available for training. This work proposes
a method for predicting the effectiveness of IMUTube, focusing on
daily activities involving subtle movements, for understanding the
complexity of small data problems.

3 QUANTIFYING MOTION SUBTLETY
For a systematic exploration regarding which practical scenarios
can be covered bymethods like IMUTube, i.e., to assess when virtual
IMU data are of practical value for deriving HAR systems, we intro-
duce an approach for predicting the utility of IMUTube for specific
activities that are based on–possibly subtle–body (part) motions.
We define subtle motions as those movements that involve one or
two body parts moving in a very limited range of distances, which
we quantify with our proposed metric. The range of hand and arm
movements in hand washing or eating activities, for example, is
much smaller than those involved in sports or gym exercises. For
the quantification of the subtlety of movements, we introduce the
Motion Subtlety Index (MSI).

Motion Subtlety in Videos: Figure 1 illustrates how the MSI is
calculated for an exemplary video segment that captures a sequence
of a writing activity, for example, with the wrist as the target loca-
tion for the virtual IMU sensor. For each frame in a video segment
with 𝑇 frames, we first compute the optical flow [32] and estimate
2D poses [9]. The estimated optical flow at each pixel and time
is normalized according to frame size to take account for differ-
ent resolution of videos available, (𝑢𝑡

𝑖
, 𝑣𝑡
𝑖
) → (𝑢𝑡

𝑖
/𝐻, 𝑣𝑡

𝑖
/𝑊 ), where

(𝑢𝑡
𝑖
, 𝑣𝑡
𝑖
) are vertical and horizontal optical flow at pixel 𝑖 and time 𝑡

and (𝐻,𝑊 ) are height and width of frame size of the video. Next, at
each frame, we calculate the average magnitude of the normalized
optical flow at the local patch, 𝐾 × 𝐾 , in the neighborhood of the
wrist keypoint location, which is automatically detected by our 2D
pose estimation procedure [10]. To take account of the varying res-
olution of video frames, the patch size is 2% of the larger dimension
of the frame, 𝐾 = 0.02 ×𝑚𝑎𝑥 (𝐻,𝑊 ), to include only the pixels in

Local patch

Motion Subtlety Index

Optical flow estimation + 2D pose detection

Average of normalized optical flow @ local wrist area

time
Raw RGB frames

Figure 1: Overview of how Motion Subtlety Index (MSI) is
calculated from video frames. For a given video segment, we
perform optical flow estimation and 2d pose detection on the
video. The estimated optical flow around the sensor location,
wrist, is then averaged and normalized for each frame. The
exponential of negative standard deviation of the previous
computed value for all frames is the MSI of the video. Video
shown is taken from Kinetics-400 [13]

the vicinity of wrist keypoints. The MSI is calculated as follows:

𝑀𝑆𝐼𝑡 =
1
𝑁

∑︁
− 𝐾2 ≥𝑖, 𝑗≥ 𝐾2

√︃
(𝑢𝑡

𝑛+𝑖 )2 + (𝑣𝑡
𝑛+𝑗 )2, (1)

where 𝑢𝑡𝑛 and 𝑣𝑡𝑛 are vertical and horizontal components of the
normalized optical flow measurements from the keypoint location
at time 𝑡 , and 𝑁 = 𝐾 × 𝐾 . The MSI for the analysis window is
then computed as the exponential of negative standard deviation
of𝑀𝑆𝐼1· · ·𝑇 = [𝑀𝑆𝐼1, 𝑀𝑆𝐼2, · · · , 𝑀𝑆𝐼𝑇 ] :

𝑀𝑆𝐼 = 𝑒−𝑤×𝑠𝑡𝑑 (𝑀𝑆𝐼1· · ·𝑇 ) (2)

where𝑤 = 100 to consider the minimal difference in MSI near zero.
Overall, MSI captures the motion information recorded around

the on-body sensor location in the given video sequence. A smaller
MSI means more significant motions are involved with ongoing
activities, whereas a larger MSI indicates more subtle movements.
MSI value calculation takes far less time and resources than virtual
IMU data generation. Using an NVIDIA Titan Xp GPU, calculating
the MSI value for a one-minute-long video takes approximately
two minutes, while generating the virtual IMU data for the same
video takes approximately twenty minutes. Therefore, MSI values
are a quick way to determine if virtual IMU data is helpful, which
saves the time and resources spent on generating virtual IMU data.

