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ABSTRACT
Cybersecurity incidents are among the greatest concerns of busi-
nesses, government agencies, and private citizens today. In the
modern world, the protection of data and information assets has
become nearly as important as maintaining the security of physical
assets. This creates the need for increased security implementations,
leading to improved user acceptance of such applications and, as a
consequence, to large-scale adoption of these technologies and full
exploitation of their advantages. In healthcare, networked medical
devices (NMDs), either referring to hospital medical equipment or
wearables, can be vulnerable to security breaches, potentially af-
fecting the safety and effectiveness of each device. In this work, we
present the specific areas of recent machine learning research ap-
plied to networked medical device security, through the objectives
of the Horizon Europe SEPTON research project. State-of-the-art
lightweight machine learning approaches are highlighted and the
corresponding challenges of cybersecurity applications, ranging
from implantable devices to inter-institution medical data exchange
use cases, are showcased.

CCS CONCEPTS
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1 INTRODUCTION
Networked medical devices (NMDs) can be quite complicated and
multifaceted; their applications frequently focus on interoperability
with existing hospital assets, security and privacy of sensitive data,
and end-user usability [27]. The introduction of artificial intelli-
gence into hospitals has led to greater safety and efficiency for
patients. Security from attacks is a key issue for critical infrastruc-
tures, with several assets being affected, including patients’ lives,
sensitive personal data, and financial resources. As the number
of attacks increases with the introduction of expanded connectiv-
ity, the negative potential grows exponentially. This increases the
opportunities for cyber attackers to manipulate any networked
medical device, from MRI (Magnetic Resonance Imaging) scanners
to electric wheelchairs [14].

In these dynamic and security-intensive environments, where
proper device functioning must be ensured, device vulnerability
and security measures must be properly assessed. Since modern
wearable and implantable devices (IMDs) are equipped with wire-
less transceivers that enable wireless data exchange with external
readers, the associated wireless communication may lead to unau-
thorized device access or even personal data leaks, thus rendering
the implant unusable. Due to the fact that modern IMDs are es-
sentially embedded computer systems, specially crafted computer
viruses, and malware may infect implantable devices, potentially
harming a large patient base. Not only does wireless connectivity
transcends the functionality of wearables, but it also makes them
visible to the entire healthcare system, increasing the attack surface
[6].
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Securing NMDs presents unique challenges that may not be ef-
ficiently addressed by traditional security methods [24]. One of
these challenges corresponds to the low computational and storage
capacity of the corresponding sensors, which makes it difficult to
apply resource-intensive security measures. A "secure-by-design"
system must address the need of stakeholders for rapid access dur-
ing vital emergencies. Furthermore, the ability to control equipment
through external devices increases the risk of security breaches,
and necessitates the implementation of lightweight security mech-
anisms. The effective use of these mechanisms must be ensured
through near-optimal anomaly detection and privacy measures,
which are expected to be enhanced by recent advances in machine
learning [24, 31].

This article is structured as follows: in section 2, we present
related work to lightweight machine learning applied to the cy-
bersecurity of NMDs In section 3, we showcase the concept of the
SEPTON project, along with its main objectives and contributions.
Furthermore, in section 4, we present the development of a light-
weight machine learning concept for anomaly detection in NMDs,
whereas in section 5 we describe the lightweight cryptographic
security primitives, focusing on a special category of encryption al-
gorithms deployed to implantable and wearable devices. In section
6, several aspects of the theory of differential privacy are briefly pre-
sented, especially as they relate to medical devices, and in section
7 four use cases of the SEPTON project are outlined.

2 RELATEDWORK
A growing stream of research on lightweight security has emerged
in the recent literature, focusing on various aspects, ranging from
anomaly detection in the Internet of Things (IoT) to distributed cryp-
tographic and security primitives deployed on various edge devices.
In this paper, we concentrate on the implementation of lightweight
security solutions in networked medical devices through specific
use cases. The suggested solutions rely on a dual nature contribu-
tion, divided into lightweight machine learning for anomaly detec-
tion and the implementation of machine learning to lightweight
security primitives, as they derive from the cryptography literature.
In this direction, the authors of [3] simulated the differentials for
non-Markov ciphers using machine learning, reducing a differenti-
ation problem to an efficient-to-handle classification problem with
implementation on medical devices. The result of their study was
the first proof-of-concept on how machine learning can be used as
a general tool in the cryptanalysis of symmetric keys.

