
Learning Graph Neural Networks using Exact Compression
Jeroen Bollen

jeroen.bollen@uhasselt.be

UHasselt, Data Science Institute

Belgium

Jasper Steegmans

jasper.steegmans@uhasselt.be

UHasselt, Data Science Institute

Belgium

Jan Van den Bussche

jan.vandenbussche@uhasselt.be

UHasselt, Data Science Institute

Belgium

Stijn Vansummeren

stijn.vansummeren@uhasselt.be

UHasselt, Data Science Institute

Belgium

Abstract
Graph Neural Networks (GNNs) are a form of deep learning that

enable a wide range of machine learning applications on graph-

structured data. The learning of GNNs, however, is known to pose

challenges for memory-constrained devices such as GPUs. In this

paper, we study exact compression as a way to reduce the memory

requirements of learning GNNs on large graphs. In particular, we

adopt a formal approach to compression and propose amethodology

that transforms GNN learning problems into provably equivalent

compressed GNN learning problems. In a preliminary experimental

evaluation, we give insights into the compression ratios that can

be obtained on real-world graphs and apply our methodology to

an existing GNN benchmark.

1 Introduction
Whereas Machine Learning (ML) has traditionally been most suc-

cessful in analyzing traditional unstructured data such as text or

images, ML over structured data such as graphs has become an ac-

tive area of research in the past decade. In particular, Graph Neural

Networks (GNNs for short) are a form of deep learning architectures

that enable a wide range of ML applications on graph-structured

data, such as molecule classification, knowledge graph completion,

and web-scale recommendations [3, 9, 11, 12, 25]. At their core,

GNNs allow to embed graph nodes into vector space. Crucially, the

obtained vectors can capture graph structure, which is essential for

the ML applications already cited.

While GNNs are hence an attractive mechanism for ML on

graphs, learning GNNs is known to be resource-demanding which

limits their scalability [23, 28]. In particular, for large graphs it

becomes difficult to encode all the required information into the

limited memory of hardware accelerators like GPUs. For this reason,

scalable methods for learning GNNs on large graphs are an active

subject of research (e.g., [5, 6, 8, 12, 14, 17, 18, 20–22, 26, 27]). Broadly

speaking, we can identify three different principles for obtaining

scalability in the literature: (1) distributing computation across mul-

tiple machines or GPUs [8, 17, 18, 20, 22, 26, 27]; (2) learning on a

sample of the input graph instead of the entire graph [5, 12, 14];

and (3) compression [6, 8, 16, 21]. Compression-based approaches

limit the memory requirements of learning GNNs on large graphs

by reducing the input graph into a smaller graph and then learn on

this smaller, reduced graph instead. In this paper, we are concerned

with compression.

Compression methods are based on collapsing multiple input

nodes into a single reduced node in the compressed graph. Methods

vary, however, in how they collapse nodes. For example, Deng et

al. [6] use spectral analysis for this purpose; Liang et al. [16] use

variants of multi-level graph partitioning; and Generale et al. [8],

who specifically consider knowledge graphs, use general heuristics

(such as two nodes having equal set of attributes) or bisimulation.

While these methods give intuitive reasons to argue that the struc-

ture of the obtained compressed graph should be similar to that of

the original graph, no formal guarantee is ever given that learning

on the compressed graph is in any way equivalent to learning on

the original graph. Furthermore, the methods are usually devised

and tested for a specific GNN architecture (such as Graph Con-

volutional Networks, GCN). It is therefore unclear how they fare

on other GNN architectures. Inherently, these methods are hence

heuristics. At best the compressed graphs that they generate ap-

proximate the original graph structure, and it is difficult to predict

for which GNN architectures this approximation is good enough,

and for which architectures it poses a problem.

Towards a more principled study of learning GNNs on com-

pressed graphs, we propose to take a formal approach and study

exact compression instead. We make the following contributions.

(1.) We formally define when two learning problems involving

graph neural networks are equivalent. Based on this definition,

our goal is to transform a given problem into a smaller, equivalent

problem based on compression. (Section 2.)

(2.) We develop a compression methodology that is guaranteed to

always yield an equivalent learning problem and that is applicable

to a wide class of GNN architectures known as aggregate-combine

GNNs [2, 10, 11]. This class includes all Graph Convolutional Net-

works [11]. Our methodology is based on recent insights into the

expressiveness of aggregate-combine GNNs [19, 24]. These results

imply that if the local neighborhoods of two nodes 𝑣,𝑤 in input

graph𝐺 are equal, then any GNN will treat 𝑣 and𝑤 identically. We

may intuitively exploit this property for compression: if 𝑣 and 𝑤

are treated identically there is no need for them both to be present

during learning; having one of them suffices. We fully develop this

intuition in Section 3, where we also consider a more relaxed notion

of “local neighborhood” that is applicable only to specific kinds of

aggregate-combine GNNs.

(3.) We empirically evaluate the effectiveness of our methodology

in Section 4. In particular, we give insights into the compression

ratios that can be obtained on real-world graphs. While we find

that these ratios are diverse, from compressing extremely well to

ar
X

iv
:2

30
4.

14
79

3v
1

 [
cs

.L
G

]
 2

8
A

pr
 2

02
3

https://orcid.org/0000-0002-8881-5241
https://orcid.org/0000-0003-2087-9430
https://orcid.org/0000-0003-0072-3252
https://orcid.org/0000-0001-7793-9049

Jeroen Bollen, Jasper Steegmans, Jan Van den Bussche, and Stijn Vansummeren

compressing only marginally, a preliminary experiment on an exist-

ing GNN benchmark shows positive impact on learning efficiency

even with marginal compression.

We start with preliminaries in Section 2 and conclude in Section 5.

Proofs of formal statements may be found in the Appendix.

2 Preliminaries
Background. We denote by R the set of real numbers, byN the set

of natural numbers, and by N∞ the set N∪ {∞} of natural numbers

extended with infinity. We will use double curly braces {{. . .}} to
denote multisets and multiset comprehension. Formally, we view a

multiset over a domain of elements 𝑆 as a function𝑀 : 𝑆 → N that

associates a multiplicity 𝑀 (𝑥) to each element 𝑥 ∈ 𝑆 . As such, in
the multiset𝑀 = {{𝑎, 𝑎, 𝑏}}, we have that𝑀 (𝑎) = 2 and𝑀 (𝑏) = 1. If

𝑀 (𝑥) = 0 then 𝑥 is not present in𝑀 . We denote by supp(𝑀) the set
of all elements present in𝑀 , supp(𝑀) := {𝑥 ∈ 𝑆 | 𝑀 (𝑥) > 0}. Note
that if every element has multiplicity at most one, then𝑀 is a set.

If𝑀 is a multiset and 𝑐 ∈ N∞ then we denote by𝑀 |≤𝑐 the multiset

obtained from𝑀 by restricting the multiplicity of all elements to

be at most 𝑐 , i.e.,𝑀 |≤𝑐 (𝑥) = min(𝑀 (𝑥), 𝑐), for all elements 𝑥 . Note

in particular that𝑀 |≤+∞ = 𝑀 and that𝑀 |≤1 converts𝑀 into a set.

Graphs. We work with directed node-colored multigraphs. For-

mally, our graphs are hence triples𝐺 = (𝑉 , 𝐸,𝑔) where 𝑉 is a finite

set of nodes; 𝐸 is a multiset of edges over𝑉 ×𝑉 ; and 𝑔 is a function,

called the coloring of 𝐺 , that maps every node 𝑣 ∈ 𝑉 to a color

𝑔(𝑣). (The term “color” is just an intuitive way to specify that 𝑔 has

some unspecified range.) If 𝑌 is the co-domain of 𝑔, i.e., 𝑔 is of the

form 𝑔 : 𝑉 → 𝑌 then we also call 𝑔 a 𝑌 -coloring and say that 𝐺 is a

𝑌 -colored graph, or simply a 𝑌 -graph. When 𝑌 = R𝑛 we also call

𝑔 an 𝑛-dimensional feature map. To ease notation we write 𝑣 ∈ 𝐺
to indicate that 𝑣 ∈ 𝑉 . Furthermore, we write 𝐺 (𝑣) instead of 𝑔(𝑣)
to denote the color of 𝑣 in 𝐺 , and we write 𝐺 (𝑣 → 𝑤) instead of

𝐸 (𝑣 → 𝑤) to denote the multiplicity of edge 𝑣 → 𝑤 in 𝐺 . When

𝐸 is a set, i.e., when every edge has multiplicity at most one, then

we also call 𝐺 a simple graph. We write in𝐺 (𝑣) for the multiset

{{𝑤 ∈ 𝐺 | 𝑤 → 𝑣 ∈ 𝐸}} of all incoming neighbors of 𝑣 . So, if the

edge𝑤 → 𝑣 has multiplicity 5 in 𝐸 then𝑤 also has multiplicity 5

in in𝐺 (𝑣). We drop subscripts when the graph 𝐺 is clear from the

context. The size of a graph 𝐺 is the number of nodes |𝑉 | plus the
number of simple edges |supp(𝐸) |. This is a reasonable definition
of the size of a multigraph, since for each edge it suffices to simply

store its multiplicity as a number, and storing a number takes unit

cost in the RAM model of computation.

Color transformers. IfC is a function thatmaps𝑋 -colored graphs

𝐺 = (𝑉 , 𝐸,𝑔) into 𝑌 -colored graphs 𝐺 ′ = (𝑉 ′, 𝐸 ′, 𝑔′) that leaves
nodes and edges untouched and only changes the coloring, i.e.,

𝑉 = 𝑉 ′ and 𝐸 = 𝐸 ′ then we call C a coloring transformer. In partic-

ular, if 𝑋 = R𝑝 and 𝑌 = R𝑞 for some dimensions 𝑝 and 𝑞 then C is

a feature map transformer.

Graph Neural Networks. Graph Neural Networks (GNNs) are

a popular form of neural networks that enable deep learning on

graphs. Many different forms of GNNs have been proposed in the

literature. We refer the reader to the overview by Hamilton [11].

In this paper we focus on a standard form of GNNs that is known

under the name of aggregate-combine GNNs [2], also calledmessage-

passing GNNs. These are defined as follows [7, 10].

A GNN layer of input dimension 𝑝 and output dimension 𝑞 is

a pair (Agg,Comb) of functions where (1) Agg is an aggregation

function that maps finite multisets of vectors in R𝑝 to vectors in

Rℎ for some dimension ℎ and (2) Comb is a combination function

Comb : R𝑝 ×Rℎ → R𝑞 . In practice,Agg is usually taken to compute

the arithmetic mean, sum, or maximum of the vectors in the mul-

tiset, while Comb is computed by means of a feedforward neural

network whose parameters can be learned.

A GNN is a sequence 𝐿 = (𝐿1, . . . , 𝐿𝑘) of GNN layers, where

the output dimension of 𝐿𝑖 equals the input dimension of 𝐿𝑖+1, for
1 ≤ 𝑖 < 𝑘 . The input and output dimensions of the GNN are the

input dimension of 𝐿1, and the output dimension of 𝐿𝑘 respectively.

In what follows, we write 𝐿 : 𝑝, 𝑞 to denote that 𝑝 is the input

dimension of 𝐿 and 𝑞 is the output dimension.

Semantically, GNN layers and GNNs are feature map transform-

ers [7] In particular, when GNN layer 𝐿 = (Agg,Comb) of input
dimension 𝑝 and output dimension 𝑞 is executed on R𝑝 -colored
graph 𝐺 = (𝑉 , 𝐸,𝑔) it returns the R𝑞-colored graph𝐺 ′ = (𝑉 , 𝐸,𝑔′)
with 𝑔′ the 𝑞-dimensional feature map defined by

𝑔′ : 𝑣 ↦→ Comb

(
𝑔(𝑣),Agg {{𝑔(𝑤) | 𝑤 ∈ in𝐺 (𝑣)}}

)
.

As such, for each node 𝑣 , 𝐿 aggregates the (multiplicity-weighted)

R𝑝 colors of 𝑣 ’s neighbors, and combines this with 𝑣 ’s own color to

compute the R𝑞 output.

A GNN 𝐿 : 𝑝, 𝑞 simply composes the transformations defined

by its layers: given R𝑝 -colored graph 𝐺 it returns the R𝑞-colored
graph (𝐿𝑘 ◦ 𝐿𝑘−1 ◦ · · · ◦ 𝐿1) (𝐺).
Discussion. It is important to stress that in the literature GNNs are

defined to operate on simple graphs, whereas we have generalized

their semantics above to also work on multigraphs. We did so be-

cause, as we will see in Section 3, the result of compressing a simple

graph for the purpose of learning naturally yields a multigraph.

