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ABSTRACT

Federated Learning (FL) is often impeded by communication over-
head issues. Prompt tuning, as a potential solution, has been in-
troduced to only adjust a few trainable parameters rather than
the whole model. However, current single-modality prompt tun-
ing approaches fail to comprehensively portray local clients’ data.
To overcome this limitation, we present Twin Prompt Federated
learning (TPFL), a pioneering solution that integrates both visual
and textual modalities, ensuring a more holistic representation of
local clients’ data characteristics. Furthermore, in order to tackle
the data heterogeneity issues, we introduce the Augmented TPFL
(ATPFL) employing the contrastive learning to TPFL, which not
only enhances the global knowledge acquisition of client models
but also fosters the development of robust, compact models. The
effectiveness of TPFL and ATPFL is substantiated by our extensive
evaluations, consistently showing superior performance compared
to all baselines.
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1 INTRODUCTION

The emergence of distributed learning systems has provided con-
siderable advantages across a wide range of domains. Nonetheless,
growing privacy concerns about distributed learning have neces-
sitated the advent of Federated Learning (FL) [2, 20], a framework
expressly developed to protect participants’ private information. In
FL, instead of uploading their private data, local clients share their
local model weights with a central server during each communi-
cation round. The server aggregates these models and circulates
them back to the local clients, thereby accomplishing the goal of
information consolidation.

Recently, FL has confronted a wealth of challenges, including
significant communication overheads [19, 26, 27] and data hetero-
geneity [13]. A variety of recent research initiatives have sought to
tackle these obstacles. Specifically, some have proposed innovative
efficient encoding and model compression algorithms to reduce the
communication cost, such as quantization to a continuous range
of values into a finite set and sparsification [24] to clip the full
gradient into a sparse one, as well as intelligent scheduling of client
participation [21] during the training process. Moreover, some in-
corporate the original FL framework with an additional step of
knowledge distilling [17] to contract larger models into smaller
ones, thereby enhancing the robustness of the global model.

Despite these strategies, certain inherent limitations persist. Pri-
marily, they require a substantial volume of labeled training sam-
ples, which may be unavailable to many clients in the FL environ-
ment, hindering effective training and resulting in model overfitting
[12]. In addition, notwithstanding the communication costs reduc-
tion achieved by these efficient methods, most IoT devices such
as smart home devices or industrial sensors, cannot accommodate
large backbone model training due to their limited processing pow-
ers [11], infinitesimal memory, and energy constraints. To illustrate,
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training a ResNet-50 model [9] involves intensive computation and
storage memory. It has approximately 25 million weight parame-
ters and computes 16 million activations in the forward pass. Even
after the communication-efficient algorithm to weights and activa-
tions, the total storage needed for saving ResNet-50’s intermediate
gradient results is over 7.5 GB for a mini-batch of 32 on a high-
performance GPU. Given the hardware constraints of typical IoT
devices, it is clear that they would struggle to support such intensive
computations and memory requirements.

To resolve these problems, current research is leaning towards
prompt tuning [14]. Unlike conventional fine-tuning methods in FL
that tune and aggregate full model parameters, applying prompt
learning in FL only adjusts soft prompts for corresponding down-
stream tasks, while keeping large backbone models static to dimin-
ish both the communication and computation costs. Back to the
ResNet-50 case, prompt tuning could save gradient results to just a
handful of MB, drastically decreasing the communication overhead.
However, most existing work only considers a single modality, fail-
ing to represent the local clients comprehensively. For instance,
Guo et al. [7] exclusively employs textual soft prompts to depict
the local clients without taking the visual knowledge into consider-
ation; yet, Feng et al. [5] leverages continuous visual prompts to
capture the image data information, disregarding text knowledge.
In contrast, our work proposes Twin Prompt Federated learning
(TPFL), a method resorting to both visual and textual modalities
for a more comprehensive representation of the local clients’ data
characteristics. First off, we find that merely combining two modal-
ities overlooks the potential for a unified approach. As such, we
devise Augmented TPFL (ATPFL) to fuse the contrastive learning
approach into the prompt tuning, facilitating the acquisition of
global knowledge by client models. To the best of our knowledge,
ATPFL is the first to integrate both textual and visual modalities
within the context of FL and use contrastive learning to connect
them. The contributions of this paper are threefold:

e We present an innovative FL framework named ATPFL, that
merges both visual and textual modalities for an improved
representation of local clients’ data characteristics, surpass-
ing existing work’s performance that only considers a single
modality.

e The incorporation of contrastive learning to prompt tuning,
enabling clients to acquire more global knowledge and im-
proving on the direct combination of modalities that may
overlook the potential for a unified approach. This is the first
work to integrate two modalities within the context of FL
and to utilize contrastive learning for their integration.

o Extensive evaluations have been conducted to ascertain the
effectiveness of TPFL and ATPFL. The results demonstrate
that ATPFL outperforms all the baselines.

