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ABSTRACT

Dynamic Algorithm Configuration (DAC) tackles the question of

how to automatically learn policies to control parameters of algo-

rithms in a data-driven fashion. This question has received consid-

erable attention from the evolutionary community in recent years.

Having a good benchmark collection to gain structural understand-

ing on the effectiveness and limitations of different solution meth-

ods for DAC is therefore strongly desirable. Following recent work

on proposing DAC benchmarks with well-understood theoretical

properties and ground truth information, in this work, we suggest

as a new DAC benchmark the controlling of the key parameter 𝜆 in

the (1 + (𝜆, 𝜆)) Genetic Algorithm for solving OneMax problems.

We conduct a study on how to solve the DAC problem via the use

of (static) automated algorithm configuration on the benchmark,

and propose techniques to significantly improve the performance

of the approach. Our approach is able to consistently outperform

the default parameter control policy of the benchmark derived

from previous theoretical work on sufficiently large problem sizes.

We also present new findings on the landscape of the parameter-

control search policies and propose methods to compute stronger

baselines for the benchmark via numerical approximations of the

true optimal policies.
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1 INTRODUCTION

Evolutionary algorithms and similar randomized search heuris-

tics have a number of parameters that allow to fine-tune their

behavior to the problem at hand and to the current stage of the

optimization process. However, despite a long series of works study-

ing which parameters work well for which algorithms and which

problem scenarios, the question how to control these parameters

in an automated fashion is wide open. Concepts such as hyper-
heuristics [12], parameter control [23, 29, 36], and adaptive opera-
tor selection [31] dominate research on this topic in evolutionary

computation (EC). More recently, approaches based on machine

learning (ML), and in particular based on reinforcement learning

(RL), propose to explicitly train control policies. That is, where EC

assumes that a given problem instance has to be solved instantly,

the ML-approaches focus on settings in which similar problem in-

stances need to be solved, and an explicit training is possible. This

setting was first studied in [47] and later named dynamic algorithm
configuration (DAC) in [10]. It quickly became a very active area of

research [1, 11, 30, 46, 48, 49, 51]. A parallel research direction in

the hyper-heuristic community is on automated algorithm design,
which focuses on leveraging deep RL approaches for training poli-

cies to select the best algorithm components based on the search

states [52–54].

Regardless of whether adopting the EC view or whether con-

sidering the DAC setting, it is highly desirable to have access to

benchmarks that support a sound investigation of the proposed

methods. As in other branches of computer science, benchmark-

ing helps to compare the efficiency of different algorithms and to

investigate their strengths and weaknesses. Benchmarking has a

long tradition in EC, and has undoubtedly helped our community

mature [7, 33]. In difference to competitive testing, where the main

focus is on the performance of the solvers, benchmarking relies on

settings that are sufficiently well understood to help us gain insight

into the working principles that drive this performance – knowl-

edge that not only supports the improvement of the algorithms

but also leads to a better deployment of the existing approaches in

practice.

The idea of leveraging settings with well-understood theoretical

properties and using them for benchmarking DAC approaches was

recently promoted in [11]. The paper adopted the (1+1) Random-

ized Local Search for solving variants of the LeadingOnes problem

with configurable problem dimension and action spaces, where the

action space corresponds to the portfolio of the parameters that the

DAC policies are allowed to choose from. Notably, the paper [11]

extended previously known theoretical results from [21, 28] to set-

tingswith restricted portfolio. Using these provably optimal “ground
truth” policies, their work demonstrated that an off-the-shelf RL-

based learning mechanism can work very well if both the number

of parameter values to choose from and the problem dimension are

rather small. As soon as either of them increases beyond some rela-

tively moderate threshold, the observed performance deteriorated

quickly.

Our contributions. Following the approach in [11], in this pa-

per we propose a new DAC benchmark derived from EC theory.

An essential property of a DAC benchmark is the clear discrepancy

between static configuration and dynamic control policies. To that

end, we adopt the setting proposed in [24], which involves con-

trolling the population size parameter 𝜆 in the (1 + (𝜆, 𝜆)) Genetic
Algorithm (GA) for the OneMax problem. As in the LeadingOnes

benchmarks, the goal is to minimize the expected running time of
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the algorithm, i.e., the total number of evaluations that the algo-

rithm performs before it reaches an optimal solution. The setting

also comes with an asymptotically optimal parameter control policy

with linear expected runtime [24], which will be used as a baseline

for our DAC experiments in this paper.

The new benchmark has a number of interesting properties com-

pared to the LeadingOnes. First, the performance gain obtained

by an optimally controlled parameter setting over the best possible

static setting is𝜔 (1), i.e., it grows more than a constant factor as the

problem dimension increases, while the advantage of an optimally

controlled policy for LeadingOnes is “only” a constant factor, i.e.,

Θ(1). Second, as we will show in our analysis (Section 4.2), the

parameter search space has an unusual landscape with frequent

abrupt changes across the whole area, making it potentially chal-

lenging for DAC approaches.

It is worth to note that deep RL is not the only solution method

for DAC. An alternative approach is to formulate DAC as a (meta-

)optimization problem, where we search in the policy space directly

via black-box optimization methods [1]. Our second contribution is

on this direction: we investigate the potential of using automated

algorithm configuration techniques to solve DAC problems. More

specifically, we formulate a policy of our benchmark as a static

parameter setting and configure it using the automated algorithm

configuration tool irace [41]. As will be detailed in Section 3, a

naive application of irace does not work well, especially when

the problem size is over 200, which is considered rather small for

OneMax problems. This can be accounted to the large number

of parameters the tuning has to deal with and the complicated

landscape of the parameter search space. We then propose a binning
approach to reduce the search space, and a cascading application

of the tuning. A combination of those two strategies results in

significant improvement in performance. The tuning is able to find

policies that consistently outperform the theory-derived policy

in [24].