Learning problems. GNNs are used for a wide range of super-

vised learning tasks on graphs. For example, for a node 𝑣 , the R𝑞-

vector 𝐿(𝐺) (𝑣) computed for 𝑣 by GNN 𝐿 can be interpreted, after

normalisation, as a probability distribution over 𝑞 new labels (for

node classification), or as predicted values (for node regression).

Similarly, an edge prediction for nodes 𝑣 and𝑤 can be made based

on the pair (𝐿(𝐺) (𝑣), 𝐿(𝐺) (𝑤)). Finally, by aggregating 𝐿(𝐺) (𝑣)
over all nodes 𝑣 ∈ 𝐺 , one obtains graph embeddings that can be

used for graph classification, regression and clustering [11].

In this work, we focus on the tasks of node classification and

regression. Ourmethodology is equally applicable to the other tasks,

however.

In order to make precise what we mean by learning GNNs on

compressed graphs for node classification, we propose the following

formal definition.

Definition 2.1. A learning problem of input dimension 𝑝 and

output dimension 𝑞 is a tuple P = (𝐺,𝑇 , Loss,S) where
• 𝐺 is the R𝑝 -colored graph on which we wish to learn;

• 𝑇 is a subset of 𝐺 ’s nodes, representing the training set;

Learning Graph Neural Networks using Exact Compression

• Loss : 𝑇 × R𝑞 → R is a loss function that allows to quantify,

for each node 𝑣 ∈ 𝑇 the dissimilarity Loss(𝑣, 𝑐) of the R𝑞-
color 𝑐 that is predicted for 𝑣 by a GNN and the desired

R𝑞-color for 𝑣 as specified in the training set;

• S is the hypothesis space, a (possibly infinite) collection of

GNNs of input dimension 𝑝 and output dimension 𝑞.

Given a learning problem P, a learning algorithm produces a

“learned” GNN in S by traversing the search space S. For each
currently considered GNN 𝐿 ∈ S, the observed loss of 𝐿 on 𝐺 w.r.t.

𝑇 is computed as

Loss(𝐿(𝐺),𝑇) :=
∑︁
𝑣∈𝑇

Loss

(
𝑣, 𝐿(𝐺) (𝑣)

)
.

The learning algorithm aims to minimize this loss, but possibly

returns an 𝐿 for which this is only a local minimum.

In practice, S is usually a collection of GNNs with the same

topology: they all have the same number of layers (with each layer

𝑑 having the same input and output dimensions accross GNNs in S)
and are parametrized by the same number of learnable parameters.

Each concrete parametrization constitutes a concrete GNN in S in

our framework. Commonly, the learned GNN 𝐿 is then found by

means of gradient descent, which updates the learnable parameters

of the GNNs in S to minimize the observed error.

No matter which concrete learning algorithm is used to solve a

learning problem, the intent is that the returned 𝐿 generalizes well:

it makes predictions on 𝐺 for the nodes not in 𝑇 , and can also be

applied to other, new R𝑝 -colored graphs to predict R𝑞-vectors for
each node.

Our research question in this paper is the following.
Given a GNN learning problem P = (𝐺,𝑇 , Loss,S), is
it possible to transform this into a new problem P ′ =
(𝐺 ′,𝑇 ′, Loss′,S) that is obtained by compressing 𝐺 ,

𝑇 , and Loss into a smaller graph 𝐺 ′, training set 𝑇 ′,
and loss function Loss

′
such that instead of learning a

GNN on P we could equivalently learn a GNN on P ′
instead?

Here “equivalently” means that ideally, no matter which learning

algorithm is used, we would like the learned GNN to be identical

in both cases. Of course, this is not possible in practice because

the learning process is itself non-deterministic, e.g., because the

learning algorithm makes random starts; because of stochasticity

in stochastic gradient descent; or because of non-deterministic

dropout that is applied between layers. Nevertheless, we expect

the GNN obtained by learning on the compressed problem would

perform “as good” as the GNN obtained by the learning on the

uncompressed problem, in the sense that it generalizes to unseen

nodes and unseen colored graphs equally well.

To ensure that we may hope any learning algorithm to perform

equally well on P ′ as on P, we formally define:

Definition 2.2. Two learning problems P and P ′ are equivalent,
written P ≡ P ′, if they share the same hypothesis space of GNNs

S and, for every 𝐿 ∈ S we have Loss(𝐿(𝐺),𝑇) = Loss
′(𝐿(𝐺 ′),𝑇 ′).

In other words, when traversing the hypothesis space for a GNN

to return, no learning algorithm can distinguish between P and

P ′. All other things being equal, if the learning algorithm then

returns a GNN 𝐿 when run on P, it will return 𝐿 on P ′ with the

same probability.

Note that, while the hypothesis space S remains unchanged in

this definition, it is possible (and, as we will see, actually required)

to adapt the loss function Loss into a modified loss function Loss
′

during compression.

The benefit of a positive answer to our research question, if

compression is efficient, is computational efficiency: learning on

smaller graphs is faster than learning on larger graphs and requires

less memory.

3 Methodology
To compress one learning problem into an equivalent, hopefully

smaller, problem we will exploit recent insights into the expressive-

ness of GNNs [2, 19, 24]. In particular, it is known that if the local

neighborhoods of two nodes 𝑣,𝑤 in input graph 𝐺 are equal, then

any GNN will treat 𝑣 and𝑤 identically. In particular, it will assign

the same output colors to 𝑣 and𝑤 . We may intuitively exploit this

property for compression: since 𝑣 and𝑤 are treated identically there

is no need for them both to be present during learning; having one

of them suffices. So, we could compress by removing nodes that

are redundant in this sense. We must take care, however, that by

removing one, we do not change the structure (and hence, possibly,

the predicted color) of the remaining node. Also, of course, we

need to make sure that by removing nodes we do not lose training

information. I.e., if 𝑇 specifies a training color for 𝑣 but not𝑤 then

if we decide to remove 𝑣 , we somehow need to “fix” 𝑇 , as well as

the loss function.

This section is devoted to developing this intuitive idea. In Sec-

tion 3.1 we first study under which conditions GNNs treat nodes

identically. Next, in Section 3.2 we develop compression of colored

graphs based on collapsing identically-treated nodes, allowing to

remove redundant nodes while retaining the structure of the re-

maining nodes. Finally, in Section 3.3, we discuss compression of

the training set and loss function. Together, these three ingredi-

ents allow us to compress a learning problem into an equivalent

problem, cf. Definition 2.2.

We close this section by proposing an alternative definition of

compression that works only for a limited class of learning problems.

It is nevertheless interesting as it may allow better compression, as

we will show in Section 4.

3.1 Indistinguishability
The following definition formalizes when two nodes, not necessarily

in the same graph, are treated identically by a class of GNNs.

Definition 3.1. Let S be a class of GNNs, let 𝐺 and 𝐻 be two

R𝑝 -colored graphs for some 𝑝 , and let 𝑣 ∈ 𝐺,𝑤 ∈ 𝐻 be two nodes

in these graphs. We say that (𝐺, 𝑣) is S-indistinguishable from

(𝐻,𝑤), denoted (𝐺, 𝑣) ∼S (𝐻,𝑤), if for every GNN 𝐿 ∈ S of input

dimension 𝑝 it holds that 𝐿(𝐺) (𝑣) = 𝐿(𝐻) (𝑤).

In other words, two nodes are indistinguishable by a class of

GNNs S if no𝐺𝑁𝑁 in S can ever assign a different output color to

these nodes, when started on 𝐺 respectively 𝐻 . We call (𝐺, 𝑣) and
(𝐻,𝑤) S-distinguishable otherwise.

Jeroen Bollen, Jasper Steegmans, Jan Van den Bussche, and Stijn Vansummeren

𝑎1

𝑎2

𝑎3

𝑏1

𝑏2

𝑏3

cr0 cr1 cr2

𝑎1 𝑎 1 = (𝑎, {{𝑎}}) (1 , {{ 2 }})
𝑎2 𝑎 2 = (𝑎, {{𝑎, 𝑎}}) (2 , {{ 1 , 2 }})
𝑎3 𝑎 2 = (𝑎, {{𝑎, 𝑎}}) (2 , {{ 1 , 2 }})
𝑏1 𝑏 3 = (𝑏, {{𝑎, 𝑎}}) (3 , {{ 1 , 2 }})
𝑏2 𝑏 3 = (𝑏, {{𝑎, 𝑎}}) (3 , {{ 1 , 2 }})
𝑏3 𝑏 3 = (𝑏, {{𝑎, 𝑎}}) (3 , {{ 2 , 2 }})

Figure 1: Example of color refinement. Nodes 𝑎1, 𝑎2, 𝑎3 have
the same color 𝑎; nodes 𝑏1, 𝑏2, 𝑏3 have the same color 𝑏. All
edges have multiplicity 1.

For the purpose of compression, we are in search of sets of

nodes in the input graph𝐺 that are pairwise S-indistinguishable,
with S the hypothesis space of the input learning problem. It is

these nodes that we can potentially collapse in the input learning

problem. Formally, let [𝐺, 𝑣]S denote the set of all nodes in 𝐺 that

are 𝑆-indistinguishable from 𝑣 ,

[𝐺, 𝑣]S := {𝑤 ∈ 𝐺 | (𝐺, 𝑣) ∼S (𝐺,𝑤)}.
We aim to calculate [𝐺, 𝑣]S and subsequently compress 𝐺 by re-

moving all but one node in [𝐺, 𝑣]S from 𝐺 .

Color refinement. To calculate [𝐺, 𝑣]S , we build on the work of

Morris et al. [19] and Xu et al. [24]. They proved independently that

a GNN can distinguish two nodes if an only if the so-called color

refinement algorithm assigns different colors to these nodes. Color

refinement is equivalent to the one-dimensional Weisfeiler-Leman

(WL) algorithm [10], and works as follows.

Definition 3.2. The (one-step) color-refinement of colored graph

𝐺 = (𝑉 , 𝐸,𝑔), denoted cr(𝐺), is the colored graph 𝐺 ′ = (𝑉 , 𝐸,𝑔′)
where 𝑔′ maps every node 𝑣 ∈ 𝐺 to a pair, consisting of 𝑣 ’s original

color and the multiset of colors of its incoming neighbors:

𝑔′ : 𝑣 ↦→
(
𝐺 (𝑣), {{𝐺 (𝑤) | 𝑤 ∈ in𝐺 (𝑣)}}

)
.

As such, we can think of cr(𝐺) (𝑣) as representing the immediate

neighborhood of 𝑣 (including 𝑣), for any node 𝑣 .

We denote by cr𝑑 (𝐺) the result of applying 𝑑 color refinement

steps on 𝐺 , so cr0 (𝐺) = 𝐺 and cr𝑑+1 (𝐺) = cr(cr𝑑 (𝐺)). Using this

notation, we can think of cr𝑑 (𝐺) (𝑣) as representing the local neigh-
borhood of 𝑣 “up to radius 𝑑”.

To illustrate, Figure 1 shows a colored graph 𝐺 and two steps of

color refinement.

The following property was observed by Morris et al. [19] and

Xu et al [24] for GNNs operating on simple graphs. We here extend

it to multigraphs.

Proposition 3.3. Let 𝐿 be a GNN composed of𝑑 ∈ N layers,𝑑 ≥ 1. If

cr𝑑 (𝐺) (𝑣) = cr𝑑 (𝐻) (𝑤) then𝐿(𝐺) (𝑣) = 𝐿(𝐻) (𝑤). As a consequence,
if S is a hypothesis space consisting of GNNs of at most 𝑑 layers and

cr𝑑 (𝐺) (𝑣) = cr𝑑 (𝐻) (𝑤) then (𝐺, 𝑣) ∼S (𝐻,𝑤).

In other words, 𝑑-layer GNNs cannot distinguish nodes that are

assigned the same color by 𝑑 steps of color refinement.

Let [𝐺, 𝑣]𝑑 denote the set of all nodes in𝐺 that receive the same

color as 𝑣 after 𝑑 steps of color refinement,

[𝐺, 𝑣]𝑑 := {𝑤 ∈ 𝐺 | cr𝑑 (𝐺) (𝑣) = cr𝑑 (𝐺) (𝑤)}.

