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ABSTRACT
Energy efficiency and low latency are crucial requirements for
designing wearable AI-empowered human activity recognition sys-
tems, due to the hard constraints of battery operations and closed-
loop feedback. While neural network models have been extensively
compressed to match the stringent edge requirements, spiking neu-
ral networks and event-based sensing are recently emerging as
promising solutions to further improve performance due to their
inherent energy efficiency and capacity to process spatiotemporal
data in very low latency. This work aims to evaluate the effective-
ness of spiking neural networks on neuromorphic processors in
human activity recognition for wearable applications. The case of
workout recognition with wrist-worn wearable motion sensors is
used as a study. A multi-threshold delta modulation approach is
utilized for encoding the input sensor data into spike trains to move
the pipeline into the event-based approach. The spikes trains are
then fed to a spiking neural network with direct-event training,
and the trained model is deployed on the research neuromorphic
platform from Intel, Loihi, to evaluate energy and latency efficiency.
Test results show that the spike-based workouts recognition sys-
tem can achieve a comparable accuracy (87.5%) comparable to the
popular milliwatt RISC-V bases multi-core processor GAP8 with
a traditional neural network ( 88.1%) while achieving two times
better energy-delay product (0.66 µJ s vs. 1.32 µJ s).
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1 INTRODUCTION
Human activity recognition(HAR) is an active research topic in
ubiquitous computing and human-computer interaction that aims
to digitalize human behaviors and provide feedback for a better un-
derstanding and assistance, especially in healthcare [4, 38], sports
science [7, 25, 39], and rehabilitation [23, 29]. With the increasing
popularity of wearable devices, more complex HAR tasks have been
moved from the laboratory to real-life scenarios powered by lo-
cal AI solutions [3, 5, 36]. However, processing data with machine
learning and neural network models on wearables still presents
many research challenges due to limited computational resources
and power constraints. This has led to exploring various neural net-
works compressions strategies, such as pruning and quantization,
to have tiny machine learning models that work with a kilobyte of
memory and Giga operations per second in the best case [18, 24].

While exploring the energy and latency performance of the edge
tiny neural networks, the spiking neural network (SNN), a network
that mimics the biological neurons in the brain, is also emerging as
a promising technology for energy-efficient edge computing. The
increase in interest is due to the event-driven nature and its ability
to process spatio-temporal data in real-time with low latency and
energy efficiency. In traditional neural networks, the activation
function is typically differentiable, allowing the backpropagation
to train a network. However, in SNNs, the firing of a neuron is
a discrete event rather than a differentiable continuous function;
thus, traditional backpropagation cannot be used to train SNNs. Two
approaches have been explored in the past years to overcome this
challenge, direct SNN training with surrogate gradient [26, 30] and
ANN-to-SNN by first accumulating the events [20, 21, 28, 37]. While
falling behind in reaching state-of-the-art accuracy, direct training
is more biologically similar and preserves the temporal resolution
of the spikes. To fully make use of the biological plausibility and
validate the envelope of energy and latency efficiency of SNN in
HAR, this work will use the surrogate gradient approach for direct
event training of a workout recognition dataset, as a case study of
neuromorphic solution for HAR. The neuromorphic chip Loihi will
be used to profile the SNN performance taking the state-of-the-art
performance from the general ANN on advanced edge processors
with dedicated hardware accelerators as the baseline.

2 RELATEDWORK AND CONTRIBUTION
The previous application works with SNN are mostly focused on
vision tasks with dynamic vision sensors (DVS) [1, 27], where the in-
put data is a sequence of visual events. A few edge explorations with
DVS were also presented to validate the performance of end-to-end
neuromorphic platforms from sensing to computing [31]. Com-
pared with vision applications, exploring SNN on low-dimensional
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Table 1: SNN explorations in ubiquitous computing

Authors/
Year

Application Sensor/
Dataset

Neuromor-
phic
platform

Encoding Training Accuracy
(vs
ANN)

Inference
Latency a

(ms)

Inference En-
ergy
(mJ)

Energy-Delay
Product
(µJ s)

[15]-
2019

Heartbeat
Classification

ECG
MIT-BIH

DYNAP Delta Modu-
lation

SVM+
rSNN

95.6%
(94.2% )

NAc NA NA

[32]-
2021

Oscillation
Detection

EEG
iEEG-
HFO

DYNAP-
SE

Delta Modu-
lation

Direct
SNN

78.0%
(67.0%)d

NA NA NA

[14]-
2020

Hand Gesture
Recognition

EMG
Customized

Loihi Delta Modu-
lation

Direct
SNN

55.7%
(68.1%)

