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ABSTRACT
Low-cost air pollution sensors (LCS) deployed on urban vehicles
(e.g., taxis, buses) have emerged as a cost-effective solution for
fine-grained air pollution monitoring. However, these mobile LCSs
suffer from measurement drifting in real-world scenarios, necessi-
tating a post-deployment real-time calibration. Unfortunately, the
limited availability of urban real reference stations (RRS) restricts
the calibration opportunities for LCSs. This paper proposes a non-
rendezvous method that addresses this challenge by establishing
virtual reference stations (VRS), which offer additional calibration
opportunities for LCSs. Through the air pollution field reconstruc-
tion, the readings of VRSs are inferred fromRRSs’ data. Furthermore,
a confidence assessment mechanism is developed to quantify the
uncertainty of established VRSs. Finally, a field experiment is con-
ducted to demonstrate the effectiveness of the proposed method,
showcasing a 25% improvement over the advanced baseline.
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1 INTRODUCTION
Urban air pollution has long posed a significant threat to public
health, prompting the establishment of fine-grained city-scale air
pollution monitoring systems in recent years [3]. The deployment
of such systems serves multiple purposes: For city residents, they
can reconstruct air pollutionmaps to improve the precision of travel
planning [11, 12]. For environmental department, these systems
play a crucial role in the precise implementation of pollution con-
trol measures, such as urban pollution source detection and water
sprayers scheduling [13]. To achieve a higher spatial-temporal den-
sity in air quality sensing, a commonly applied method involves the
deployment of a large number of low-cost sensors (LCS) on urban
vehicles, such as taxis and buses [18, 29]. These mobile LCSs are
specifically designed to be lightweight and cost-effective [15]. By
utilizing these sensors, the existing network of static air pollution
monitors can be augmented, leading to a more comprehensive and
cost-efficient urban environmental monitoring [14].

However, despite their advantages in terms of reduced cost and
weight compared to professional monitoring devices, LCSs often
have issues with accuracy when deployed in real-world scenar-
ios, such as measurement drifting [19, 25]. Consequently, post-
deployment real-time calibration is crucial for themobile LCS-based
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Figure 1: Illustration of the proposed method.

monitoring systems. Unlike laboratory calibration, post-deployment
calibration operates "on-the-fly" [17]. Its primary aim is to establish
and sustain a real-time calibration function for each mobile LCS,
transforming raw readings into more accurate ones.

Several related works have attempted to address such post-
deployment calibration. Initially, the approach involved calibrat-
ing LCSs when they rendezvous with static monitoring stations
in the city [26]. These static monitoring stations, commonly re-
ferred as "reference stations" in calibration systems, are typically
equipped with high-cost professional devices that consistently pro-
vide accurate air quality measurements. Unfortunately, due to cost
constraints in city management, these reference stations are of-
ten sparsely deployed across a city, making rendezvous between
reference stations and vehicles carrying LCSs unlikely [22]. There-
fore, subsequent studies have focused on increasing calibration
opportunities, leading to the emergence of multi-hop calibration
scheme [16, 21]. In addition to rendezvous with static stations,
multi-hop calibration assist the mobile LCS in leveraging informa-
tion obtained from rendezvous with other mobile LCSs, thereby
increasing the calibration opportunities. However, the reliability of
the results obtained through multi-hop calibration may be compro-
mised due to the potential accumulation of errors [21].

This paper proposes a non-rendezvousmethod to calibrate
mobile air pollution sensors. Aiming to increase the calibration
opportunities, the proposed method tries to explore additional ref-
erence information beyond situations where direct rendezvous is
possible. Specifically, through the air pollution field reconstruc-
tion, virtual reference stations (VRS) are established adjacent to the
mobile LCSs, which are located at a distance from the real refer-
ence stations (RRSs). The readings of these VRSs are inferred from
other RRSs in the city by the Gaussian Process Regression (GPR)
method. This design enables the mobile LCSs to collect reference
data without physically meeting the RRSs. Additionally, a confi-
dence assessment mechanism is developed based on the results of

GPR to quantify the uncertainty of these established VRSs. Once
a mobile LCS has collected a sufficient amount of reference data
with varying levels of confidence from both the VRSs and RRSs,
neural networks are employed to incorporate the confidence infor-
mation into the training of calibration function. To evaluate the
effectiveness of the proposed method, 22 mobile sensing devices
are deployed in one city for an 8-month field experiment. The result
demonstrates a 25% improvement compared to the best baseline
method. The contributions of this paper are summarized as follows:

• Proposing a non-rendezvous method to calibrate mobile air
pollution LCSs, which utilizes GPR to establish VRS, provid-
ing more calibration opportunities for mobile LCSs.