Then it follows from Proposition 3.3 that [𝐺, 𝑣]𝑑 is a refinement of

[𝐺, 𝑣]S in the sense that [𝐺, 𝑣]𝑑 ⊆ [𝐺, 𝑣]S , for all 𝑣 ∈ 𝐺 . Morris

et al. [19] and Xu et al. [24] have also shown that for every graph

𝐺 and every depth 𝑑 there exists a GNN 𝐿 of 𝑑 layers such that

[𝐺, 𝑣]𝑑 = [𝐺, 𝑣] {𝐿} , for every node 𝑣 ∈ 𝐺 . Consequently, if, in

addition to containing only GNNs with at most 𝑑 layers, S includes

all possible 𝑑-layer GNNs, then [𝐺, 𝑣]𝑑 = [𝐺, 𝑣]S coincide, for all

𝑣 ∈ 𝐺 . Hence, for such S we may calculate [𝐺, 𝑣]S by calculating

[𝐺, 𝑣]𝑑 instead. When S does not include all 𝑑-layer GNNs we

simply use [𝐺, 𝑣]𝑑 as a proxy for [𝐺, 𝑣]S . This is certainly safe:

since [𝐺, 𝑣]𝑑 ⊆ [𝐺, 𝑣]S no GNN in S will be able to distinguish the

nodes in [𝐺, 𝑣]𝑑 and we may hence collapse nodes in [𝐺, 𝑣]𝑑 for the

purpose of compression. In this case, however, we risk that [𝐺, 𝑣]𝑑
contains too few nodes compared to [𝐺, 𝑣]S , and therefore may

not provide enough opportunity for compression. We will return

to this issue in Section 3.4.

What happens if there is no bound on the number of layers

of GNNs in S? In that case we can still use color refinement to

compute [𝐺, 𝑣]S as follows. It is known that after a finite number

of color refinements steps we reach a value 𝑑 such that for all nodes

𝑣 ∈ 𝐺 we have [𝐺, 𝑣]𝑑 = [𝐺, 𝑣]𝑑+1. The smallest value 𝑑 for which

this holds is called the stable coloring number of 𝐺 , and we denote

the colored graph obtained by this value of 𝑑 by cr∞ (𝐺) in what

follows. Similarly we denote the equivalence classes at this value

of 𝑑 by [𝐺, 𝑣]∞. From Proposition 3.3 it readily follows:

Corollary 3.4. For any classS of GNNs, if cr∞ (𝐺) (𝑣) = cr∞ (𝐻) (𝑤)
then (𝐺, 𝑣) ∼S (𝐻,𝑤).

We note that it is very efficient to compute the set {[𝐺, 𝑣]𝑑 |
𝑣 ∈ 𝐺} of all color refinement classes: this can be done in time

O((𝑛 +𝑚) log𝑛) with 𝑛 the number of vertices and𝑚 the number

of edges of the input graph [4].

Example 3.5. To illustrate, consider the colored graph from Fig-

ure 1, as well as the color refinement steps illustrated there. (Recall

that nodes 𝑎1, 𝑎2, 𝑎3 share the same color, as do 𝑏1, 𝑏2, 𝑏3.) Then

after one step of color refinement we have

[𝐺, 𝑎1]1 = {𝑎1}
[𝐺, 𝑎2]1 = [𝐺, 𝑎3]1 = {𝑎2, 𝑎3}
[𝐺,𝑏1]1 = [𝐺,𝑏2]1 = [𝐺,𝑏3]1 = {𝑏1, 𝑏2, 𝑏3},

while after two steps of color refinement we obtain the following

color refinement classes:

[𝐺, 𝑎1]2 = {𝑎1} [𝐺,𝑏1]2 = [𝐺,𝑏2]2 = {𝑏1, 𝑏2}
[𝐺, 𝑎2]2 = [𝐺, 𝑎3]2 = {𝑎2, 𝑎3} [𝐺,𝑏3]2 = {𝑏3}.

We invite the reader to check that for every node 𝑣 in this graph,

[𝐺, 𝑣]3 = [𝐺, 𝑣]2. As such, the stable coloring is obtained when

𝑑 = 2 and [𝐺, 𝑣]2 = [𝐺, 𝑣]∞.

3.2 Graph reduction
Having established a way to compute redundant nodes, we now

turn our attention to compression. Assume that we have already

computed the color refinement classes {[𝐺, 𝑣]𝑑 | 𝑣 ∈ 𝐺} for𝑑 ∈ N∞.
For each 𝑣 ∈ 𝐺 , we wish to “collapse” all nodes in [𝐺, 𝑣]𝑑 into a

single node. To that end, define a 𝑑-substitution on a graph𝐺 to be a

function that maps each color refinement class in {[𝐺, 𝑣]𝑑 | 𝑣 ∈ 𝐺}

Learning Graph Neural Networks using Exact Compression

𝑎1

𝑎2

𝑏1

1

1

1

1

𝑎1

𝑎2 𝑏3

1

1

2

Figure 2: Reduction of the graph of Figure 1 by the 1-
substitutions 𝜌1 and 𝜌2 from Example 3.7.

to a node 𝜌 ([𝐺, 𝑣]𝑑) ∈ [𝐺, 𝑣]𝑑 . Intuitively, 𝜌 ([𝐺, 𝑣]𝑑) is the node
that we wish to keep; all other nodes in [𝐺, 𝑣]𝑑 will be removed. In

what follows we extend 𝜌 to also operate on nodes in 𝐺 by setting

𝜌 (𝑣) = 𝜌 ([𝐺, 𝑣]𝑑).

Definition 3.6. The reduction of graph 𝐺 by 𝑑-substitution 𝜌 on 𝐺

is the graph 𝐻 = (𝑉 , 𝐸, ℎ) where
• 𝑉 = {𝜌 (𝑣) | 𝑣 ∈ 𝐺}
• For all 𝑣,𝑤 ∈ 𝑉 we have

𝐸 (𝑣 → 𝑤) =
∑︁

𝑣′∈[𝐺,𝑣]𝑑
𝐺 (𝑣 ′ → 𝑤)

In particular, if there is no edge into𝑤 in𝐺 , there will be no

edge into𝑤 in 𝐻 , as this sum is then zero.

• nodes retain colors: for each node 𝑣 ∈ 𝐻 we have ℎ(𝑣) =
𝐺 (𝑣).

In what follows, we denote by𝐺/𝜌 the reduction of𝐺 by 𝜌 . A graph

obtained by reducing𝐺 according to some 𝑑-substitution 𝜌 is called

a 𝑑-reduct of 𝐺 .

Example 3.7. Reconsider the colored graph 𝐺 of Figure 1. Let 𝜌1
and 𝜌2 be the following 𝑑 = 1-substitutions:

𝜌1 : {𝑎1} ↦→ 𝑎1 {𝑎2, 𝑎3} ↦→ 𝑎2 {𝑏1, 𝑏2, 𝑏3} ↦→ 𝑏1

𝜌2 : {𝑎1} ↦→ 𝑎1 {𝑎2, 𝑎3} ↦→ 𝑎2 {𝑏1, 𝑏2, 𝑏3} ↦→ 𝑏3

Then 𝐺/𝜌1 and 𝐺/𝜌2 are illustrated in Figure 2.

The following proposition is an essential property of our com-

pression methodology.

Proposition 3.8. For every graph𝐺 , every𝑑-substitution 𝜌 of𝐺 with

𝑑 ∈ N∞, and every node 𝑣 ∈ 𝐺 we have cr𝑑 (𝐺) (𝑣) = cr𝑑 (𝐺/𝜌) (𝜌 (𝑣)).

It hence follows from Proposition 3.3 and Corollary 3.4 that if

S consists of GNNs of at most 𝑑 ∈ N∞ layers, then (𝐺, 𝑣) ∼S
(𝐺/𝜌, 𝜌 (𝑣)).
Discussion Example 3.7 shows that the choice of 𝑑-substitution

determines the reduct𝐺/𝜌 that we obtain. In particular, the example

shows that distinct substitutions can yield distinct, non-isomorphic

reducts. This behavior is unavoidable, unless 𝑑 is the stable coloring

number of 𝐺 . Indeed, we are able to show:

Proposition 3.9. There is a single 𝑑-reduct of a graph 𝐺 up to

isomorphism if and only if 𝑑 is greater than or equal to the stable

coloring number of 𝐺 .

A direct consequence of having different non-isomorphic reducts

when𝑑 is less than the coloring number is that some of these reducts

may be smaller than others. In Example 3.7, 𝐺/𝜌1 has 3 nodes and
4 edges while 𝐺/𝜌2 has 3 nodes and only 3 edges. We may always

obtain a 𝑑-reduct of minimal size as follows. For 𝑑 ∈ N∞, define

𝑣

𝑏1 . . . 𝑏𝑚

𝑐1
1

. . . 𝑐1𝑛 𝑐𝑚
1

. . . 𝑐𝑚𝑛

𝑣

𝑏1

𝑐1
1

𝑛

𝑚

Figure 3: Reduction of a tree-shaped simple graph (left) into
a small multigraph (right).

the 𝑑-incidence of a node 𝑤 ∈ 𝐺 , denoted incidence𝑑
𝐺
(𝑤), to be

the number of color refinement classes in {[𝐺, 𝑣]𝑑 | 𝑣 ∈ 𝐺} that
contain an incoming neighbor of𝑤 . That is, the 𝑑-incidence of𝑤

is the number of distinct classes in {[𝐺,𝑢]𝑑 | 𝑢 ∈ in𝐺 (𝑤)}. The
following proposition shows that we obtain a 𝑑-reduct of minimal

size by by choosing a 𝑑-substitution that maps color refinement

classes to nodes of minimal 𝑑-incidence.

Proposition 3.10. Let 𝐺 be a graph, let 𝑑 ∈ N∞ and let 𝜌 be a

𝑑-substitution such that

incidence𝑑𝐺 (𝜌 (𝑣)) = min

𝑣′∈[𝐺,𝑣]𝑑
incidence𝑑𝐺 (𝑣

′),

for every node 𝑣 ∈ 𝐺 . Then the size of 𝐺/𝜌 is minimal among all

𝑑-reducts of 𝐺 .

When we report the size of 𝑑-reducts in our experiments (Sec-

tion 4), we always report the minimal size among all 𝑑-reducts.

Discussion Example 3.7 illustrates that, depending on the substitu-

tion used, the result of reducing a simple graphmay be a multigraph.

In the literature, however, GNNs and color refinement are normally

defined to operate on simple graphs. One may therefore wonder

whether it is possible to define a different notion of reduction that

always yields a simple graph when executed on simple, instead

of a multigraph as we propose here. To answer this question, con-

sider the tree-shaped graph𝐺 in Figure 3(left), whose root 𝑣 has𝑚

𝑏-colored children, each having 𝑛 𝑐-labeled children. It is straight-

forward to see that when 𝑑 ≥ 2, any simple graph𝐻 that has a node

𝑤 such that cr𝑑 (𝐺) (𝑣) = cr𝑑 (𝐻) (𝑤) must be such that 𝑤 has 𝑚

𝑏-colored children in 𝐻 , each having 𝑛 𝑐-labeled children. As such,

because 𝐻 is simple, it must be of size at least as large as𝐺 . Instead,

by moving to multigraphs we are able to compress this “regular”

structure in𝐺 by only three nodes, as show in Figure 3(right). This

illustrates that for the purpose of compression we naturally need

to move to multigraphs.

3.3 Problem compression
We next combine the insights from Sections 3.1 and 3.2 into a

method for compressing learning problems.

Let P = (𝐺,𝑇 , Loss,S) be a learning problem. Let 𝜌 be a 𝑑-

substitution. We then define the reductions 𝑇 /𝜌 and Loss/𝜌 of 𝑇

and Loss by 𝜌 as follows:

𝑇 /𝜌 = {𝜌 (𝑣) | 𝑣 ∈ 𝑇 }

Loss/𝜌 (𝑣, 𝑐) =
∑︁

𝑤∈𝑇∩[𝐺,𝑣]𝑑
Loss(𝑤, 𝑐)

We denote by P/𝜌 the learning problem (𝐺/𝜌,𝑇 /𝜌, Loss/𝜌,S).

Jeroen Bollen, Jasper Steegmans, Jan Van den Bussche, and Stijn Vansummeren

Theorem 3.11. Let P be a learning problem with hypothesis space

S and assume that 𝑑 ∈ N∞ is such that every GNN in S has at most

𝑑 layers. (In particular, 𝑑 = ∞ if there is no bound on the number of

layers in S.) Then P ≡ P/𝜌 for every 𝑑-substitution 𝜌 .

3.4 Graded Color Refinement
So far, we have focused on compression based on the depth of the

GNNs present in the hypothesis space, where the depth of a GNN

equals its number of layers and the depth of a hypothesis space S
is the maximum depth of any of its GNNs, or∞ if this maximum

is unbounded. In particular, the notion of 𝑑-reduct hinges on this

parameter 𝑑 through the calculated color refinement classes [𝐺, 𝑣]𝑑 .
As we have already observed in Section 3.1, however, when S

does not contain all 𝑑-layer GNNs the color refinement classes

[𝐺, 𝑣]𝑑 that we base compression on may contain too few nodes

compared to [𝐺, 𝑣]S and may therefore not provide enough oppor-

tunity for compression.