Our last contribution involves expanding our understandings on

the proposed DAC benchmark. We extend recent works on numeri-

cally computing optimal control policies for concrete dimensions

via dynamic programming. Originally proposed in [13] and later

refined in [6, 15], this approach allows us to approximate the opti-

mal control policy of our new benchmark with very good precision.

In this work, we compute the approximations of both the generally

optimal policies and the optimal binning policies, which show that

there is a consistent but small gap between the two. Apart from

serving us as new baselines for our tuning-based approach and for

other DAC methods in general, our work also reveals some facts

about the (1 + (𝜆, 𝜆)) GA that we expect to be of interest in the

context of running time analysis, parameter setting, and algorithm

design. Indeed, search landscapes associated with parameter setting

problems are usually thought to be rather smooth [42, 43], but our

findings suggest that it is not always true, and in particular not for

parameter control settings. This finding reinforces a similar obser-

vation made in [6] for landscape of parameter control policies for

the much simpler (1+𝜆)-type evolutionary algorithms. We consider

such insights on (un)structured parameter control landscapes very

valuable for further algorithm design – whether in the context of

DAC or in the classic black-box optimization setting.

Availability of code and data. To adhere to reproducibility

standards discussed in [40], our code and data are available at [18].

2 CONTROLLING THE POPULATION SIZE OF

THE (1 + (𝜆, 𝜆)) GA ON ONEMAX

Notation. We always denote by 𝑛 the dimension of the search

space. For a search point 𝑥 ∈ {0, 1}𝑛 we write 𝑥 = (𝑥1, . . . , 𝑥𝑛). For
two real number 𝑎 and 𝑏 we denote by [𝑎..𝑏] the set of all integers
𝑘 that satisfy 𝑎 ≤ 𝑘 ≤ 𝑏.

OneMax. In this work, we are interested in minimizing the

expected optimization time of the (1 + (𝜆, 𝜆)) GA on OneMax.

OneMax is one of the most important benchmark problems in the

analysis of evolutionary algorithms (EAs). It denotes the collection

of functions {𝑓𝑧 | 𝑧 ∈ {0, 1}𝑛} with 𝑓𝑧 : {0, 1}𝑛 → [0..𝑛], 𝑥 ↦→ |{𝑖 ∈
[1..𝑛] | 𝑥𝑖 = 𝑧𝑖 }|, the function that counts in how many positions

the solution candidate 𝑥 agrees with the secret target string 𝑧. As
it was discussed in [26], OneMax can be seen as the Mastermind

problem with two colors, 0 and 1. The name “OneMax” originates

in the fact that for analyzing the performance of so-called unbi-
ased algorithms, it suffices to study their behavior on the function

𝑓(1,...,1) , see [27, 39] for detailed explanations. This is also the case

for the (1 + (𝜆, 𝜆)) GA introduced below. Despite its simplicity, the

OneMax problem is highly relevant for understanding the behav-

ior of EAs in regimes in which we have a good fitness-distance

correlation. That is, OneMax helps us understand how algorithms

perform in environments in which they are not misled by search

points that have better fitness value than another while at the same

time being farther away from the optimum.

Background on the (1+(𝜆, 𝜆)) GA. The (1+(𝜆, 𝜆)) GAwas orig-

inally introduced in [24] to formally prove that the use of crossover

can be beneficial even for optimizing rather simple functions such

as OneMax. It later started to play an important role in the analysis

of parameter control mechanisms. Already in [24] it was shown

that a fitness-dependent setting of the key parameter 𝜆 can lead

to expected running times that are asymptotically better than that

of the best static setting. Later works showed that a simple one-

fifth success rule, as adopted to the discrete setting in [37], leads

to best possible linear running time. This result inspired a number

of follow-up works on parameter control [23]. More recently, the

(1 + (𝜆, 𝜆)) GA plays another important role for the study of un-

usual mutation operators such as the heavy-tailed “fast” mutation

operators introduced in [25]; see [3] for a recent example. Finally,

the (1 + (𝜆, 𝜆)) GA has also been studied in other contexts, see [4]

for work on LeadingOnes, [14, 32] for applications to satisfiability

problems, and [5] for more results and further references.

The (1 + (𝜆, 𝜆)) GA. Alg. 1 presents the pseudo-code of the

(1 + (𝜆, 𝜆)) GA version analyzed in this work. The algorithm is

initialized by sampling and evaluating a search point chosen from

{0, 1}𝑛 uniformly at random (u.a.r.). It then proceeds in rounds,

consisting of one mutation phase and one crossover phase each. In

the mutation phase, Λ = ⌊𝜆⌉ new solution candidates (“offspring”)
are sampled, where ⌊𝜆⌉ := ⌊𝜆⌋ if 𝜆 − ⌊𝜆⌋ < 0.5 and ⌊𝜆⌉ := ⌈𝜆⌉
otherwise. Each offspring is sampled by inverting the bits in ℓ
position that are chosen u.a.r.. Here, ℓ is a random number that

is kept fixed throughout one iteration and that is sampled from

the resampling binomial distribution Bin>0 (𝑛, 𝜆/𝑛) that performs
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Algorithm 1: The (1 + (𝜆, 𝜆)) GA variant analyzed in this

paper.

