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The use of several levels of abstraction has proved 
to be very helpful in constructing and maintaining 
programs. When programs are designed with abstract 
data types such as sets and lists, programmer time can 
be saved by automating the process of filling in low- 
level implementation details. In the past, 
programming systems have provided only a single 
general purpose implementation for an abstract type. 
Thus the programs produced using abstract types were 
often inefficient in space or time. In this paper a 
system for automatically choosing efficient 
implementations for abstract types from a library of 
implementations is discussed. This process is discussed 
in detail for an example program. General issues in 
data structure selection are also reviewed. 
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In the past several years computer  scientists have 
realized that the use of several levels of abstraction in 
programming often gives improved results in terms of 
clarity, correctness, and ease of maintenance of the 
resulting programs. One important aspect of abstrac- 
tion is the use of data types such as stacks, queues, 
sets, and so forth. The properties of abstract types can 
often be described axiomatically [20, 21]. This aids in 
constructing formal or informal proofs of program 
correctness. Several systems (CLU [13], SIMULA-67 [3]) 
have gone further and shown the benefits of "hiding" 
the low-level implementations of the abstract types. 
Thus a programmer might deal with a stack only in 
terms of a small number of primitives upon it such as 
PUSHing an element, POPing an element off the stack, 
testing if the stack were EMPTY,  and so forth. The 
programmer would not have to concern himself witfi 
whether the underlying representation were a linked 
list, an array, or some hybrid. 

When a program is written using only primitives on 
an abstract type without using any knowledge of the 
underlying representation, the underlying representa- 
tion may be changed without affecting the operation of 
the program except possibly for resource requirements. 

Given a programming system which provides the 
abstract type stack, a natural thing to do would be to 
have a number of alternative implementations of stacks 
and choose the implementation which is most efficient 
(by some criteria) for any individual program. An 
"intelligent" compiler would pick the "best"  set of 
implementations for the abstract types of an individual 
program from a fixed library of implementations for 
the types. 

For the purpose of this paper, we define "abstract 
data types" to mean SIMULA-like classes which the user 
sees only as a number of well-defined primitives such 
as PUSH and POP mentioned above. The term "ab- 
stract data structure" will mean a particular instantia- 
tion of an abstract type (e.g. a particular stack). The 
programmer will not assume any particular represen- 
tation for the abstract data structure and will manipu- 
late it using only the given primitives. 

A prerequisite for selecting a good representation 
for an abstract data structure is a rich library of 
implementations for the various abstract types. Cost 
formulas for these primitive operations performed on 
the data structure must also be available. The costs will 
typically be functions of the size of the data structure 
and other properties of the data. This library of imple- 
mentations and cost formulas need only be constructed 
once for the programming system, but the implemen- 
tation specifications will be used in the compilation of 
each program. There are several steps in the process of 
selecting good representations of the data for a given 
program. The compiler must determine how the data 
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structures are used within the program, their domain, 
their size, what operations are performed upon them, 
and so forth. In the prototype system described below, 
static flow analysis, monitoring executions of sample 
runs, and user interrogation provide this information. 
Given the above information, the system uses an 
implementation selection algorithm which attempts to 
minimize the cost (according to some fixed criteria) of 
executing the program. An iterative technique is used 
for selecting representations in the prototype system 
described below. 

In the remainder of this paper we discuss a proto- 
type system which has been used successfully for select- 
ing representations for sets and sequences. The selec- 
tions made by this prototype system compare favorably 
with those made by a human programmer.  The selec- 
tions have differed from those that would have been 
made by the author in only a few cases. Those cases 
were typically of two type~: the system picked a more 
complex representation (such as AVL tree or hash table) 
when its utility was only marginally better  than that of 
a simpler representation (such as bit vector or linked 
list); the human programmer used information not 
available to the automatic selection system. This pro- 
totype system could easily be extended to select repre- 
sentations for other reservoir-like abstract types such 
as queues and stacks. Later  we shall give an overview 
of the problems which must be considered in making a 
practical data structure selection system. 

2. Prototype System 

A prototype system for semiautomatic selection of 
representations was constructed for a subset of the SAIL 
programming language [8, 16]. SAIL is an Algol-60 
based language with extensions including varying 
length strings, processes, event mechanisms, and an 
associative data language called LEAP [7]. 

We were interested in choosing representations for 
the abstract data structures of LEAP. The basic entities 
manipulated by LEAP are called " i tems."  An item is a 
symbolic object much like a LISP atom. A variable, 
called a datum, may optionally be attached to the item. 
Datums can be either simple variables or arrays. Items 
are often categorized by the data type of the attached 
datum. Thus we have integer items (items with an 
integer variable as datum), set items (items with a set 
variable as datum), untyped items (items with no 
datum), and so forth. Items are allocated either at 
compile time via declarations or dynamically from a 
heap at execution time (via the built-in function called 
NEW).  The lifetime of items and their datums does not 
follow Algol block structure. An item and its datum 
exist until explicitly deleted by the use of the D E L E T E  
procedure.  

LEAP also contains "sets" of items, "lists" of items, 
and a ternary relation among items. Set and list values 
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have the same lifetime as arithmetic quantities. There 
are set expressions, set variables local to a block, and 
set datums. The ternary relation is global to the entire 
program. 