In such cases, it may be beneficial to move to more fine-grained

notions of color refinement that better capture [𝐺, 𝑣]S . In this

section we propose one such fine-grained notion, which takes into

account the “width” of S. We say that GNN 𝐿 has width 𝑐 ∈ N∞
if for every layer in 𝐿 the aggregation function Agg is such that

Agg(𝑀) = Agg(𝑀 |≤𝑐) for every multiset𝑀 . In other words: Agg

can only “count” up to 𝑐 copies of a neighbor’s color. When 𝑐 = ∞
there is no limit on the count. The width of S is then the maximum

width of any of its GNNs, or ∞ if this maximum is unbounded.

Hypothesis spaces of bounded width clearly do not contain all

𝑑-layer GNNs, for any depth 𝑑 .

While we know of no practical GNN architectures that explic-

itly limit the width, there are influential learning algorithms that

implicitly limit the width. For example, to speed up learning, Graph-

SAGE [12] can be parametrized by a hyperparameter 𝑐 . When 𝑐 < ∞
GraphSAGE does not consider all of a node’s neighbors in each

layer, but only a random sample of at most 𝑐 neighbors of that node.

Such sampling effectively limits the width of S.
We next define a variant of color refinement, called graded color

refinement, that takes width into account. It may lead to larger

color refinement classes, and therefore potentially also to better

compression.

Definition 3.12. Let 𝑐 ∈ N∞. The (one-step) 𝑐-graded color refine-
ment of colored graph𝐺 = (𝑉 , 𝐸,𝑔), denoted cr𝑐 (𝐺), is the colored
graph 𝐺 ′ = (𝑉 , 𝐸,𝑔′) with

𝑔′ : 𝑣 ↦→
(
𝐺 (𝑣), {{𝐺 (𝑤) | 𝑤 ∈ in𝐺 (𝑣)}}|≤𝑐

)
.

Note that cr∞ equals normal, non-graded, color refinement. We

also remark that cr𝑐 with 𝑐 = 1 corresponds to standard bisimula-

tion on graphs [1]. We denote by cr𝑑𝑐 (𝐺) the result of applying 𝑑
refinement steps of 𝑐-graded color refinement, so cr0𝑐 (𝐺) = 𝐺 and

cr𝑑+1𝑐 = cr(cr𝑑𝑐 (𝐺)). We denote by [𝐺, 𝑣]𝑐,𝑑 the set of all nodes in

𝐺 that receive the same color after 𝑑 steps of 𝑐-graded color refine-

ment. The concept of (𝑐, 𝑑)-substitution is then defined analogously

to 𝑑-substitution, as mappings from the [𝐺, 𝑣]𝑐,𝑑 color refinement

classes to nodes in these classes. The reduction of a graph𝐺 by a

(𝑐, 𝑑) substitution is similar to reductions by 𝑑-substitution except

that the edge multiplicity 𝐸 (𝑣 → 𝑤) for 𝑣,𝑤 in the reduction is

Graph Type #Nodes #Edges

ogbn-arxiv directed 169.343 1.166.243

ogbn-arxiv-inv directed 169.343 1.166.243

ogbn-arxiv-undirected undirected 169.343 2.315.598

ogbn-products undirected 2.449.029 61.859.140

snap-roadnet-ca undirected 1.965.206 5.533.214

snap-roadnet-pa undirected 1.088.092 3.083.796

snap-roadnet-tx undirected 1.379.917 3.843.320

snap-soc-pokec directed 1.632.803 30.622.564

Table 1: Datasets

now limited to 𝑐 , i.e.,

𝐸 (𝑣 → 𝑤) =
∑︁

𝑣′∈[𝐺,𝑣]𝑐,𝑑
𝐺 (𝑣 ′ → 𝑤) |≤𝑐 .

With these definitions, we can show that for any P with hypothesis

space S of width 𝑐 and depth 𝑑 we have P ≡ P/𝜌 for any (𝑐, 𝑑)-
reduction 𝜌 . The full development is omitted due to lack of space.

We note that [𝐺, 𝑣]𝑑 ⊆ [𝐺, 𝑣]𝑐,𝑑 , always. Graded color refine-

ment hence potentially leads to better compression, but only applies

to problems with hypothesis spaces of width 𝑐 . We will empirically

contrast the compression ratio obtained by (𝑐, 𝑑)-reducts to those

obtained by 𝑑-reducts (i.e., where 𝑐 = ∞) in Section 4. There, we

also study the effect of 𝑐 on learning accuracy for problems whose

width is not bounded.

4 Evaluation
In this section, we empirically evaluate the compression methodol-

ogy described in Section 3. We first give insights into the compres-

sion ratios that can be obtained on real-world graphs in Section 4.1.

Subsequently, we evaluate the learning on compressed graphs ver-

sus learning on the original graphs.

4.1 Compression
We consider the real-world graphs listed in Table 1. The ogbn-*
graphs are from the Open Graph Benchmark (OGB), a collection of

realistic, large-scale, and diverse benchmark datasets for machine

learning on graphs [13], where they belong to the OGB node prop-

erty prediction benchmark (OGBN). Specifically, ogbn-arxiv is a

network of academic papers, where edge 𝑥 → 𝑦 indicates that 𝑥

cites 𝑦. Graph ogbn-arxiv-inv is the inverted version of ogbn-arxiv;
it is obtained by reversing edges, so that edge 𝑥 ← 𝑦 indicates that

𝑦 was cited by 𝑥 . Graph ogbn-arxiv-undirected is the undirected

version of ogbn-arxiv; it is obtained by adding inverse edges to

ogbn-arxiv. Next, there is ogbn-products, an undirected graph rep-

resenting an Amazon product co-purchasing network. The other

datasets are from the Stanford Large Network Dataset Collection

(SNAP) [15]. Here, snap-roadnet-ca, snap-roadnet-pa, and snap-
roadnet-tx are undirected graphs representing road networks, and

snap-soc-pokec is a directed graph containing an online social

network.

The input colors used for learning on these graphs typically

depend on the application. To get an understanding of themaximum

amount of compression that we can obtain independent of the target

application, we assign a shared single color 𝑐 to each node, in all

graphs. As such, the color refinement classes [𝐺, 𝑣]𝑑 that we obtain

Learning Graph Neural Networks using Exact Compression

are maximal, in the sense that for any other colorored graph 𝐺 ′

whose topology equals 𝐺 we will have [𝐺 ′, 𝑣]𝑑 ⊆ [𝐺, 𝑣]𝑑 . In this

setting, we hence reach maximal compression.

We consider three versions of ogbn-arxiv to get an indication

of how edge directionality impacts compression. Recall that GNN

layers propagate color information following the direction of edges.

Hence, because in ogbn-arxiv an edge 𝑥 → 𝑦 indicates that 𝑥 cites𝑦,

color information flows from citing papers to cited papers. In ogbn-
arxiv-inv, by contrast, it flows from cited papers to citing papers

while in ogbn-arxiv-undirected it flows in both directions. The

direction in which the information can flow impacts the number of

color refinement classes that we obtain, and hence the compression,

as we will see.

Ungraded compression Figures 4(a) and 4(b) shows the fraction

of nodes and edges remaining in 𝑑-reducts of these graphs, plotted

as a function of the number of color refinement rounds 𝑑 . (Con-

sistent with our definition of the size of a multigraph, the num-

ber of edges plotted is the number of unique edges, i.e., ignoring

edge multiplicities.) We see that in terms of the number of nodes,

compression is effective for 𝑑 ≤ 2, obtaining compression ratios

of 0.03% − 0.05% on the road network datasets, to 77% on ogbn-
products. For 𝑑 = 3, compression becomes ineffective for ogbn-
arxiv-undirected, ogbn-products and snap-soc-pokec as these re-
tain 88% of their nodes or more. Compression on the other datasets

is satsifactory for 𝑑 = 3, as shown in Table 2. From 𝑑 > 3 onwards,

node compression becomes ineffective for most datasets, with all

datasets except ogbn-arxiv retaining at least 86% of their nodes

when 𝑑 ≥ 5. By contrast, ogbn-arxiv stabilizes at 𝑑 = 4, retaining

only 36% of its nodes.

In terms of the number of edges, we see that ogbn-arxiv-inv,
ogbn-arxiv-undirected, ogbn-products, and snap-soc-pokec retain
almost 100% of their edges from 𝑑 ≥ 2 onwards, while ogbn-arxiv
retains only 56% of its edges when 𝑑 = 3 and the road networks

compress to 5% − 8% of the edges when 𝑑 = 3.

While we may hence conclude that in general compression be-

comes ineffective for deeper layer numbers, 𝑑 > 4, we note that in

practice most GNN topologies use only𝑑 = 3 layers. For such GNNs,

compression on ogbn-arxiv and the road networks is promising.

One may wonder why the inverted and undirected variants

of ogbn-arxiv differ so much in terms of compression. The short

answer is that that, their graph topology is completely different. As

such, the local neighborhood information that cr𝑑 calculates is also

completely different, yielding different reductions. For example, a

manual inspection of ogbn-arxiv reveals a number of highly cited

papers that have no outgoing edges. While these papers are the

“sink nodes” in ogbn-arxiv, they are “source nodes” in ogbn-arxiv-
inv. Quite quickly we may then distinguish nodes in ogbn-arxiv-inv
based solely on the number of highly cited papers that they cite.

This behavior does not occur in ogbn-arxiv, because the highly

cited papers are outgoing neighbors, which cr𝑑 ignores.

Graded compression We next evaluate the effect of moving to

compression based on 𝑐-graded color refinement. Figure 4(c) and (d)

shows the fraction of nodes and edges remaining in (𝑐, 3)-reducts
of our graphs, relative to the number of nodes and edges in the

corresponding 𝑑 = 3-reduct, plotted as a function of 𝑐 . In terms of

the number of nodes we see that, as expected, moving to graded

Graph Nodes (%) Edges (%)

ogbn-arxiv 32.9 56.3

ogbn-arxiv-inv 65.9 92.7

ogbn-arxiv-undirected 93.3 98.9

ogbn-products 88.5 98.6

snap-roadnet-ca 4.4 5.9

snap-roadnet-pa 6.1 7.9

snap-roadnet-tx 3.9 5.2

snap-soc-pokec 87.9 99.1

Table 2: Compression at 𝑑 = 3.

Problem Nodes Edges Accurracy Training

(%) (%) (%) time (𝑠) mem (GiB)

P1 100.0 100.0 66.7 61.66 2.14

P2 100.0 100.0 65.9 58.99 2.02

P1

3
76.9 95.9 60.9 48.10 1.59

P3

3
79.2 97.1 64.5 49.71 1.65

P5

3
79.3 97.2 64.9 49.55 1.65

P∞
3

79.4 97.2 63.8 49.16 1.65

Table 3: Comparison of learning on the original uncom-
pressed problem P1, the uncompressed problem with dis-
cretized labels P2, and (𝑐, 𝑑 = 3)-compressed variants P𝑐

3
.

compression yields better compression than non-graded compres-

sion. In particular, for 𝑐 = 1 all datasets retain < 1% of their nodes

while for 𝑐 = 3, compression is 27% or less for ogbn-arxiv, ogbn-
arxiv-undirected, and the road networks. In the latter setting, ogbn-
products is at 75% of nodes and snap-soc-pokec at 55%. Compression

hence becomes less effective as 𝑐 increases.

In terms of the number of edges, compression is most effective

when 𝑐 = 1 or 𝑐 = 2 in which case it significantly improves over

ungraded compression. From 𝑐 ≥ 3 onwards, graded compression

becomes only marginally better than ungraded compression.

We conclude that graded compression has the potential to yield

significantly smaller graphs than ungraded compression, but only

for small gradedness values, 𝑐 = 1 (i.e., bisimulation) or 𝑐 = 2.

Conclusion Overall, we see that real-world graphs have diverse

non-graded compression ratios: road networks compress extremely

well (to 4% of nodes and 5% of edges when𝑑 = 3); while other graphs

such as ogbn-arxiv-inv compress reasonably in terms of number of

nodes (65%) but only marginally in terms of edges (93% or more);

and graphs such as ogbn-products compress only marginally in

both (retaining 90% or more of nodes and edges). This diversity is

to be expected: our exact compression methodology is based on

exploiting redundancy in local neighborhoods of nodes. For graphs

where few nodes have equal local neighborhoods, we cannot expect

reduction in size. Moving to graded compression for those graphs

improves reduction in size, but will yield approximate compression

unless the learning problem hypothesis space has small width.

4.2 Learning
We next turn to validating empirically the effect of learning on

compressed problems according to our methodology. Specifically,

we apply our methodology to learning on ogbn-arxiv-inv with

𝑑 = 3. We know from Section 4.1 that compression on this graph is

reasonable in terms of nodes, but only marginal in terms of edges.