Input :problem size 𝑛
a parameter control policy 𝜋 : [0..𝑛 − 1] → [1;𝑛]

1 Initialization: Sample 𝑥 ∈ {0, 1}𝑛 u.a.r. and evaluate 𝑓 (𝑥);
2 Optimization: for 𝑡 = 1, 2, 3, . . . do
3 Let 𝜆 = 𝜋 (𝑓 (𝑥));
4 Mutation phase:

5 Sample ℓ from Bin>0 (𝑛, 𝜆/𝑛);
6 Set population size Λ as ⌊𝜆⌉;
7 for 𝑖 = 1, . . . ,Λ do 𝑥 (𝑖 ) ← flipℓ (𝑥); Evaluate 𝑓 (𝑥 (𝑖 ) );
8 Choose 𝑥 ′ ∈ {𝑥 (1) , . . . , 𝑥 (Λ) } with

𝑓 (𝑥 ′) = max{𝑓 (𝑥 (1) ), . . . , 𝑓 (𝑥 (Λ) )} u.a.r.;
9 Crossover phase:

10 for 𝑖 = 1, . . . ,Λ do

11 𝑦 (𝑖 ) ← cross
1/𝜆 (𝑥, 𝑥 ′);

12 if 𝑦 (𝑖 ) ∉ {𝑥, 𝑥 ′} then evaluate 𝑓 (𝑦 (𝑖 ) );
13 Choose 𝑦′ ∈ {𝑦 (1) , . . . , 𝑦 (Λ) } with

𝑓 (𝑦′) = max{𝑓 (𝑦 (1) ), . . . , 𝑓 (𝑦 (Λ) )} u.a.r.;
14 Selection and update step:

15 if 𝑓 (𝑦′) > 𝑓 (𝑥 ′) then 𝑦 ← 𝑦′ else 𝑦 ← 𝑥 ′;
16 if 𝑓 (𝑦) ≥ 𝑓 (𝑥) then 𝑥 ← 𝑦;

𝑛 trials with success rate 𝜆/𝑛 each and resamples i.i.d. until a value

greater than 0 is found. The best of these Λ offspring (ties broken

u.a.r.), referred to as 𝑥 ′ in Alg. 1, is selected to participate in the

crossover phase. In the crossover phase, another Λ search points

are generated, each sampled from a uniform crossover between the

original parent 𝑥 and the selected mutant 𝑥 ′. The crossover operator
cross

1/𝜆 (𝑥, 𝑥 ′) treats each position independently and sets 𝑦𝑖 = 𝑥 ′
𝑖

with probability 1/𝜆 and it sets 𝑦𝑖 = 𝑥𝑖 otherwise. The so-created
“crossover offspring” are only evaluated if they are different from

both parents, and they are not further taken into consideration

otherwise. For 𝑦′ denoting the best of the samples generated in

the crossover phase (ties broken again u.a.r.), we then let 𝑦 = 𝑦′ if
𝑦′ is strictly better than 𝑥 ′ and we let 𝑦 = 𝑥 ′ otherwise. Finally, 𝑦
replaces 𝑥 as parent for the next iteration if it is at least as good,

i.e., if 𝑓 (𝑦) ≥ 𝑓 (𝑥).
Parameter settings. In the static version of the (1 + (𝜆, 𝜆)) GA,

the value of 𝜆 is fixed throughout the whole run, i.e., the control

policy 𝜋 in Alg. 1 is constant. In the dynamic version, 𝜆 can take

different values at different stages of the optimization process.

The default dynamic control policy that we compare our re-

sults against, namely theory, assigns to each fitness value 𝑖 the

parameter value 𝜋 (𝑖) :=
√︁
𝑛/(𝑛 − 𝑖). It was used in [24, Theorem 8]

to prove an asymptotic super-constant speedup over the best static

choice of 𝜆.

3 CONFIGURING CONTROL POLICIES

We represent a parameter control policy for the (1 + (𝜆, 𝜆)) GA as

a mapping from a current fitness to a specific 𝜆 value. The problem

of finding the best parameter control policy therefore can be stated

as a static automated algorithm configuration, where the number

of parameters is equal to the problem size 𝑛: each parameter corre-

spond to the 𝜆 value of a fitness value in the range of [0..𝑛 − 1]. We

use the automated algorithm configuration tool irace [41] to solve

this task. We apply this dynamic tuning approach, namely tuned,

on various problem sizes from 10 to 2000. The tuning budget is

set as 50000 runs. Since the performance metric is runtime related,

the adaptive capping feature of irace is enabled as it has been

shown to significantly improve the tuning performance in various

cases [17, 20]. As we are interested in optimizing expected running

time, we set irace’s statistical test to be the Student t-test. More-

over, to account for the noisy nature of the benchmark, the firstTest
parameter (the number of instances/seeds being evaluated at the

beginning of each irace’s iteration before the first statistical test is

applied) is increased from 5 (default) to 10. All other parameters of

irace are set as default. For comparison, we also apply irace on

a static version of the (1 + (𝜆, 𝜆)) GA where 𝜆 is fixed during the

whole run. This version is named tuned_static, and the tuning

budget is set as min(100 × 𝑛, 20000) runs. The final configuration
found by each tuning experiment is evaluated across 500 different

random seeds, and their performances are presented in Figure 1.

It is clear that the dynamic tuning approach does not scale well

with problem sizes: the expected runtime of tuned is much higher

than both theory and tuned_static, especially when 𝑛 ≥ 200.
1

The differences in performance (i.e., tuned vs theory and tuned

vs tuned_static) are statistically significant
2
for 𝑛 ≥ 50 according

to the Wilcoxon rank sum test with a confidence level of 99.9%. One
possible explanation for the bad performance of tuned is due to

the large number of numerical parameters irace has to deal with.

In fact, automated algorithm configuration scenarios often either:

(i) involves a few dozens parameters at most, or in some cases, up to

200 parameters; or (ii) has a large number of categorical parameters

with only a few possible values [35].