The subset of SAIL which was used in the prototype 
system included integers, reals, strings, procedures,  
items, sets, and lists. Explicitly excluded from the 
subset were arrays, recursive procedures,  go-to state- 
ments, multiprocessing, events, and the ternary rela- 
tion of LEAP. A recent extension to the system [17] 
now performs selection of representations for the ter- 
nary relation. 

In the prototype system we chose representations 
only for sets of items and lists of items. A set is a 
conceptually unordered collection of items in which 
any given item appears at most once. Operations built 
into SAIL to manipulate sets include: union, intersec- 
tion, difference, element insertion, element deletion, 
test for membership,  and iterating through the mem- 
bers of a set expression. A list is a linear sequence of 
items. It behaves much as a flexible length array or 
string of items except that there are primitives for 
inserting or deleting items at arbitrary positions within 
the list. Operations on lists include: fetching or storing 
an item by ordinal position within the list; concatenat- 
ing two lists; removing items from a list (either by 
ordinal number  within the list or by giving the name of 
the item to be removed);  inserting items into the LIST 
(before or after an ordinal position or a particular 
item); and iterating through the elements of a list. 

Let  us now look at an example of a program written 
with sets and lists and see how the prototype system 
chose representations for it. 

Example 
The program (see Figure 1) computes a spanning 

tree for a graph. The graph consists of a set of nodes 
(NODESET)  and a set of undirected edges between 
pairs of nodes (EDGES) .  The program assumes that 
there is a path (through zero or more other  nodes) 
between every pair of nodes. A spanning tree for the 
graph consists of a subgraph containing all the original 
nodes and a subset of the edges of the original graph 
such that: 

(1) For any pair of distinct nodes there exists a 
path between the nodes. 

(2) There is no path from a node to itself (subgraph 
is cycle-free). 

The basic algorithm is the E Q U I V A L E N C E  algo- 
rithm given by Knuth [11, Algorithm 2.3.3E] modified 
to record the edges used. The technique used is to 
partition the nodes into groups. Each group will have 
the property that there exists a path from each node to 
every other node in the group. The program starts by 
placing each node in a separate group. It then looks at 
each edge. If the edge connects two nodes in the same 
group, then the program ignores that edge. Otherwise 
it records the edge in the set of edges which will 
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(1) begin "SPANNING TREE" 
set EDGES, NODESET, SETOFGROUPS, 

TREESET; 
list itemvar FIRSTGROUP,SECONDGROUP, 

EDGETEMP, 
FIRST ,SECOND ,X; 

list itemvar procedure GROUPOF 
(list itemvar NODE);  

begin "GROUPOF"  
while (FATHER(NODE) neq NODE) do 

NODE := FATHER(NODE);  
return(NODE); 

end "GROUPOF";  
procedure M E R G E G R O U P  

(list itemvar GROUP1 ,GROUP2); 
begin " M E R G E G R O U P "  

remove GROUP2 from SETOFGROUPS; 
FATHER(GROUP2)  := GROUP1;  

end " M E R G E G R O U P " ;  
comment AT THIS POINT WOULD HAVE CODE 

TO EITHER BUILD THE GRAPH INLINE 
OR READ THE GRAPH FROM AN INPUT 
DATA SET 

THE RESULT IS THE SET OF NODES OF 
THE GRAPH (NODESET), AND THE SET 
OF EDGES (EDGES); 

comment EACH NODE INITIALLY ITS OWN 
GROUP; 

foreach X such that X in NODESET do 
FATHER(X) := X; 

SETOFGROUPS := NODESET; 
foreach EDGETEMP such that 

EDGETEMP in EDGES do 
begin 

FIRST := ENDI(EDGETEMP);  SECOND := 
END2(EDGETEMP);  

FIRSTGROUP := GROUPOF(FIRST);  
SECONDGROUP := GROUPOF(SECOND);  
if FIRSTGROUP neq SECONDGROUP then 

begin 
put EDGETEMP in TREESET; 
MERGEGROUP(FIRSTGROUP,  

SECONDGROUP);  
end; 

end; 
print ("EDGES OF SPANNING TREE") ;  
foreach EDGETEMP such that 

EDGETEMP in TREESET do 
begin 

string itemvar NODENAME 1, NODENAME2;  
FIRST := ENDI(EDGETEMP);  

SECOND := END2(EDGETEMP);  
NODENAME1 := NAME(FIRST); 

NODE- 
NAME2 := NAME(SECOND); 

print(datum(NODENAME 1 ) ," 
datnm(NODENAME2));  

end; 
end "SPANNING TREE" 

constitute the spanning tree (TREESET) and merges 
the two groups into one. 

The groups are represented by trees consisting of 
the nodes within the group. Given any node in such a 
tree, the root of that tree may be found by following 
the chain of FATHER links. The FATHER link from 
the root node of a tree will be to itself. The root of the 
tree is used to name the group. Two nodes of the graph 
are in the same group if the roots of their group trees 
are the same. To merge two groups the program simply 
finds both root nodes and changes the FATHER link 
of one root node to point to the other root node. 
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The program has the following abstractions: 

1. Nodes 
2. Edges 
3. A map from an edge to the two nodes connected by 

the edge. 
4. A map from a node to its father in the tree 

representing a group of connected nodes. 
5. A set of all the nodes. 
6. A set of all the edges. 
7. A set of the edges making up the spanning tree. 

