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ABSTRACT
Modern Visual-Based Tactile Sensors (VBTSs) use cost-effective
cameras to track elastomer deformation, but struggle with ambient
light interference. Solutions typically involve using internal LEDs
and blocking external light, thus adding complexity. Creating a
VBTS resistant to ambient light with just a camera and an elas-
tomer remains a challenge. In this work, we introduce WStac, a
self-illuminating VBTS comprising a mechanoluminescence (ML)
whisker elastomer, camera, and 3D printed parts. The ML whisker
elastomer, inspired by the touch sensitivity of vibrissae, offers both
light isolation and highML intensity under stress, thereby removing
the necessity for additional LED modules. With the incorporation
of machine learning, the sensor effectively utilizes the dynamic
contact variations of 25 whiskers to successfully perform tasks like
speed regression, directional identification, and texture classifica-
tion. Videos are available at: https://sites.google.com/view/wstac/.
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1 INTRODUCTION
As humans and robots interact with the environment, they amass a
vast amount of physical information through visual, auditory, and
tactile perception [19]. In comparison to visual and auditory senses,
tactile perception provides a superior recognition of surface charac-
teristics encountered during the interaction, such as geometry [17],
temperature [1], hardness [36], materials and texture [26], etc. To
this end, tactile sensors based on different working mechanisms,
including piezoresistive [10], resistive [38], capacitive [28], piezo-
electric [35], triboelectric [7] and optical [9], have been proposed
and applied to improve the intelligence level of human-machine
interface (HMI) devices and robots [32]. Particularly, a subclass of
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Figure 1: (a) Schematic illustration of the WSTac; (b) Tri-
layered elastomer : ML Whisker; (c) ML whisker array; (d)
Imaging of ML generated from ML whisker.

optical tactile sensors, Vision-Based Tactile Sensors (VBTSs), can
obtain high-resolution tactile information with low-cost cameras
to detect the deformation of the elastomer internally [37].

Over the last two decades, research in VBTS has surged. Notable
examples like GelForce [16], Gelsight [20], TacTip [33], have been
utilized to distinguish surface properties upon contact [8, 22]. In
the field of robotics, numerous gripper designs incorporating VBTS
have emerged [34]. When paired with state-of-the-art deep learning
algorithms, these grippers enable the execution of complex tasks, in-
cluding precise control of USB cables [31], and oropharyngeal swab
sampling [21]. Furthermore, recently in the domain of HMI, VBTS
has also been combined with wearable devices, creating handheld
underwater salvage equipment with high-resolution tactile feed-
back, assisting people in search and grasp activities when vision is
not available [23].

Despite the robustness of VBTS to influences such as temper-
ature, magnetic fields, electric fields, and humidity, susceptibility
to ambient light remains a concern as extraneous light sources
can affect sensor stability. Therefore, recent mainstream VBTS re-
searches mitigate this limitation by blocking external light, and
introducing an internal LED lighting module to illuminate the sen-
sor interior. These methods enable the camera to capture elastomer
deformation. However, the additional module of LED requires extra
electronic components and complex wiring, which leads to unnec-
essary energy consumption 1 and heat generation. Thus, it is an
open problem to design an ambient light-resistant VBTS without
equipping it with LEDs [30].

To address the above challenges, we propose WSTac, a selfillu-
minating VBTS with solely a camera and an elastomer. Specifically,
the WSTac integrates a camera, 3D printed parts, and a mechanolu-
minescence (ML) whisker elastomer which emits light upon experi-
encing mechanical stress, serving as a key attribute of the design.
The ML whisker elastomer derives its inspiration from vibrissae,

1The power consumption of the Omnivision OVM7692 camera used in the commercial
VTBS DIGIT [18] is 0.12W. Moreover, according to the authors’ tests, the power
consumption of DIGIT exceeds that of OVM7692 by more than twice, due to the
additional energy consumption introduced by LEDs and PCB circuits.

