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Figure 1: Differentially Private, Fair and Secure Collaborative Framework for Human Activity Recognition

ABSTRACT
Federated learning (FL), a decentralizedmachine learning technique,
enhances privacy by enabling multiple devices to collaboratively
train a model without transferring data to a central server. FL is
used in Human Activity Recognition (HAR) problems, where mul-
tiple users generating private wearable data share models with a
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server to learn a useful global model. However, FL may compromise
data privacy through model information sharing during training.
Moreover, it adheres to a one-size-fits-all approach toward data pri-
vacy, potentially neglecting varied user preferences in collaborative
scenarios such as HAR. In response to these challenges, this paper
presents a collaborative learning framework integrating differential
privacy (DP) and FL, thus providing a tailored approach to privacy
protection. While some existing works integrate DP and FL, they
do not allow clients to have different privacy preferences. In this
work, we introduce a framework that allows different clients to
have different privacy preferences and hence more flexibility in
terms of privacy. In our framework, DP adds individualized noise
to individual clients’ gradient updates for privacy. However, such
noised updates can also be interpreted as an attack on the FL system.
Defending against these attacks might result in excluding honest
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private clients altogether from training, posing a fairness concern.
On the other hand, not having any defensive measures might al-
low malicious users to attack the system, posing a security issue.
Thus, to address security and fairness, our framework incorporates
a client selection strategy that protects the global model from mali-
cious clients and provides fair model access to honest private clients.
We have demonstrated the effectiveness of our system on a HAR
dataset and provided insights into our framework’s privacy, utility,
and fairness.

CCS CONCEPTS
• Human-centered computing → Ubiquitous computing; •
Computing methodologies → Supervised learning by classi-
fication; • Security and privacy→ Privacy protections.
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1 INTRODUCTION
Federated learning (FL), a decentralized machine learning method,
allows numerous devices to collaboratively train a model without
transferring data to a central server, thus promoting privacy [10].
FL has been successfully applied in the ubiquitous Human Activity
Recognition (HAR) scenario, where different users generate data
from their wearable sensors [4, 8, 14]. By using FL in a wearable
HAR use case, a certain degree of privacy can be offered to the users.
However, FL still requires sharing information (through models)
among devices during training, potentially compromising sensitive
data privacy. Besides the potential privacy risks inherent in sharing
model information, another limitation of FL is its one-size-fits-all
approach to data privacy. Specifically, it only offers all users the
same type of privacy by withholding data within the user’s in-
frastructure. However, when multiple users train collaboratively,
different users may have varying privacy preferences. E.g., some
users’ wearable device data may be highly sensitive due to medical
conditions, while others might be less so. Therefore, it is crucial to
accommodate these varied privacy needs, which native FL cannot
do. Incorporating differential privacy (DP) in FL can address this is-
sue by allowing individuals to dictate their data’s privacy protection
level. While there have been some efforts to incorporate differential
privacy (DP) into FL through local differential privacy (LDP) in [17],
the work did not consider different privacy preferences per user. In
this work, we propose a framework that allows individual clients
to have different privacy preferences through LDP and train them
using FL to learn a global HAR model. Thus, users with highly sen-
sitive data can assign privacy preferences, while users with lesser

sensitive data might opt for lower or no privacy at all. The individ-
ual clients use LDP to perturb the model weights and sent them
to the federated server for aggregation. In this setup, since clients
add noise to model updates to achieve privacy, sometimes they can
be interpreted as malicious, attacking the federated system. This is
particularly true for clients with strict privacy requirements who
add heavy noise for higher LDP. Implementing defense in FL might
result in the exclusion of such honest but private clients from the
training and pose a fairness concern. On the other hand, not im-
plementing defense would allow malicious clients to attack the FL
system, raising a security concern. Hence, our novel collaborative
framework uses a client update selection approach to manage the
participation of all clients in federated training and provide fair and
secure access to the global model. In particular, the strategy client
update selection uses cosine similarity to compare the incoming
client weights to the global model weight. If it is below a prede-
fined threshold, that client is declined participation in the federated
averaging only for that round. The assumption behind this idea is
that malicious clients will diverge away from honest clients in the
weight space. Hence, imposing the above approach does not allow
malicious clients to participate in the aggregation and hamper the
FL. Although honest private clients can be declined participation in
a round based on the above method, they receive the global model
and a fair chance to participate across all rounds.