Jeroen Bollen, Jasper Steegmans, Jan Van den Bussche, and Stijn Vansummeren

0 2 4 6

0

0.5

1

Refinement depth 𝑑

(𝑎) % of nodes in 𝑑-reduct

relative to original

0 2 4 6

0

0.5

1

Refinement depth 𝑑

(𝑏) % of edges in 𝑑-reduct

relative to original

1 2 3 4 5

0

0.5

1

Grade 𝑐

(𝑐) % of nodes in (𝑐, 3) reduct
relative to 3-reduct

1 2 3 4 5

0

0.5

1

Grade 𝑐

(𝑑) % of edges in (𝑐, 3) reduct
relative to 3-reduct

ogbn-arxiv ogbn-arxiv-inv ogbn-arxiv-undirected ogbn-products
snap-roadnet-ca snap-roadnet-pa snap-roadnet-tx snap-soc-pokec

Figure 4: Normalized reduction in nodes and edges using 𝑑-reduction (a and b) and (𝑐, 3)-reduction (c and d).

Despite the modest compression, the effect on learning efficiency

in terms of learning time and memory consumption is still positive,

as we will see.

We hence focus in this section on ogbn-arxiv-inv and the asso-

ciated learning problem from the OGBN benchmark: predict, for

every paper in ogbn-arxiv-inv, its subject area (e.g., cs.AI, cs.LG, and
cs.OS, . . .). There are 40 possible subject areas. In addition to the ci-

tation network, we have available for each paper a 128-dimensional

feature vector obtained by averaging the embeddings of words in

its title and abstract. Our learning problem P1 hence consists of
the ogbn-arxiv-inv graph in which each node is colored with this

feature vector. The training set 𝑇 consists of 90941 nodes, obtained

conform the OGBN benchmark. The hypothesis space S consists

of GNNs that all share the same topology and vary only in their

concrete parameters. The topology consists of 3 GNN layers whose

Agg function computes the mean of all colors of incoming neigh-

bors. The Comb function applies a linear transformation to 𝐺 (𝑣),
applies a linear transformation to the result of the aggregation, and

finally sums these two intermediates together. Each layer, except

the final one, is followed by a batch normalisation as well ReLU

to introduce non-linearity. The layers have dimensions (128, 256),
(256, 256) and (256, 40), respectively. We apply a 50% dropout be-

tween layers during training. Softmax is applied after the last layer

to turn feature vectors into subject areas, and we use cross-entropy

as loss function.

Unfortunately, the initial coloring in P1 is such that every node

has a distinct color. Therefore, every node is in its own unique color

refinement class, and compression is not possible. We therefore

transform P1 into a problem P2 that can be compressed by first

converting the 128-dimensional word embedding vectors into esti-

mates of paper areas by means of a multilayer perceptron (MLP)

that is trained on the nodes in𝑇 but without having the graph struc-

ture available. This hence yields an initial estimate of the paper

area for each node. By learning a GNN on the graph that is col-

ored by one-hot encodings of these initial estimates, the estimates

can be refined based on the graph topology. We denote the new

problem hence obtained by P2. Note that P2 has the same training

set, hypothesis space, and loss function as P1. The MLP has input

dimension 128, one hidden layer of dimension 256, and output layer

of dimension 40.

We next compress P2 using (𝑐, 𝑑)-reduction with 𝑑 = 3. The

resulting compressed problems are denoted P𝑐
3
. The corresponding

compressed graph sizes are shown in Table 3. We note that, because

we consider labeled graphs here, the compression ratio is worse

than the maximum-compression scenario of Section 4.1.

We gauge the generalisation power of the learned GNNs by

computing the accurracy on the test set, determined by the OGBN

benchmark, comprising 48603 nodes. We learn for 256 epochs with

learning rate 0.01 on all problems. All experiments are run on an

HP ZBook Fury G8 with Intel Core i9 11950H CPU, 32 GB of RAM

and NVIDIA RTX A3000 GPU with 6 GB RAM.

The results are summarized in Table 3. Comparing P1 with P2
we see that estimating the paper area through an MLP has mar-

ginal effect on the test accurracy, training time and memory con-

sumption. Further comparing P2 with P𝑐
3
, which are equivalent by

Theorem 3.11, we see that training accurracy is indeed comparable

between P2 and P∞
3
; we attribute the difference in accurracy to

the stochastic nature of learning. There is a larger difference in

accurracy between P2 and P𝑐
3
when 𝑐 = 1, i.e., when we compress

based on bisimulation, than when 𝑐 > 1. This is because 𝑐-graded

compression is an approximation, as explained in Section 3.4, and

because, as we can see, 𝑐-graded compression for 𝑐 > 1 is nearly

identical in size to ungraded compression. For 𝑐 > 1 we may hence

expect there to be only marginal differences w.r.t. ungraded com-

pression. Learning the compressed problems P𝑐
3
is more efficient

than learning on the uncompressed P2, taking only 81.5–84.3%

of the learning time and 78.7–81.6% of the memory respectively

which is comparable to the reduction in number of nodes when

compressing.

Our evaluation in this section is on a single learning problem; it

should hence be interpreted as a preliminary insight that requires

further evaluation. Based on these preliminary findings, however,

we conclude that compressed learning can yield observable im-

provements in training time and memory consumption.

Learning Graph Neural Networks using Exact Compression

5 Conclusion and Future Work
We have proposed a formal methodology for exact compression of

GNN-based learning problems. While the attainable exact compres-

sion ratio depends on the input graph, our experiment in Section 4.2

nevertheless indicates that observable improvements in learning

efficiency are possible, even when the compression in terms of the

number of edges is negligible.

In terms of future work, first and foremost our preliminary empir-

ical evaluation should be extended to more learning tasks. Second,

as we have seen 𝑐-graded color refinement offers a principled way of

approximating exact compression, which becomes exact for hypoth-

esis spaces of width 𝑐 . It is an interesting question whether other

existing approximate compression proposals [6, 16] can similarly

be tied to structural properties of the hypothesis space.

Acknowledgments
We thank Floris Geerts for helpful discussions. S. Vansummeren

and J. Steegmans were supported by the Bijzonder Onderzoeks-

fonds (BOF) of Hasselt University under Grants No. BOF20ZAP02

and BOF21D11VDBJ. This work was further supported by the Re-

search Foundation Flanders (FWO) under research project Grant

No. G019222N. We acknowledge computing resources and services

provided by the VSC (Flemish Supercomputer Center), funded by

the Research Foundation – Flanders (FWO) and the Flemish Gov-

ernment.

References
[1] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking. MIT

Press.

[2] Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter,

and Juan-Pablo Silva. 2020. The Expressive Power of Graph Neural Networks

as a Query Language. ACM SIGMOD Record 49, 2 (Dec. 2020), 6–17. https:

//doi.org/10.1145/3442322.3442324

[3] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,

Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam

Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin

Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria

Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt

Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. 2018. Relational Inductive

Biases, Deep Learning, and Graph Networks. https://doi.org/10.48550/arXiv.

1806.01261 arXiv:arXiv:1806.01261

[4] A. Cardon and M. Crochemore. 1982. Partitioning a Graph in $O(|A| \log_2 |V|)$.

Theoretical Computer Science 19, 1 (July 1982), 85–98. https://doi.org/10.1016/

0304-3975(82)90016-0

[5] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph

Convolutional Networks via Importance Sampling. In 6th International Conference

on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,

2018, Conference Track Proceedings. OpenReview.net.

[6] Chenhui Deng, Zhiqiang Zhao, YongyuWang, Zhiru Zhang, and Zhuo Feng. 2020.

GraphZoom: A Multi-Level Spectral Approach for Accurate and Scalable Graph

Embedding. https://doi.org/10.48550/arXiv.1910.02370 arXiv:arXiv:1910.02370

[7] Floris Geerts, Jasper Steegmans, and Jan Van den Bussche. 2022. On the Expressive

Power of Message-Passing Neural Networks as Global Feature Map Transformers.

In Foundations of Information and Knowledge Systems (Lecture Notes in Computer

Science), Ivan Varzinczak (Ed.). Springer International Publishing, Cham, 20–34.

https://doi.org/10.1007/978-3-031-11321-5_2

[8] Alessandro Generale, Till Blume, and Michael Cochez. 2022. Scaling R-GCN

Training with Graph Summarization. In Companion Proceedings of the Web Con-

ference 2022 (WWW ’22). Association for Computing Machinery, New York, NY,

USA, 1073–1082. https://doi.org/10.1145/3487553.3524719

[9] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.

Dahl. 2017. Neural Message Passing for Quantum Chemistry. In Proceedings of

the 34th International Conference on Machine Learning - Volume 70 (ICML’17).

JMLR.org, Sydney, NSW, Australia, 1263–1272.

[10] Martin Grohe. 2021. The Logic of Graph Neural Networks. In Proceedings of

the 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’21).

Association for Computing Machinery, New York, NY, USA, 1–17. https://doi.

org/10.1109/LICS52264.2021.9470677

[11] William L. Hamilton. 2020. Graph Representation Learning. Morgan & Claypool

Publishers. https://doi.org/10.2200/S01045ED1V01Y202009AIM046

[12] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation

Learning on Large Graphs. In Proceedings of the 31st International Conference

on Neural Information Processing Systems (NIPS’17). Curran Associates Inc., Red

Hook, NY, USA, 1025–1035.

[13] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets

for Machine Learning on Graphs. In Advances in Neural Information Processing

Systems, Vol. 33. Curran Associates, Inc., 22118–22133.

[14] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive

Sampling towards Fast Graph Representation Learning. In Proceedings of the

32nd International Conference on Neural Information Processing Systems (NIPS’18).

Curran Associates Inc., Red Hook, NY, USA, 4563–4572.

[15] Jure Leskovec and Andrej Krevl. [n. d.]. SNAP Datasets: Stanford Large Network

Dataset Collection.

[16] Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. 2021. MILE:

A Multi-Level Framework for Scalable Graph Embedding. Proceedings of the

International AAAI Conference on Web and Social Media 15 (May 2021), 361–372.

https://doi.org/10.1609/icwsm.v15i1.18067

[17] Ningyi Liao, Dingheng Mo, Siqiang Luo, Xiang Li, and Pengcheng Yin. 2022.

SCARA: Scalable Graph Neural Networks with Feature-Oriented Optimization.

Proceedings of the VLDB Endowment 15, 11 (July 2022), 3240–3248. https://doi.

org/10.14778/3551793.3551866

[18] Haiyang Lin, Mingyu Yan, Xiaocheng Yang, Mo Zou, Wenming Li, Xiaochun Ye,

and Dongrui Fan. 2022. Characterizing and Understanding Distributed GNN

Training on GPUs. IEEE Computer Architecture Letters 21, 1 (Jan. 2022), 21–24.

https://doi.org/10.1109/LCA.2022.3168067

[19] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric

Lenssen, Gaurav Rattan, andMartin Grohe. 2019. Weisfeiler and LemanGoNeural:

Higher-Order Graph Neural Networks. Proceedings of the AAAI Conference on

Artificial Intelligence 33, 01 (July 2019), 4602–4609. https://doi.org/10.1609/aaai.

v33i01.33014602

[20] Jingshu Peng, Zhao Chen, Yingxia Shao, Yanyan Shen, Lei Chen, and Jiannong

Cao. 2022. Sancus: Staleness-Aware Communication-Avoiding Full-Graph De-

centralized Training in Large-Scale Graph Neural Networks. Proceedings of the

VLDB Endowment 15, 9 (May 2022), 1937–1950. https://doi.org/10.14778/3538598.

3538614

[21] Guillaume Salha, Romain Hennequin, Viet-Anh Tran, and Michalis Vazirgiannis.

2019. A Degeneracy Framework for Scalable Graph Autoencoders. In Proceedings

of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI

2019, Macao, China, August 10-16, 2019, Sarit Kraus (Ed.). ijcai.org, 3353–3359.

https://doi.org/10.24963/ijcai.2019/465

[22] Qiange Wang, Yanfeng Zhang, Hao Wang, Chaoyi Chen, Xiaodong Zhang, and

Ge Yu. 2022. NeutronStar: Distributed GNN Training with Hybrid Dependency

Management. In Proceedings of the 2022 International Conference on Management

of Data (SIGMOD ’22). Association for Computing Machinery, New York, NY,

USA, 1301–1315. https://doi.org/10.1145/3514221.3526134

[23] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE

Transactions on Neural Networks and Learning Systems 32, 1 (Jan. 2021), 4–24.

https://doi.org/10.1109/TNNLS.2020.2978386

[24] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Pow-

erful Are Graph Neural Networks?. In 7th International Conference on Learning

Representations, ICLR 2019, NewOrleans, LA, USA, May 6-9, 2019. OpenReview.net.