2 RELATED WORKS

2.1 Communication Efficiency

Communication efficiency has always been a critical challenge in
the FL field. Different lines of research have been investigated to
tackle this challenge. Firstly, quantization[6] methods are used to
represent the full model parameters with lower bits. This tech-
nique involves converting the high-precision floating-point values
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of the model parameters into lower-precision values. For exam-
ple, stochastic quantization[1] adaptively adjusts the quantization
level in a stochastic manner. Secondly, sparsification methods im-
prove communication efficiency by directly reducing the number
of model parameters to be sent. More specifically, the sparsifica-
tion method selects an important subset of model parameters and
sets other insignificant parameters to zero before sending them
to the global server. Top-k sparsification and rank-k sparsification
are common sparsification methods[3]. Han et al.[8]proposed to
adaptively change the sparsification level to minimize overall train-
ing time. Shi et al.[25] introduced global-k sparsification to com-
press the down streaming communication from the server to the
clients. Thirdly, knowledge distillation is also investigated to allevi-
ate communication overhead[15]. Knowledge distillation methods
transfer knowledge from a larger teacher model to a smaller stu-
dent model. Examples of knowledge-distillation-based federated
learning are FedMD[15], FedDF[23], etc. However, all the afore-
mentioned strategies have a high resource requirement and can
hardly be implemented in IoT devices due to their limited hardware
restrictions.

2.2 Prompt Tuning

Houlsby et al. [10] proposed parameter-efficient transfer learning
with adapter modules. Liu et al. [18] showed that prompt-tuning
can match the performance of fine-tuning with only 0.1% - 3%
tuned parameters in the context of Natural Language Understand-
ing. Li and Liang [16] applied prefix-tuning to GPT-2 and BART for
downstream tasks and shows that prefix-tuning can outperform
fine-tuning in low-data settings. Guo et al. [7] proposed a feder-
ated learning framework for prompt-tuning called PromptFL.The
PromptFL framework leverages the power of federated learning,
which allows training prompts on decentralized data across mul-
tiple devices. In this work, only one modality text prompt is used
and the result shows that federated prompt tuning achieved better
performance compared to fine-tuning FL in many IID and non-IID
settings. Nonetheless, the existing research primarily focuses on
a single modality, constraining their capability to obtain more in-
formation of local clients. In this paper, we present to employ both
textual and visual representations to comprehensively characterize
the local client.

3 METHODOLOGY

This section begins by outlining the basic structure of FL. Subse-
quently, we introduce the TPFL which considers both visual and
textual information. Despite showing improvements, TPFL has cer-
tain inherent limitations. Therefore, we propose ATPFL to address
these shortcomings and achieve superior performance.

3.1 Problem Statement

In the general FL setting, the entail system envelops M clients, while,
in every round, K clients will actively participate, each possessing
a unique local dataset. Each local dataset on client k consists of n
samples, with each sample representing a pair, (xlk, yf ), of a data
feature x and its corresponding target label y. The primary objec-
tive of FL is to construct a global model parameter vector w that
minimizes the mean loss across all local datasets, as demonstrated
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Figure 1: This figure illustrates the pipeline of ATPFL with contrastive learning. In local training, the current prompt, previous
prompt, and received global prompt are passed to each modality encoder. After the encoding, two types of contrastive learning
are performed. Text contrastive loss and Visual contrastive loss use the feature extracted from the global prompt as positive
contrast and the feature extracted from the previous prompt as negative contrast. CLIP contrastive loss is computed with the

test prompt feature and the visual prompt feature.

in the following optimization problem:

1 K 1 n;
w = argmvinl? Z; - Z;.[Z (w;x;l,yh),
i= n=

where w denotes the weights of the prediction model, L is the loss
function.