Our proposed framework is shown in Figure 1, where multiple
users with different or no privacy preferences train together col-
laboratively. For achieving LDP, we have used differentially private
stochastic gradient descent (DPSGD) [1], where we add noise to the
gradient updates. In a DP setup, the privacy requirement is quanti-
fied through the privacy budget (Y), where high privacy indicates a
low privacy budget and vice-versa. In our framework for each LDP
client, Y𝑖 (where 𝑖 is a client number) represents the privacy budget
that each user wants for their local training. The client update se-
lection module selects the relevant clients for federated averaging
during the aggregation. Finally, the global model post-federated
averaging is sent back to all the users for training in subsequent
rounds. The main contributions of this paper are as follows.

(1) We present a novel collaborative framework that can ac-
commodate multiple privacy preferences originating from
different user needs and learn an effective global model to
solve the downstream HAR task. Furthermore, we also pro-
pose a client update selection module that manages client
participation in model training in a secure and fair manner
by leveraging threshold-based cosine similarity;

(2) We demonstrate the effectiveness of the collaborative learn-
ing framework on a popular HAR dataset and discuss the
privacy-utility trade-off keeping fairness and security into
account; To the best of our knowledge, this is the first collab-
orative framework that uses differential privacy and federated
learning on HAR to incorporate multiple privacy preferences.
Furthermore, in this work, we begin the very first discussion
on the notion of fairness in terms of client participation in
the federated training for such a framework.

In the next section, we discuss the related works, followed by the
threat model and methods. Next, we present the evaluation section,
concluding with the future directions of this work.
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2 RELATEDWORKS
2.1 HAR with federated learning
Human Activity Recognition (HAR) leverages machine learning
to process accelerometer, gyroscope, and magnetometer data for
applications in healthcare, sports, and security [9, 14]. With the
proliferation of mobile and wearable devices, privacy becomes a
critical concern, as the data may contain user-sensitive information
[7]. Federated learning (FL), a privacy-preserving distributed ma-
chine learning approach, has been increasingly adopted for HAR
[6, 10]. Yang et al. [20] and Sozinov et al. [15] demonstrated FL’s
effectiveness in preserving accuracy and privacy in HAR tasks.
However, current research must still address security and privacy
issues, like enhancing model robustness against malicious clients
and adapting FL to diverse user privacy needs. In our work, we
propose methods to address privacy preferences from multiple as
well as protection from malicious clients while being fair to honest
clients.

2.2 Federated Learning with DP
Differential Privacy is a framework that protects user privacy when
their data is used for any downstream task. Usually, it is achieved
through controlled noise addition in different parts of the pipeline,
such as data processing, model training, etc. When used together,
DP and FL can complement each other to provide stronger privacy
guarantees. In the last couple of years, researchers have utilized a
combination of both to provide stronger privacy guarantees [3, 5,
17, 19, 21]. In [19], Wei et al. propose a method for the noises of
the local model parameters before federated aggregation to achieve
differential privacy. Truex et al. [17] demonstrate local differential
privacy in a federated setting with gradient perturbation. However,
they provide 𝛼-condensed-local-differential-privacy guarantees. Hu
et al. [5] propose a federated personalized learning approach with
differential privacy guarantees onmobile IoT data. In their approach,
they rely on the Gaussian mechanism of differential privacy to add
noise (drawn from Gaussian) to local updates. Choudhury et al. [3]
use differential privacy and federated learning on sensitive health
data. In particular, they approximate differential privacy through
objective function perturbation.While the above works have shown
successful integration of DP into FL scenarios, they did not take
into account multiple privacy budgets (or preferences) for different
clients.