• Developing a confidence assessment mechanism to quantify
the uncertainty of established VRS and designing a neural
network to integrate such confidence information into mo-
bile LCSs’ calibration.

• Deploying 22 mobile sensing devices in one city and conduct-
ing an 8-month field experiment to validate the effectiveness
of the proposed method.

The remainder of the paper is organized as follows: Section 2 intro-
duces the problem formulation. Section 3 details the methodology
of the proposed method. Section 4 presents the evaluation process.
Finally, Section 5 concludes the paper.

2 PROBLEM DEFINITION
In this paper, three object concepts are specified as follows:

• Low-cost Sensor (LCS): Owing to their cost-effectiveness
and lightweight attributes, LCSs have found wide-ranging
applications in mobile platforms, particularly swarms [5, 6].
Notwithstanding, they frequently exhibit issues concerning
accuracy. The focus of this paper is on the calibration of
LCSs. The variable 𝑥 represents raw LCS readings.

• Real Reference Station (RRS): These sensors are deemed
to be highly accurate and are employed as reference in the
context of mobile air pollution sensing. Typically, RRSs are
stationary monitoring stations equipped with high-cost de-
vices. They serve the purpose of calibrating the LCSs or
assessing their performance. The readings obtained from the
RRSs are denoted by the variable 𝑦.

• Virtual Reference Station (VRS): In situations where a
vehicle carrying a mobile LCS is not located in close prox-
imity to an RRS, a VRS is established alongside the mobile
LCS to facilitate its calibration, as illustrated in Figure 1. The
readings of the VRS are inferred from the neighboring RRSs,
which will be elaborated upon in Section 3.1. The reliability
assessment of the VRS’s data will be explored in Section 3.2.

The primary calibration approach involves utilizing RRSs to create
VRSs for calibrating the LCSs. The ultimate objective of real-time
post-deployment calibration is to determine the optimal calibration
function 𝑓 for each of the 𝑁𝐿𝐶𝑆 mobile LCSs, which is:

𝑎𝑟𝑔𝑚𝑖𝑛

𝑓

𝑁𝐿𝐶𝑆∑︁
𝑖=1

𝑡𝑛∑︁
𝑡=𝑡0

𝑑 (𝑓𝑖 (𝑥𝑖,𝑡 ), 𝑦𝑖,𝑡 ), (1)

where 𝑑 (·) represents the error evaluation function, and 𝑡0 and 𝑡𝑛
indicate the sensing start and end time, respectively. The optimal
fitting method for the 𝑓 function will be discussed in Section 3.3.
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3 METHODOLOGY
3.1 Data Inference for VRS
To ensure precise estimation of VRS readings, we employ GPR, a
prevalent method for field reconstruction [10], to infer data for the
VRS’s spatial-temporal region.

3.1.1 Establishment of the Gaussian Process Model. For each meta-
area characterized by the spatial-temporal coordinate r, the pollu-
tion data 𝑔(r) is regarded as a function that maps r. 𝑔(r) is treated
as a function drawn from a Gaussian Process (GP), which is:

𝑔(r) ∼ GP(𝑚(r), 𝑘 (r, r
′
)). (2)

𝑚(𝑟 ) represents the mean function and 𝑘 (r, r′ ) represents the co-
variance function. Since we normalize all training data using the
z-score normalization method [23], we employ a mean function
with a constant value of 0. For the covariance function, we use the
exponential kernel function to measure the covariance of different
spatial-temporal points:

𝑘 (r, r
′
) = 𝜎𝑙 ∗ 𝑒𝑥𝑝 (−(r − r

′
)2/(2𝜆2

𝑙
)), (3)

where 𝜆𝑙 and 𝜎𝑙 are the scale parameters, which need to be opti-
mized using the RRS’s data.