We represent the NODES by items, the EDGES 
by items, the maps by specific positions within list 
datums of NODE and EDGE items, and the sets by 
SAIL se t s .  

For the maps we have the following: 

DATUM(NODE) (1) is an item with a string datum 
for the name of the node. 

DATUM(NODE) (2) is the node which is the FA- 
THER of this NODE in its group tree. 

DATUM(EDGE)  (1) is one node which isan endpoint 
of the edge. 

DATUM(EDGE)  (2) is the other endpoint of the 
edge. 

For notational simplicity we assume that there are 
macros: NAME(X), which expands to DATUM(X) [ 1 ]; 
FATHER(X),  which expands to DATUM(X)[2]; 
ENDI(X),  which expands to DATUM(X)[1]; and 
END2(X), which expands to DATUM(X)[2]. 

Note that in full SAIL (not the subset implemented 
by the prototype system) we would probably imple- 
ment the maps by using the ternary relation. 

The reader is advised to look at the Appendix for a 
description of the syntax of SAIL used in the following 
example. In Figure 1 the numbers to the left are for 
reference only and would not appear in the source text. 

The prototype system consists of several phases. 
The first phase involves monitoring of the program 
(using default implementations of the abstract data 
structures) to determine the frequency of the various 
operations. The second phase involves a static flow 
analysis of the program to determine the range of each 
set or list expression and also to determine which 
operations are performed on the individual sets and 
list. The third phase is user interrogation in which the 
programmer is asked questions about attributes of the 
set and list operations which may alter choice of 
representation. The fourth phase is the selection of 
representations using a method similar to hill climbing. 
The final phase consists of compiling and executing the 
program again, this time using the representations 
selected by the fourth phase. 

Monitoring 
The monitoring phase consists of having the user 

compile his program with a special version of the SAIL 
compiler. The special compiler inserts counters into 
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the generated code that will enable the system to 
determine how many times each statement in the 
program was executed. This compiler uses the standard 
SAIL representations for sets and lists (linked lists). The 
user then runs the program with an input data set he 
considers typical. The counts of the statements for a 
typical run of the example are included in parentheses 
to the left of the program in Figure 1. For this 
particular execution of the program a graph with 25 
nodes and 72 edges was used. Monitoring in the 
prototype system consists only of keeping statement 
counters. 

Flow Graph 
The program source text and the file containing the 

values of the counters above are then processed by a 
program which builds a flow graph of the user program. 
Each node of the graph represents either some control 
information (such as a procedure call or a beginning of 
a loop) or a LEAP operation. The flow graph does not 
include expressions or statements dealing with non- 
LEAP entities unless the statement also uses a LEAP 
construct such as D A T U M .  The costs of nOn-LEAP 
constructs are considered separately during the selec- 
tion phase. Associated with each node is the value of 
the counter  indicating how many times the correspond- 
ing statement was executed in the sample run. The 
system uses this flow graph to analyze the user's 
program to determine how the SETS and LISTS are 
used. 

Meta-Evaluation 
The next phase of the system involves traversing 

the flow graph in a form of flow analysis we call "meta-  
evaluation." There is a data structure (in our system, 
which is written in SAIL, this takes the form of the 
ternary relation of LEAP) which contains entries for 
each possible set variable, list variable, declared item, 
the class of items allocated by a particular call to the 
NEW item allocator, possible datums for each item, 
and so forth. The result of meta-evaluation will be to 
change this data structure so that it contains informa- 
tion about which of the classes of items (either individ- 
ual declared items or all the items allocated by a 
specific NEW) are possible members of each set and 
Last at each point in the program. Information concern- 
ing which primitives are applied to each set and list 
variable or temporary is also derived. The process of 
meta-evaluation starts by looking at the node of the 
flow graph representing the entry point to the main 
program. At  each node the meta-evaluator usually 
performs some operation to update its data structure. 
Thus at an assignment to a set variable node it deter- 
mines the possible set of items (declared or NEWs) 
which can be elements of the set expression on the 
right-hand side of the assignment and then updates the 
model of the possible contents of the set variable being 
assigned to. After  updating the data structure, it then 
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meta-evaluates all nodes which are immediate succes- 
sors to the current node.  Normally each node has a 
single successor, but control nodes such as those rep- 
resenting IF-statements or CASE-statements have 
more than a single successor, When we reach a node 
which JOINs two paths in the flow graph (such as 
following an IF-THEN-ELSE) ,  we compute the sets of 
potential elements of the variables by merging the sets 
of potential elements from each path. Loops are re- 
peatedly meta-evaluated until a single recta-evaluation 
causes no new information to be added to the data 
structure. The process of meta-evaluation is conserva- 
tive. It always errs on the side of assuming that the set 
of potential elements of variables is larger than might 
actually be true in execution of the program. The meta- 
evaluator will never say that an item is not an element 
of the variable when it actually might be. 

