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ABSTRACT
Accurate peak electrical demand forecasting plays a pivotal role
in managing energy consumption in Internet Data Centers (IDCs),
where electricity expense forms a major part of operational costs.
To intelligently schedule energy storage for shaving the peak load
and reducing both energy expense during peak hours as well as
the demand charge, IDC operators need precise predictions of the
magnitude and timing of daily peak electrical demand. This paper
introduces a novel method for peak load forecasting that com-
bines the strengths of both the Seasonal Autoregressive Integrated
Moving Average (SARIMA) and Long Short-Term Memory (LSTM)
models. Our approach is rigorously validated with the field dataset
from three Tencent Inc.’s data center in North China region. The
successful application of this method underscores its robustness
and potential for broader application within the IDC sector and the
wider power industry.
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1 INTRODUCTION
Peak electrical demand forecasting is vital to power management
in Internet Data Centers (IDCs) under the two-part pricing mecha-
nism for most IDCs, including the time-of-use (ToU) energy tariff
and the demand charge. IDC operators continually seek ways to
optimize their energy use to reduce the significant operational
costs attributed to electricity, including deploying energy storage
devices. By deploying energy storage devices, IDC operators can
manage their power consumption wisely by storing energy during
off-peak tariff periods and discharging during peak tariff periods.
The peak-shaving scheduling strategy of storage could help reduce
the electricity cost from two aspects including the energy tariff and
the demand tariff. The energy tariff is charged based on time-of-use
(TOU) pricing mechanism, while the demand charge is determined
by the peak electrical demand of IDC. The more energy consumed
during the off-peak time and the lower peak demand is, the less the
overall electricity consumption would cost. In this light, accurate
prediction of the magnitude and timing of daily electricity demand
is the prerequisite of intelligent storage scheduling, which is a time
series forecasting problem[11]. This paper focuses on this crucial
aspect within IDCs, proposing an effective methodology to enhance
forecasting accuracy amid the rising complexities of power systems.

1.1 Motivation
The rapid economic growth and extensive electrification in modern
society have led to a surge in electricity demand, accompanied by
the pressing issue of carbon emissions[4]. Accurate peak electrical
demand forecasting is crucial for data centers (IDCs) to strategi-
cally plan and effectively manage their resources. By precisely
predicting peak electricity demand, IDC operators can minimize
energy consumption, reduce carbon emissions, and contribute to
low-carbon development. Furthermore, through the utilization of
coordinated volt-pressure optimization and smart grid technolo-
gies, energy management efficiency can be improved, fostering
sustainable development in smart grid systems[19].

IDCs’ peak electrical demand forecasting falls into the field of
time series forecasting. Traditional algorithms such as the Seasonal
Autoregressive Integrated Moving Average (SARIMA) used to be
powerful tools for time series forecasting, especially for periodic
series. However, they are insufficient to handle modern IDCs’ elec-
trical demand series since the consumption curves are becoming
more volatile and uncertain. Fortunately, machine learning and deep
learning models, particularly Long Short-Term Memory (LSTM)
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model, are increasingly being employed in the field of load forecast-
ing. These networks, capable of handling the short-term memory
and training challenges of traditional Recurrent Neural Networks
(RNN), show promise in time series prediction tasks, thus suitable
for peak electrical demand forecasting.

Despite LSTM’s robust forecasting performance, the effective-
ness of this approach hinges heavily on the initialization of its
weight matrices. This research aims to address this challenge by
exploring the appropriate initialization method for LSTM and in-
corporating additional features such as temperature to enhance the
accuracy of peak electrical demand forecasts.

By comparing LSTM with traditional forecasting models and
proposing an innovative model leveraging deep learning, our re-
search contributes to the body of knowledge on peak electrical
demand forecasting within IDCs. This improved forecasting accu-
racy and reliability offer IDC operators a potent tool to manage
their energy consumption more effectively, consequently reducing
operational costs.