[25] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,

and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale

Recommender Systems. In Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining (KDD ’18). Association for

Computing Machinery, New York, NY, USA, 974–983. https://doi.org/10.1145/

3219819.3219890

[26] Binhang Yuan, Cameron R. Wolfe, Chen Dun, Yuxin Tang, Anastasios Kyrillidis,

and Chris Jermaine. 2022. Distributed Learning of Fully Connected Neural Net-

works Using Independent Subnet Training. Proceedings of the VLDB Endowment

15, 8 (April 2022), 1581–1590. https://doi.org/10.14778/3529337.3529343

[27] Chenguang Zheng, Hongzhi Chen, Yuxuan Cheng, Zhezheng Song, Yifan Wu,

Changji Li, James Cheng, Hao Yang, and Shuai Zhang. 2022. ByteGNN: Efficient

Graph Neural Network Training at Large Scale. Proceedings of the VLDB Endow-

ment 15, 6 (Feb. 2022), 1228–1242. https://doi.org/10.14778/3514061.3514069

[28] Zulun Zhu, Jiaying Peng, Jintang Li, Liang Chen, Qi Yu, and Siqiang Luo. 2022.

Spiking Graph Convolutional Networks. In Thirty-First International Joint Con-

ference on Artificial Intelligence, Vol. 3. 2434–2440. https://doi.org/10.24963/ijcai.

2022/338

https://doi.org/10.1145/3442322.3442324
https://doi.org/10.1145/3442322.3442324
https://doi.org/10.48550/arXiv.1806.01261
https://doi.org/10.48550/arXiv.1806.01261
https://arxiv.org/abs/arXiv:1806.01261
https://doi.org/10.1016/0304-3975(82)90016-0
https://doi.org/10.1016/0304-3975(82)90016-0
https://doi.org/10.48550/arXiv.1910.02370
https://arxiv.org/abs/arXiv:1910.02370
https://doi.org/10.1007/978-3-031-11321-5_2
https://doi.org/10.1145/3487553.3524719
https://doi.org/10.1109/LICS52264.2021.9470677
https://doi.org/10.1109/LICS52264.2021.9470677
https://doi.org/10.2200/S01045ED1V01Y202009AIM046
https://doi.org/10.1609/icwsm.v15i1.18067
https://doi.org/10.14778/3551793.3551866
https://doi.org/10.14778/3551793.3551866
https://doi.org/10.1109/LCA.2022.3168067
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.14778/3538598.3538614
https://doi.org/10.14778/3538598.3538614
https://doi.org/10.24963/ijcai.2019/465
https://doi.org/10.1145/3514221.3526134
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.14778/3529337.3529343
https://doi.org/10.14778/3514061.3514069
https://doi.org/10.24963/ijcai.2022/338
https://doi.org/10.24963/ijcai.2022/338

Jeroen Bollen, Jasper Steegmans, Jan Van den Bussche, and Stijn Vansummeren

A Proofs for Section 3 (Methodology)
Proposition 3.3. Let 𝐿 be a GNN composed of𝑑 ∈ N layers,𝑑 ≥ 1. If

cr𝑑 (𝐺) (𝑣) = cr𝑑 (𝐻) (𝑤) then𝐿(𝐺) (𝑣) = 𝐿(𝐻) (𝑤). As a consequence,
if S is a hypothesis space consisting of GNNs of at most 𝑑 layers and

cr𝑑 (𝐺) (𝑣) = cr𝑑 (𝐻) (𝑤) then (𝐺, 𝑣) ∼S (𝐻,𝑤).

Proof. It suffices to show that, for all graphs 𝐺,𝐻 and nodes

𝑣 ∈ 𝐺,𝑤 ∈ 𝐻 it holds that, if cr(𝐺) (𝑣) = cr(𝐻) (𝑤) then 𝐿(𝐺) (𝑣) =
𝐿(𝐻) (𝑤) for any GNN layer 𝐿. Using this observation, the propo-

sition then follows for GNNs by straightforward induction on the

number of layers 𝑑 and the fact that if cr𝑑 (𝐺) (𝑣) = cr𝑑 (𝐻) (𝑤),
then also cr𝑑

′ (𝐺) (𝑣) = cr𝑑
′ (𝐻) (𝑤) for all 𝑑 ′ ≤ 𝑑 .1

So, assume that cr(𝐺) (𝑣) = cr(𝐻) (𝑤). Since, by definition,

cr(𝐺) (𝑣) =
(
𝐺 (𝑣), {{𝐺 (𝑣 ′) | 𝑣 ′ ∈ in𝐺 (𝑣)}}

)
cr(𝐻) (𝑤) =

(
𝐻 (𝑤), {{𝐻 (𝑤 ′) | 𝑤 ′ ∈ in𝐻 (𝑤)}}

)
we may conclude that, 𝐺 (𝑣) = 𝐻 (𝑤) and {{𝐺 (𝑣 ′) | 𝑣 ′ ∈ in𝐺 (𝑣)}} =
{{𝐻 (𝑤 ′) | 𝑤 ′ ∈ in𝐻 (𝑤)}}. Let 𝐿 = (Agg,Comb) be an arbitrary

GNN layer. Then,

𝐿(𝐺) (𝑣) = Comb(𝐺 (𝑣),Agg{{𝐺 (𝑣 ′) | 𝑣 ′ ∈ in𝐺 (𝑣)}})
= Comb(𝐻 (𝑤),Agg{{𝐻 (𝑤 ′) | 𝑤 ′ ∈ in𝐻 (𝑤)}})

= 𝐿(𝐻) (𝑤) □

Proposition 3.8. For every graph𝐺 , every𝑑-substitution 𝜌 of𝐺 with

𝑑 ∈ N∞, and every node 𝑣 ∈ 𝐺 we have cr𝑑 (𝐺) (𝑣) = cr𝑑 (𝐺/𝜌) (𝜌 (𝑣)).

Proof. Fix 𝑑 ∈ N∞ arbitrarily. When 𝑑 ≠ ∞, the statement

follows from Proposition A.1 below. It hence remains to prove the

case where 𝑑 = ∞. To that end, let 𝑐1 ∈ N be the stable coloring

number of 𝐺 , and let 𝑐2 ∈ N be the stable coloring number of 𝐺/𝜌 .
We prove that 𝑐1 = 𝑐2. From this, the claimed equality directly

follows:

cr∞ (𝐺) (𝑣) = cr𝑐1 (𝐺) (𝑣)
= cr𝑐2 (𝐺) (𝑣)
= cr𝑐2 (𝐺/𝜌) (𝜌 (𝑣))
= cr∞ (𝐺/𝜌) (𝜌 (𝑣))

Here, the first and last equality are by definition of cr∞; the second
equality is because 𝑐1 = 𝑐2; and the third equality is by Proposi-

tion A.1.

To prove that 𝑐1 = 𝑐2 it suffices to show that 𝑐1 ≥ 𝑐2 and 𝑐1 ≤ 𝑐2.

We only explain how to obtain the inequality 𝑐1 ≥ 𝑐2; the other

direction is similar.

To show that 𝑐1 ≥ 𝑐2, we must show that [𝐺/𝜌, 𝜌 (𝑣)]𝑐1 =

[𝐺/𝜌, 𝜌 (𝑣)]𝑐1+1 for all nodes 𝜌 (𝑣) ∈ 𝐺/𝜌 . Since [𝐺/𝜌, 𝜌 (𝑣)]𝑐1 ⊇
[𝐺/𝜌, 𝜌 (𝑣)]𝑐1+1 trivially holds by definition of cr, it remains to show

that if 𝜌 (𝑤) ∈ [𝐺/𝜌, 𝜌 (𝑣)]𝑐1 then also 𝜌 (𝑤) ∈ [𝐺/𝜌, 𝜌 (𝑣)]𝑐1+1,
for all nodes 𝜌 (𝑤) ∈ 𝐺/𝜌 . Hence, fix 𝜌 (𝑤) ∈ 𝐺/𝜌 and assume

cr𝑐1 (𝐺/𝜌) (𝜌 (𝑣)) = cr𝑐1 (𝐺/𝜌) (𝜌 (𝑤)). Then, by Proposition A.1 we

derive

cr𝑐1 (𝐺) (𝑣) = cr𝑐1 (𝐺/𝜌) (𝜌 (𝑣)) = cr𝑐1 (𝐺/𝜌) (𝜌 (𝑤)) = cr𝑐1 (𝐺) (𝑤)
1
This latter fact is because cr𝑑 (𝐺) (𝑣) is a pair, whose first component is cr𝑑−1 (𝐺) (𝑣)
(which is a pair, whose first component is cr𝑑−2 (𝐺) (𝑣) , and so on), and similarly for

cr𝑑 (𝐻) (𝑤) .

Since 𝑐1 is the stable coloring number of 𝐺 and cr𝑐1 (𝐺) (𝑣) =

cr𝑐1 (𝐺) (𝑤), also cr𝑐1+1 (𝐺) (𝑣) = cr𝑐1+1 (𝐺) (𝑤). Therefore, again
by Proposition Proposition A.1,

cr𝑐1+1 (𝐺/𝜌) (𝜌 (𝑣)) = cr𝑐1+1 (𝐺) (𝑣)
= cr𝑐1+1 (𝐺) (𝑤)
= cr𝑐1+1 (𝐺/𝜌) (𝜌 (𝑤)).

As such, 𝜌 (𝑤) ∈ [𝐺/𝜌, 𝜌 (𝑣)]𝑐1+1, as desired. □

Proposition A.1. For every graph 𝐺 , every 𝑑-substitution 𝜌 of 𝐺

with 𝑑 ∈ N (i.e., 𝑑 ≠ ∞), and every node 𝑣 ∈ 𝐺 we have cr𝑑 (𝐺) (𝑣) =
cr𝑑 (𝐺/𝜌) (𝜌 (𝑣)).

Proof. Let 𝑑 be an arbitrary but fixed natural number, and let 𝜌

be a 𝑑-substitution of 𝐺 . For ease of readability, let us abbreviate

𝐺/𝜌 by 𝐻 .

Throughout the proof, we will use the following observations.

(O1.) By definition of 𝑑-substitutions, 𝜌 ([𝐺, 𝑣]𝑑) ∈ [𝐺, 𝑣]𝑑 for

every node 𝑣 ∈ 𝐺 . Because we have extended 𝑑-substitutions to

nodes by setting 𝜌 (𝑣) = 𝜌 ([𝐺, 𝑣]𝑑), it follows in particular that

𝜌 (𝑣) ∈ [𝐺, 𝑣]𝑑 for every node 𝑣 . Therefore, by definition of [𝐺, 𝑣]𝑑
we have cr𝑑 (𝐺) (𝑣) = cr𝑑 (𝐺) (𝜌 (𝑣)) for every 𝑣 ∈ 𝐺 . Because 𝑑-

step color refinement includes 𝑑 − 1-step color refinement in the

first component of the pair that it outputs, this also implies that

cr𝑙 (𝐺) (𝑣) = cr𝑙 (𝐺) (𝜌 (𝑣)) for every 𝑙 ≤ 𝑑 .

(O2.) In addition, we note that for every node 𝑤 ∈ 𝐻 = 𝐺/𝜌
we have 𝜌 (𝑤) = 𝑤 . Indeed: only nodes that appear in the image

of 𝜌 are in 𝐺/𝜌 . As such, if 𝑤 ∈ 𝐺/𝜌 there exists some 𝑤 ′ such
that 𝑤 = 𝜌 ([𝐺,𝑤 ′]𝑑). Because 𝜌 ([𝐺,𝑤 ′]𝑑) ∈ [𝐺,𝑤 ′]𝑑 , it follows
that 𝑤 ∈ [𝐺,𝑤 ′]𝑑 and as such, [𝐺,𝑤]𝑑 = [𝐺,𝑤 ′]𝑑 . Hence, 𝑤 =

𝜌 ([𝐺,𝑤]𝑑) = 𝜌 (𝑤).
(O3.) In addition, we note that for every node 𝑤 ∈ 𝐻 and ev-

ery node 𝑤 ′ ∈ [𝐺,𝑤]𝑑 we have 𝜌 (𝑤 ′) = 𝑤 . Indeed, because

𝑤 ′ ∈ [𝐺,𝑤]𝑑 we have [𝐺,𝑤 ′]𝑑 = [𝐺,𝑤]𝑑 . As such 𝜌 (𝑤 ′) =

𝜌 ([𝐺,𝑤 ′]𝑑) = 𝜌 ([𝐺,𝑤]𝑑) = 𝜌 (𝑤) = 𝑤 , where the last equality

is due to observation (O2).