The meta-evaluation of the example derives infor- 
mation such as: the domain of N O D E S E T  and 
S E T O F G R O U P S  is only the set of items which repre- 
sent N O D ES  in the graph; the domain of the list 
datums of the node items is the set of items used for 
naming nodes and the set of node items; the only 
operations performed on T R E E S E T  are insertion and 
the foreach iteration; and so forth. 

After  the meta-evaluation phase the system has a 
model of the possible domain of each set and list 
variable, the primitives applied to each variable or 
expression, and which variables and expressions are 
operands to particular instances of the binary set and 
list operators.  Note that there are techniques other  
than meta-evaluation for obtaining the same informa- 
tion. Classical summary flow analysis techniques [2, 
10], particularly use-define chaining [1], could be 
modified to provide the same information. 

Partitioning into Equivalence Classes 
In the next part of the static analysis phase the 

system makes classes of variables and expressions for 
which it will choose the same low-level implementa- 
tion. Consider a binary set operation such as union. 
The most general library would need to have imple- 
mentations taking sets represented in two .different 
ways as arguments to the union and produce a set in a 
third representation.  Thus we might have a union 
routine taking one set represented by a hash table and 
uniting it with another  set represented by a binary tree,  
producing a set represented as a bit map. The cost of 
coding such a library would be exorbitant;  the number  
of concrete implementations of the binary operators 
varies with the cube of the number of representations. 
Alternatively, if you allow representation conversions, 
the number  of conversion routines varies with the 
square of the number of representations. For the 
prototype system, we made a simplifying assumption 
that for each implementation of a binary operator  the 
input and output sets (or lists) are restricted to the 
same representation.  So, the size of our library need 
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only expand linearly with the number of low-level 
representations. This assumption induces an equiva- 
lence relation upon the set and list variables and 
expressions. Two variables or expressions will be in the 
same equivalence class if they are operands to the same 
instance of an operator. Thus, the part of the static 
analysis phase following meta-evaluation computes 
these equivalence classes using information derived 
from meta-evaluation. For the example in Figure 1 this 
produces five equivalence classes: the class consisting 
of the list datums of the items representing nodes; the 
class of the list datums of the items representing edges; 
the class consisting of the variables SETOFGROUPS 
and NODESET; the class consisting of the variable 
EDGES; and the class consisting of the variable 
TREESET. The variables SETOFGROUPS and NO- 
DESET were placed in the same class because of the 
assignment statement at line 18. 

One result of partitioning into equivalence classes 
is that the number of different selections that the 
system has to make has been reduced. In sample 
programs we have noticed that classes typically have 
five or more variables. The number of decisions is thus 
reduced by a factor of five. We could, of course, merge 
all the classes into a single class and then make only 
one decision about how to represent all sets in a 
program, but this is too gross an action as it forces sets 
with completely different properties to be represented 
in the same manner. Our partitioning scheme allows 
the most individual choice of representation with the 
constraint that concrete implementations of the binary 
operators take as operands and produce as results a 
single representation. 

The system next merges all the attributes (domains, 
primitives used, etc.) from the individual variables and 
expressions within a class to obtain the attributes of the 
class itself. For the example in Figure 1 the system 
derives that the operations on the class containing the 
variable EDGES consist only of insertion and iteration 
(foreach). The same operations are performed on 
TREESET.  Operations on the list datums of the node 
and edge items are selection and replacement based on 
ordinal position in the list. 

User Interaction Phase 
After partitioning we enter a user interaction phase. 

The user is asked about the parameters of the cost 
functions of the representations. In the example, the 
user is asked questions about the individual LEAP 
statements of his program such as the set insertion in 
line 26. The user is asked the average size of the set, 
the probability that the set is empty, and the probability 
that the item being inserted is already a member of the 
set. Similar questions are asked about the set iterations 
of lines 16 and 31 and so forth. Given the values of the 
parameters along with the frequency counts (obtained 
through monitoring), the selection phase will be able 
to compute estimated cost (in cpu time) for the opera- 
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Table I. Remove S e t - R e m o v e  Item from Set. 
~- = Proportion of Time Item is in the Set 
h = Size of Set. 

Set Removal 
Representation empty Set nonempty of last 

Linked list 14 23 + 13h/2 + 277r 82 
AVL tree 11 32 + 88z- + 20*LOG2(h) 140 
Bit-Array 48 48 48 
Hash table 11 42 + 3h/8 + 25rr 294 
Bit-string with un- 15 51 + 6rrh + 50rr 149 

sorted linked list 
Attribute bit 27 27 27 
Sorted variable 11 17 + 21.5*LOG2(~) + 3rr 240 

length array + 3"rrh 

tion with the various representations. Many of the 
questions currently asked by the system could be 
answered by additional monitoring. However, there 
are also questions (such as expected lifetime of new 
items) which are extremely difficult to determine with- 
out very detailed (and expensive) monitoring. Other 
questions, such as whether the size of a set is bounded 
by some constant independent of input data, are gen- 
erally impossible to answer if only monitoring and 
inference based on monitoring are used. We feel that 
some form of user interrogation or assertions within 
the user's program will always be necessary. 