In our work, we want to introduce a generic privacy-preserving
collaborative learning framework. The framework accommodates
different types of privacy preferences originating from different
users. For collaborative learning, we utilize FL, and for privacy
preservation, we utilize LDP. While previous works have used DP
in an FL setup, they did not account for multiple privacy preferences
through multiple privacy budgets in DP. Furthermore, our use of
gradient-based noise addition with differentially private stochastic
gradient descent [1] allowed us to use deep learning methods that
have been proven effective inwearable sensor-basedHAR tasks [14].
Our framework integrates all of these mechanisms to ensure safe
and private collaborative learning. Also, our cosine similarity-based
client selection mechanism ensures that we subdue clients with
suboptimal updates (due to high noise) and learn an optimal global
representation with a good privacy-utility and fairness tradeoff.

3 THREAT MODEL
Federated learning was initially suggested as an initial measure to
protect users’ data privacy by conducting local training and shar-
ing only model weights among users. However, this approach has
been found to have weaknesses, such as vulnerability to inference
attacks [16]. Moreover, training models in federated environments
are susceptible to various security threats, including poisoning at-
tacks, wherein attackers attempt to manipulate the models to make
incorrect predictions for specific classes or reduce overall perfor-
mance across all classes [2]. In this paper, we considered untargeted
attacks, and we leave targeted attacks for future work. We discuss
the possible ways to incorporate state-of-the-art defenses while
preserving privacy in our solution in Section 6.

Assumptions. In a federated learning setting, a central server
aggregatesmodel weights shared by the different clients.We assume
that the server is honest but curious. In other words, it follows the
aggregation protocol, but it is curious to know about the data of the
clients. In addition, we assume that themajority of clients are honest
in the sense that the majority of clients follow the protocol and do
not try to decrease the performance of the global model. However,
a minority of clients try to attack the global model by submitting
random weights. Furthermore, we assume that the model weights
are shared with the central server through a secure tunnel (i.e.,
using HTTPS). In the context of this paper, our solution advocates
flexible privacy preferences. Thus, clients are free to choose the
privacy budget and technique they want.

Attacker’s Goal and Capability The server aims to infer the
data of each participant. In addition, the server has access to the
shared model weights of each participant. Regarding malicious
clients, they have access to the global model, and they submit
random weights to decrease the performance of the global model.

4 METHODS
The goal of the paper is to propose a privacy-preserving collabora-
tive framework that allows multiple users to participate and learn
a global model for human activity recognition. The core proposition
of the privacy-preserving framework lies in its ability to quantify
multiple privacy preferences. In the framework, individual users
having different privacy requirements in terms of strictness try to
learn a global model together. For collaboration among users, we
have used federated learning, and for privacy preservation, we have
used local differential privacy. Furthermore, we also ensure that
clients with high privacy requirements do not affect the overall
model and still get a fair chance to participate in the federated
training.

Collaborative training using federated learning
Individual users hold private data originating from wearable sen-
sors. In this setting, users do not want to share the data with each
other and still want to learn a global model. To achieve this goal,
we have used popular federated learning. There is a central or-
chestrator that creates a global model and shares it with individual
users. In a single federated round, the individual users use their
local data to train the received model. At the end of each round, the
users share their local model weights with the central server. The
federated server aggregates the received weights using averaging
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Figure 2: Client Update Selection and Federated Averaging
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𝑤𝑎𝑣𝑔 =
1
𝑁

𝑁∑︁
𝑖=1

𝑤𝑖 , (1)

where 𝑤𝑖 represents the local weight updates received from 𝑁

clients.𝑤𝑎𝑣𝑔 is used to update the global model, which is resent to
the individual clients for retraining in the subsequent rounds till
convergence.