Motion Subtlety in Real IMU Data: We now also introduce
the real Motion Subtlety Index (rMSI) to quantify the subtlety of
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Table 1: Dataset Statistics for eating and daily activity classi-
fication experiments.

Task Dataset Duration

Daily Activity
Real IMU (HAD-AW) 454 min
Virtual IMU (Curated) 201 min

Virtual IMU (In-the-wild) 71 min

Eating

Real IMU (Lab-20) 284 min
Real IMU (Wild-7) 128 min

Virtual IMU (Curated) 17 min
Virtual IMU (In-the-wild) 31 min

motions using real IMU data, which will be compared to MSI calcu-
lated from videos. Given a sequence of accelerometry signal in the
analysis frame, 𝑋𝑇×3, where 𝑇 is the duration of real IMU data, we
first remove the approximated gravity component, 𝑋𝑡 = 𝑋𝑡 − 𝑋𝑔 ,
which is the average of accelerometry signal, 𝑋𝑔 = 1

𝑇

∑
0≤𝑡≤𝑇 𝑋𝑡 ,

following Mizell [21]. Then, the magnitude of acceleration is com-

puted, 𝑋𝑡 =

√︃
𝑥2
𝑡 + 𝑦2

𝑡 + 𝑧2
𝑡 , where 𝑋𝑡 = [𝑥,𝑦, 𝑧]. Lastly, rMSI is

defined as the standard deviation of the magnitude of accelerom-
etry signal without gravity, 𝑟𝑀𝑆𝐼 = 𝑒−𝑠𝑡𝑑 ( [𝑋1,𝑋2,· · · ,𝑋𝑇 ] ) . Overall,
higher rMSI value indicates more subtle movements are involved
for performing the on-going activity.

4 EXPERIMENTS
4.1 Dataset
For studying subtle motions in daily activities, we use two bench-
mark datasets for wrist sensors: daily activity classification [22]
and eating activity classification [29]. We generated virtual IMU
data from two video datasets. One is a well-curated video dataset,
Kinetics-400 [13], containing videos from specific activity classes
trimmed down to clips of 10 seconds. We also collected an in-the-
wild dataset containing videos downloaded from YouTube without
trimming. Table 1 gives an overview of the dataset used in our
experiments.

For daily activities, we used the HAD-AW dataset [22] as our
benchmark, which consists of 31 daily activities collected using an
AppleWatch. We chose 17 activity classes that were available in our
curated video dataset, Kinetics-400 [13], including playing violin,
playing piano, playing guitar, driving automatic, driving manual,
reading, writing, eating a sandwich, cutting components, washing
dishes, washing hands, showering, sweeping, wiping, drawing, flip-
ping, bed-making.

For eating, we used the dataset available from Thomaz et al. [29]
that contains wrist sensor data from both in-lab and in-the-wild
settings while eating. The Lab-20 dataset was collected from 21
participants in the lab for both eating and non-eating activities.
The eating moments involve, eating with fork and knife, hand, and
spoon. For the in-the-wild scenario, we used theWild-7 dataset [29],
which was collected from seven participants. From the Kinetics-400
dataset, we collected 417 video clips for the eating class, which were
labeled as one of 10 eating-related classes (eating: burger, cake,
carrots, chips, doughnuts, hotdog, ice cream, nachos, spaghetti,
watermelon) and used for generating the curated virtual IMU data.
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Figure 2: rMSI values plotted against MSI values for 17 daily
activities and eating (Black) with 13 gym activities (Col-
ored). Majority of gym exercises, where IMUTubewas demon-
strated to be very effective previously, show significantly
smaller MSI and rMSI compared to those of dailty activities.
Pearson Correlation analysis shows strong positive correla-
tion between rMSI and MSI values (𝑟 = 0.83, 𝑝 ≤ 0.001)

4.2 HAR with Wrist Sensors
We followed the approach used in the original IMUTube experi-
ments [18]. Virtual IMU data was extracted for wrist sensors from
videos, which are calibrated with (a small amount of) real IMU data
used for training. Real IMU data is subsampled to 25 Hz to match
the frame rate of videos. As a baseline, we use the model that was
trained only using real IMU data.