Representation Library 
The prototype system contains a fixed library of 

representations for sets and lists. The representations 
for sets are: sorted linked lists; AVE (height balanced 
binary) trees; a bucket hash table (with 32 buckets); 
fixed length boolean arrays (bit arrays); variable length 
(in multiples of 10 words) sorted array; a boolean field 
within records for items; and a combination of fixed 
length boolean array and unsorted linked list. Repre- 
sentations of lists are: one-way linked lists; two-way 
linked lists; and variable length arrays. The system 
contains a library of cost functions alluded to earlier. 
These functions provide estimated costs of each imple- 
mentation of each primitive operation as a function of 
such things as set size, probability of booleans being 
true, and so forth. A typical set of cost functions is 
given in Table I. In addition to cpu-time cost functions, 
the system also contains functions which will predict 
the amount of memory needed for a representation as 
a function of the maximum and average sizes of the 
abstract data structure during execution. The questions 
asked during the user interaction phase were to provide 
the parameters to these time and space cost functions. 

Selection 
The final phase is selection. This phase starts with 

the system determining which representations are ap- 
plicable for each equivalence class. A representation is 
not applicable if the class uses primitives which are not 
coded for the representation or if the representation 
needs information at compile time which is not availa- 
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ble. In our example the system could not use fixed 
length bit arrays for the sets E D G E S  and T R E E S E T  
because the maximum size of the sets depended on 
input data. After  applicability is determined,  the sys- 
tem asks the user if he wants to pick representations 
for some of the equivalence classes himself. The user is 
presented with applicable representations and may 
either pick one for the class or let the system later 
automatically pick one. 

Our criterion for automatic selection is to minimize 
the expected space-time product for the execution of 
the resulting program. To optimize the total space-time 
product the system c a n n o t  simply minimize the space- 
time product for individual classes because the terms 
involving the space used in storing one class are multi- 
plied by the time used in execution of primitives on 
another.  The selection process uses an iterative tech- 
nique similar to hill climbing. It first computes the 
space and time costs for each class in each program 
segment (the main program and the individual proce- 
dures). If any representation uses both less time and 
less space than any other  representation for the class 
then it is picked immediately. In our example, the list 
classes corresponding to the datums of node and edge 
items are thus best represented by one-way linked lists. 
The class containing the variables S E T O F G R O U P S  
and N O D E S E T  is similarly best represented by a 
sorted linked list. Though there is not a single best 
representation, according to this criterion for E D G E S  
the domination test (better time and space considered 
individually) narrows the choices for E D G E S  to using 
either a linked list or hash table representation. The 
choices for T R E E S E T  are similarly reduced to either 
using a linked list or an AVL tree. If there is not a 
single choice the system computes the total space-time 
product for each remaining representation for each 
class considered by itself (ignoring cross-terms with 
other classes). For the initial guess of the best represen- 
tation for each class the system picks the representation 
which minimizes this space-time product. In the exam- 
ple this causes the classes for both T R E E S E T  and 
E D G E S  to be represented initially by sorted linked 
lists. 

Now the system attempts to improve upon this 
choice by considering the cross-terms between classes. 
The system tries changing the representation for a 
single class to see if it can get an improvement in the 
total expected cost. It continues to attempt this for 
each class in turn until it has tried to change the 
representations of every class and has failed to get an 
improved cost. Thus, if any representation is changed, 
we will then cycle through all the other classes and 
attempt to find better representations for them as well. 
The process terminates when after having picked a new 
representation (best given the representations of the 
other classes) we cannot find a better  representation 
(in the sense of decreasing total cost of the program) 
for any other class. Note that this technique has the 
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problem normally associated with hill climbing, that of 
finding local minima. A good though not necessarily 
optimal assignment of representations to classes is thus 
obtained. In our  example the representation for 
T R E E S E T  is changed to become the AVL tree and the 
representation for E D G E S  is changed to become a 
hash table. It is interesting to note that E D G E S  and 
T R E E S E T  are identical as far as the program is 
concerned except for size and the number of times that 
they are operated upon. They both have the same 
operations (insertion and iteration) performed on 
them. The size of E D G E S  on the average was 72 (after 
initialization staying constant in size) while the size of 
T R E E S E T  was 12 (starting as empty and growing to 
size 24 over the life of the program). The number of 
insertions and iterations involving E D G E S  was several 
times larger than for T R E E S E T .  Thus we see that the 
system was able to choose different data representa- 
tions for quite similar sets based upon the size and 
frequency of operations performed upon them. 

Lastly, a compiler takes the choices made during 
selection and compiles the appropriate code for every 
set and list operation based upon those choices. 

3. Overview of Issues in Automatic Data Structure 
Selection 

The construction and use of the prototype system 
has demonstrated to us many of the components nec- 
essary for a practical automatic data structure selection 
system. We have also seen many problems which will 
have to be solved in order to construct a very good 
system. In this section we will address some of the 
issues of language design and system organization that 
we feel should be considered by the implementor.  

Language Constructs 
Typical abstract types that we would expect to have 

built into a high-level programming language would 
include various kinds of reservoirs of data objects such 
as stacks, sequences, first-in-first-out queues, sets, and 
priority queues. Other  built-in types should include n- 
ary relations and general mappings from n-tuples into 
k-tuples. Special purpose languages would have other  
built-in abstract types peculiar to their problem do- 
mains. For example, a language dealing with linear 
equations would likely have matrices. A good general 
purpose high-level language should include extension 
mechanisms to allow users to implement their own 
abstract types. 