To reduce the parameter space, we define a binning approach

where we partition the objective space [0..𝑛] into𝑘 consecutive bins

{𝐵1, 𝐵2, .., 𝐵𝑘 }, and only tune one 𝜆 parameter for all fitness values

in the same bin, i.e., the number of parameters is now reduced from

𝑛 to 𝑘 . In many optimization problems, the closer we get to the

optimal, the harder it is to optimize. Therefore, we define the bins

so that their sizes are gradually reduced as the objective values

increased. More concretely, we set 𝐵𝑖 = [𝑎𝑖 ..𝑎𝑖+1 − 1] (𝑖 ∈ [1, 𝑘 − 1])
where 𝑎𝑖 = 𝑛 − ⌊ 𝑛

2
𝑖−1 ⌋ ∀𝑖 ∈ [1, 𝑘], and 𝐵𝑘 = [𝑎𝑘 ..𝑛]. Figure 3

illustrates how the bins are created with different 𝑘 values. We

name this approach tuned_bin. From this point onward, we will

focus on sufficiently large problem sizes (𝑛 ≥ 500) as those are the

cases where the discrepancy between the static and the dynamic

policies is obvious. The tuning budget is set as 5000, 10000, 20000,

and 21000 for 𝑛 equals to 500, 1000, 2000, and 3000, respectively.

A larger number of bins results in more flexibility in the tuning

and better quality of the best possible parameter-control policy,

but it may also lead to more difficulty in searching in such space

1
for 𝑛 = 10, the average performance of tuned_static is better than both theory

and tuned. But this is likely due to the problem size being too small to see the impact

of dynamic parameter control.

2
In this paper, whenever multiple statistical tests are conducted, the Bonferroni cor-

rection is applied.
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Figure 1: Performance of a naive dynamic tuning with irace

(tuned), a static tuning (tuned_static), and the default pol-

icy derived from theory (theory), evaluated across 500 ran-

dom seeds.

due to its size. To study the effect of this choice, we conduct exper-

iments with all possible numbers of bins (𝑘 ∈ [1..⌈log
2
𝑛⌉]). The

performance of the final configurations are presented in Figure 2.

We also conducted another baseline for the comparison: the binned

versions of the theory, namely binned_theory, where the fitness

range is split into ⌈log
2
𝑛⌉ bins, and all 𝜆 values belonging to the

same bin are derived from theory at the start(S), the middle (M), or

the end(E) of the bin (for the middle case, if the number of elements

in a bin is even, we choose the smaller point).

Results in Figure 2 clearly indicates a trade-off between the num-

ber of bins and the tuning performance. Starting from one bin, the

tuning performance generally improves when the number of bins is

increased until it reaches a certain limit (around 5 or 6). The tuning

results after such point not only drastically degrades, but are also

unstable. Consider, for example, the case of 𝑛 = 500, we have both

tuned_bin6 and tuned_bin7 performing quite badly compared to

the cases with smaller numbers of bins, indicating degradation of

the tuning performance, and we would expect tuned_bin7 to be

worse than tuned_bin6 due to the larger number of parameters

irace has to deal with. However, we observe the opposite. To check

whether the counter-intuitive performance is due to the instability

of the tuning, we repeat both tuning experiments 5 times. And in

fact, the average runtime of tuned_bin6 reduces from 6446 to 4921,

while the runtime of tuned_bin7 increases from 5589 to 6043.

To improve the tuning further, we propose a cascading strategy,

where the final configuration of the tuning with 𝑘 bins is given as

an initial configuration for the tuning with 𝑘 +1 bins. The cascading
gives each tuning a head start by leveraging results of the previ-

ous step. The new tuning experiments are named tuned_cas_bin,

and their results are shown in Figure 2. The tuning performance is

improved drastically. And the final configuration (found with the

largest number of bins) for each problem size even statistically sig-

nificantly outperforms theory (both original and binned versions)

for 𝑛 ≥ 1000 according to the Wilcoxon rank sum test with a confi-

dence level of 99.9%. Note that for 𝑛 = 500, the two configurations

are not statistically significantly different.

One may argue that the good performance of the cascading

approach may come from the fact that the total tuning budget

is larger than each individual tuned_bin experiment, since with

cascading, the tunings are executed sequentially until we reach

the largest number of bins. To investigate this point further, we re-

run the last tuned_bin experiments for both 𝑛 ∈ 500, 1000 with 10

times of their original budget (which is roughly the same as the total

budget for all tuned_cas_bin experiments of the same problem

size). We observe some improvement in performance for 𝑛 = 500:

average runtime of the final configuration reduces from 7988 to

5818, but there is still a large gap compared to the tuned_cas_bin

with an average runtime of 3234. Interestingly, for𝑛 = 1000, the new

configuration is even worse than before (original runtime: 11468,

new runtime: 15109, tuned_cas_bin: 6492). Again, this can be

accounted to the instability of dynamic tuning without cascading.

Those observation confirms the clear advantage that cascading

offers to the tuning performance.

The results of this section indicates the potential of applying

automated algorithm configuration for the dynamic tuning of the

(1 + (𝜆, 𝜆)) GA on OneMax. Our binning and cascading strategies

help to find configurations that are better than the best known

control policy derived from theory. This is particularly encouraging,

given that the tuning does not have access to theory. The next

question would be: has the tuning been able to find the best possible

policies, or is there still room for improvement? To answer such

question, in the next section, we will describe a method to compute

stronger baselines for this benchmark.

4 EXACT COMPUTATIONS

In this section we describe an algorithm of computing the exact

expected running time of the (1 + (𝜆, 𝜆)) GA on OneMax provided

we are given the mapping from the parent fitness 𝑓 to the parameter

value 𝜆 = 𝜆(𝑓 ). Based on that, we perform some basic landscape

analysis and propose a way to closely approximate the best baseline

policies (the truly best policy and the best one among the binned

policies) using numeric minimization.
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Figure 2: Performance (in terms of function evaluations) of dynamic tuning with binning (tuned_bin), and with binning

and cascading (tuned_cas_bin). The number at the end of each configuration represents the number of bins. Other baselines

include: theory and its binned versions, and the static tuning (tuned_static). All configurations are evaluated across 500

random seeds.