5.9 (3.8 on
GPU)

0.173 (25.5 on
GPU)

1.0 (97.3 on
GPU)

[11]-
2019

Key Word
Spotting

Audio
Customized

Loihi Rate Encod-
ing

ANN-to-
SNN

97.9%
(97.9%) e

3.38 (1.30
on GPU, 2.4
on Jetson)

0.27 (29.8 on
GPU, 5.6 on
Jetson)

0.91 (38.7 on
GPU, 13.44 on
Jetson)

[12]-
2023

Ambient Au-
dio Classifica-
tion

Audio
QUT-
NOISE

Xylo Power band
bin to spike

Direct
SNN

98.0%
(97.9%)

100f 0.0093 g(0.25:
MAX78000,
11.2: Cortex)

0.93

Ours Human Ac-
tivity Recog-
nition

IMU, Ca-
pacitive
RecGym

Loihi MT Delta
Modulation

Direct
SNN

87.5%
(88.1%)

4.4 (3.2 on
GAP8)

0.15 (0.41 on
GAP8)

0.66 (1.31 on
GAP8)

a Time elapsed between the end of the input and the classification.
b Only dynamic energy is considered in Loihi.
c Not Available.
d HFO was detected with morphology detector [19].

e True Positive.
f Median classification latency (from the onset of an audio sample
until the first spike from the correct class output neuron).
g Dynamic energy consumption.

data like audio and sensor signals is relatively new and much less
explored [17]. However, recent studies have shown promising re-
sults in using SNNs for ubiquitous computing with low-dimensional
signal sensors, which can provide essential insights into related
topics like HAR. Table 1 lists several recent studies that explore
SNNs for ubiquitous computing with low dimensional signals and
their resulting performance in different applications. Kyle et al.
[13] and Federico et al. [15] explored the heartbeat classification
with SNN with different training strategies and validated it on two
neuromorphic processors with competitive accuracy. The energy-
delay product (EDP) on Loihi shows over twenty-eight times more
efficiency than the inference on a CPU. Enea et al. [14] run a direct-
trained SNN on Loihi with customized EMG and DVS data set for
hand gesture recognition. Similar to [13], the EMG results on Loihi
outperform in EDP compared with the results on GPU by ninety-
seven times more efficiently. Besides the biological signals, audio
signals were also explored with SNN [11]. In [12], a fresh edge
neuromorphic processor, Xylo, was used to classify ambient audios.
An impressive inference energy was reported on Xylo with only
9.3µJ, over twenty-six times less energy than the edge IoT proces-
sor MAX78000 owning a convolutional hardware accelerator. One
common result of those SNNs on low-dimensional signals is that
SNN supplies state-of-the-art inference energy and impressive EDP
compared with ANN on CPU and GPU. Besides this, the ANN-to-
SNN training approach often results in competitive accuracy while
the direct trained SNN shows incompetence in accuracy compared
with the ANN result[14]. The reason is that while encoding the
signal to spikes, for example, the delta modulation, information
loss is happening, especially for fast and huge signal variations
[2, 14, 35].

In this work, we bring the following contributions:
(1) We demonstrated the feasibility of using SNN for sensor-

based HAR tasks pursuing latency and energy efficiency
with a direct-trained SNN on the neuromorphic platform
Loihi. The first Spiking-IMU dataset and the corresponding
direct-trained SNN are released for benchmarking of HAR
with the neuromorphic solution 1.

(2) With spike trains generated by a multi-threshold delta mod-
ulation approach, a comparable accuracy (87.5%) is achieved
compared with the ANN approach on the novel IoT proces-
sor GAP8 (88.1%), which has a dedicated RISC-V cluster for
hardware acceleration and presented the state of the art edge
AI performance in a rich of applications.

(3) The latency and energy efficiency of the neuromorphic ap-
proach HAR and the mainstream approach HAR were com-
pared in this case study, and it showed that the neuromorphic
approach of HAR using SNNs on Loihi outperforms the ANN
method in terms of inference energy on GAP8 while falling
behind lightly in latency. However, the neuromorphic ap-
proach shows nearly two times the energy-delay product
(0.66 µJ s vs. 1.31 µJ s).