Privacy preservation through local differential
privacy
The use of federated learning for collaborative training is wide-
spread, and it offers some level of data protection by keeping the
data private to individual users. However, it offers the same level
of protection to all clients. Furthermore, it cannot quantify the pri-
vacy gain we get from using such a system. In a practical setting,
different users have different privacy requirements, and this must
be quantified to the users. Using differential privacy allows us to
quantify privacy for individual clients and accommodate different
privacy preferences for different users. Furthermore, when it is used
to perturb client updates in a federated learning system, it achieves
LDP for each client. In our framework, we use the differentially
private stochastic gradient descent (DPSGD) method proposed by
Abadi et al. [1] to ensure local differential privacy for individual
clients.

This method works on a gradient-based learning approach. In
this method, the gradient updates are perturbed by noise addition,
which helps to obscure the information. Thus, to use DPSGD, our
framework adheres to gradient descent-based learning in the local
training process.While training a local model (i.e., the copy received
from the federated server) with the available local data, as per
DPSGD, each client adds noise to its gradient updates. This noise
allows the model to have local differential privacy (LDP).

DPSGD quantifies a privacy loss each time it trains the model
with a single example. During the full training process, the loss of
privacy in multiple examples is composed according to Moment’s
accountant technique introduced by Abadi et al. [1]. The above tech-
nique allows us to numerically quantify the loss of privacy during
the training process and calls it privacy budget (represented as Y).
In DPSGD, we can ensure that each client adheres to a particular
privacy budget Y𝑖 throughout the local training, where 𝑖 represents
the client number. In Figure 1, the first three clients train with a
privacy budget of Y1, Y2, Y3, respectively. The privacy budget directs
the tuning of the amount of noise added to the parameter updates
before they are sent to the server for aggregation. However, the
𝑁 𝑡ℎ client in Figure 1 does not have any privacy requirements, and
hence it sends the parameter updates without any perturbation.
The federated averaging mechanism receives the LDP models and
averages them before sending them back for the next round of
training.

Fair and secure selection through similarity
measures
Training models without the validation of incoming weights would
lead to manipulating their predictions. Model weights might be
malicious as they could be crafted to initiate (individually or collab-
oratively) untargeted attacks. We defend against untargeted attacks
using similarity measures with the intuition that the malicious
model weights will diverge from the direction of the honest model
updates. It is worth noting that such defenses can discard model
weights coming from honest clients with strict privacy budgets.
The weights, perceived as random due to substantial noise injection,
could seem like an untargeted attack. However, disallowing such
clients to participate in the training process poses a fairness concern
as it would be unfair toward honest clients with strict privacy re-
quirements. Hence, we try to devise a mechanism that would allow
strictly private clients to participate in the training process without
hampering the utility of the downstream task severely. To be fair,
secure, and have utility, we must satisfy three goals.

• Goal 1: All the clients must get access to the global model.
• Goal 2: Theymust at least have the opportunity to participate
in the training.

• Goal 3: The server must be able to discard useless weights
during aggregation, which can be an untargeted attack or a
heavily noised and privatized weight update.

The first two contribute towards fairness, while the last one ensures
utility and security. In order to satisfy the goals, we devise a client
update selection module in the federated server that inspects the
incoming weights and either selects or rejects them for federated
averaging. Specifically, we observe the cosine similarity between
the weights of the global model and the weights received from each
client according to,

\𝑔𝑖 =
𝑤𝑔 ·𝑤𝑖

∥𝑤𝑔 ∥∥𝑤𝑖 ∥
, (2)

where 𝑤𝑔 represents the weights of the global model and 𝑤𝑖 rep-
resents the weights of the 𝑖𝑡ℎ client. If the cosine similarity value,
\𝑔𝑖 , is above a certain threshold, then it participates in federated
averaging. The federated averaging yields updated global model
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weight𝑤𝑔𝑢𝑝𝑑𝑎𝑡𝑒𝑑 given by,