1.2 Related Works
In the context of smart grid and multi-energy vector integration,
load forecasting methodologies are facing unique challenges. A
study proposed a risk-averse strategy against false data injection
attacks in water-energy systems[16]. Concurrently, a two-stage
distributionally robust operation model addressed interdependen-
cies in water-energy nexus systems, considering renewable source
uncertainties[18]. Furthermore, data-driven methodologies like the
Gotcha II system displayed potential for air pollution prediction[20].
Recent work also outlined a two-stage structure to understand
the complex interactions in a coupled electricity and carbon mar-
ket, highlighting the importance of balancing emission allowances
and dispatch outcomes for effective emission reduction and mar-
ket management[15]. Other works have harnessed innovative sen-
sor deployment in vehicles to accurately estimate fine-grained air
pollution[6], and a hybrid adaptive particle filter was developed for
dynamic air pollution data reconstruction[5]. These advancements
have steered us from traditional statistical methods to deep learn-
ing, giving rise to our hybrid SARIMA-LSTM model, enhancing
peak load forecasting accuracy in the IDC industry.

Load forecasting methodologies have evolved from statistical
techniques, such as Goia et al.’s method[8], to more complex models
that leverage time-series data. Significant developments include
the hybrid neural network model by Amin-Naseri and Soroush[1],
albeit limited in handling power demand data non-linearity and
uncertainties.

These limitations have catalyzed a shift to deep learning method-
ologies. LSTM-based models, as used by Choi et al.[7] in energy sus-
tainability monitoring, and Ren et al.[13] in electric vehicle power
demand prediction, have proved beneficial. Notably, the impact of
international tension on electricity price predictability was stud-
ied in the German market, revealing heightened unpredictability
despite rising prices[17].

In industrial power demand prediction, Tan et al.[14] proposed a
robust hybrid ensemble learning model based on LSTM. Additional
research emphasized the influence of job-housing ratio on load
pattern variability in the face of urbanization[3].
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Figure 1: Sample Features of Module A

Informed by these advancements, our study implements a hybrid
SARIMA-LSTM methodology to enhance peak load forecasting in
the IDC industry. The unique feature of our model lies in incorporat-
ing residuals from LSTM predictions into the SARIMA model. This
combination enhances the predictive capabilities of both models, of-
fering a refined approach to peak load forecasting and introducing
an innovative perspective to hybrid modeling in this field.

1.3 Our Contributions
The contributions of our study can be encapsulated in the following
advancements: Primarily, we introduce a pioneering methodology
for IDC peak electrical demand forecasting that combines the pre-
dictive prowess of LSTM models with the seasonality-capturing
ability of SARIMA. This unique approach adeptly manages the intri-
cacies of time-series data, achieving a heightened level of accuracy
in forecasting peak electrical demand. Furthermore, we have inte-
grated and define the critical features combination in IDC peak load
forecasting, such as wet temperature, dry temperature, humidity,
air conditioning (AC) power, and IT power into our model, thereby
enhancing the precision of peak occurrence time predictions under
the specific application scenario in IDC. Secondarily, our research
validates the proposed methodology by utilizing an unparalleled,
annual electrical load dataset derived from three different mod-
ules in different IDCs located in North China region, courtesy of
the large-scale internet corporation, Tencent Inc. Applying our
methodology to this real historical dataset not only substantiates
its practicality and adaptivity but also unravels distinctive charac-
teristics inherent in data center power demands. Such insights hold
invaluable potential for energy management within data centers.
In summary, our study proffers significant strides in the domain
of peak electrical demand forecasting methodologies, thereby pro-
viding practical guidance for IDC operators intent on bolstering
their energy management strategies and mitigating operational
expenditures.
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Figure 2: An Example of Missing Value Imputation

2 OVERVIEW OF DATASETS
We were granted access to three unique datasets including Modules
A, B, and C, all emanating from data centers located in North China,
generously provided by Tencent Inc. Initially, we delve into an elab-
orate description of Module A’s dataset, as it serves as our primary
training module for the proposed forecasting model. Modules B
and C, while possessing similar characteristics to Module A, are
presented subsequently.

Our study’s principal objective is to train the forecasting model
using Module A, thereby determining the optimal amalgamation of
model features. The universality and transferability of our model
are then validated utilizing the data from Modules B and C.

Ultimately, we exhibit the results of our model’s performance
on each of these three datasets separately, thereby underlining
the robustness of our methodology and its capacity for effective
transferability across diverse data scenarios.