Another related article [12] presents an experimental study of
cryptographic encryption algorithms for their classification as ei-
ther asymmetric or symmetric. The corresponding algorithms were
tested in independent computing devices and, considering their sub-
division into symmetric and asymmetric, it was proven that even
if the symmetric algorithms were faster, they were not as secure
as asymmetric, utilizing a pair of public or private keys. In [37],
the importance of implementing the right security measures for
the enhancement of medical device security against cyber-attacks
is presented. The review of existing solutions was classified based
on their cryptographic nature, further analyzed, and compared in
computational complexity terms.

Appropriate lightweight cryptographic algorithms and protocols
have been broadly highlighted for their capability of limited compu-
tational costs and resource utilization. However, the above literature
does not seem to emphasize the integration of lightweight machine
learning mechanisms in advanced cryptography solutions, espe-
cially in specific medical applications, varying from implantable de-
vices to networked hospital infrastructures, and inter-institutional
medical data exchange. In [21], the authors present an advanced
intrusion detection system based on machine learning, in order to
protect shared information in critical networked infrastructures.
The approach adopted is split learning, providing higher accuracy,
better detection, and classification performance. In [25], a joint
blockchain and federated learning secure architecture was devel-
oped with primary applications in smart healthcare and smart city
settings.

The federated learning components are used for the scalabil-
ity of machine learning applications ensuring that personal data
will be kept safe at the edge. In this context, fast learning schemes
have been proposed in the literature, including [7] and [20]. Fi-
nally, in [16], the authors proved that privacy-preserving federated
learning, based on the cryptographic primitive of homomorphic re-
encryption, can efficiently protect user data while training through
batch gradient descent (BGD).

3 FRAMEWORK FOR IMMUTABLE IT
INFRASTRUCTURE IN HOSPITALS

The SEPTON (SEcurity Protection TOols for Networked medical
devices) project is expected to contribute to the cyber-security for IT
medical infrastructure by providing immutable end-point solutions.
The main action pillar of SEPTON aims to identify the need for
scaling and adoption of solutions at the national, regional, or local
level through early engagement with patients, healthcare providers,
healthcare authorities, and regulators. Specifically, SEPTON aims
to develop tools to help healthcare facilities better prepare for and
respond to cyber threats to their medical device infrastructure. In
this direction, healthcare providers can remain resilient during and
after emergencies and minimize business disruptions that affect
their ability to provide critical services to the public. By improving
these services, protection for networked medical devices, health
care, and public health services will be established when a threat
occurs.

The project focuses on protecting networked medical devices
and associated data exchange. In modern healthcare, NMDs are the
points at which health data is generated. This is true for implantable
and wearable devices, such as pacemakers, as well as for traditional
devices, such as MRI scanners. The individual tools, as well as
the SEPTON toolkit itself, provide the foundation for improving
the cybersecurity of such devices and reducing the risk of device
compromise. The toolkit’s inherent flexibility and scalability allow
it to be used in a variety of environments, from protecting a few
devices in a body area network to monitoring and protecting the
assets (devices and network resources) of entire hospitals. The
knowledge and experience gained through the project will feed
into stakeholder initiatives, which include national, regional, and
sectoral bodies, as well as the frameworks created by these bodies.
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This way, the impact of SEPTON will be disseminated as widely
as possible, and the time for project results to be incorporated
into regulations and standards will be shortened. In particular, the
project aims to comply with all the General Data Protection Reg-
ulation (GDPR) requirements and will follow the strict guidelines
of MDCG 2019-16 cybersecurity protocol [10], as well as the post-
market regulatory actions associated with it, see Fig. 1. To maximize
benefits to society, the project’s activities will be extended beyond
traditional technical advances. To this end, issues relevant to the
acceptance of the project by society and citizens will be appropri-
ately evaluated and the nature of the project will be adapted to the
ethical constraints established. Ultimately, the SEPTON project will
focus on (a) lightweight and federated anomaly detection, (b) light-
weight machine learning, (c) hardware acceleration, (d) lightweight
cryptographic security primitives, (e) differential privacy.