4.1 Computing Runtime for Given Parameters

Let the current parent’s OneMax fitness be 𝑓 , and the current

parameter be 𝜆. Let Λ be the derived population size; the actual

algorithm uses Λ = ⌊𝜆⌉, but we are going to use different values

during landscape analysis. As the (1 + (𝜆, 𝜆)) GA is elitist and

all parents with the same fitness produce stochastically identical

behavior, we can use the dynamic programming approach similar

to the one used in previous works [6, 13, 15, 16]. Basically, we

compute the remaining runtimes backwards from the optimum:

assuming that 𝑇𝑓 is the expected time to reach the optimum when

the parent’s fitness is 𝑓 , we note that 𝑇𝑛 = 0 and for every 𝑓 the

value of 𝑇𝑓 depends only on 𝑇𝑓 +1,𝑇𝑓 +2 and other values for higher

fitness.

To process the fitness value 𝑓 , our algorithm essentially con-

siders all possible event chains that the (1 + (𝜆, 𝜆)) GA performs,

computes their probabilities and saves the computational effort

when possible. Since most of the probabilities are fractions formed

by binomial coefficients, each of which may be small or large, we

use the standard trick of computing logarithms of those quanti-

ties (which are aggressively cached to avoid calling the expensive

logarithm function) and taking an exponent of them only when

summing.
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Figure 3: An illustration of the division of the bins for 𝑛 = 20.

We start with considering how many bits are flipped in the

mutation phase. The probability of flipping exactly ℓ bits follows
from the fact that ℓ ∼ Bin>0 (𝑛, 𝜆/𝑛). Let 𝑔 be the number of “good”

bits in the best offspring, that is, how many out of the ℓ bits are
flipped from 0 to 1 in 𝑥 ′. The probability 𝑃 [𝑔 | ℓ] can be computed

as follows: let 𝑃𝑚 (𝑖) be the (easily computed) probability to have 𝑖
“good” bits in one offspring, then

𝑃 [𝑔 | ℓ] =
(∑︁𝑔

𝑖=0
𝑃𝑚 (𝑖)

)Λ
−
(∑︁𝑔−1

𝑖=0
𝑃𝑚 (𝑖)

)Λ
by combinatorial arguments. Hence, the crossover phase starts with

𝑥 ′ being different from the parent 𝑥 in ℓ bits, 𝑔 of which are “good”.

Each crossover offspring is obtained from the parent 𝑥 by con-

sidering the ℓ bits that are different between 𝑥 and 𝑥 ′ and flipping

𝛿𝑔 of those bits from 0 to 1, and 𝛿𝑏 bits from 1 to 0. Again, remem-

bering that only 𝑔 of these ℓ bits have the value 1 in 𝑥 ′, it holds
that 0 ≤ 𝛿𝑔 ≤ 𝑔 and 0 ≤ 𝛿𝑏 ≤ ℓ − 𝑔. The probability 𝑃 [𝛿𝑔, 𝛿𝑏 |ℓ, 𝑔]
can again be computed by combinatorial arguments. The fitness of

such an offspring is 𝑓 + 𝛿𝑔 − 𝛿𝑏 . Since the algorithm’s state changes

only when the fitness improves, and because the best mutation

offspring, 𝑥 ′, can also replace the parent, we are rather interested in

the truncated fitness change, e.g. 𝛿 = max{0, 𝑓 (𝑥 ′) − 𝑓 , 𝛿𝑔 −𝛿𝑏 }. Let
𝑃𝑐 (𝑖) be the probability of obtaining such truncated fitness change

of 𝑖 in one crossover offspring, then

𝑃 [𝛿 | ℓ, 𝑔] =
(∑︁𝛿

𝑖=0
𝑃𝑐 (𝑖)

)Λ
−
(∑︁𝛿−1

𝑖=0
𝑃𝑐 (𝑖)

)Λ
similarly to the above. If 𝛿 = 0, we consider the iteration a failure.

Otherwise the algorithm updates the fitness of the parent, for which

we already computed the runtime𝑇𝑓 +𝛿 . We sum up these remaining

expected times, weighed by the probabilities of all the preceding

events to happen, as well as these probabilities themselves.

Getting back to the current fitness value 𝑓 , we obtain the prob-

ability of improving the parent 𝑝𝑖 and the conditioned remaining

expected time 𝑡𝑖 . Denote the expected iteration cost, in fitness eval-

uations, to be 𝜏𝜆 . Then,𝑇𝑓 = 𝜏𝜆+𝑝𝑖 ·𝑡𝑖 +(1−𝑝𝑖 )𝑇𝑓 , which resolves to
a well-known solution𝑇𝑓 = (𝜏𝜆 + 𝑡𝑖 )/𝑝𝑖 . The value of 𝜏𝜆 is a sum of

Λ evaluations in the mutation phase and Λ · (1− (1/𝜆)ℓ − (1−1/𝜆)ℓ )
evaluations in the crossover phase that do not produce a crossover
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Figure 4: Example runtimes for 𝑛 = 500, fixed binned policy

and different values of the last 𝜆

offspring equal to either of its parents. The final runtime of the

policy is obtained from all𝑇𝑓 , given that the algorithm is initialized

with fitness 𝑓 with the probability

(𝑛
𝑓

)/2𝑛 .
The overall runtime of the whole process can be estimated as

𝑂 (𝑛4) assuming a straightforward implementation. However, we

perform certain optimizations in order to be able to work with

problem sizes as large as 𝑛 = 2000 in reasonable time.