)

3.2 Twin Prompt Federated Learning (TPFL)

As aforementioned CoOp [28] resorts to a series of continuous
learnable parameters as the textual prompts, replacing the manually-
designed constant ones. The textual prompt can be denoted as 7; =
{w1,w2,...,ci,..., 01}, where c; signifies the word embedding of
the ith image class names, w is a collection of learnable vectors,
denoted as {wilfle }, and L symbolizes the length of context words.
Importantly, the position of ¢; can be placed anywhere between
(1,L + 1). In the training process, the textual prompt will be fed
into a text encoder g(-), obtaining the textual feature as g; = g(t;).
Similarly, the visual feature f = f(x) is calculated by visual encoder
f. The final prediction probability is computed by the matching
score:

exp (sim (£.91) /T) "
Xjexp (sim (£, g;) /T)”
where I' € R is the temperature factor to control the overall dis-
tribution of the similarity between the embedding of the visual
feature and test feature.

Different from the previous work, which solely obtains a single
modal to represent a local client, our study introduces TPFL to
resort to two different modalities, vision and text, to enhance the
generalization capability and resilience of the global model. More
specifically, instead of relying on a constant input visual feature
x, we incorporate an additional trainable visual prompt v as an
extended representation for the local data characterization and con-
duct x + v to get the final input feature. As illustrated in Figure 1,

ply=cilx) =
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three templates of the visual prompt are employed: the padding,
random patch, and fixed patch patterns, each contributing to vary-
ing model performances. After acquiring both the textual and visual
prompts, each local client transmits them to the central server. The
server then aggregated the received prompts, in light of the number
of their training samples:

K n: K n:
1 1
Tg — E K—.Ti’ Ug — E Tvi. (3)
i=1 Zj:l nj i=1 Zij=11j

However, the naive aggregation of the uploaded model weights may
invite certain problems. To begin with, in practical scenarios, the
data distribution across multiple clients may not be independently
and identically distributed (IID). In other words, different clients
can host data with significantly divergent statistical characteristics.
The direct averaging of models struggles to effectively amalgamate
local models originating from these devices, owing to this non-IID
data distribution, and as a result, the performance of the global
model suffers. Moreover, data volume can significantly vary across
devices, with certain scenarios providing only a sparse dataset (only
a few data points are available). Conventional FL aggregation might
lack the robustness required to manage these few-shot learning sce-
narios, thereby complicating the process of discerning meaningful
patterns from such limited data.

3.3 Augmented TPFL (ATPFL)

To address these aforementioned challenges, we propose the in-
corporation of a contrastive learning strategy, thus fortifying the
robustness of FL. Specifically, we utilize the InfoNCE loss function
[22] to encourage the output distributions of both the local visual
and textual prompts to align closely with the output distribution of
the global model. This methodology fosters a better comprehension
of the global model by the local client, consequently mitigating the
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Algorithm 1 ATPFL

Input: The entire K clients are indexed by i € {1,2,...,K};
Ty and Tj,. is the number of global epochs and local epochs,
respectively, and « is the learning rate.

Server executes:

Initialize Tg, vg
foreachroundt=1,2,..., Ty do
for each client i in parallel do
r{”,vf” « ClientUpdate(i, Tt,U;)
end for
Aggregate the global prompts Tg”l, v;+1 by (3)
end for
ClientUpdate(i, T_‘;, v;):
for each local epoch from 1 to Tj,. do
Calculate the logits and loss for textual prompt and visual
prompt by (6) and (7), respectively
Update the local textual and visual prompts by:

t+1 t_ T o +1 t_ v
T ey ani Ui ey aVl’i
end for
Return Tit+1, vf” to the server

adverse effects of non-IID data. The key insight fueling this strat-
egy is that contrastive learning facilitates the distinction between
similar and dissimilar data points. It mitigates the discrepancies
among local models caused by non-IID data through the learning
of invariant features, making local models more amenable to aggre-
gation at the global level. The contrastive (InfoNCE) loss functions
for both textual and visual prompts are formulated in (4) and (5),
respectively:

exp (sim (zr,z¢_7) /T)

exp (sim (zT, zgj) /F) + exp (sim (ZT, zpj) /F)’
(4)

teon r = — log

exp (sim (zy, 2 ) /T)
exp (sim (2, z¢ o) /T) + exp (sim (2, 2p_v) /T)’
©)
where sim(-,-) function represents the similarity function, I' de-
notes the temperature function (with a little symbol abuse to (2)),
Zr, zp refer to the embedding of local textual and visual prompts,
and z4 ¢, z4 , represent the global textual and visual prompts. Af-
ter attaining the contrastive loss, the overall loss of the trainable
prompts can be calculated by:

teon v =— log

fiT = fcon(Wit;xi, yi) + chonir(Wit;Wl?_EW;;xi), (6)