4 LIGHTWEIGHT AND FEDERATED
ANOMALY DETECTION

Anomaly detection involves discovering events that deviate from
typical patterns or behaviors, thus indicating potential problems
[22]. There exist numerous methods to detect anomalies and clas-
sify biological signals. Among the biological signals studied are
electrocardiogram-based (ECG) arrhythmias, where the required
classification is a pattern recognition problem that can be solved
via machine learning algorithms [26]. The extensive IoT deploy-
ment in several verticals has substantially extended the limits of
anomaly detection mechanisms. Medical devices are among the
top innovative application environments that benefit from the IoT
evolution.

To this end, lightweight mechanisms combined with distributed
learning paradigms prevail in distributed machine learning schemes
that facilitate security and privacy-preserving mechanisms [28].
Similarly, federated anomaly detection combines machine learn-
ing techniques with federated learning [18]. It involves training
anomaly detection models on distributed data sources, without
centralizing the data. In traditional anomaly detection, a model
is trained on a dataset that contains both normal and anomalous
data. This allows the model to learn to distinguish between the
two. However, in certain cases, centralizing data in one location for
training usually raises privacy and security concerns.

4.1 Lightweight machine learning
Malicious traffic identification using deep learning techniques has
become a crucial aspect of anomaly detection research [1]. Cur-
rently, the necessity for the application of lightweight machine
learning models to an increasing number of edge devices has led
to several algorithmic and architectural developments. These in-
clude techniques including model compression, quantization, and
pruning, which reduce the size and complexity of the model while
maintaining its performance. Medical devices, such as implantable
devices or wearable sensors, generate large amounts of data, which
can be used to identify anomalies and monitor patient health. Light-
weight machine learning models can be trained on these data to
recognize patterns and identify anomalies in real-time, allowing
healthcare professionals to intervene quickly, if necessary.

One advantage of using lightweight machine learning models
for anomaly detection in medical devices is that they can be opti-
mized for low-power consumption and run efficiently on resource-
constrained devices. This is particularly important for medical de-
vices that may need to operate for extended periods of time on
limited battery power [5]. Nevertheless, machine learning models
for medical applications must be rigorously tested and validated
to assure their safety and efficacy. Concerns about privacy and
security must also be addressed in order to secure patient data.
Among several deployments and solutions proposed, recurrent neu-
ral networks [30] and convolutional neural networks [32] have
been widely explored, yielding promising results.

Federated learning can also be proven to be a quite useful ap-
proach for anomaly detection inmedical devices [34]. This approach
can help address privacy and security concerns associated with
sharing sensitive medical data. In the context of medical devices,
federated learning can be used to train lightweight machine learn-
ing models on data generated by a large number of devices. Each
device can contribute its own data to the training process, allowing
the model to learn from a diverse range of patient populations and
clinical scenarios. The model can then be used to identify anomalies
in real-time, without the need to transmit sensitive patient data
to a central server [2]. Federated learning can also help address
challenges related to data heterogeneity, as medical devices may
generate data with varying characteristics and formats. By training
models on a diverse range of devices, the model can learn to iden-
tify anomalies across different types of data generated by different
devices.

4.2 Hardware acceleration
Hardware acceleration refers to the use of specialized hardware
components in order to speed up certain types of computational
tasks. A wide range of novel general-purpose architectures and
devices offer certain advantages over traditional processing units.
Despite this development, the performance and resource limitations
of these platforms pose a significant obstacle to accelerating high-
risk medical applications. Recent improvements in deep learning
algorithms offer interesting application opportunities for their use
in safety-critical biomedical and medical applications [29].

To this end, hardware acceleration can be used to speed up
training and inference processes, allowing models to be trained
and deployed more quickly and efficiently while enabling privacy-
preserving and anomaly-detection mechanisms. Some examples of
hardware acceleration include GPUs (graphics processing units)
and TPUs (tensor processing units) [15]. Modern wearable health
devices require new resource-efficient technologies with high per-
formance, low energy consumption, and high accuracy [19]. Convo-
lutional neural networks (CNNs) have demonstrated high efficiency
towards distributed AI functionalities in medical devices, whereas
the field-programmable gate arrays (FPGAs) have been extensively
used to construct hardware accelerators for CNNs [13].