3 SYSTEM ARCHITECTURE
Figure 1 depicts the pipeline of the proposed SNN for HAR applica-
tions, including three key steps: spike encoding from sensor data,
off-line SNN training, and on line SNN inference on neuromorphic
processor. To have a fair comparison with neural networks and
low power digital processors, in this work we use a public data
1https://github.com/zhaxidele/HAR-with-SNN
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Figure 1: Human activity recognition using the spiking neural network where the network is processed on neuromorphic
platforms pursuing energy and latency efficiency

Figure 2: Encoded spike trains of signal Acc_x
from the workout of BenchPress with thresh-
olds of [0.00005, 0.0001, 0.0002, 0.0004, 0.0008]

set, RecGym [8], as a case study. However, it is important to notice
that the proposed approach can be used with other HAR-related
data sets from various sensing modalities. The data set records ten
volunteers’ gym sessions with a sensing unit composed of an IMU
sensor and a Body Capacitance sensor[6, 10]. The sensing units
were worn at three positions: on the wrist, pocket, and calf. Twelve
gym activities are recorded, including eleven workouts like Arm-
Curl, LegPress, and StairsClimber, and a "Null" activity when the
volunteer hangs around between different workout sessions. Each
participant performed the selected workouts for five sessions in five
days. Altogether, fifty sessions of gym workout data are presented
in this data set. In this study, we only focus on the motion signals
with the sensing unit worn on the wrist.

3.1 Spike encoding
To directly train an SNN, traditional numerical sequential value
needs to be transformed into spike streams that carry both temporal
and spatial knowledge of the original signals. Different encoding ap-
proaches have been explored mostly for vision data transformation
[22], like latency encoding, rate encoding, delta modulation, etc.
Each has advantages and limitations and has been adopted in dif-
ferent works [2]. For example, latency encoding normally achieves
the best processing latency and energy consumption with fewer
synaptic operations while being more susceptible to noise. Rate
coding is demonstrated to exist in sensory systems like the visual
cortex and motor cortex [34], showing the best resilience to input
noise while limited by a lengthy processing period. In this work,
we used the delta modulation approach due to the optimal trade

of complexity and latency from both the firmware and hardware
implementation. Moreover, the analog sensory information can
be directly encoded to the spike train at the front end. To address
the accuracy degradation caused by information loss during the
encoding, we gave multiple thresholds for spike train generation.
The relationship between the continuous signal 𝑠 (𝑡) and its spiking
counterpart 𝑠 (𝑡) is given by Equation 1.

𝑠𝑖 (𝑡) =
{
1, if 𝑠 (𝑡) − 𝑠 (𝑡 − 1) > 𝜖𝑖
−1, if 𝑠 (𝑡) − 𝑠 (𝑡 − 1) < −𝜖𝑖

(1)

where 𝜖𝑖 is the threshold empirically chosen for spike encoding,
and 𝑖 (0 ∼ 4)represents the index of applied thresholds list. Figure 2
depicts the five spike train channels encoded from the X-axis of the
accelerometer, where the fast and large signal trend gives spikes
in more spike train channels. For the inertial data, the thresholds
were empirically set to 0.00005 x (𝑖 + 1), while 0.0000125 x (𝑖 + 1)
for the capacitance data, and the threshold element number was
empirically set to five. In future work, a systematical exploration
of choosing the best threshold value and element number will be
explored. As seven continuous signals were collected in the data set,
we got thirty-five (7x5) spike trains for SNN training and inferring.
With two seconds time window as a classification instance, we got
81291 spiking samples for building the SNN model.

3.2 Spiking neural network and Loihi
One of main contribution of this paper is the design of a SNN
model and its evaluation on the Intel Loihi research platform. Loihi
[16] is an asynchronous neuromorphic digital processor mainly
for research. The processor consists of a many-core mesh of 128
neuromorphic cores for spike processing and three synchronous
Lakemont x86 cores to monitor and configure the network and
assist with the injection and recording of input/output spikes. Each
neuro core in Loihi can access its local memories independently
without needing to share a global memory bus and can implement
up to 1024 current-based leaky integrate and fire neurons. Among
other research platforms, Loihi has been selected because it includes
a software SDK to design and profile proposed SNN.

Our proposed SNN is composed of two convolutional and two
dense layers (32C64C128D12D) with a kernel size of three, as Table
2 lists. The threshold for neuron spiking was empirically selected.
The current and voltage decay constants for the leaky integrate and
fire neurons were set to 1024 (32 ms) and 128 (4 ms), respectively.
Before spike encoding, the data set was interpolated to 1 kHz using
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the univariate spline method, aiming to maximally approach the
biological behaviors of the brain regarding information feeding.
Each sample contains two seconds length of spike trains. The model
was trained offline on GPU with weighted classes and leave-one-
user-out cross-validation, and the trained weights and delays were
then used to configure the network on Loihi hardware for inference
purposes.