tactile hairs found in many mammals, recognized for their sensi-
tivity to fluctuating contact variations. The ML whisker elastomer
is a tri-layered composite with three distinct functions: external
light isolation, emission of light upon deformation (ML), and light
guidance towards the sensor. As shown in Fig. 1a, WSTac employs a
whisker array and a camera to obtain dynamic tactile data, without
requiring LED modules, due to the elastomer’s ML upon deforma-
tion. WSTac’s feature extraction algorithm compresses the tactile
image into a ten-channel time-series signal, detailing the dynamic
contact variations of 25 whiskers in real-time [2]. Its hardware
and algorithm performance has been verified via classical tactile
tasks. When paired with fundamental machine learning algorithms,
WSTac successfully recognizes sliding direction, sliding speed, tex-
ture pattern and texture depth. The contributions of our work can
be delineated across four dimensions:
• A novel sensor hardware design for VBTS, using only a
camera and elastomer, immune to ambient light interference.
• Bionics-inspired tri-layered whisker array elastomer enables
ML for dynamic tactile perception in open environments.
• A real-time algorithm with a novel feature extraction tech-
nique for VBTS lowers the computational cost by reducing
complexity from Θ(𝑖 × 𝑗) to Θ(𝑖 + 𝑗).
• Qualitative and quantitative results indicate outstanding per-
formance of theWSTac on speed regression, directional iden-
tification, and texture classification.

2 DESIGN AND SENSING PRINCIPLES
2.1 Mechanoluminescent Sensing Mechanism
ML, defined as the emission of light stimulated by mechanical
stress, shows great potential for real-time stress sensing applica-
tions [14, 29, 40]. It offers capabilities such as visualizing stress
distribution, remote sensing, dynamic response, and self-powered
operation. These capabilities makeML-based stress sensing a highly
attractive research area in both academia and industry [24, 27, 39].
Notably, ZnS:Cu, a type of ML material, displays an exceptionally
low threshold for ML initiation, making it a desirable choice for
inclusion in sensing mechanisms [13, 15].

Figure 2: (a) i: ML intensity with ZnS:Cu concentrations; ii:
Imaging of ML elastomer before stretching; iii: Imaging of
ML elastomer under stretching; (b) Stress–strain of ML films
with ZnS:Cu; (c) COMSOL simulation of whisker bending.
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2.1.1 Preliminary Experiments. The initial set of experiments, dis-
played in Fig. 2a.ii and iii, utilize sample films composed of ZnS:Cu
mixed into a SORTA-ClearTM 37 (SC37). These investigations, con-
ducted in a light-insulated environment, delve deeply into the
film stretch ML. To quantify the ML characteristics, we employ
a Prtronic flexible electronics tester and a spectrometer, subjecting
the ML film samples to tensile and compressive forces. Experiments
proceed at a steady speed of 40 mm/s, stretching the samples from
20 mm to 32 mm. ML intensity, captured by a NOVA spectrometer,
reveals variations with different ZnS:Cu𝑤𝑡 %, as seen in Fig. 2a.i.
TheML intensity exhibits a monotonic increase when the concentra-
tion is amplified from 20𝑤𝑡 % to 60𝑤𝑡 %. Moreover, an experiment is
conducted to confirm the linear relationship between ML intensity
and applied force in a film comprising 50 wt% of the material (inset
of Fig. 2a.i), which shows suitability for dynamic stress sensing.
Furthermore, Fig. 2b illustrates the mechanical properties of the
film under varying concentrations of ZnS:Cu, tested in compliance
with ISO 37 standards using the Universal Testing Machine. It is
observed that the mechanical properties undergo a monotonic de-
crease with an increase in the concentration from 20𝑤𝑡 % to 60𝑤𝑡 %.
This trend suggests a transition in the material’s behavior from
ductile to brittle as illustrated by the dashed line. After consider-
ing both toughness and ML properties, we select a composition
of 50𝑤𝑡 % ZnS:Cu and SC37 as the luminescent layer suitable for
tactile sensing applications.

2.2 Tri-Layered Whisker Elastomer Array
2.2.1 Design of the Biomimetic Sensing Elastomer. Vibrissae, or
whiskers, equip mammals with an enhanced tactile sense [6, 11].
The vibrissae’s high sensitivity and rapid response time render
them particularly advantageous in object recognition, notably in
poorly lit environments. Rodents, for example, primarily rely on
vibrissae for navigation and predation [3].