Criteria for Selections 
In order  to make decisions about which of many 

implementations to use for a given abstract data struc- 
ture, we need to have objective criteria for evaluating 
tradeoffs. Normally we can fix some notion of expected 
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"cost" of executing a program. Our criterion for choos- 
ing among data representations will be to minimize 
that expected cost. 

The cost of running a program is usually a function 
of the total real time needed to execute the program, 
the primary memory requirements, secondary memory 
requirements, I/O channel usage, CPU usage, costs as- 
sociated with various peripherals, and so forth. The 
particular function will vary from installation to instal- 
lation and often will depend on such factors as priority 
associated with the job or time of day. Cost functions 
normally contain too many parameters for us to fully 
optimize. Our difficulties are compounded by the fact 
that the choice of representations for the different 
abstract data structures within a program cannot be 
made independently. We are rarely able to optimize 
the choice of representation to minimize the given cost 
function. The payoffs from making good though per- 
haps sub-optimal choices are, however, dramatic and 
well worth the cost of our analyses. 

For the remainder of the paper, the reader should 
assume that the cost function is a simple nondecreasing 
function of the primary memory space occupied by a 
program and the CPU time needed by the program. 
One such function (that which was used in the proto- 
type system) is the integral of the primary memory as a 
function of time (space-time product). The reader 
should remember that actual cost functions are usually 
more complicated. 

Representation Alternatives 
Given any abstract data type, it is rarely the case 

that a single representation is optimal for all programs. 
In general, we have to do a thorough analysis to 
determine the tradeoffs of time and space as a function 
of the size of the data structure and the frequencies of 
the various primitives applied to it. 

The first major question is whether to explicitly 
represent the abstract structure at all. For example, 
often it is better to represent mappings as programs. 
The trigonometric functions are usually represented by 
program segments rather than as explicit tables. Sets 
can often be thought of as mappings from elements to 
the Booleans TRUE or FALSE. If the mapping is a 
simple one, such as for the set of all odd integers, the 
set may best be represented by a predicate. Represen- 
tation of an abstract data structure by a program 
segment, however, is not always optimal and depends 
upon frequencies of the various primitives on the 
abstract data structure. We must evaluate the costs of 
keeping the tables versus the costs of executing pro- 
grams to evaluate the mappings. We must also consider 
the alternative of computing and storing only those 
values which the program uses. Thus we can imagine a 
system (cf. POP-2 memo functions [5]) which com- 
putes a value for a function only when it has not 
previously computed the function for the same argu- 
ments. The general technique involves first looking in 
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the table. If the function has previously been computed 
for the particular argument, the value will be in the 
table and we may simply return that value. Otherwise 
we compute the value by executing the program seg- 
ment, store the argument-value pair in the table, and 
then return the value. 

The considerations mentioned above indicate that 
the representation problem for abstract types is ex- 
tremely difficult independent of questions about how 
data might be stored. Finding general techniques for 
deciding when to store results and when to recompute 
them is a research area in itself though of course 
related to the problems of data structure selection. 

For the remainder of this paper we assume that the 
abstract data structures will be explicitly stored. We 
consider systems which try to choose which storage 
structures and associated algorithms ~re best for a 
particular program. 

Multiple Representations 
Once we have decided to have explicit data struc- 

tures as representations of abstract types, we must 
decide which explicit data structure to use. In addition 
to individual data structures, we must also consider the 
possibility of using more than one representation. 
There are several ways in which an abstract data 
structure may be represented beneficially by more than 
one concrete implementation. One technique is to 
represent the structure redundantly by storing the same 
data in two or more ways. The motivation for this 
strategy is that often there is no one representation 
which is most efficient or even applicable for all the 
primitive operations applied to the given abstract struc- 
ture [17]. Consider a small finite set of integers. A bit 
map is not efficient for iterating through a nondense 
set. An efficient representation for iteration is a linked 
list, but this is not nearly as efficient for testing 
membership as the bit map. Therefore, for a particular 
program, it might be optimal to represent such a set 
both ways, by using the bit map for membership 
queries and the linked list for iteration. Of course we 
must consider the extra costs for storage and for 
inserting or removing elements from the set. However, 
if the operations of membership testing and iteration 
dominate the program's cost, then the redundant rep- 
resentation is justified. 

In addition to total redundancy, there is also the 
possibility of partial redundancy. An example where 
partial redundancy is often used is in the mapping 
between virtual page numbers and physical page num- 
bers in a paged memory system. In many such systems, 
there is a table for each user of the mappings between 
the user's logical pages and the physical pages in either 
primary or secondary memory. Part of that table is also 
kept in a high speed associative memory of relatively 
small capacity. On each address calculation, the mem- 
ory mechanism first looks in the associative memory 
for the mapping information, and only if it is not there 
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does it look in the user's complete page map. Since the 
associative memory is at least an order  of magnitude 
faster than primary memory,  a net speedup for page 
mapping will occur. Similar uses of partial redundancy 
are seen in keeping directories of open disk files in 
primary memory,  using buffer memories (caches), and 
so forth. 