(O4.) For every node 𝑣 ∈ 𝐻 we have in𝐻 (𝑣) = {{𝜌 (𝑤) | 𝑤 ∈
in𝐺 (𝑣)}}. Indeed, let 𝐸𝐻 denote the multiset of edges of 𝐻 and 𝐸𝐺
the multiset of edges of 𝐺 . Then

in𝐻 (𝑣) = {{𝑤 | (𝑤 → 𝑣) ∈ 𝐸𝐻 }}
= {{𝑤 | 𝑤 ′ ∈ [𝐺,𝑤]𝑑 , (𝑤 ′ → 𝑣) ∈ 𝐸𝐺 }}
= {{𝑤 | 𝜌 (𝑤 ′) = 𝑤, (𝑤 ′ → 𝑣) ∈ 𝐸𝐺 }}
= {{𝜌 (𝑤 ′) | (𝑤 ′ → 𝑣) ∈ 𝐸𝐺 }}
= {{𝜌 (𝑤 ′) | 𝑤 ′ ∈ in𝐺 (𝑣)}}
= {{𝜌 (𝑤) | 𝑤 ∈ in𝐺 (𝑣)}}

The first equality is by definition of in𝐻 ; the second because by defi-

nition themultiplicity of𝑤 → 𝑣 in𝐸𝐻 equals

∑
𝑤′∈[𝐺,𝑤]𝑑 𝐸𝐺 (𝑤

′ →
𝑣); and the third by (O3).

To prove the proposition, we now prove the stronger statement

that for every 𝑙 ≤ 𝑑 and every node 𝑣 ∈ 𝐺 we have cr𝑙 (𝐺) (𝑣) =
cr𝑙 (𝐺/𝜌) (𝜌 (𝑣)). Clearly cr𝑑 (𝐺) (𝑣) = cr𝑑 (𝐺/𝜌) (𝜌 (𝑣)) then follows

when 𝑙 = 𝑑 .

The proof of this stronger statement is by induction on 𝑙 . For the

base case when 𝑙 = 0 we have, for every 𝑣 ∈ 𝐺 ,
cr0 (𝐻) (𝜌 (𝑣)) = 𝐻 (𝜌 (𝑣)) = 𝐺 (𝜌 (𝑣)) = cr0 (𝐺) (𝜌 (𝑣)) = cr0 (𝐺) (𝑣)

Learning Graph Neural Networks using Exact Compression

as desired. Here, the first equality is by definition of cr0; the second
is by definition of 𝐻 = 𝐺/𝜌 ; the third is again by definition of cr0;
and the final equality is by observation (O1).

For the inductive case 𝑙 > 0, consider an arbitrary node 𝑣 ∈ 𝐺 .
Then, by definition,

cr𝑙 (𝐺) (𝑣) = (cr𝑙−1 (𝐺) (𝑣), {{cr𝑙−1 (𝐺) (𝑤) | 𝑤 ∈ in𝐺 (𝑣)}})

cr𝑙 (𝐻) (𝜌 (𝑣)) = (cr𝑙−1 (𝐻) (𝜌 (𝑣)), {{cr𝑙−1 (𝐻) (𝑤 ′) | 𝑤 ′ ∈ in𝐻 (𝜌 (𝑣))}})

To show that cr𝑙 (𝐺) (𝑣) = cr𝑙 (𝐻) (𝜌 (𝑣)) we hence need to show:

(i) cr𝑙−1 (𝐺) (𝑣) = cr𝑙−1 (𝐻) (𝜌 (𝑣)); and
(ii) {{cr𝑙−1 (𝐺) (𝑤) | 𝑤 ∈ in𝐺 (𝑣)}}) = {{cr𝑙−1 (𝐻) (𝑤 ′) | 𝑤 ′ ∈

in𝐻 (𝜌 (𝑣))}}.
Equality (i) follows directly from the induction hypothesis. To show

(ii), we reason as follows:

{{ cr𝑙−1 (𝐻) (𝑤 ′) | 𝑤 ′ ∈ in𝐻 (𝜌 (𝑣))}})

= {{cr𝑙−1 (𝐻) (𝑤 ′) | 𝑤 ′ ∈ {{𝜌 (𝑤) | 𝑤 ∈ in𝐺 (𝜌 (𝑣))}}}})

= {{cr𝑙−1 (𝐻) (𝜌 (𝑤)) | 𝑤 ∈ in𝐺 (𝜌 (𝑣))}}

= {{cr𝑙−1 (𝐺) (𝑤) | 𝑤 ∈ in𝐺 (𝜌 (𝑣))}}

= {{cr𝑙−1 (𝐺) (𝑤) | 𝑤 ∈ in𝐺 (𝑣)}}
The first equality is due to observation (O3); the second is an elemen-

tary equality of multiset comprehensions; the third is by induction

hypothesis; and the fourth is because cr𝑙 (𝐺) (𝑣) = cr𝑙 (𝐺) (𝜌 (𝑣) by
Observation (O1). In particular, the next-to-last line is exactly the

second component of the color cr𝑙 (𝐺) (𝜌 (𝑣) and the last line is the

second component of cr𝑙 (𝐺) (𝑣), which must hence be equal. □

Lemma A.2. Let 𝐻1 = 𝐺/𝜌1 and 𝐻2 = 𝐺/𝜌2 be two 𝑑-reducts of 𝐺
and let 𝑓 be an isomorphism from 𝐻1 to 𝐻2. Then 𝑓 agrees with 𝜌2:

𝑓 (𝑢) = 𝜌2 (𝑣) for all 𝑢 ∈ 𝐻1.

Proof. It is straightforward to verify by induction on 𝑑 that cr𝑑

is invariant under isomorphism, in the sense that cr𝑑 (𝐻1) (𝑢) =
cr𝑑 (𝐻2) (𝑓 (𝑢)) for all 𝑢 ∈ 𝐻1. Therefore, for all 𝑢 ∈ 𝐻1

cr𝑑 (𝐺) (𝑢) = cr𝑑 (𝐻1) (𝜌1 (𝑢))

= cr𝑑 (𝐻1) (𝑢)

= cr𝑑 (𝐻2) (𝑓 (𝑢))

= cr𝑑 (𝐻2) (𝜌2 (𝑓 (𝑢)))

= cr𝑑 (𝐺) (𝑓 (𝑢))
The first equality is by Proposition 3.8; the second by the fact that

𝜌1 (𝑢) = 𝑢 for all 𝑢 ∈ 𝐻1; the third by invariance under isomor-

phisms; the fourth by the fact that 𝑓 (𝑢) ∈ 𝐻2 and 𝜌2 (𝑢 ′) = 𝑢 ′ for
every 𝑢 ′ ∈ 𝐻2 ; and the last again by Proposition 3.8.

In other words, 𝑓 (𝑢) ∈ [𝐺,𝑢]𝑑 , for every 𝑢 ∈ 𝐻1. Then, because

𝑓 (𝑢) ∈ 𝐻2 and𝐻2 contains only one node for each color refinement

class in {[𝐺,𝑢]𝑑 | 𝑢 ∈ 𝐺}, it follows that 𝜌2 (𝑢) = 𝑓 (𝑢), for every
𝑢 ∈ 𝐻1 (including 𝑣). □

Proposition 3.9. There is a single 𝑑-reduct of a graph 𝐺 up to

isomorphism if and only if 𝑑 is greater than or equal to the stable

coloring number of 𝐺 .

Proof. (If.) For the if-implication, assume that 𝑐 is the stable

coloring number of 𝐺 and let 𝑑 ≥ 𝑐 , 𝑑 ∈ N. Then, for all nodes

𝑣 ∈ 𝐺 we have [𝐺, 𝑣]𝑑 = [𝐺, 𝑣]𝑑+1. Let 𝐻1 = 𝐺/𝜌1 and 𝐻2 = 𝐺/𝜌2
be two 𝑑-reducts of 𝐺 . Let 𝑉1 = {𝜌1 (𝑣) | 𝑣 ∈ 𝐺} be the set of nodes
in 𝐻1 and 𝑉2 = {𝜌2 (𝑣) | 𝑣 ∈ 𝐺} be the set of nodes in 𝐻2. It is clear

that𝑉1 and𝑉2 are of the same cardinality, as they have one node for

each color refinement class in {[𝐺, 𝑣]𝑑 | 𝑣 ∈ 𝐺}. It is furthermore

straightforward to obtain that 𝜌1 (𝑣) = 𝑣 for all 𝑣 ∈ 𝑉1, and similarly

𝜌2 (𝑣) = 𝑣 for all 𝑣 ∈ 𝑉2.
We claim that the function 𝑓 = 𝜌2 |𝑉1

is an isomorphism from

𝐻1 to 𝐻2.

(1) This function is injective: assume that 𝑣,𝑤 ∈ 𝑉1 and 𝜌2 (𝑣) =
𝜌2 (𝑤). Since, by defintion of 𝑑-substitutions, we have 𝜌2 (𝑣) ∈
[𝐺, 𝑣]𝑑 and 𝜌2 (𝑤) ∈ [𝐺,𝑤]𝑑 it follows that [𝐺, 𝑣]𝑑 = [𝐺,𝑤]𝑑 .
Because 𝑣,𝑤 ∈ 𝑉1 we have 𝜌1 (𝑣) = 𝑣 and 𝜌1 (𝑤) = 𝑤 . As such

𝑣 = 𝜌1 (𝑣) = 𝜌1 ([𝐺, 𝑣]𝑑) = 𝜌1 ([𝐺,𝑤]𝑑) = 𝑤 as desired.

(2) Since 𝑓 is an injective function from 𝑉1 to 𝑉2 and 𝑉1 and 𝑉2
are finite sets of the same cardinality, it is also surjective. Hence 𝑓

is a bijection between 𝑉1 and 𝑉2.

(3) It remains to show that for all 𝑣,𝑤 ∈ 𝑉1 we have
𝐻1 (𝑣 → 𝑤) = 𝐻2 (𝜌2 (𝑣) → 𝜌2 (𝑤)) .

Fix 𝑣,𝑤 ∈ 𝑉1 arbitrarily. By definition of 𝜌2 we have 𝜌2 (𝑤) ∈
[𝐺,𝑤]𝑑 and because [𝐺,𝑤]𝑑 = [𝐺,𝑤]𝑑+1 (𝑑 is larger than the

stable coloring number of 𝐺) it follows that 𝜌2 (𝑤) ∈ [𝐺,𝑤]𝑑+1.
Therefore, cr𝑑+1 (𝐺) (𝑤) = cr𝑑+1 (𝐺) (𝜌2 (𝑤)). In particular,

{{cr𝑑 (𝐺) (𝑣 ′) | 𝑣 ′ ∈ in𝐺 (𝑤)}} = {{cr𝑑 (𝐺) (𝑣 ′) | 𝑣 ′ ∈ in𝐺 (𝜌2 (𝑤))}}
Hence, for any 𝑣 ∈ 𝐺 we also have

{{cr𝑑 (𝐺) (𝑣 ′) | 𝑣 ′ ∈ in𝐺 (𝑤), 𝑣 ′ ∈ [𝐺, 𝑣]𝑑 }}

= {{cr𝑑 (𝐺) (𝑣 ′) | 𝑣 ′ ∈ in𝐺 (𝜌2 (𝑤)), 𝑣 ′ ∈ [𝐺, 𝑣]𝑑 }} (★)

Let us denote the total multplicity of a finite multiset𝑀 by #𝑀 , i.e.,

#𝑀 =
∑
𝑥 𝑀 (𝑥). Then we reason as follows.

𝐻1 (𝑣 → 𝑤) =
∑︁

𝑣′∈[𝐺,𝑣]𝑑
𝐺 (𝑣 ′ → 𝑤)

= #{{𝑣 ′ | 𝑣 ′ ∈ in𝐺 (𝑤), 𝑣 ′ ∈ [𝐺, 𝑣]𝑑 }}

= #{{cr𝑑 (𝐺, 𝑣 ′) | 𝑣 ′ ∈ in𝐺 (𝑤), 𝑣 ′ ∈ [𝐺, 𝑣]𝑑 }}

= #{{cr𝑑 (𝐺, 𝑣 ′) | 𝑣 ′ ∈ in𝐺 (𝜌2 (𝑤)), 𝑣 ′ ∈ [𝐺, 𝑣]𝑑 }}

= #{{cr𝑑 (𝐺, 𝑣 ′) | 𝑣 ′ ∈ in𝐺 (𝜌2 (𝑤)), 𝑣 ′ ∈ [𝐺, 𝜌2 (𝑣)]𝑑 }}|
= #{{𝑣 ′ | 𝑣 ′ ∈ in𝐺 (𝜌2 (𝑤)), 𝑣 ′ ∈ [𝐺, 𝜌2 (𝑣)]𝑑 }}|

=
∑︁

𝑣′∈[𝐺,𝜌2 (𝑣)]𝑑
𝐺 (𝑣 ′ → 𝜌2 (𝑤))

= 𝐻2 (𝜌2 (𝑣) → 𝜌2 (𝑤))
The first equality is by definition of 𝐻1; the second is by rewriting

the sum in multiset notation; the third because we are only inter-

ested in the total multiplicity of the multiset and not its elements;

the fourth by (★); the fifth because [𝐺, 𝑣]𝑑 = [𝐺, 𝜌 (𝑣)]𝑑 by defini-

tion of 𝑑-substitutions; the sixth again because we care only about

multiplicity and not the actual elements; the seventh by rewriting

the multiset notation into a sum; and the last by definition of 𝐻2.