Our sensor design mimics this animalistic exploration method,
utilizing a flexible, biomimetic ML whisker-structured elastomer. In
ourMLwhisker array design, we considered the bendingmoment of
a vibrassae. To be more specific, within our sensor array’s whiskers,
the forces are transmitted down each whisker column, emulating
the transfer along a vibrissae. Sensory mechanoreceptors within the
vibrassae follicle convert the movement of the vibrassae shaft into
environmental contact data. Similarly, each whisker base within
our sensor array emulates these sensory mechanoreceptors, with
the photon emission and signal detection.

The dynamic simulation in Fig. 2c, using COMSOL Multiphysics,
explains the ML mechanism in the whisker structure. The model
involves an acrylic sphere of 0.5 mm radius sliding across a single
1×5 mm SC37 whisker (fixed at the base) at 0.1 m/s. The simulation
result at 0 s, 1 s, and 2 s confirms the expected outcome of significant
mechanical strain at the base of a single whisker, which is primarily
responsible for the emission of ML photons.

2.2.2 Farbrication of the Elastomer. SC37 is employed in all elas-
tomer layers, albeit with minor adjustments for their respective
functions as displayed in Table 1. All layers are mixed uniformly in
a Planetary Centrifugal Mixer (THINKY MIXER ARE-310).

During the fabrication of the ML whisker elastomer, elastomer
molding is exploited. As indicated in Fig. 3, the mold consists of five

Table 1: Material composition of each elastomer layer.

Layer Composition (wt%)
External (Light absorbing) SC37 (98), Slic Pig (2)
Middle (ML) SC37 (50), ZnS:Cu (50)
Innermost (Light transmitting) SC37 (100)

3D printed parts: the internal fork and filters, the external fork and
filter, and a base mold shaping the elastomer into whisker-like form.
The external fork and filter shape the external layer with spaces for
the middle layer. Similarly, the internal counterparts allow room
for the inner light transmission layer.

Figure 3: The fabrication process of ML whisker and WSTac.

The construction of the ML whisker elastomer sensor includes
the following: Firstly, the external layer is transferred onto the base
mold and vacuumed at 30 kPa to remove bubbles. The external
fork is placed onto the mold, initiating the external layer’s inner
structure, with the filter securing the fork. Upon solidification, the
external fork and filter are detached from the base mold while
keeping the external layer in its position. The middle layer is then
poured on top of the external layer and vacuumed. The internal fork
and filter shape the middle layer and are removed after hardening.
Subsequently, the innermost layer is added, with existing slots
providing shape. No additional forks or filters are needed. Following
the solidification of the innermost layer, the ML whisker elastomer
is de-molded and ready for system integration. Consequently, the
fabrication process is cost-efficient, amounting to 12 USD.

2.3 Mechanical Design
The WSTac system comprises five key components: the cover, the
ML whisker elastomer, a convex lens, a tunnel, and a camera.

The cover secures the ML whisker elastomer at the top of the
tunnel by sandwiching it between itself and a convex lens. Shared
M3 screw holes connect these components, enabling easy part
replacement and facilitating task-specific elastomer incorporation.

Both the convex lens and the outer shell boast a curvature of 30°,
a design choice intended to maximize the whiskers’ exposure to
varying deflection directions and optimize their contact positioning.
The photon generation process within the ML whisker elastomer
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is shielded from environmental influences as the photons are chan-
neled through the protective tunnel, ensuring the camera captures
photon signals without significant signal loss.

Secured at the tunnel base using M3 screws, is a custom made
low-cost 30 fps camera module with a resolution of 1280 × 720. A
connector affixed to the base of the tunnel allows for the WSTac
system to be attached to a robotic arm.

2.4 Algorithms
WSTac’s software component effectively identifies and extracts
tactile signals from 25 taxels (ML whiskers) with camera imaging.
It is achieved through pin identification in real-time tactile imagery
with a resolution of 400 × 400. The real-time pin identification rec-
ognizes taxels equivalent to 50-unit squares. From Fig. 2a given
that taxels emit mainly green light, we generate time-series sig-
nals O(𝑡)= {𝑜𝑖, 𝑗 (𝑡)}𝑖, 𝑗=1,2,...,5 by calculating the mean of the green
channel for all pixels within each taxel and normalizing each by
255, where 𝑖 signifies row and 𝑗 denotes column.