Two or more distinct implementations may benefi- 
cially be used to represent an abstract data structure 
when the frequency of the various primitives using that 
data structure changes greatly over time within the 
program. We often see that there are distinct phases 
within the lifetime of an abstract structure, for exam- 
ple, a dynamic construction phase when the structure is 
changing rapidly in size and a processing phase when 
the structure is relatively static. If we can recognize 
these phases, we can use different representations for 
each phase, with a translation of representation be- 
tween the phases. 

One more way in which multiple representations 
are valuable occurs when a user's abstract structure can 
be decomposed into two or more disjoint abstract data 
structures. For example, if the user program uses a 
ternary relation in which all makes, erases, and 
searches for instances of the relation have the first 
component  specified as a constant, then we can act as 
if the ternary relation were a number of binary rela- 
tions. Consider a ternary relation which has entries like 
( F A T H E R O F ,  JOHN,  TOM),  (SALARYOF,  JOHN,  
10000), ( F A T H E R O F ,  ALICE,  TOM),  and (SA- 
L A R Y O F ,  TOM,  20000). If the first component  is 
always specified, we can treat the relation as the two 
disjoint binary relations F A T H E R O F  and SALA- 
RYOF and possibly use different representations for 
each binary relation. 

Information Gathering: Library 
In order  to make the decision of which member  of 

a library of implementations to use, we must have 
knowledge about how the abstract data structure is 
used within the program (size, primitives used, and 
their frequencies),  and we must also have knowledge 
about the costs of the various implementations. Let  us 
first consider the library of implementations. 

The cost of using an implementation is a function of 
the resources which it uses. With our simple cost 
formula of the space-time product,  the cost of a given 
implementation consists of terms involving the storage 
occupied by the data structure and manipulation algo- 
rithms and the processing time associated with manip- 
ulations on the data structure. 

The space used by a representation is often easily 
computed.  For  example, if we are representing a set by 
a linked list of nodes, the space needed is merely the 
size of each node times the length of the list plus some 
small constant for header  information. The length of 
the list would normally be the number  of elements in 
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the set. If, however,  the manipulation algorithms may 
insert the same element of the set into the concrete 
structure more than once (it may be cheaper to always 
insert rather than check if the element is already there) ,  
then the computation of space needed is not so simple 
but would depend on the number  of times each element 
is likely to be inserted in the set. Similar problems 
occur if we have schemes where we do not always 
recover space when the abstract structure contracts in 
size. For  example,  we often store information on disk 
with each item being placed on a particular track or in 
an overflow area if its track is filled. When a previously 
filled track has elements removed,  we are very unlikely 
to search the overflow area to find elements which can 
be moved to their home track. Thus the amount  and 
kind of storage needed by a representation is not 
always simple to determine.  Fortunately we can often 
get simple functions of expected storage cost which 
give us good approximations for the storage costs. 

Processor time requirements for the various manip- 
ulation routines are also not always straightforward to 
determine.  Many routines cannot be mathematically 
analyzed to give us closed form cost functions. When 
the routines cannot be analyzed, we may monitor  
executions of them and statistically infer cost functions. 
In the prototype system described earlier, the various 
algorithms used could be mathematically analyzed by 
using the techniques of counting machine instructions 
executed described by Knuth [7]. Occasionally, a few 
simplifying approximations were used in order  to ob- 
tain closed form cost functions. 

In creating a selection system, we thus must com- 
pute formulas for the storage and processor costs using 
the individual representations. These functions should 
be placed into a library of functions which can be used 
in a selection phase. This implies that to add a new 
representation to the library we need only provide its 
manipulation routines and its cost functions. We do not 
need to alter the main structure of our selection system. 

Information Gathering: User Program 
When choosing a representation for an abstract 

data structure, it is crucial to know how the data 
structure is used within the user program (which prim- 
itives are used, how often, the size of the data struc- 
ture, and so forth).  Once we have determined such 
attributes, we can evaluate the cost functions to predict 
how costly a particular representation would be. We 
can then choose that representation which will tend to 
minimize the total cost of running the program. 

There  are three major  techniques for determining 
such information. The first consists of statically analyz- 
ing the program. This can give us information about 
which primitives are used. However ,  the sizes of data 
structures and the frequency of execution of the various 
primitives will normally depend on input data which is 
not considered during the static analysis. This suggests 
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the second alternative of requiring the user to provide 
the information. This can be done either through 
interactive conversations between the representation 
selection program and the user or by requiring the user 
to make assertions or special declarations within the 
source program. The major difficulty with this ap- 
proach is that often the user does not know the answers 
to the questions. As a program develops the attributes 
may change, and thus the user must be very careful to 
keep the information up to date. The third alternative 
is to monitor executions of the program, gathering 
statistics of the number of times primitives are exe- 
cuted, the size of data structures, and so forth. This has 
the disadvantage that the behavior of a program will 
often change dramatically as a function of the input 
data. The temptation of monitoring the program only 
once with a single input data set must be avoided. We 
also realize that the sample data sets used in program 
preparation and debugging are normally not typical of 
production runs. Therefore we should periodically in- 
clude monitoring in production runs and investigate 
whether it is best to change the representation of the 
abstract structures. In making the decision to change 
the representation we must, of course, evaluate the 
cost of restructuring an existing database. 