Implementation detail 1. Note that the probabilities 𝑃 [𝛿 | ℓ, 𝑔]
do not depend on the current fitness, but do depend on both 𝜆 and

Λ. For this reason, they can be computed once and stored for later

re-use. Since the probabilities for a tuple (ℓ, 𝑔, 𝜆,Λ) are computed in

Θ(𝑔2) time and take only Θ(𝑔) to store and use, such caching may

improve the overall computation time by a factor up to 𝑂 (𝑛). For
certain scenarios the overall size of cached probabilities exceeds

the amount of memory available, so we use the adaptive cache that

retains only the most expensive entries w.r.t. computation time.

Implementation detail 2. To improve the computation time

further, we ignore the events as long as their probability does not

change the existing sum of probabilities in the machine precision

when added to it, that is, whenever 𝑝 + 𝛿𝑝 = 𝑝 in the 64-bit floating

point type commonly known as double. Where possible, we reor-

ganize computations so that the major contributions are evaluated

first to further accelerate computation.

4.2 Landscape Analysis

The algorithm outlined in the previous section makes it possible to

conduct a simplified form of the landscape analysis.

Our first setting uses 𝑛 = 500 and employs binning to assign

parameter values to fitness values. For all but the last bin we use

the following sequence of values: [1.0, 1.0, 1.0, 1.0, 6.5, 8.5, 11.5,

16.5], which, as we show later, is the best known binned policy

for this problem size. For the last bin, which corresponds to the
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Figure 5: Example runtimes for 𝑛 = 500, fixed binned policy,

and different values of the last 𝜆 and population size Λ

fitness value of 𝑛 − 1 = 499, we test all possible values in the range

[1; 40] with a step of 0.1. Additionally, for every half-integer value

(that is, 𝑥 + 0.5 for an integer 𝑥 , which rounds to 𝑥 + 1) we also use

the largest value that is smaller than it and is representable in the

machine precision (such a value rounds to 𝑥 ).
The plot of the resulting expected runtimes, computed as detailed

in the previous section, is shown in Figure 4. One can easily observe

the saw-like shape of the plot, which introduces multiple local

optima and a complicated search space even when looking for one

parameter. Note that the abrupt changes happen at the half-integer

values, which correspond to the points when the population size,

which is ⌊𝜆⌉, changes as the parameter 𝜆 increases by a negligible

amount. Note that a similar thing happens for every other bin value,

and even if an arbitrary-shaped policy is sought for.

To investigate this effect further, we consider the similar setting,

but this time we vary both 𝜆 and the population size Λ indepen-

dently. Figure 5 shows a closeup to the region of 𝜆 ∈ [13; 18] and
population sizes Λ ∈ [13..18]. One can see that when the popula-

tion size Λ is fixed, the plot is smooth with respect to 𝜆 as expected.

However, when only the combinations Λ = ⌊𝜆⌉ are considered, it
can happen that the best 𝜆 is at either of the interval endpoints or

somewhere in the middle (all these cases are covered in Figure 5).

All in all, this effect makes it complicated to compute optimal

policies, either numerically or analytically. What is more, it may

contribute significantly to the difficulty for the parameter tuning

problem observed in Section 3 for irace.

Our final setting investigates the effect of interaction between

parameter values. Different to the first one, we consider changing

the parameter values for the two last bins. The result is represented

as a heatmap in Figure 6 for parameters close to the optimal ones,

which features a clear grid pattern. While within each cell one can

observe gradual color change in directions that are not parallel

to coordinate axes, indicating nonlinear interactions between the

parameters that might be hard to capture, it is also clear that the

effects from rounding — that is, multidimensional ruggedness of

the landscape — are at least as large.
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Figure 6: Example runtimes for 𝑛 = 500, fixed binned policy,

and different values of last two 𝜆 values

4.3 Computing the Best Policies

In order to compute the best mapping 𝜆(𝑓 ) from fitness values

to parameters values, given the problem size 𝑛, we modify the

dynamic programming approach detailed in Section 4.1 to compute

the best 𝜆 for a given fitness 𝑓 assuming this has been done for

all higher fitness values. This is done in line with the previous

research [13, 15], however, due to the nature of the dependency on

parameters found in Section 4.2, a more complicated optimization

problem needs to be solved for each fitness value.

Based on the preliminary computations involving smaller prob-

lem sizes, we consider intervals of the form [𝑥 − 0.5;𝑥 + 0.5) for
integer 𝑥 , with an exception of the first and last intervals [1; 1.5)
and [𝑛 − 0.5;𝑛]. The intervals open from the above are treated as

closed intervals with the upper boundary replaced by the largest 64-

bit floating-point value strictly smaller than that boundary. Within

each interval [𝜆1, 𝜆2], we evaluate four values 𝜆1, 𝜆1 + 𝜀, 𝜆2 − 𝜀,
𝜆2 with 𝜀 = 10

−8
to determine whether the optimum is on the

boundary or within the interval. In the latter case, we run a variant

of ternary search suitable for parallel evaluation to find the best

value numerically. Finally, to save computational efforts further,

we reduce the number of intervals checked by observing that the

optimum is in one of the intervals corresponding to:

• population size 1 or 2;

• the end of a sequence of population sizes, starting from 2

upwards, such that the runtimes decrease, which is tested

if the runtime for population size 3 is smaller than for pop-

ulation size 2 (this case is typical for large fitness values);

• the end of a sequence of population sizes, starting from

𝑛 downwards, such that the runtimes decrease, which is

tested if the runtimes for population sizes 𝑛, 𝑛 − 𝑛/8, 𝑛 −
𝑛/4, 𝑛 − 𝑛/2 are not monotonically decreasing (this case is

typical for small fitness values less than 𝑛/3).
Figure 7 shows the best dynamic policy for 𝑛 = 1000. There are

clearly two regions with non-trivial best parameter values. The

one closer to the optimum (which is on the left) is quite close to

the theoretic value,

√︁
𝑛/(𝑛 − 𝑓 (𝑥)), which is also illustrated subse-

quently in Figure 8. All the best parameters that are greater than

one are half-integer in this case (the ones that round up). The other

region that is far from the optimum does not contribute much to

the expected running time. It is clearly the result of accepting the

best mutation offspring if it is better than the parent. In this region,
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Figure 7: Best dynamic policy for 𝑛 = 1000

half-integer values (here, the ones that round down) are also typical,

but there are also many occurrences of less trivial values, which

signifies the necessity of performing proper optimization within

the intervals.