In feature extraction, we aim to minimize the dimensions of
multivariate time series, while differentiating four key parameters:
direction, speed, and the pattern and depth of the surface. Our
method is inspired by the electronic tactile sensor array’s function-
ing [25], which uses a row+column electrode structure to eliminate
crosstalk and reduce the number of connection wires from 𝑖 × 𝑗 to
𝑖+ 𝑗 . We adopt a similar approach for VTBS to decrease the algorithm
complexity from Θ(𝑖 × 𝑗) to Θ(𝑖 + 𝑗). Regardless of whether WSTac
slides vertically or horizontally, the directionally-relevant sums of
O(𝑡) allow us to identify the speed, specimen’s pattern and depth.
Thus feature signals F(𝑡)= {𝑓𝑘 (𝑡)}𝑘=1,2,...,10 can be calculated as:

f𝑘 (𝑡) =


ln

(
5∑
𝑗=1

𝑜𝑘,𝑗 (𝑡)
)
, 𝑘 = 1, 2, 3, 4, 5

ln
( 5∑
𝑖=1

𝑜𝑖,𝑘 (𝑡)
)
, 𝑘 = 6, 7, 8, 9, 10

(1)

These features not only contain the sliding direction information
but also reduce the original 25 time-series to 10. Fig. 4 exhibits
WSTac’s event-driven tactile feature extraction process.

Figure 4: Feature extraction pipeline of WSTac. (From tactile
images to multivariate time series. )

Furthermore, for enhancing data utilization, based on sliding
windows method, WSTac can autonomously detect valid tactile
signals. The camera captures tactile images for each frame 𝑡 . From
these images, F(𝑡) is extracted by Eqn. (1). Prior to the WSTac
making contact with the surface, we compute the sum values within

a sliding window and get the average values across the first five
windows for each feature signal [𝑘 . While the WSTac remains
active, if any of the 𝑓𝑘 (𝑡) meets the trigger condition, Eqn. (??),
tactile sample signals X ∈ R10×𝑙 of fixed length 𝑙 = 70 can be
obtained for application or further processing. To avoid resampling
the same signal, the sliding window is suppressed within 𝑙 frames.

Algorithm 1 describes the event-driven tactile data collection
process. Here,𝑚 is the width of sliding window, 𝑐 refers to the num-
ber of frames to backtrack and 𝑏 is the threshold trigger multiplier.

Algorithm 1 Event-Driven Tactile Data Collection Method

Input: Feature signals F(𝑡) - per frame 𝑡 from Eqn. (1);
1: WSTac initialization 𝑡 = 0
2: for 𝑘 ← 1 to 10 do
3: [𝑘 =

∑5·𝑚−1
𝑤=0 𝑓𝑘 (𝑡 +𝑤)/5

4: end for
5: 𝑡 ← 𝑡 + 5 ·𝑚
6: whileWSTac is active do
7: for 𝑘 ← 1 to 10 do
8: if

∑𝑚−1
𝑤=0 𝑓𝑘 (𝑡 +𝑤) > 𝑏 · [𝑘 then

9: X← [F(𝑡 − 𝑐), . . . , F(𝑡 + 𝑙 − 𝑐 − 1)}]
10: 3 tactile perception tasks or dataset← X
11: 𝑡 ← 𝑡 + 𝑙
12: break for
13: end if
14: 𝑡 ← 𝑡 +𝑚
15: end for
16: end while

Figure 5: Experimental setup: (a)WSTac attached to a 6-dof
industrial robot arm (UR5) and 10 3d-printed textures; (b)
The sliding path for experiments; (c) Design of experiment
specimens; (d) Data processing pipeline for application.

3 EXPERIMENT AND RESULT
We establish an experimental platform to study WSTac’s sliding
behaviour on diverse 3D printed specimens under varying condi-
tions. Fig. 5a illustrates the complete setup, featuring a six degrees
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of freedom robotic arm (UR5) with a WSTac, and ten textured spec-
imens. As shown in Fig. 5b, the robotic arm collects data along a
fixed trajectory to perform the following three tasks.