2.1 Data Features
Transitioning from the necessity of electrical demand forecasting,
we delve into the critical features used for our data modeling. Mod-
ule A, consisting of 8760 hourly data entries, forms the basis of our
study. Recognizing the significant impact of various variables on
power demand, we have incorporated environmental and tempo-
ral data, such as temperature, humidity, the hour of the day, day
of the week, and month of the year, and socioeconomic variables,
including population metrics, air conditioning system details, and
building structure specifics, into our model as features[12]. Figure 1
visualizes the data.

2.2 Preprocessing of the Data
Upon accessing the datasets, we identified issues within the raw
data, notably the presence of missing values. This necessitated
preliminary data preprocessing before the implementation of our
forecasting model. Our workflow involves handling missing values,
normalizing data, extracting features, and partitioning the dataset.
The upcoming sections provide a detailed account of this method-
ology.

2.2.1 Data Imputation. In our data cleaning process, we removed
around 4% of the total dataset where the data for Wet temperature,
Dry temperature, and humidity were extensively missing. The in-
sufficient historical data and its continuous nature in this segment
made it unfeasible to use time series models for imputation.

Our next step was to address the scattered missing data in the
‘Total Power’ variable. For this, we employed the Holt-Winters

model due to its effectiveness in handling such scenarios[2]. The
model’s significant access to 8760 data points allows it to capture
long-term trends, seasonal variations, and daily patterns in power
demand.

The fine-tuned Holt-Winters model demonstrated good perfor-
mance in predicting IT Power, AC Power, Wet temperature, Dry
temperature, and Humidity, with respective RMSEs of 3.73, 13.10,
0.58, 0.64, and 4.16. Figure 2 shows the results of missing value
imputation using the Holt-Winters method. As such, we used it
to impute missing values for these attributes. However, for the
initial 50% of the IT Power data, which lacked distinct time-series
characteristics, we used linear interpolation to fill in the missing
values.

2.2.2 Data Normalization. We normalize the data by Min-Max
normalization. We transform all data into numbers in a range from
0 to 1. We conduct normalization by:

𝑥 ′ =
𝑥 − 𝑥min

𝑥max − 𝑥min
, (1)

where x is the original data, 𝑥min is the minimum value of the data,
x_max is the maximum value of the data, and x’ is the normalized
data. This transformation can help to mitigate the effect of the
disparity in the range of the features and help some algorithms to
converge faster.

2.2.3 Feature Extraction. Our research focuses on extracting fea-
tures from time-series data that are relevant to peak load forecasting
in power grids. Understanding the peaks in electricity demand is
crucial for the efficient operation of power systems. Therefore,
we have selected features that capture both cyclic and seasonal
variations in power demand.

We extracted the ‘day of the week’ feature to account for the
fluctuation in electricity demand between weekdays and week-
ends. Additionally, we considered the ‘day of the month’ feature
to capture cyclic variations within a month. Finally, we included
the "month" feature to better understand and predict seasonal vari-
ations in power demand.

2.2.4 Data Splitting. In our study, we adopted a 75%:15%:10% split
for the training set, validation set, and test set. The training set,
which accounted for 75% of the total data, was used to train our
LSTM model. The validation set, comprising 15% of the data, was
employed during the model training process to fine-tune the param-
eters and prevent overfitting. The remaining 10% of the data was
designated as the test set, serving to provide an unbiased evaluation
of the final model.

3 METHODOLOGY
In this research, we utilize a multivariate time series forecasting
model, integrating SARIMA and LSTM to predict peak electri-
cal demand. Hence, this section provides an overview of the key
methodologies applied in our model, furnishing essential back-
ground knowledge for better understanding.

3.1 LSTM Model
The LSTM is a special kind of RNN designed to overcome the van-
ishing gradient problem in traditional RNNs when dealing with
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Figure 3: A Memory Cell of LSTM

long sequence data [10]. The LSTM does this through the intro-
duction of ‘gates’ (input gate, forget gate, and output gate) that
allow the network to decide when to forget old information, when
to update with new information, and when to output the current
state. The core of LSTM is the memory cell, which can store state
information for a long duration. Figure 3 explains how the LSTM
cell works. The formulas are:

𝑓𝑡 = 𝜎 (𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏 𝑓 ),
𝑖𝑡 = 𝜎 (𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑖 ),
𝐶𝑡 = 𝑓𝑡 ∗𝐶𝑡−1 + 𝑖𝑡 ∗ tanh(𝑊𝐶 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝐶 ),
𝑜𝑡 = 𝜎 (𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑜 ),
ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡 ),

where 𝜎 denotes the sigmoid activation function, tanh is the hyper-
bolic tangent activation function, operator ∗ denotes element-wise
multiplication, and [ℎ𝑡−1, 𝑥𝑡 ] is the vector concatenating ℎ𝑡−1 and
𝑥𝑡 . The weights (𝑊 ) and biases (𝑏) for each gate are learned during
the training process. In the multivariate scenario, we use LSTM to
handle multiple time series inputs, such as temperature, humidity,
etc., which may affect the peak electrical demand.