Eq. 2 implies that for any meta-area with the spatial-temporal
coordinate r, their pollution concentrations 𝑦 satisfy a multivariate
joint normal distribution. In our case, the meta-areas are classified
into two types: R = ¤R ∪ R∗, where ¤R represents the RRS’s areas
and R∗ represents VRS’s areas. We denote ¤𝑌 and 𝑌 ∗ as the pollu-
tion concentration data for these two kinds of areas, respectively.
Thus, we have ¤𝑅 = (¤r1, ¤r2, ..., ¤r ¤𝑁 )𝑇 , 𝑅∗ = (r∗1, r

∗
2, ..., r

∗
𝑁 ∗ )𝑇 , ¤𝑌 =

( ¤𝑦1, ¤𝑦2, ..., ¤𝑦 ¤𝑁 )𝑇 , 𝑌 ∗ = (𝑦∗1, 𝑦
∗
2, ..., 𝑦

∗
𝑁 ∗ )𝑇 , where ¤𝑁 and 𝑁 ∗ represent

the number of these two kinds of areas, respectively. They satisfy
the following joint normal distribution:( ¤𝑌

𝑌 ∗

)
∼ N

((
𝑀 ( ¤𝑅)
𝑀 (𝑅∗)

) (
𝐾 ( ¤𝑅, ¤𝑅) 𝐾 ( ¤𝑅, 𝑅∗)
𝐾 (𝑅∗, ¤𝑅) 𝐾 (𝑅∗, 𝑅∗)

))
. (4)

Here, 𝐾 (·) is the matrix form of the 𝑘 (·), which means 𝐾 (·) outputs
a matrix containing every pairwise relationship for the two input
vectors. We can now use the Bayesian conditional probability for-
mula to obtain 𝑝 (𝑌 ∗ | ¤𝑅, ¤𝑌, 𝑅∗). However, before that, we will first
use RRS’s data to determine the hyperparameters 𝜆𝑙 and 𝜎𝑙 in the
covariance function, optimizing the entire GP model.

3.1.2 Optimization of the Gaussian Process Model. To optimize the
GP model, specifically, to determine the parameters 𝜆𝑙 and 𝜎𝑙 of the
kernel function in Eq. 3, the probability of occurrence of ¤𝑌 in the
current GP model must be maximized. In this paper, the Marginal
Log-likelihood is employed to find the optimal values for 𝜆𝑙 and 𝜎𝑙 :

𝑙𝑜𝑔𝑝 ( ¤𝑌 |𝜆𝑙 , 𝜎𝑙 ) = 𝑙𝑜𝑔N(0, 𝐾 ( ¤𝑅, ¤𝑅 |𝜆𝑙 , 𝜎𝑙 ))

= −1
2
¤𝑌𝑇𝐾 ( ¤𝑅, ¤𝑅 |𝜆𝑙 , 𝜎𝑙 )−1 ¤𝑌 − 1

2
𝑙𝑜𝑔|𝐾 ( ¤𝑅, ¤𝑅 |𝜆𝑙 , 𝜎𝑙 ) | −

¤𝑁
2
𝑙𝑜𝑔(2𝜋) .

(5)
Here, "L-BFGS-B" optimization method [31] is utilized to find the
most suitable values for 𝜆𝑙 and 𝜎𝑙 .

3.1.3 Inference by the Gaussian Process Model. Once the optimal
GP model with the most suitable parameters 𝜆𝑙 and 𝜎𝑙 is obtained,

the inference of data in VRS’s areas can commence. From Eq. 4, for
any VRS’s area r∗ ∈ 𝑅∗, the Bayesian method provides:

𝑝 (𝑦∗ | ¤𝑅, ¤𝑌, 𝑅∗) ∼ N (𝑦∗ |𝜇∗, 𝜎∗),
𝜇∗ = 𝐾 (r∗, ¤𝑅)𝐾 ( ¤𝑅, ¤𝑅)−1 ¤𝑌,
𝜎∗ = 𝐾 (r∗, r∗) − 𝐾 (r∗, ¤𝑅)𝐾 ( ¤𝑅, ¤𝑅)−1𝐾 ( ¤𝑅, r∗) .