For applications where the insatiable demands of deep learning
methods for computational power and large training data cannot
be satisfied, alternative machine learning approaches are necessary;
these approaches must have extremely low latency andmust be able
to work with only a small training data set. Certain AI accelerators,
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•Reporting of serious incidents and of FSCAs*

•Trend reporting for non-serious incidents

•Analysis of serious incidents and of FSCAs

•Risk-review documentation

•Decision and rationale for the post-market clinical follow-up

•Update of the clinical evaluation report*

•Summary of safety and of clinical performance*

•Post-market surveillance plan

•Post-market surveillance report for class I devices

•Periodic safety update report* for class II and class III devices

•Post-market clinical follow-up report

Post-market clinical follow-
up

Vigilance Post-market 
surveillance

Patient and user

 Clinical evidence

Device-risk 
management

Post-production data Process flow 
Data flow

Figure 1: The patient-centric and user-centric approaches of the post-market regulatory cycle for a high-risk medical device
(MDCG 2019-16 protocol). [4]

including several optical ones, enable classification on short time
scales for fast optical imaging, sensing, and metrology without
increasing the data size for further enabling the reduction of the
latency referring to the nonlinear classification of certain data by
several orders of magnitude [39].

5 LIGHTWEIGHT CRYPTOGRAPHIC
SECURITY PRIMITIVES

Lightweight cryptographic security primitives are algorithms or
protocols designed to provide security in resource-constrained envi-
ronments, such as low-power embedded devices or sensors, where
traditional cryptographic algorithms may not be feasible due to
their high computational and memory requirements [9]. These
primitives are typically optimized for low computational overhead
and small memory requirements, making them suitable for devices
with limited computational power and memory. In the relevant
literature, the ciphers are groups of encryption algorithms that
work with fixed-length blocks of data. Due to their specific nature,
lightweight ciphers are optimized for low power consumption, low
latency, and small code size. Hash functions, in turn, are mathe-
matical functions that convert data into a fixed-size output called a
hash.

Lightweight hash functions are optimized for low power con-
sumption and a small memory footprint. In addition, the light-
weight version of the popular public-key cryptography refers to a
cryptographic method that uses a public key and a private key for

encryption and decryption [35]. Until now, typical lightweight cryp-
tographic primitives and protocols seem to have been vulnerable
to quantum attacks. Due to its resistance to quantum assaults, ad-
vanced technologies such as post-quantum cryptography are vital
for the IoT [17]. Furthermore, conventional cryptanalysis of mod-
ern ciphers can be impractical or demonstrate apparent limitations.
Deep learning techniques are becoming more and more success-
ful against potential attacks, verifying the security of emerging
lightweight ciphers, while classifying their complex differences.

6 DIFFERENTIAL PRIVACY
Differential privacy (DP) is a technique used to protect the privacy
of individuals in large datasets by adding random noise to the data,
in such a way that statistical analysis of the data remains accu-
rate without revealing the identity of individual data points. This
technique is particularly useful in healthcare and medical devices,
where sensitive information about individuals’ health and medical
conditions is often collected and analyzed. Medical devices such
as wearable fitness trackers, glucose monitors, and heart monitors
collect data about an individual’s health in real time. DP can be
used to protect this data from being accessed by unauthorized third
parties [8]. In addition to protecting the privacy of individuals, DP
can also be used to improve the accuracy of medical research by
allowing researchers to access large datasets without compromising
the privacy of the individuals within those datasets.
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This can lead to more accurate research results and better treat-
ment options for patients. Privacy-preserving mechanisms for phys-
iological signals collected by intelligent wearable devices can be
also enhanced by the use of DP. For example, in the data publishing
stage, new models based on the combination and optimization of
k-anonymity and differential privacy are presented in [11]. Further-
more, temporal differential privacy mechanisms are successfully
deployed for real-time data to suppress privacy leakage while up-
dating data. To this end, the vanilla differentially private stochastic
gradient descent (DP-SGD) shapes the way for the development of
more advanced differentially private algorithms deployed in wear-
able and IoT devices [23]. Apart from its combination with other
very promising technologies, DP can also be used to make the ma-
chine learning algorithms differentially private themselves shaping
the way for emerging applications in the state-of-the-art quantum
machine learning [33].