3.2 SARIMA Model
The SARIMA model is an extension of the Autoregressive Inte-
grated Moving Average(ARIMA) model that takes into account
seasonality [9]. SARIMA models the seasonality by applying an
ARIMA model to lags that are integer multiples of the seasonality.
Once the seasonality is modeled, an ARIMA model is applied to the
residual to capture the non-seasonal structure.

Specifically, suppose we have a time series 𝑦𝑡 with seasonality 𝑠 .
We can attempt to eliminate the seasonality with differencing, by ap-
plying the differencing operator Δ𝐷

𝑠 to take the seasonal differences
of the time series. Here 𝑠 is the number of time lags comprising
one full period of seasonality. 𝐷 has a similar meaning to 𝑑 in
ARIMA models, but applies to seasonal lags. We can then capture
any remaining structure by applying an 𝐴𝑅𝑀𝐴(𝑃,𝑄) model to the
differenced values, but using seasonal lags. That is, instead of using
a regular lag operator 𝐿, we use 𝐿𝑠 . Parameters 𝑃 and 𝑄 are again
seasonal time lags. After any seasonality is removed, we can apply
another model𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) to Δ𝐷

𝑠 𝑦𝑡 by multiplying the seasonal
model by the new ARIMA model. This can be represented by the

following equation:

Θ(𝐿)𝑝𝜃 (𝐿𝑠 )𝑃Δ𝑑Δ𝐷
𝑠 𝑦𝑡 = Φ(𝐿)𝑞𝜙 (𝐿𝑠 )𝑄Δ𝑑Δ𝐷

𝑠 𝜖𝑡 . (2)

3.3 Evaluation Metric
Finally, we evaluate the performance of our model using the Root
Mean Square Error (RMSE), a commonly used evaluationmetric that
measures the average squared differences between the observed
actual outturn values and the predicted values. The formula for
RMSE is given by:

𝑅𝑀𝑆𝐸 =

√︂
1
𝑛

∑︁𝑛

𝑖=1
(𝑃𝑖 −𝑂𝑖 )2, (3)

where 𝑃𝑖 is the predicted value for the 𝑖th observation in the dataset,
𝑂𝑖 is the observed value for the 𝑖th observation in the dataset, and
𝑛 is the sample size.

4 CASE STUDIES
To investigate the impact of various input features on the accuracy
of our predictive model, we conducted an ablation study. Initially,
we designed a series of multivariate models, each integrating unique
auxiliary features. Through comprehensive evaluation of these
models and varying the auxiliary features, we identified the optimal
multivariate LSTM model. To enhance prediction accuracy, we
refined the forecasting results using SARIMA, thereby creating a
hybrid model. The fusion of these models constituted our case study
and ultimately yielded corresponding results.

4.1 Ablation Study
We optimized the model parameters through a grid search pro-
cess and finally adopted an LSTM model with five layers, a 512-
dimensional hidden layer, a learning rate of 0.01, and an Adam
optimizer, using 72 historical time steps to predict the "Total Power"
variable. In our dataset, nine auxiliary features are incorporated:
power consumption of air conditioning and other electronic devices,
Wet and Dry Temperature, Humidity, and time-related features in-
cluding Hour, Day ofWeek, Day of Month, andMonth. To scrutinize
their impact, we conducted an ablation study.

Table 1 delineates the RMSE of all models on the test set, the
daily peak prediction RMSE, and the prediction error (in hours) for
the timing of daily peaks under each distinct feature set. Given that
the error for the occurrence time of daily peaks gravitates around
8 hours, an 8-hour corrective measure has been applied to adjust
the error.