3.1 Speed Regression
We determine the sliding speed of WSTac by analyzing the total
luminescence duration. X from eleven different sliding velocities
V= {100 mm/s, 110 mm/s, . . . , 200 mm/s} are analyzed, with five
samples each, along a predetermined trajectory.

The total luminescence duration for each speed is obtained by
first employing a threshold value of 0.0475 to distinguish valid from
invalid frames within the signal. Frames exceeding the threshold
are considered valid. Within these valid frames, a non-zero sum of
signal values at each frame 𝑡 indicates valid data. The signal start
and end times are identified as the first and last occurrences of
valid data respectively, as shown in Fig. 6a. The total luminescence
duration (Event Duration) is subsequently calculated by subtracting
the start time from the end time.

Our study, as shown in Fig. 6b, reveals a negative correlation
between sliding speed and event duration, represented by the log-
arithmic regression model 𝑦=151.06 − 56.29 𝑙𝑜𝑔(𝑥). The slope of
−56.29 signifies that higher Sliding Speed leads to a proportional
decrease in Event Duration, supported by our model’s strong coef-
ficient of determination value of 0.99.

3.2 Directional Identification
Data from four sliding directions D = {0◦, 90◦, 180◦, 270◦} is de-
picted in Fig. 6c, visualized in either sequential or reverse order
within rows or columns. The luminescence sequence distinguishes
between +®𝑦 and −®𝑦 on the y-axis and +®𝑥 and −®𝑥 on the x-axis.
+®𝑦 is represented by a reverse order in the row list, while −®𝑦 is
represented by a sequential order. Similarly, +®𝑥 corresponds to a
sequential order in the column list, while −®𝑥 corresponds to a re-
verse order. Ultimately, these variations in luminescence sequence
successfully determine distinct sliding directions.

3.3 Texture Classification
For texture recognition, we design ten specimens with uniform
geometrical dimensions and depths on their contact surfaces. Fig. 5c
shows their patterns, inspired by common waveforms including flat,
abs-sinc, sawtooth, triangle (P = {Fla, Sin, Saw,Tri}). For non-flat
patterns, we set the texture depth (R= {0 mm, 2 mm, 3 mm, 4 mm})
as half the periodic lengths, with R=0 mm corresponding to P=Fla.

The robotic arm slides along a preset trajectory 100 times for
each specimen. Each sliding generates a tactile signal X of fixed
length, which is automatically assigned corresponding labels Y.
The collected X data from each specimen is compiled into a dataset,
which can be used to train machine learning models for predicting
the ten 3D printed specimens, pattern P, and depth R.

To showcase WSTac’s outstanding performance and facilitate
real-time deployment of the model, we utilize three classic machine
learning models: Linear-SVM [5], Random Forest [12] , and Xg-
boost [4]. The dataset is split into training and test sets at a 9:1
ratio. We build separate models for the three classification tasks (10
specimens, patterns P, and depths R).

Test accuracy is used as a metric to evaluate the models. Table 2
shows that high-precision classification could be achieved for each
task using machine learning models, negating the necessity for com-
putationally expensive deep learning networks. This validates the
effectiveness of our sensor design and feature extraction algorithms
in harvesting high-quality dynamic tactile information.

Table 2: Texture classification results in 100 test samples.

Label (Num of class) Linear-SVM Random forest Xgboost
Specimens (10) 83% 94% 95%
Patterns (4) 91% 98% 97%
Depths (4) 92% 99% 98%

4 CONCLUSIONS AND DISCUSSIONS
In this study, we demonstrate WSTac: a VBTS that does not require
LED modules, yet successfully replicates the fundamental function-
alities of a typical VBTS. Experiments show that WSTac exhibits
impressive precision across three tactile tasks.

Although this work focuses on showcasing the basic sensory
capabilities of VBTS, we believe it is of significant importance to
the research in this field. WSTac represents an experimental foray
outside the traditional VBTS paradigm. Our vision for the future in-
volves integrating WSTac into robotic grippers or human-machine
interfaces, coupled with advanced algorithms, to potentially surpass
the performance of LED-equipped VBTS in certain applications.
Enhancements could include the integration of a charge-coupled
device, a high-speed camera, or boosting the ML properties.
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