(6)

The distribution of pollution concentration in the VRS’s areas is
obtained, and the mean value 𝜇∗ is used as the inference result
for the pollution concentration value of the VRS’s reading. The
variance value 𝜎∗ is employed to measure the confidence of the
predicted value of VRS’s data. Notably, a variance of 0 is assigned
to RRS’ data.

3.2 Confidence Assessment for VRS
Generally, a distribution with higher variance is considered to have
lower confidence. Additionally, to perform timely calibration, earlier
sensed data is assigned lower confidence. Due to these factors, the
following conversion formula is designed to obtain the confidence
𝑐 from the predicted distribution’s variance:

𝑐 = 𝛾 |𝑡0−𝑡𝑠 |/(𝜎 + 𝜖), (7)

where 𝑡0 represents the current time and 𝑡𝑠 represents the time
when the data is sensed (or virtually sensed). 𝛾 is a hyperparameter
used to adjust the importance of data’s immediacy. 𝜖 is another
scale hyperparameter that adjusts whether the calibration focuses
more on RRS’s data or VRS’s data, as all RRS’s data will have 𝜎∗
set to 0. The smaller the value of 𝜖 , the larger the RRS’s data’s 𝑐
relative to the inferred data with non-zero variance.

3.3 Neural Network for Confidence Weighting
Upon completion of the data inference and confidence assessment
process, the VRSs can be established with confidence-based read-
ings at any given time and location. In other words, as for each
mobile LCS within the time interval 𝑡0 to 𝑡𝑛 , a set of calibration
data (𝑥1,m1, 𝑐1, 𝑦1), (𝑥2,m2, 𝑐2, 𝑦2), ..., (𝑥𝑁 ,mN, 𝑐𝑁 , 𝑦𝑁 ) can be ac-
quired. This set comprises sensors’ raw readings 𝑥𝑖 , meteorology
data mi (temperature and humidity), corresponding confidence val-
ues 𝑐𝑖 , and reference data 𝑦𝑖 obtained from both VRSs and RRSs.
Subsequently, using this dataset, each LCS is required to train a
calibration function 𝑓 that transforms its raw readings into more
precise and accurate values.

A crucial challenge here lies in handling the confidence values 𝑐 .
To address this, a neural network with a specific loss function is
employed. The neural network, denoted as 𝑓 (·;𝜃 ) with parameter 𝜃 ,
consists of an input layer that incorporates LCS raw readings 𝑥 and
meteorological data𝑚, and an output layer with a single neuron
to output the post-calibrated data 𝑦. The loss function employed
incorporates confidence weighting, as expressed by the following
equation:

𝐿(𝜃 ) =
∑𝑁
𝑖=1 𝑐𝑖 |𝑓 (𝑥𝑖 ,m𝑖 ;𝜃 ) − 𝑦𝑖 |2∑𝑁

𝑖=1 𝑐𝑖
. (8)

By considering confidence values 𝑐𝑖 in the loss function, the neural
network training process assigns more significance to data points
with higher confidence, resulting in a calibration function that ac-
curately fits reliable data. This weighted approach improves system
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calibration by accommodating varying degrees of confidence in
different inference data.

Here, the influence of temperature and humidity on LCS calibra-
tion has been established in previous studies [2]. Given the higher
accuracy of temperature and humidity sensors compared to air
pollution LCSs [25], the propose method utilizes temperature and
humidity measurements as meteorology training data m𝑖 , while
disregarding the associated reading errors.

4 EVALUATION
4.1 Experimental Set-up
4.1.1 Low-cost sensor. The field experiment was conducted in Nan-
jing, China, from April 2022 to December 2022. In this experiment,
the ETAR7002 Mobile Air Quality Monitor, developed by ETST
Company Ltd, was chosen as the experimental LCS for calibration
purpose [20]. The ETAR7002 integrates multiple components, in-
cluding a particle sensor unit (PMS5003T model), a gas sensing
module (Alphasense OX-B431 model for Ozone measurement), a
communication module, a control module, and a power module. A
total of 22 such LCSs were mounted on mobile vehicles (buses and
city management vehicles) to collect data. Initially, these devices
were positioned in close proximity to the Ruijin State-Control Sta-
tion for rigorous performance testing from 26th April 2022 to 13th
May 2022. Subsequently, these LCSs were deployed in the field to
commence the experimental phase.