The results compellingly demonstrate that the integration of
features relevant to the power consumption of other devices into
the model significantly augments the precision of peak value pre-
dictions. Nevertheless, the effectiveness of these features is largely
dependent on their interaction with others. Relying exclusively
on power consumption-related features does not yield satisfac-
tory results. Comprehensive experiments conducted on data from
three separate modules have manifested affirmative results, thereby
demonstrating the model’s robustness and versatility.

Upon inspection of the tables, it is evident that the RMSE for
predicting the specific value of the peak is approximately 0.273
when all features are incorporated, indicating commendable and
consistent performance. However, the prediction for the timing of
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Table 1: Results of the Ablation Experiment on Module A

Features Date/Weather Weather/Power Date/Power Full Date Weather Power

Test RMSE 0.766 0.368 0.323 0.261 0.314 0.747 0.794
Peak Value RMSE 0.295 0.314 0.192 0.273 0.328 0.495 0.834
Peak Time Error 0.089 0.043 0.051 0.041 0.031 0.030 0.441
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Figure 4: Prediction Performance of Sarima-LSTM Model

the peak shows room for improvement. Interestingly, when only
date-related or weather-related features are utilized for prediction,
the timing of the peak is forecasted with greater accuracy. Thus, the
selection of features can be tailored according to specific application
requirements.

4.2 Integrating LSTM Model with SARIMA
Based on the ablation study and prediction performance analysis,
it is clear that the integration of relevant features related to power
consumption and weather significantly improves the precision of
peak value predictions. However, the timing of the peak can be
further improved by utilizing specific sets of features. These findings
led us to refine our approach and propose an integrated hybrid
model combining LSTM and SARIMAmodels to enhance predictive
performance. This approach followed a series of sequential steps:

Initially, we utilized the training dataset to construct and train
the LSTM model which considers all the relevant features. The
model was then harnessed to generate forecasts for the test set,
yielding a set of initial predictions. The residuals, reflecting the
discrepancy between the LSTM forecasts and the actual values,
were subsequently computed. In the next phase, we harnessed
these residuals to train a SARIMAmodel. This model was leveraged
to predict the prospective residuals. The final predictions were
generated by amalgamating the SARIMA-predicted residuals with

Figure 5: Learning Curve

Table 2: Comparison of Predictive Performance between
LSTM and LSTM-SARIMA on each Module

Module A Module B Module C

LSTM

test RMSE 0.261 0.051 0.033
peak value RMSE 0.273 0.024 0.022
peak time error 0.041 0.041 0.019

LSTM+SARIMA

test RMSE 0.134 0.027 0.025
peak value RMSE 0.163 0.014 0.019
peak time error 0.037 0.059 0.063

the initial LSTM forecasts. This elegant integration yielded refined
forecasts, optimizing the predictive capabilities of our model.

Significant improvements were observed in the prediction of
peak load. As demonstrated in Table 2, we noted an increase in
prediction accuracy for both the load and peak load values.

While the overall performance of the combined model was com-
mendable, there was a minor deviation in predicting the timing
of peak load occurrences. However, considering the context and
the overall objectives of the analysis, this discrepancy remains rel-
atively small and may not significantly impact the usefulness of
the model’s predictions. To provide a visual representation of the
partial prediction performance, Figure 4 illustrates the model’s pre-
dictions compared to the actual values. The analysis of these results
aids in understanding the model’s strengths and limitations, en-
abling further refinement if necessary. Additionally, an analysis of
the observed learning rate curve, as depicted in Figure 5, revealed
that the model’s optimal prediction performance was generally
attained around 80 epochs. Therefore, during the application, the
training iteration should ideally be halted between 80 to 90 epochs.
Continuing training beyond this point would only consume more
computational resources without enhancing the model’s general-
ization ability.

5 CONCLUSION
We propose a novel approach for peak load forecasting in data
centers that combines the strengths of SARIMA and LSTM models
to significantly enhance prediction accuracy. By forecasting the
residuals of LSTM predictions with SARIMA and implementing
subsequent adjustments, we substantially improve the prediction
accuracy. Experimental evidence affirms the superior performance
of our model in peak load forecasting, providing data center propri-
etors with a potent tool for strategic decision-making, ultimately
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facilitating cost savings. Our model could also find potential use
in optimizing energy efficiency within dynamic load management
systems.
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