For daily activities, evaluation is done using a Random Forest
classifier and DeepConvLSTM [? ]. All real and virtual IMU data
were segmented with a window length of 3 seconds and step size
of 1.5 seconds (identical to previous work [22]). For the random
forest classifier, ECDF features [11] were extracted from each win-
dow for training a Random Forest classifier. We applied 5-fold
stratified cross-validation. We could not test leave-one-user-out
cross-validation, as only a few users performed an entire set of
activities in the official dataset. We report the average macro F1
score and its standard deviation from all folds for three runs.

For eating, we used the Lab-20 dataset as training set and Wild-7
as testing set following [29]. Accordingly, virtual IMU data was
calibrated with the Lab-20 dataset. We segmented the data with
a window size of 6 seconds and 50% overlap. From each window,
extracted mean, variance, skewness, kurtosis and root mean square
features for training a Random Forest classifier. DeepConvLSTM
was trained with raw analysis frames. Classfier predictions were
fed into a DBSCAN clustering to aggregate eating moments. We
report the average binary F1 scores and its normal approximation
interval from the three runs on Wild-7 dataset.

5 RESULTS
We first demonstrate the validity of MSI compared with rMSI, the
motion subtlety that is actually quantified from the real IMU dataset.
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Table 2: Classification results (mean and binary F1 scores)
using a Random Forest classifier and DeepConvLSTM.

Task Virtual RF ConvLSTM

Daily Activity
Real-Only 0.477 ± 0.001 0.552 ± 0.004
Curated 0.462 ± 0.001 0.515 ± 0.005

In-the-wild 0.472 ± 0.001 0.540 ± 0.002

Eating
Real-Only 0.715 ± 0.062 0.763 ± 0.043
Curated 0.800 ± 0.027 0.821 ± 0.019

In-the-wild 0.775 ± 0.035 0.794 ± 0.023

Then, we show the overall classification performance for classifying
activities with subtle motions.

Figure 2 shows a strong positive correlation between rMSI and
MSI values for the activities (Pearson 𝑟 = 0.60, 𝑝 = 0.01), indicating
that MSI effectively quantifies the subtlety of movements in videos.
We calculated the rMSI and MSI for 17 daily activities, where the
real IMU data came from HAD-AW [22], and the videos came from
Kinetics-400 [13]. We additionally analyzed rMSI and MSI for 13
gym exercises from MyoGym [15], in which IMUTube very effec-
tively improved classification performances in previous work [19].
The majority of gym exercises involving large movements showed
significantly smaller both MSI and rMSI compared to daily activ-
ities, demonstrating that approximately 𝑀𝑆𝐼 = 0.9 is a potential
indicator for considering the target activities involving subtle move-
ments. In the following sections, we further study the relationship
between MSI and classification performance for 17 daily activities
with subtle motions (𝑀𝑆𝐼 ≥ 0.9). In this analysis, the mode of MSI
and rMSI from all frames in each activity class is used to represent
the overall subtlety of movements for each activity.

5.1 Classification Analysis
Shown in Table 2, we observed mixed results between daily activity
classification and eating detection. For daily activity classification,
using additional virtual IMU data resulted in worse classification
performance when compared to the baseline where only real IMU
data was used. We consider that the model relied heavily on real
IMU data to capture very detailedmovement patterns for the classifi-
cation tasks as virtual IMU data could not capture the characteristics
of those subtle motions from the video data and acted as noise.