4.1.2 Real reference station. The experimental area comprises 12
city-controlled air monitoring stations, each equipped with high-
cost devices. In this experiment, these stations serve as the reference
stations. More specifically, three of these stations were utilized for
calibrating the mobile LCSs, whereas the remaining nine stations
were dedicated to testing the proposed method.

4.1.3 Data preprocessing and test method. The data are gridded
into a spatial resolution of 0.2 km x 0.2 km with a frequency of
1-minute blocks. The values within each block are averaged, and
the Three Sigma Criterion is applied to remove outliers [24]. Here,
if two vehicles or stations occupy the same spatial-temporal block,
they are considered to have a “rendezvous". In the experiment, a test
is conducted when a mobile LCS rendezvouses with a test reference
station. We ultimately obtained 6,364 pieces of data for testing.

4.1.4 Performancemetric. In the experiments, the RootMean Square
Error (RMSE) is used to measure the calibration result’s error [4].
RMSE is highly sensitive to outliers, making it well-suited for eval-
uating the performance of the calibration system.

4.1.5 Implementation Details and Reproducibility. The implemen-
tation is based on TensorFlow 2.4.0 framework [1] using Python 3.8.
A neural network with 4 layers, 30 neurons per layer is used. The
calibration function’s updating time span is set to 2 hours, and a
learning rate of 0.001 is used in Adam for neural networks’ training.
The values of 𝛾 and 𝜖 are set to 0.995 and 0.01, respectively, in Eq. 7.

4.2 Overall Performance
This section presents an evaluation of the entire method, focusing
on the assessment of the most common air pollutants: PM2.5, PM10,
and O3. We consider the following approaches as baselines:

Table 1: Overall Performance

RMSE of Calibration Result (𝜇𝑔/𝑚3)

PM2.5 PM10 O3

NC 11.49 16.62 17.26
RC 8.88 13.85 13.51
MC 7.20 11.31 10.58

VRS-TS 7.03 11.44 10.91
VRS-NN 5.93 10.25 9.46

• No Calibration (NC): This approach involves utilizing the
raw sensor readings directly as the post-calibrated results.

• Rendezvous Calibration (RC): Only reference data col-
lected when mobile LCS meet with the reference station are
used. Neural networks are used for calibration function’s
fitting.

• Multi-hop Calibration (MC): Building upon the RC ap-
proach, if a mobile LCS meets with another mobile LCS,
the most recently calibrated LCS’s reading is used as the
reference to provide reference data to the earlier calibrated
LCS.

• Threshold Strategy (VRS-TS): In this approach, VRSs are
created to assist in calibration. However, only data from
the VRS that exceeds a fixed confidence threshold are used.
The calibration function is trained using these selected data
points with equal weighting. To differentiate this baseline
from the proposed method, we refer to it as "-TS" and use the
suffix "-NN" to represent the proposed method, which em-
ploys a confidence-weighted strategy to use neural networks
fitting the calibration function.

Table 1 presents the average results obtained from each testing
opportunity for the three types of air pollution concentrations. The
following observations can be made: (i) "RC" shows only marginal
improvement in data accuracy, primarily due to the limited number
of rendezvous opportunities. (ii) "MC" leverages rendezvous oppor-
tunities more effectively, resulting in increased reference data. As a
result, the final performance of the MC method exhibits improve-
ment compared to RC, albeit still limited. (iii) The VRS-TS approach
establishes VRSs but relies on a simplistic approach to process data
confidence. Consequently, the performance achieved by VRS-TS is
suboptimal. (iv) In contrast, the proposed VRS-NN method demon-
strates superior performance across all three types of air pollution
concentrations. This indicates the generalizability of the VRS-NN
method for calibrating various air pollution concentration types.