7 THE SEPTON APPLICATION SCENARIOS
The EU-funded SEPTON project, under Horizon Europe, will de-
velop an advanced cybersecurity toolkit, along with a connected de-
tailed dashboard referring to all the anomaly detection and security
measurement aspects of modern medical devices and infrastruc-
tures. In this section, we present the 4 distinctive medical device use
cases of the SEPTON project highlighting the potential of the afore-
mentioned cybersecurity technologies in combination with applied
lightweight machine learning in different scale demonstrations. For
details, see Fig. 2.

7.1 Implantable devices
In the special case of implanting a deep-brain neurostimulator de-
vice, with proper placement of the monitoring and stimulating
electrodes, the implant is capable of suppressing seizures or mit-
igating their impact by electrical stimulation in the cortex [36].
Along with the implant, at least one reader device, communicat-
ing with the implant wirelessly through a proprietary protocol, is
usually present. In modern versions of the system, the reader is
either an Android or an Apple app installed on a smartphone. With
this reader, a patient or doctor is able to (a) monitor the progress,
occurrence rate, and other aspects of the patient’s seizures, and
(b) modify the stimulation program delivered by the implant to
better suit his needs and daily life. Except for the patient reader, a
bedside reader that resides always at the patient’s home could also
be tasked with communicating with the implant to dump data logs
and forward them to a proprietary healthcare network and cloud.

The implant and the corresponding reader are required to em-
ploy certain security primitives in order to protect private data
communicated between the two entities. Blocking access to serve
security may be as hazardous as permitting indiscriminate access
to serve safety. Properly discriminating between the two situations
is a hard problem to solve that epitomizes the security challenge in
modern implantable devices and becomes only more exacerbated
when more devices are gradually being exposed to the broader
healthcare ecosystem. Dynamic biometrics is a feature with the
benefit of being cheap to access on the implantable device side
(in vivo), and of being capable of high entropy, thus enabling the
construction of lightweight security primitives.

Traditionally, these security primitives and protocols consume
a lot of battery power. However, this is not suitable for modern
implantable devices, since these devices are typically designed to
operate for up to a decade or so while implanted in the human
body. Therefore, lightweight machine learning mechanisms can
be specifically tailored to the security requirements of implantable
devices considering the battery consumption requirements.

7.2 Wearable devices
A very common medical wearable device is an ECG recording. Most
patients with cardiovascular diseases exhibit cardiac arrhythmia
which is one of the most common problems in cardiology. Car-
diac arrhythmias are irregular heartbeats caused by the improper
functioning of the heart. Some pathological conditions can be diag-
nosed at an early stage using ECG recordings, which may lead to
better outcomes and save lives. Such long-term ECG monitoring is
a tedious task as it generates huge amounts of data that has to be
analyzed by well-trained medical professionals. Therefore, there
is a need for recording devices should be portable or wearable in
order to improve the efficiency of the diagnosis process.

The portable (or wearable) ECG device can easily have its bat-
tery recharged or replaced; therefore, power budgets can also be
somewhat higher. With regards to implantable devices, this implies
opting for lightweight security on the device, though the frequent
uplink of data over the Internet is expected to be the major contrib-
utor to battery depletion that needs to be addressed.

7.3 Networked hospital equipment
When a newMRI scanner is installed at the radiology department of
a hospital, a PACS (Picture Archiving and Communication System)
server, along with an associated medical imaging client software are
usually installed as well. Several existing modalities will communi-
cate with the new PACS in order to store their imagery and the new
client software will be installed onto several computers to allow
the doctors to consult on the medical exams of the patients. The IT
system administrator must ensure that the newly acquired medi-
cal equipment, as well as the accompanying server and associated
software, will not pose any security threat to the existing systems,
while the assets need to be protected from possible unauthorized
access or malicious attacks, both external and internal.