' wgs xi), (7)
t—1
i

v t t t—
£ = Leon (Wi 5 X1, Yi) + pleon_v(Wjs w;

where f;o,, denotes the contrastive loss formulated in (2), w
represents the previous model, w_c’; denotes the global model, and
y represents a tuning factor to control the influence of #;on_r and
fcon_v- The overall training process of ATPFL is shown in Algo-
rithm 1.

4 EVALUATION

In this section, we perform intensive evaluations to verify the ef-
fectiveness of our proposed TPFL and ATPFL.
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4.1 Evaluation setup.

Few-shot Dataset and Data partition. Extended from
PromptFL[7] who only evaluates their model on four datasets,
we verify ATPFL in seven different datasets: Caltech-101 [4],
Oxford-Pets, Stanford Cars, OxfordFlowers-102, EuroSAT, UCF-101,
and Describable Textures (DTD). Furthermore, in order to create
the few-shot dataset, we set that each client has ny samples for
each class. For the majority of our evaluations, we choose n; = 4
meaning that each client has a four-shot dataset; besides, we
investigate the effect of the shot size in the ablation section. For
the non-IID setting in FL, we select the label-skewing method to
emulate the heterogeneous local clients.

Models Following the existing work, we choose the ResNet-50
(RN50) and Visual Transformer model (ViT) as the backbone of the
visual encoder, and the Transformer model as the textual encoder.

Baselines. In our evaluation, we compare ATPFL with the fol-
lowing baselines: (1) Local training, where all clients train their
own models in an offline manner, and no model transmission is
conducted; (2) PromptFL, using only the textual modality; (3) TPFL,
employing both the textual and visual modalities, but no InfoNCE
loss.

Implementation details. To prevent the influence of random-
ness and ensure the fairness of our evaluations, each experiment
setting has been performed in three identical random seeds, and
then we average the results to get the final result. We use the Adam
optimizer with learning rate ¢ = 1e — 3, and the Cosine scheduler
with maxepoch = 20. Furthermore, For the implementation environ-
ment, we conduct our code on Python version 3.11.0 and Pytorch
1.13.0. We also use 4 NTX NVIDIA A6000 GPUs to run our code.

4.2 Main results

In this section, the experimental outcomes are assessed. Table 1
and Table 2 present the average test accuracy for ViT and RN50
backbones across seven diverse datasets in a non-IID setting. Both
PromptFL and ATPFL consistently surpass local training, with mar-
gins extending up to 18.5%. This is intuitive, as local training or
full-model fine-tuning may lead to catastrophic forgetting. This is-
sue is exacerbated by client data heterogeneity. These compounded
factors significantly impede fine-tuning performance in the feder-
ated learning context, necessitating the exploration of PromptFL
and ATPFL. For ViT, TPFL excels over PromptFL in six of the seven
datasets, with margins spanning 0.1% - 6.2%, except for UCF-101
where TPFL lags by 0.2%. When factoring in the standard error of
test accuracy across multiple experiments, TPFL’s advancements
over previous methods are noticeable. Despite TPFL’s success, limi-
tations persist, leading to the proposal of ATPFL to better address
these issues. Our ATPFL model outperforms the baseline by 0.4% -
1.1% across all datasets, illustrating ATPFL’s potential to mitigate
data heterogeneity in prompt federated learning scenarios.

In the ResNet-50 tests, TPFL outperforms local training and
PromptFL in six of the seven datasets, except for the EuroAT dataset.
Our ATPFL continues to surpass TPFL in four of the seven datasets,
except for Oxford-Pets and DTD where ATPFL trails TPFL by 0.2%
and 0.5% respectively. This could be due to the model disparities
between ViT and ResNet-50.
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Table 1: Test Accuracy (%) Results for ViT model on 7 datasets with 5 different seeds.