It may be tempting to use dynamic programming in a similar

way to compute also the best binned policies. However, this time it

is not so straightforward. Indeed, if we consider the 𝑖-th bin and

assume that bins 𝑖 +1 up are solved, we can fix some 𝜆 and compute

the expected runtime starting from each fitness value belonging to

the 𝑖-th bin. However, the choice of parameters for the previous bins
may affect the probability that the algorithm first hits the 𝑖-th bin

at certain fitness value 𝑓 , which would influence the most efficient

choice of 𝜆. As a result, we need to optimize all the parameters

simultaneously.
For that reason, we use the ideas from [16] and employ a nu-

meric optimizer, namely separable CMA-ES [44], to find the suitable

parameter values for the bins. Based on the insights from Section 4.2,

we represent each parameter 𝜆 as two variables, 𝜆𝑖 and 𝜆𝑓 , such that
𝜆 = max{1,min{𝑛, ⌊𝜆𝑖 · 𝑛⌉ + 𝜆𝑓 − 0.5}}. These new values are box-

constrained, 0 ≤ 𝜆𝑖 , 𝜆𝑓 < 1. This approach makes the optimization

landscape smoother, resulting in more stable convergence.

The best results of our optimization attempts for both kinds

of policies are presented in Table 1 together with the obtained

parameter values for the bins. Though, strictly speaking, we have

no optimality guarantees, we are still pretty confident that the

presented values are not just the upper bounds, but rather represent

the truly optimal policies up to available precision.

5 FINAL COMPARISON

Table 2 shows the exact expected running times of the best known

policies obtained from Section 4.3 for both unrestricted (best) and

binned versions (best binned), the final configuration found by the

dynamic tuning with binning and cascading with the largest num-

ber of bins (tuned), and theory (default). The tunings outperform

the default policy for 𝑛 ≥ 1000, this is consistent with our empirical

evaluations in Section 3. However, there is still a rather large gap to

the best policies found by our problem-specific customized search

methods, which indicates room for further improvement in our

tuning approach.

Table 1: Expected running time of the numerically approxi-

mated baseline policies, rounded to two digits after the deci-

mal comma

𝑛 best best binned bin values

500 2916.94 2925.52 1, 1, 1, 1, 6.5, 8.5, 11.5, 16.5, 24.5

1000 5975.81 5994.89 1, 1, 1, 1, 6.5, 8.5, 11.5, 16.5, 23.5,

35.5

2000 12157.62 12197.66 1, 1, 1, 1, 6.5, 8.5, 11.5, 16.5, 22.5,

32.5, 49.5

Table 2: Expected runtime of the best approximated policies,

the default one and the best dynamic-tuning one

𝑛 best best binned default tuned

500 2916.94 2925.52 3224.89 3249.09

1000 5975.81 5994.89 6586.67 6512.32

2000 12157.62 12197.66 13386.44 12703.88

3000 18375.48 18435.71 20128.97 19411.0

Figure 8 shows the policies of those four settings. We only plot

𝜆 values for 𝑓 (𝑥) ≥ 𝑛/2 as this is the most interesting region (a

random initial solution often has fitness around 𝑛/2). The 𝑥-axis is
plotted in logarithmic scale of 𝑛 − 𝑓 (𝑥) to allow zoom-in effect on

the more difficult regions of the objective function. A noticeable

observation is that theory almost always underestimates the best

𝜆 values in those more difficult areas of the search, and that may

be the reason for its worse performance compared to the others.

The dynamic tuning, on the other hand, is able to produce policies

that are generally close to the best binned policies up until a point.

When the fitness is close to the optimal, the tuned policies start

diverging from the best 𝜆 values, indicating the limitation of irace

in detecting the importance of those last few bins in order to tune

them properly.

6 INSIGHTS INTO FUTUREWORK

The ruggedness of the parameter search landscape highlighted in

Section 4.2, and particularly the algorithmic features that cause it,

made us believe that there is a rich field for future work considering

the design principles of evolutionary algorithms. Rather than just

outlining our thoughts, in this section we consider to perform a

small series of illustrative experiments that highlight them better.

6.1 Tunability

Similarly to the concept of testability in engineering disciplines, we

want to bring to the focus the concept of tunability of evolutionary

algorithms. Many design choices (such as whether or not the best

mutation offspring is compared to the parent, or whether or not we

can sample an offspring which is equal to the parent) look rather

innocent and straightforward, and are often done to improve the

performance, but they can promptly turn the parameter landscape

from a smooth to a complicated rugged surface. For this reason, we

think that new evolutionary algorithms should be designed with

care about how friendly they are to tuning procedures, that is, with

tunability in their design. In the context of the (1 + (𝜆, 𝜆)) GA,
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Figure 8: The best approximated policies (best and best_binned), the default one and the best dynamic one found by the tuning.

any deterministic rounding of the parameter 𝜆 to obtain the integer

population size Λ is likely to be very disruptive to parameter tuning,

and some other procedures may be sought for.