To fully make use of the biological plausibility of SNN, we used
the framework SLAYER [33] for direct training, aiming to pursue
the envelope of energy and latency efficiency of SNN. SLAYER
evaluates the gradient of the convolutional and linear layers in an
SNN by a temporal credit assignment policy, which distributes the
error credit of an error back both through layers and in time, as a
spiking neuron’s current state depends on its previous states. Then
a probability density function is used to estimate the change in
the neuron state, thus approximating the derivative of the spike
function. With SLAYER, the synaptic weights and axonal delays
can be trained, and some state-of-the-art performances have been
achieved on neuromorphic datasets like the NMNIST and ibmDVS-
Gesture [33]. SLAYER supports Loihi-specific implementation for
neuron model and weight quantization.

Table 2: SNN model for the spiking RecGym dataset

Type Size Feature Size Features Stride
0 Input 7x5x2 - - -
1 Conv 7x5x32 3x3 32 1
2 Conv 7x5x64 3x3 64 1
3 Dense 2240 - 128 -
4 Dense 128 - 12 -

4 EXPERIMENTAL EVALUATION
Table 3 lists the workouts classification performance with the
trained SNN on Loihi. In comparison, we selected an ANN model
using the same data set and being deployed on two different IoT
processors, presented in [9]. Such a comparison has seldom been
made, as previous SNN evaluations mostly used ANN deployed
on GPU/CPU as the baselines. The result will be meaningful for
developing ubiquitous neuromorphic edge computing by supplying
a straightforward comparison with the state-of-the-art using main-
stream solutions. The multi-threshold spike encoding approach
results in an accuracy of 87.5% with the directly trained SNN, which
is much better than the single-threshold encoding result (below
60%) and acceptable compared with the accuracy from the ANN
approach considering that the accuracy of direct-trained SNN on
spike streams degrades in most cases. The inference latency of SNN
on Loihi implies the time elapsed between the end of the input and
the classification output and is reported as 4.4 ms, which is also
much better than the latency on general IoT processors like STM32
with Cortex-M7 core but falls behind slightly to the GAP8, which
features 8 RISC-V cores for dedicated hardware acceleration. How-
ever, the neuromorphic pipeline outperforms in dynamic energy
consumption (0.15 mJ), benefitting from the sparsity of the spike
trains and the in-memory computing of Loihi, which results in an
EDP of 0.66 µJ s, while the EDP on GAP8 and STM32 are almost two

Table 3: Classification profiling vs. general edge solutions

Hardware Model Accuracy Latency
(ms)

Energy
(mJ)

Energy-Delay
Product (µJ s)

Loihi (Neu-
romorphic)

SNN 87.5% 4.4 0.15 0.66

GAP8
(RISC-V)

ANN 88.1% 3.2 0.41 1.31

STM32
(Cortex-M7)

ANN 89.3% 20.88 8.07 168.5

times and over two hundred times higher, respectively. The energy
reported here is the dynamic energy on Loihi, which is measured
by enabling the energy probe during inference as the difference
between the total energy consumed by the network and the static
energy when the chip is idle. We have to acknowledge that Loihi is
not for edge computing specifically. Instead, it is designed more for
general-purpose neuromorphic research. Thus there is still space
for raising the neuromorphic performance, for example, the spike
injection speed (the primary x86 core always waits 1ms before
allowing the system to continue to the next timestep). To have a
more fair comparison, end-to-end solutions of neuromorphic and
traditional approaches should be developed, adopting the newly
released edge neuromorphic processors [12, 31].

5 CONCLUSION
This work explored the neuromorphic solution of human activity
recognition with a typical case study of workout recognition. Neu-
romorphic solutions, mainly inferring the SNN associated with the
neuromorphic processor, have been emerging benefiting from its
latency and energy efficiency. We started with a multi-threshold
delta modulation to encode the raw motion sensor signal into mul-
tiple spike trains, aiming to reduce the information loss during
spike generation. A shallow SNN model was then used to train
the spike-form workouts signal with the SLAYER framework. The
model runs on Loihi showed a comparable accuracy of 87.5% and
an impressive energy-delay-product of 0.66 µJ s, compared with the
state-of-the-art ANN solution on GAP8. This work demonstrates
the efficiency of neuromorphic solutions in ubiquitous computing
that pursues latency and energy efficiency. For future work, we will
focus on new features in neuromorphic solutions that exceed the
traditional edge solutions, for example, learn on the fly that can
adapt the SNNmodels for specific subjects and environments, boost-
ing the inference accuracy. We will also explore the newly released
edge neuromorphic platforms and Loihi2, which has redesigned
asynchronous circuits supplying faster speed and enhanced learn-
ing capabilities, featuring multiple times performance boosting
compared with its predecessor.
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