A combination of all three techniques will be nec- 
essary to get sufficient information to intelligently 
choose data representations. 

Representation Selection 
A selection program which has a library of cost 

functions for various representations and the parame- 
ters from the user's program for those cost functions 
can compute approximate expected costs for the pro- 
gram using particular assignments of representations to 
the individual abstract data structures of the program. 

The selection process is essentially an assignment 
problem. In general we may have K different abstract 
data structures (DS(1), DS(2), DS(3), , . .  , DS(K)). 
For each data structure DS(I), we have N(/) different 
choices of representation. As we stated earlier, de- 
pending on the cost function, the optimal assignment 
of representations might not be found by optimizing 
individual choices. In such a situation (as when we are 
using the space-time product as our criterion), to find 
.the optimal assignment we must potentially consider all 
possible combinations of representations for the indi- 
vidual structures. If, for example, we have 20 different 
abstract data structures, each having 10 possible rep- 
resentations, a brute force technique would have to 
look at perhaps 20 TM different assignments to determine 
which is the best. Clearly we cannot consider all these 
alternatives. We must apply structuring and heuristic 
techniques which will cut down the range of possibili- 
ties. We realize that by employing these techniques we 
may pick a suboptimal assignment, but we hope that 
our heuristics will give us a reasonably good one. The 
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particular heuristics used will depend on the cost 
function. 

4. Conclusion 

The use of abstract data structures contributes to 
the construction of better programs. In the past, pro- 
grammers have not used them because they were not 
part of the programming language. Recent program- 
ming languages have provided abstract data structures, 
but they normally have only a single general-purpose 
implementation for each abstract type, which cannot 
be efficient for all purposes. In this paper we have 
proposed a system (and demonstrated its feasibility in 
the prototype implementation described) which is a 
tool for producing efficient programs using abstract 
data types. 

The techniques presented here are not only valua- 
ble for selecting data representations but also would be 
highly useful in selecting algorithms. Problem domain 
specific systems would be very useful in the fields of 
numerical analysis, statistics and many other areas. 

Appendix. SAIL Notation 

The notation used in the example (Figure 1) is a 
modified version of the SAIL syntax. SAIL has notation 
which is highly similar to Algol-60. The differences 
(which appear in the example) are: 

1. Block n a m e s - F o l l o w i n g  any begin the p rogrammer  may insert a 
string constant .  The p rogrammer  may also insert a string constant  
after any end.  If there is a string constant  following an end.  the 
compiler checks to make  sure that  is the same constant  as 
followed the opening begin. 

2. I t e m v a r s - A n  i temvar is simply a variable which holds i tems. It is 
often preceded by a data type. A list i temvar is thus a variable 
which will hold i tems whose da tums  are lists. An  integer itemvar 
would be a variable which holds i tems whose da tums  are integers.  
Just as an integer procedure re turns  values (whole numbers )  
which can be stored in an integer variable, a list itemvar proce- 
dure returns values (i tems with list da tums)  which may be stored 
in a list i temvar  variable. 

3. D a t u m - T o  reference the da tum connected with an item we use 
the pseudo-funct ion datum. The datum construct  looks at the 
type of i tem (or i temvar)  to decide which data type the da tum is. 
Thus  da tum(CLASS1)  where CLASSI  is a list i temvar will 
behave just  as a list variable. When  da tum(CLASS1)  appears  on 
the left side of an assignment  s ta tement ,  the da tum of the item is 
replaced. Otherwise the da tum of the item is fetched. 

4. List se lectors- -Lis ts  may be indexed just as if they were a one 
dimensional  array of i tems with the lower bound of the d imension 
equal  to 1. If we had a list variable L V A R ,  LVAR[2]  corresponds 
to the second item in the list. 

LVAR[2]  := i temexpression;  

will remove the second e lement  of  the list and replace it with the 
value of the i temexpression.  In the example we were using a list 
to represent  mappings .  These lists were da tums  of i tems. Thus  
the construct  

da tum(CLASSVAR)[2 ]  

means  to take the second e lement  of  the list which is the da tum 
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of the item stored in the itemvar CLASSVAR. 
5. Foreach s ta tements-Foreach statements are similar to FOR- 

loops which use itemvar instead of integer loop-control variables. 

foreach X such that X in SETEXPR do 

will mean to execute the statement following the do once for each 
element in the set with the itemvar "iX'," receiving in turn each 
element of the set. Since sets are conceptually unordered, the 
implementation does not define the order in which the elements 
of the set will be placed in "X."  

6. PUT (REMOVE).  These statements insert (remove) an item into 
(from) a set variable. 
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Incorporation of Units 
into Programming 
Languages 
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Massachusetts Computer Associates 

The issues of how a programming language might 
aid in keeping track of physical units (feet, sec, etc.) 
are discussed. A method is given for the introduction 
of relationships among units (a watt is volts*amps, a 
yard is three feet) and subsequent automatic 
conversion based upon these relationships. Various 
proposals for syntax are considered. 
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