To illustrate this point, we compare the version of the (1 +
(𝜆, 𝜆)) GA studied in this paper with one of the versions from [8],

which employs stochastic rounding. Here, Λ = ⌊𝜆⌋ is taken with

probability ⌈𝜆⌉ − 𝜆 and Λ = ⌈𝜆⌉ otherwise. We use the problem

size 𝑛 = 100, the binning policy, and optimize the parameter values

for the bins using separable CMA-ES [44], but in a straightforward

way unlike Section 4.3, that is, each decision variable corresponds

to the parameter value. The population size of CMA-ES is 100, and

we run optimization for 200 iterations, or until the internal vari-

ables of CMA-ES degenerate. Figure 9 shows the convergence plots

with regards to the fitness value, whereas Figure 10 does it for the

Euclidean distance to the optimum. Clearly, stochastic rounding

shows a much “cleaner” convergence without getting stuck in local

optima. It also seems somewhat less sensitive with respect to the

parameter values around the optimum. We expect that designing

algorithms with tunability in mind can bring them similar benefits.

6.2 Control of multiple parameters

De-coupling of the parameters of the (1 + (𝜆, 𝜆)) GA is interesting

from both a theoretical and an empirical point of view. Following

the approaches suggested in [8, 19, 22], for example, one could

explicitly ask to control the population size for the mutation phase,

the mutation strength, the population size for the crossover phase,

the crossover bias, etc. The method proposed in Section 4.1 can

be used to model this as well. In a small experiment, we tune the

parameter 𝜆 that controls the mutation strength and the crossover

bias, and another parameter Λ that defines the population size for

both the mutation and the crossover phases. Just as above, we use
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ent roundings in (1 + (𝜆, 𝜆)) GA in terms of fitness values. 10
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Table 3: Optimal policies for 𝑛 = 100 and three approaches to coupling parameters in the (1+ (𝜆, 𝜆)) GA. All numbers are rounded

to four digits after the decimal point

Bin

Coupling Runtime Param [0; 50] [51; 75] [76; 88] [89; 94] [95; 97] [98; 99] 100

Rounding to nearest 534.3011 𝜆 1.0 1.0 1.0 3.5 5.5 7.5 10.5

Λ 1 1 1 4 6 8 11

Stochastic rounding 540.7504 𝜆, Λ 1.0 1.0 1.0 4.0 6.0 8.0688 11.2628

Decoupled parameters 488.9785 𝜆 83.9611 1.0 1.0 1.4670 3.0433 4.8120 6.9308

Λ 3 1 1 5 8 12 19

𝑛 = 100, the binning policy, and optimize the parameters using

separable CMA-ES.

Table 3 shows the results and compares themwith the previously

discussed configuration. While rounding to the nearest integer per-

forms slightly better than stochastic rounding in terms of the run-

time of the (1 + (𝜆, 𝜆)) GA, it appears to be that it happens because
of 𝜆 and Λ being coupled, and the decoupled version wins by a

large margin. Note that the decoupled version favors much larger

population sizes Λ and much smaller variation strengths 𝜆 towards

the optimum. However, it benefits from small population sizes and

large mutation strength of almost 0.84 in the first bin, which can

essentially flip all the bits at once. Note that it is impossible to

benefit from this behavior with tightly coupled parameters.

7 CONCLUSION AND OUTLOOK

In this work, we have evaluated some basic properties of population

size control of the (1+ (𝜆, 𝜆)) GA solving OneMax as a DAC bench-

mark. We empirically evaluated the effectiveness of an automated

algorithm configuration approach using irace as a DAC solving

method. Our results suggest that such approach has the potential of

learning well-performing parameter control policies, but it has to

be implemented carefully. More concretely, a naive implementation

would completely fail to get anywhere close to a good policy on our

benchmark, but an improved version with binning and cascading

can help to boost the performance considerably.

Our work introduces an alternative way to train control policies

in DAC settings, a problem that was previously studied predomi-

nantly from the viewpoint of reinforcement learning (RL) [9, 11, 47]

or (in numerical optimization) using exploratory landscape analy-

sis [38]. We believe that each one of them has different strengths

and weaknesses. Having a rich collection of DAC benchmarks with

well-understood ground-truth information allows proper investi-

gation of the potential and the limitations of each family of DAC

approaches. Our work contributes to such benchmarks.

We did not compare our results with the RL-based approaches

in [11, 47] as the RL algorithms used in those work (DDQN [50])

assume a discrete action space where every action value is treated

as categorical, while in our setting the parameter being controlled

(𝜆) is numerical. We did, however, conduct some preliminary exper-

iments with PPO [45], a well-known RL approach that works with

both discrete and continuous action spaces, but the results were

rather disappointing. This may not be too surprising, as deep-RL

algorithms are often known to be non-trivial to use and various de-

sign choices may have strong impact on their performance [2, 34]. A

thorough study on deep-RL for the benchmark is beyond the scope

of this present work. We leave it as a future research question.

From the perspective of analysis and design of evolutionary

computation methods, our numerical approximations of the op-

timal control policies raise a number of interesting questions. It

appears that the design choice in the considered version of the

(1 + (𝜆, 𝜆)) GA, namely deterministic rounding of a real-valued

parameter to obtain population size, led to a rugged landscape of

the parameter search space, which not only complicated the nu-

merical minimization, but probably had an effect on the application

of irace. A rather simple change, switching to stochastic rounding,

made the parameter tuning problem much simpler, but so did opti-

mizing two parameters (the original 𝜆 and the population size Λ)
separately. As a result of these exercises, we propose considering

tunability of evolutionary algorithms when designing them, and

note that sometimes tuning more parameters is easier. With this in

hand, we can also construct new DAC benchmarks that require to

control not only one, but several parameters at the same time [51] –

a largely under-explored challenge [1, 36].
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