Currently, there are no known tools to detect vulnerabilities in
NMDs, other than the conventional ones used by network admin-
istrators and security specialists. Legacy operating systems and
software and the incompatibility between systems leave vulnera-
bilities such as misconfiguration and security holes. These include
vulnerabilities from non-negotiated interfaces with third-party soft-
ware, often through web interfaces. However, devices may not be
fully owned and operated by the care center (usually on lease from a
system provider). Furthermore, a device that was given to a patient
as part of a treatment plan will hence re-enter the hospital’s realm
at a later point and may intentionally or unintentionally cause is-
sues within the care center or when given out to the next patient.
This means either that the care center’s own systems are at risk or
that a device provided by the hospital threatens the client.

With developments such as polymorphic malware, current meth-
ods for detecting intrusions at the end-point and in the network
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Figure 2: SEPTON project use cases: scope and scale.

are being questioned. The number of new threats is so large, that
scanners now keep a time window and have to discard threats more
than two months old. Existing machine-learning approaches within
intrusion detection systems that find a hard boundary between
samples do not deal with these situations reliably. However, cur-
rent advances in deep clustering approaches, such as density-based
clustering to network traffic analysis, are able to cope with slight
variations in user behavior yet detect outliers from the norm. The
expected goal is a universal toolkit that learns patterns by itself by
observing network traffic. Based on the assumption that the entire
network is not infected entirely with a threat at the same time and
that there exists an exact time when a threat is introduced to the
system, this also helps to automatically derive a secure baseline.

7.4 Medical data exchange between institutions
When a patient needs a referral to a specialist, there exist different
procedures, depending on the patient’s choice of hospital. A hospital
might subscribe to a secure portal service that is integrated with
both the hospital information system (HIS) and the GP information
system (GIS). The specialist who makes a diagnosis and suggests a
treatment sees the patient. This information can be sent back to the
patient and can be received from both the GIS and the pharmacy
information system (PIS), both of which are installed on the GP’s
computer. Another hospital may have subscribed to a different
service. In this case, it must create the referral letter in a Web
environment by manually inserting the medical information from
GIS into the browser.

Another facility may even use an outdated system that is in-
compatible with the rest of the hospital system. As a result, it may
require that all referrals be sent by fax. A major challenge is ensur-
ing secure operations and data protection via a mix of third-party
software and online services, even fax machines in some cases.
Due to incompatibilities and inconsistencies between the various
moving parts and the overall manual transmission of information,
not necessarily fully understood even by physicians, pharmacists,
and other support staff, the reliability of the system is at risk while

existing security vulnerabilities can easily go undetected. Sharing
of medical data among different healthcare institutions allows for
the creation of a large dataset for healthcare analysis that can be
used for effective decision-making regarding diseases and treatment
plans, as well as for the production of general health statistics.

To enable privacy-friendly medical data exchange and privacy-
friendly analysis of medical data exchanged between the aforemen-
tioned parties, we introduce a differential privacy-based approach to
the data exchange process, theoretically guaranteeing privacy and
limiting information loss for sensitive data. We develop a system
model that includes users, cloud servers, and healthcare facilities.
In our system, interactive and non-interactive DP approaches are
compared. Homomorphic encryption methods are used to compute
the statistical functions of encrypted data. Although performing
fully homomorphic encryption (FHE) is very costly, somewhat
homomorphic encryption (SHE), which performs only a limited
number of multiplications on encrypted data, is more efficient than
FHE [38]. However, the computational cost of SHE is high and
should be implemented with efficient algorithms. By combining
lightweight machine learning with cryptographic and differential
privacy techniques, we will develop private tools that allow medical
professionals and scientists to share useful statistical information
about sensitive data.

8 CONCLUSION
This work concentrates on the potential of integration and effec-
tive implementation of advanced lightweight machine learning
algorithms to the security aspects of networked modern medical
devices. Beginning with an overview of the relevant literature we
emphasized specific medical cybersecurity use cases, addressed by
the SEPTON EU Horizon research program, and how the aforemen-
tioned state-of-the-art technologies affect them referring to their
scale. The ongoing effectiveness of lightweight machine learning
architectures is presented with promising results in these critical
healthcare settings. In the near future, we plan to share the main
scientific measurements derived from the use cases investigated.
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