For eating detection, much to our surprise, the addition of vir-
tual IMU data was very effective. Compared to the baseline, using
curated and in-the-wild video datasets improved the model perfor-
mance significantly. We consider that improvements came from
the virtual IMU data containing a wide range of fine-grained eat-
ing motions from videos using varying utensils or food types that
involve large arm motions (MSI = 0.86). This contrasts with eating
activity in the HAD-AW dataset used for daily activity classifica-
tion, which only included "eating a sandwich". Upon examining
videos of people eating a sandwich, we found that most of the body
movements involve the head. The wrist and arm movements are
limited compared to, e.g., eating with a fork and knife.

6 DISCUSSION
We now analyze when, i.e., for which activities IMUTube is bene-
ficial, and when not. Having a cut-off threshold MSI value would
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Figure 3: For all data points, we use all 17 activities and com-
pare the difference in F1 score between the model (Random
Forest) that is trained only with real IMU data to the one that
is based on both real and virtual IMU data. As the MSI thresh-
old (x-axis) increases, we added virtual IMU data only for
activity classes that have MSI values lower than that thresh-
old. Pearson Correlation analysis shows strong negative cor-
relation between MSI and changes in F1 score (𝑟 = −0.85,
𝑝 ≤ 0.001).

practically help practitioners to decide whether or not to put re-
sources and time into generating virtual IMU data. Thus, we con-
ducted an experiment, using virtual IMU data only for those classes
for which the MSI value was determined to be below a certain cut-
off value. Recall that the MSI values are calculated on the videos
prior to generating virtual IMU data using IMUTube.

Figure 3 shows a strong negative correlation (Pearson, 𝑟 = −0.85,
𝑝 ≤ 0.001) between the MSI cut-off values and changes in F1 score
introduced by using virtual IMU data for the activity classes having
MSI below the MSI cut-off value. The zero-crossing of the linear line
fit for all data points was𝑀𝑆𝐼 = 0.89, which marks an approximate
decision boundary between activities that benefit from additional
virtual IMU data or not. Since eating had a MSI of 0.86, less than
the zero-crossing value, the addition of the virtual IMU data greatly
benefited eating detection. This supports that MSI can provide a
reference to gauge the benefit of using virtual IMU data when
classifying activities with subtle motions.

Although MSI was demonstrated to be useful for the 17 daliy
activities in this study, those are far short of covering the diverse
activities in our daily living. Thus, in our future work, we will
include more fine-grained activities [20] to futher evaluate the
utility of MSI and IMUTube-like systems. On average, we used
13 minutes of videos per activity to calculate MSI. In the future,
we will conduct experiments to determine the minimum video
footage required for performing the MSI analysis. Additionally,
we will study if our finding holds when applied to virtual IMU
data generated with other cross-modality transfer systems based
on videos [27, 28, 31]. Also, the proposed MSI, although useful
and intuitive, is based on heuristic approach and applies the same
hyperparameters across all videos not considering class-specific
differences in motion subtlety. To further take into account for
variabilities of videos (such as occlusions and camera viewpoints)
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and activity classes, we will study detecting motion subtleties using
data-driven approaches in our future work, such as explainable
deep models for videos [1, 5].

7 SUMMARY AND CONCLUSION
In this paper, we showed that the subtlety of motions in activities is
quantifiable in video data – through our newly introduced Motion
Subtlety Index (MSI), which correlates with the eventual down-
stream activity recognition accuracy on IMU data. We were able to
systematically assess how the addition of virtual IMU data benefits
general HAR systems and showed how the a-priori calculation of
MSI values on videos can be used to effectively guide the application
of systems like IMUTube, as calculating MSI is 10× faster than run-
ning IMUTube. Overall, this study demonstrates that the proposed
MSI provides quantifiable approach to pinpoint when IMUTube
will fail when it comes to subtle activities. Activity classes beyond
0.9 ≤ 𝑀𝑆𝐼 seems to have very subtle and complex motions in hand
and wrist movements that are very difficult for IMUTube to capture
due to the current limitations of state-of-the-art human motion
tracking techniques [8].
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