𝑤𝑔𝑢𝑝𝑑𝑎𝑡𝑒𝑑 =
1

𝑁𝑠𝑒𝑙

𝑁𝑠𝑒𝑙∑︁
𝑖=1

𝑤𝑖 , (3)

where𝑁𝑠𝑒𝑙 < 𝑁 represents the number of selected clients for whom
\𝑔𝑖 > threshold. The phenomenon is also depicted in Figure 2, with
four clients with different noise parameters (based on privacy pref-
erences) having weights𝑤1,𝑤2,𝑤3,𝑤4. In the diagram, the cosine
similarity-based thresholding selects𝑤2,𝑤3 for the federated aver-
aging that creates𝑤𝑔𝑢𝑝𝑑𝑎𝑡𝑒𝑑 , the new global model weight. Usually,
the clients whose weights have been perturbed too much by the
noise exhibit a low cosine similarity and are excluded from the fed-
erated averaging. Nevertheless, the global model is also circulated
back to them so that they can participate in the training process
again. The above strategy satisfies Goal 1 and Goal 2 introduced
earlier, thus providing fairness. Malicious users try the attack the
system, and the client update selection rejects their updates pro-
tecting the global model, satisfying Goal 3. Furthermore, since the
above method also rejects random weights, the aggregated global
model is the best possible representation of the downstream task,
thus preserving utility. Although the global model is sent back to
malicious users, since it is composed of parameters perturbed by
local DP, it cannot infer user data from the global model. Thus
our work provides a comprehensive privacy-preserving and fair
framework for HAR tasks.

Interesting to observe that the \ parameter is quite significant in
determining the selection of clients. In the present version of the
work, it is a manually chosen and empirically validated hyperpa-
rameter with a value of 0.48. However, in the future version of this
work, we plan to learn adaptively.

5 EVALUATION
Through our evaluation, we want to probe a practical system that
incorporates users with realistic privacy preferences and observe
the utility of the HAR task as well as draw some conclusions on
privacy preservation and fairness. An acceptable range of privacy
budget is defined between 0.5 to 2, where 0.5 represents the strictest
privacy budget [13]. In a practical system, different users will have
different privacy preferences, and some users will be non-private.
For our experiments, we also define other combinations of privacy
budgets for different clients (strictest to most relaxed) to understand
different tradeoffs. The strictest privacy system is called All-DPSGD
Strict, where all clients have a strict privacy budget of 0.5. All-
DPSGD Mixed has a random mix of acceptable privacy budgets
for all clients. 50% DPSGD Strict represents a scenario with 50%
of clients being private with a budget of 0.2. 50% DPSGD Mixed
represents the system where 50% of clients are private with mixed
privacy budgets (within an acceptable range).

Since we want to propose such a system for the HAR task, we
demonstrate our system on a popular HAR dataset called PAMAP2
[12]. It is a multivariate sensor dataset for HAR tasks. It consists
of twelve activities recorded from six subjects. For our framework,
we consider each subject as a client in the collaborative learning
system. We set aside 30% of the data from each client to construct
a test set. The final accuracy score is reported on this test set.

Through our experiment, we want to observe the effect of the
client update selection module on the HAR task and the general
privacy utility tradeoff.

Figure 3: Effect of Client Update Selection: Accuracy on the
test set for models. The framework is tested with two groups
of privacy budget and two groups of DP settings. 50%-DPSGD
represents when 50% of clients are training with differential
privacy. Mixed represents a mixed setting of privacy budgets
by clients. Strict represents the strictest privacy budget set by
the client. E.g.,All-DPSGD Strict represents a settingwhere all
clients are trained with differential privacy with the strictest
privacy budget.