Algorithm (ViT) || Caltect-101 Flowers-102  Oxford-Pets DTD EuroSAT Stanford Car UCF-101
Local Training 86.9.0.03 58.740.04 83.640.02 37.84001 25.840132 59.540.12 61.3.0.06
PromptFL[7] 89.740.01 67.6.0 01 88.540.07 429,008 48.1:022 63.040 01 66.10 02
TPFL 90.640.01 68.910 01 89.1+0.00 43.04007 54.310.29 63.4.10 01 65.9.0.02
ATPFL (ours) || 91.3.001 69.6.0 01 89.5. 001 441,001 54.9.09 63.8.0 00 66.5.001
Table 2: Test Accuracy (%) Results for ResNet-50 model on 7 datasets with 5 different seeds.
Algorithm (RN50) ” Caltect-101 Flowers-102 Oxford-Pets DTD EuroSAT Stanford Car UCF-101
Local Training 63.1.037 18.712.61 30.8.4.33 225021 19.2.0.01 20.1.0.93 343,036
PromptFL[7] 84.8.0.04 58.7+0.01 85.310.04 35.740.03 33.4.0.03 52.9.0.02 57.840.07
TPFL 85.2:0.02 59.6.0.01 85.6.002 37.4.003 32.2:004 53.8.0.01 58.2.40.03
ATPFL (ours) || 85.6.002 60.5.0 .00 85.4.0.04 36.9.003 32.2.001 54.1.001 59.3.0.04
In conclusion, our proposed ATPFL, leveraging the concept of R Acaurecy B Frscore i
contrastive learning, offers superior performance in handling data
heterogeneity. These results corroborate our prior discussions in . 90.3% 90.5% 20.3%
the methodology section. P
88.6% 88.7%
4.3 Ablation study 5705 =
In this section, we examine various factors influencing our model’s
performance, including the application of InfoNCE loss, number of
shot size, and client quantity.
InfoNCE loss. First off, we investigates the impact of InfoNCE
loss (i.e., the difference between TPFL and ATPFL). As illustrated 1 2 4 8 16
Number of Shots

in Table 1 and Table 2, ATPFL shows a clear advantage compared
to TPFL. In 11 out of 14 experiments, ATPFL outperforms TPFL by
a margin of up to 1.1%.

Shot size. Second, we explore the impact of shot size, and Fig-
ure 2 demonstrates a monotonic increase in the Fl-score as the
number of shots rises, with the F1-score in a 16-shot scenario ex-
ceeding that of a 1-shot scenario by 2.3%. Moreover, despite the
absence of a consistent increase, accuracy still trends upward with
an increasing number of shots. Even at a 1-shot scenario, ATPFL ex-
hibits substantial performance (90.2% accuracy and 87.8% F1-score),
but greater shot numbers offer additional potential performance
benefits due to the increased feature information provided at each
learning round.

Client volume. Lastly, the ablation study examines the effect of
the number of clients. Figure 3 reveals a decline in both accuracy
and the F1-score as the client number rises, with a tenfold increase
in clients (from 10 to 100) decreasing accuracy and the F1-score by
2.1% and 3.2%, respectively. However, even with a larger number of
clients, ATPFL maintains reasonable performance, achieving 86.1%
accuracy in a 100-client scenario.

5 CONCLUSION

In this paper, we propose an FL framework, TPFL, which first con-
siders both visual and textual information in prompt tuning to
augment the global model in FL. Notwithstanding, the performance
improvement offered by TPFL is limited due to data heterogeneity.
To address this issue, we developed ATPFL to facilitate local clients
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Figure 2: This figure illustrates how shot number affects the
model accuracy and F1-score

9 W Accurac M Fl-score
88.2% 88.0% 4

86.7%
86.2% 86.1%
85.7% 85.6%
84.9%
83.3%
82.6% 82.5%
82.0%
10 20 40 60

80 100

Number of Clients
Figure 3: This figure illustrates how client number affects
the model accuracy and F1-score

in obtaining more information from the global model, thereby en-
hancing their representing performance. A series of experiments
have been conducted to validate the effectiveness of our methods,
demonstrating that ATPFL consistently outperforms all baseline
methods across various datasets and scenarios.
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