4.3 Evaluation of Different VRS’s Establishment
Methods

The main focus of this paper is to construct VRSs for assisting in
the collection of reference data. In this subsection, various estab-
lishment methods for the VRS will be compared.

The establishment of the VRS can be divided into two parts:
the data inference module and the confidence assessment module.
In this section, an additional experiment is conducted using only
PM2.5 data from RRSs. The dataset is randomly divided into a
training set comprising 70% of the data and a test set comprising
30% of the data. Subsequently, the training set’s data is used to
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Table 2: Performance of VRS’s data inference methods

RMSE of Inference Result (𝜇𝑔/𝑚3)

PP 7.91
BI 4.78

GPR-M 3.66

Figure 2: Confidence and inference error’s correlation com-
pare of two confidence assessment methods for VRS.
establish the VRS at the spatial-temporal locations of the test set’s
data. The VRS’s inference results are evaluated using the ground
truth from the test set, and the assessment of confidence is evaluated
based on the test error.

4.3.1 Different data inference methods for VRS. In order to assess
the effectiveness of the proposed GPR-M method in data inference,
which utilizes the mean in the GPR result as the virtual monitoring
value, two baselines are considered in this evaluation.

• Proximity Principle (PP): Directly using the monitoring
value of the closest reference station as the VRS’s virtual
monitoring value.

• Bilinear Interpolation (BI): Reconstructing the field using
the bilinear interpolation method and using its result as the
VRS’s virtual monitoring value.

Table 2 presents the final results, demonstrating that the GPRmodel
exhibits the best performance with the lowest inference RMSE.

4.3.2 Different confidence assessment methods for VRS. The pro-
posed GPR-V method leverages the inverse ratio of variance in
the GPR result as the measure of confidence for the VRS. In this
evaluation of confidence assessment methods, we use a commonly
used method as the baseline:

• Spatial-temporal Distance (ST-D): Using the inverse ra-
tio of spatial-temporal distance between VRS and RRS as
the confidence. This is a commonly used quality assessment
method applied in many localization [27] and sensing sys-
tems [30]. Here, to ensure a clear comparison between these
two methods, we introduce a multiplication factor of 10 for
the ST-D baseline, aiming to align the scales.

In the comparison evaluation of confidence levels yielded by the
two methods, the inferred data associated with confidence, ranging
from 0 to 10, are divided into 19 bins. Each bin spans 0.5 units based
on successive confidence. To ensure robust analysis, bins with fewer
than 20 data points are excluded.

Figure 2 presents the box plots depicting the averaged inference
errors and their respective variances for each confidence bin. It
is important to note that, when compared to the baseline ST-D,

Figure 3: Performance of different combinations of data in-
ference and confidence assessment methods for VRS.

the confidence measurement of GPR-V exhibits a stronger negative
correlation with both the mean and variance of the test error within
each bin. This observation suggests that higher confidence values
obtained from GPR-V correspond to lower errors, indicating a more
reliable inference. Conversely, lower confidence values in GPR-V
may imply potential uncertainty, resulting in either high or low er-
ror values. In summary, these findings underscore the effectiveness
of the proposed GPR-V method in delivering more accurate and
reliable inference compared to the baseline ST-D approach.

4.3.3 Different combinations. At last, we revisit the initial mobile
LCS calibration experiment to evaluate various combinations of
data inference and confidence assessment methods. The results
are depicted in Figure 3. It is evident that the proposed method
combinations outperforms other combinations, yielding the most
accurate calibration result.

5 CONCLUSION
This paper addresses the critical issue of post-deployment calibra-
tion for mobile LCSs used in urban air pollution monitoring. A
novel approach is proposed, leveraging GPR and inferring data
from established reference stations to construct VRS. The VRSs
enhance the calibration dataset, enabling non-rendezvous calibra-
tion and improving LCS reading accuracy. A confidence assess-
ment mechanism is introduced to evaluate the reliability of VRS
data. Experimental studies in Nanjing, China validate the approach,
showing a significant 25% improvement over other baselines.

In the future, we will extend the existing mobile device schedul-
ing algorithm [9, 28] to the non-rendezvous calibration scenario.
Efforts will also be directed towards the potential application of the
calibration system to novel mobile platforms [7, 8].
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