Fairness through client-update selection: In this experiment, wewant
to observe the test-set accuracy of the different types of collabora-
tive systems proposed earlier with and without the client-update se-
lection. For this version of our, we empirically validate the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
value for client selection based on cosine similarity to 0.48. As
observed from Figure 3, when we have a mix of private and non-
private clients, the client-update selection can reject noisy updates
much more effectively, improving the overall accuracy. This is be-
cause the non-private clients can contribute to the optimal learning
of the global model in the initial federated rounds. Furthermore,
since we incorporate fairness by sending back the global model
even to the rejected clients, they can participate in the training at
later stages, improving the overall accuracy of the test set. Although
without client-update selection, we can guarantee fairness through
participation in all rounds, this is detrimental to the HAR perfor-
mance, as seen in Figure 3. Moreover, without client-update selection,
we cannot defend against malicious weight perturbation attacks.
Therefore, the client-update selection offers us a well-balanced so-
lution for fairness, utility, and security in a collaborative learning
system with private and non-private users.

However, when all the clients are private, we do not observe
any improvement through the client selection module. Primarily
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because of the fact that when most updates are noisy, the learning
signal is distorted significantly, and hence it does not really matter
whether we select some clients for the federated averaging. Note
that the privacy budget range we have selected for our systems is
rather strict, and hence they add substantial noise to the updates.
The experiment also let us infer in order to have a usable collab-
orative system, we must include a mix of clients having different
privacy budgets. Too much strictness can cause sub-optimal HAR
performance.

Figure 4: Privacy-utility tradeoff for collaborative learning
system with different privacy budgets for PAMAP2 Dataset.
The blue line represents the non-private federated baseline.

Privacy-utility tradeoff: In this experiment, we want to observe
the general trends of how privacy budget (Y) and test set accuracy
correlates with each other in our collaborative system for HAR.
To do so, we simplify our system a bit and have the same privacy
budget for multiple clients that want privacy. Figure 4 shows Y
in the x-axis, and the y-axis represents accuracy on the test set.
When we only have one private client (red line), we have the closest
accuracy to the non-private baseline (blue line). Also, we observe
the increasing accuracy with increasing privacy budgets for all the
instances. This graph gives us some intuition into how we can set
privacy budgets for clients to have the desired performance. As an
example, if all the clients have a privacy budget of 1, then we have
0.5 as test accuracy. For some HAR applications, this classification
performance might not be acceptable, and hence in those cases, the
privacy budget might have to be relaxed for some clients to achieve
a better utility. Our initial experiments with this framework allow
some insights into how to set up the framework.

6 FUTUREWORKS AND CONCLUSION
In this work, we propose the basic framework for human activity
recognition (HAR), where multiple users with different privacy pref-
erences can collaborate to learn a global model in a fair and secure

manner. We demonstrated the effectiveness of the framework on a
popular HAR benchmark dataset. With this work, we contribute
to the broad research avenue that combines differential privacy
and federated learning for ubiquitous computing. This allows us
to formulate concrete future directions to strengthen the proposed
collaborative framework. We plan to expand to other HAR datasets
to demonstrate the privacy-utility tradeoff of our framework. In
particular, we want to add human activity recognition datasets
with a large number of clients. This would allow us to test the
limits of our collaborative framework while being very similar to
industrial use cases with many different users. We have proposed
a basic yet effective approach based on cosine similarity to select
client updates such that it incorporates security and fairness in our
framework. However, other advanced defenses based on Trusted
Execution Environment [11] by crafting the models to reduce their
sizes and homomorphic encryption [18] will be incorporated into
the framework. This would allow it to be truly flexible in terms
of privacy preferences from users as well as different security so-
lutions that can be plugged into the framework. Furthermore, in
this work, we begin the discussion around the notion of fairness in
terms of client participation in the proposed framework. However,
it is inherently hard to define a metric of such fairness, a challenge
that we wish to take on in the upcoming iterations of this work.
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