(Only if). Assume that all 𝑑-reducts of𝐺 are isomorphic. We need

to show that for all 𝑣 ∈ 𝐺 we have [𝐺, 𝑣]𝑑 = [𝐺, 𝑣]𝑑+1. The con-
tainment [𝐺, 𝑣]𝑑 ⊇ [𝐺, 𝑣]𝑑+1 trivially holds by definition of cr. For

Jeroen Bollen, Jasper Steegmans, Jan Van den Bussche, and Stijn Vansummeren

the other containment, assume that𝑤 ∈ [𝐺, 𝑣]𝑑 , i.e., cr𝑑 (𝐺) (𝑣) =
cr𝑑 (𝐺) (𝑤). We will show that also cr𝑑+1 (𝐺) (𝑣) = cr𝑑+1 (𝐺) (𝑤),
which is equivalent to saying that𝑤 ∈ [𝐺, 𝑣]𝑑+1.

Recall that cr𝑑+1 (𝐺) (𝑣) and cr𝑑+1 (𝐺) (𝑤) are pairs by defini-

tion. Since cr𝑑 (𝐺) (𝑣) = cr𝑑 (𝐺) (𝑤) by assumption, the first compo-

nents of of these pairs are certainly equal. To prove cr𝑑+1 (𝐺) (𝑣) =
cr𝑑+1 (𝐺) (𝑤), we hence only need to show that also their second

components are equal, i.e., that

{{cr𝑑 (𝐺) (𝑢) | 𝑢 ∈ in𝐺 (𝑣)}}︸ ︷︷ ︸
=:𝑀1

= {{cr𝑑 (𝐺) (𝑢) | 𝑢 ∈ in𝐺 (𝑤)}}︸ ︷︷ ︸
=:𝑀2

(‡)

To obtain this equality, consider two 𝑑-substitutions 𝜌1 and 𝜌2 s.t.

𝜌1 : [𝐺, 𝑣]𝑑 ↦→ 𝑣 𝜌2 : [𝐺, 𝑣]𝑑 ↦→ 𝑤

In other words, 𝜌1 (𝑣) = 𝜌1 (𝑤) = 𝑣 and 𝜌2 (𝑣) = 𝜌2 (𝑤) = 𝑤 . By

assumption, 𝐻1 = 𝐺/𝜌1 and 𝐻2 = 𝐺/𝜌2 are isomorphic. Let 𝑓

be an isomorphism from 𝐻1 to 𝐻2. By Lemma A.2 𝑓 agrees with

𝜌2: 𝑓 (𝑢) = 𝜌2 (𝑢) for all 𝑢 ∈ 𝐻1 (including 𝑣). Furthermore, by

definition of isomorphism, for all 𝑢 ∈ 𝐻1 we have 𝐻1 (𝑢 → 𝑣) =
𝐻2 (𝑓 (𝑢) → 𝑓 (𝑣)) = 𝐻2 (𝜌2 (𝑢) → 𝜌2 (𝑣)) = 𝐻2 (𝜌2 (𝑢) → 𝑤).

To show that𝑀1 = 𝑀2 we show that for every 𝑥 ,𝑀1 (𝑥) ≤ 𝑀2 (𝑥)
and𝑀2 (𝑥) ≤ 𝑀1 (𝑥). We only illustrate the reasoning for𝑀1 (𝑥) ≤
𝑀2 (𝑥), the converse direction is similar. Consider an element 𝑥 in

𝑀1, and let𝑚 = 𝑀 (𝑥) be its multiplicity. Then there exists some

𝑢 ∈ in𝐺 (𝑣) such that 𝑥 = cr𝑑 (𝐺) (𝑢), and 𝑥 occurs as many times in

𝑀1 as there are elements in𝑀 ′
1
:= {{𝑢 ′ | 𝑢 ′ ∈ in𝐺 (𝑣), 𝑢 ′ ∈ [𝐺,𝑢]𝑑 }},

i.e., 𝑚1 = #𝑀 ′
1
. Because [𝐺,𝑢]𝑑 = [𝐺, 𝜌1 (𝑢)]𝑑 for all 𝑢 ∈ 𝐺 , it

follows that

𝑚1 = #{{𝑢 ′ | 𝑢 ′ ∈ in𝐺 (𝑣), 𝑢 ′ ∈ [𝐺,𝑢]𝑑 }}
= #{{𝑢 ′ | 𝑢 ′ ∈ in𝐺 (𝑣), 𝑢 ′ ∈ [𝐺, 𝜌1 (𝑢)]𝑑 }}
= 𝐻1 (𝜌1 (𝑢) → 𝑣)
= 𝐻2 (𝜌2 (𝜌1 (𝑢)) → 𝑤)
= #{{𝑢 ′ | 𝑢 ′ ∈ in𝐺 (𝑤), 𝑢 ′ ∈ [𝐺, 𝜌2 (𝜌1 (𝑢))]𝑑 }}
= #{{𝑢 ′ | 𝑢 ′ ∈ in𝐺 (𝑤), 𝑢 ′ ∈ [𝐺,𝑢]𝑑 }}

The last equality is because [𝐺, 𝜌2 (𝜌1 (𝑢))]𝑑 = [𝐺,𝑢]𝑑 by definition

of 𝑑-reducts. Notice that all elements 𝑢 ′ in the multiset on the last

line will create one copy of cr𝑑 (𝐺) (𝑢 ′) = cr𝑑 (𝐺) (𝑢) in𝑀2. As such,

𝑥 = cr𝑑 (𝐺) (𝑢) occurs at least𝑚 times in𝑀2, as desired. □

Proposition 3.10. Let 𝐺 be a graph, let 𝑑 ∈ N∞ and let 𝜌 be a

𝑑-substitution such that

incidence𝑑𝐺 (𝜌 (𝑣)) = min

𝑣′∈[𝐺,𝑣]𝑑
incidence𝑑𝐺 (𝑣

′),

for every node 𝑣 ∈ 𝐺 . Then the size of 𝐺/𝜌 is minimal among all

𝑑-reducts of 𝐺 .

Proof. Since ∞-substitutions are simply 𝑑-substitutions with

𝑑 ∈ N the stable coloring number of 𝐺 , it suffices to show the

statement for all 𝑑 ∈ N.
Fix 𝑑 ∈ N, let 𝐶 = {[𝐺, 𝑣]𝑑 | 𝑣 ∈ 𝐺} be the color refinement

classes of 𝐺 of depth 𝑑 , and let 𝜌 be a 𝑑-substitution such that

incidence𝑑𝐺 (𝜌 (𝑐)) = min

𝑣′∈𝑐
incidence𝑑𝐺 (𝑣),

for every refinement class 𝑐 ∈ 𝐶 . Let 𝐻 = 𝐺/𝜌 . Furthermore, let `

be another 𝑑-substitution and let 𝑈 = 𝐺/`. We will show that 𝐻 ,

viewed as a simple graph by ignoring edge multiplicities, has no

more edges than𝑈 .

Note that for each class 𝑐 ∈ 𝐶 there is exactly one corresponding

node in𝐻 (namely, 𝜌 (𝑐)) and one corresponding node in𝑈 (namely

` (𝑐)). We claim that, for every 𝑐 ∈ 𝐶 , the indegree2 of 𝜌 (𝑐) in 𝐻 is

at most the indegree of ` (𝑐) in𝑈 . Since the total number of simple

edges in 𝐻 equals

∑
𝑐∈𝐶 indegree𝐻 (𝜌 (𝑐)) and the total number of

simple edges in𝑈 similarly equals

∑
𝑐∈𝐶 indegree𝑈 (` (𝑐)), it follows

that 𝐻 , viewed as a simple graph, has no more edges than𝑈 .

To prove the claim, let 𝑐 ∈ 𝐶 . There is an edge from 𝜌 (𝑐 ′) →
𝜌 (𝑐) in 𝐻 if and only if [𝐺, 𝜌 (𝑐 ′)]𝑑 ∩ in𝐺 (𝜌 (𝑐)) is non-empty.

Hence, since [𝐺, 𝜌 (𝑐 ′)]𝑑 = 𝑐 ′, the indegree of 𝜌 (𝑐) in 𝐻 is exactly

incidence𝑑
𝐺
(𝜌 (𝑐)). Similar reasoning shows that the indegree of

` (𝑐) in𝑈 equals incidence𝑑
𝐺
(` (𝑐)). As such,

indegree𝐻 (𝜌 (𝑐)) = incidence𝑑𝐺 (𝜌 (𝑐))

= min

𝑣′∈𝑐
incidence𝑑𝐺 (𝑣

′)

≤ incidence𝑑𝐺 (` (𝑐))
= indegree𝑈 (` (𝑐))

The inequality in the third line is because ` (𝑐) ∈ 𝑐 by definition of

𝑑-substitution. □

Theorem 3.11. Let P be a learning problem with hypothesis space

S and assume that 𝑑 ∈ N∞ is such that every GNN in S has at most

𝑑 layers. (In particular, 𝑑 = ∞ if there is no bound on the number of

layers in S.) Then P ≡ P/𝜌 for every 𝑑-substitution 𝜌 .

Proof. Let P/𝜌 = (𝐺 ′,𝑇 ′, Loss′), so 𝐺 ′ = 𝐺/𝜌 ; 𝑇 ′ = 𝑇 /𝜌 , and
Loss

′ = Loss/𝜌 . Consider an arbitrary but fixed GNN 𝐿 ∈ S. We

need to show that Loss(𝐿(𝐺),𝑇) = Loss
′(𝐿(𝐺 ′),𝑇 ′). To that end,

first observe that for every node 𝑣 ∈ 𝐺 ′ and every node𝑤 ∈ [𝐺, 𝑣]𝑑
we have 𝜌 (𝑤) = 𝑣 . Consequently,

cr𝑑 (𝐺 ′, 𝑣) = cr𝑑 (𝐺 ′, 𝜌 (𝑤)) = cr𝑑 (𝐺/𝜌, 𝜌 (𝑤)) = cr𝑑 (𝐺,𝑤),
Here, the last equality follows from Proposition 3.8. Hence, by

Proposition 3.3 (or Corollary 3.4 when 𝑑 = ∞), (𝐺 ′, 𝑣) ∼S (𝐺,𝑤)
and such 𝐿(𝐺 ′) (𝑣) = 𝐿(𝐺) (𝑤) for every 𝑣 ∈ 𝐺 ′ and𝑤 ∈ [𝐺, 𝑣]𝑑 .

Using this observation we now reason as follows.

Loss
′(𝐿(𝐺 ′),𝑇 ′) =

∑︁
𝑣∈𝑇 ′

Loss
′(𝑣, 𝐿(𝐺 ′) (𝑣))

=
∑︁
𝑣∈𝑇 ′

∑︁
𝑤∈𝑇∩[𝐺,𝑣]𝐷

Loss(𝑤, 𝐿(𝐺 ′) (𝑣))

=
∑︁
𝑣∈𝑇 ′

∑︁
𝑤∈𝑇∩[𝐺,𝑣]𝐷

Loss(𝑤, 𝐿(𝐺) (𝑤))

=
∑︁
𝑤∈𝑇

Loss(𝑤, 𝐿(𝐺) (𝑤))

= Loss(𝐿(𝐺),𝑇)
The second equality is by definition of Loss

′
. The third equality

follows from our observation. The fourth equality is because 𝑇 =⋃
𝑣∈𝑇 ′ [𝐺, 𝑣]𝑑 ∩𝑇 . □

2
That is, the number of nodes 𝑤 in 𝐻 having an outgoing edge to 𝜌 (𝑐) .

	Abstract
	1 Introduction
	2 Preliminaries
	3 Methodology
	3.1 Indistinguishability
	3.2 Graph reduction
	3.3 Problem compression
	3.4 Graded Color Refinement

	4 Evaluation
	4.1 Compression
	4.2 Learning

	5 Conclusion and Future Work
	Acknowledgments
	References
	A Proofs for Section 3 (Methodology)

