
1. Introduction

Programming J . J . Horning
Languages Editor

Automatic Data
Structure Selection:
An Example and
Overview
James R. Low
The University of Rochester

The use of several levels of abstraction has proved
to be very helpful in constructing and maintaining
programs. When programs are designed with abstract
data types such as sets and lists, programmer time can
be saved by automating the process of filling in low-
level implementation details. In the past,
programming systems have provided only a single
general purpose implementation for an abstract type.
Thus the programs produced using abstract types were
often inefficient in space or time. In this paper a
system for automatically choosing efficient
implementations for abstract types from a library of
implementations is discussed. This process is discussed
in detail for an example program. General issues in
data structure selection are also reviewed.

Key Words and Phrases: abstract data types,
automatic programming, data structures, optimizing
compilers, sets, lists

CR Categories: 4.12, 4.22, 4.6

General permission to make fair use in teaching or research of
all or part of this material is granted to individual readers and to
nonprofit libraries acting for them provided that ACM's copyright
notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery. To
otherwise reprint a figure, table, other substantial excerpt, or the
entire work requires specific permission as does republication, or
systematic or multiple reproduction.

This research was supported in part by a grant from the Alfred
Sloan Foundation and also by a grant from the National Science
Foundation, grant number MCS76-10825.

Author's address: Department of Computer Science, The Uni-
versity of Rochester, Rochester, NY 14627
© 1978 ACM 0001-0782/78/0500-0376 $00.75

376

In the past several years computer scientists have
realized that the use of several levels of abstraction in
programming often gives improved results in terms of
clarity, correctness, and ease of maintenance of the
resulting programs. One important aspect of abstrac-
tion is the use of data types such as stacks, queues,
sets, and so forth. The properties of abstract types can
often be described axiomatically [20, 21]. This aids in
constructing formal or informal proofs of program
correctness. Several systems (CLU [13], SIMULA-67 [3])
have gone further and shown the benefits of "hiding"
the low-level implementations of the abstract types.
Thus a programmer might deal with a stack only in
terms of a small number of primitives upon it such as
PUSHing an element, POPing an element off the stack,
testing if the stack were EMPTY, and so forth. The
programmer would not have to concern himself witfi
whether the underlying representation were a linked
list, an array, or some hybrid.

When a program is written using only primitives on
an abstract type without using any knowledge of the
underlying representation, the underlying representa-
tion may be changed without affecting the operation of
the program except possibly for resource requirements.

Given a programming system which provides the
abstract type stack, a natural thing to do would be to
have a number of alternative implementations of stacks
and choose the implementation which is most efficient
(by some criteria) for any individual program. An
"intelligent" compiler would pick the "best" set of
implementations for the abstract types of an individual
program from a fixed library of implementations for
the types.

For the purpose of this paper, we define "abstract
data types" to mean SIMULA-like classes which the user
sees only as a number of well-defined primitives such
as PUSH and POP mentioned above. The term "ab-
stract data structure" will mean a particular instantia-
tion of an abstract type (e.g. a particular stack). The
programmer will not assume any particular represen-
tation for the abstract data structure and will manipu-
late it using only the given primitives.

A prerequisite for selecting a good representation
for an abstract data structure is a rich library of
implementations for the various abstract types. Cost
formulas for these primitive operations performed on
the data structure must also be available. The costs will
typically be functions of the size of the data structure
and other properties of the data. This library of imple-
mentations and cost formulas need only be constructed
once for the programming system, but the implemen-
tation specifications will be used in the compilation of
each program. There are several steps in the process of
selecting good representations of the data for a given
program. The compiler must determine how the data

Communications May 1978
of Volume 21
the ACM Number 5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F359488.359498&domain=pdf&date_stamp=1978-05-01

structures are used within the program, their domain,
their size, what operations are performed upon them,
and so forth. In the prototype system described below,
static flow analysis, monitoring executions of sample
runs, and user interrogation provide this information.
Given the above information, the system uses an
implementation selection algorithm which attempts to
minimize the cost (according to some fixed criteria) of
executing the program. An iterative technique is used
for selecting representations in the prototype system
described below.

In the remainder of this paper we discuss a proto-
type system which has been used successfully for select-
ing representations for sets and sequences. The selec-
tions made by this prototype system compare favorably
with those made by a human programmer. The selec-
tions have differed from those that would have been
made by the author in only a few cases. Those cases
were typically of two type~: the system picked a more
complex representation (such as AVL tree or hash table)
when its utility was only marginally better than that of
a simpler representation (such as bit vector or linked
list); the human programmer used information not
available to the automatic selection system. This pro-
totype system could easily be extended to select repre-
sentations for other reservoir-like abstract types such
as queues and stacks. Later we shall give an overview
of the problems which must be considered in making a
practical data structure selection system.

2. Prototype System

A prototype system for semiautomatic selection of
representations was constructed for a subset of the SAIL
programming language [8, 16]. SAIL is an Algol-60
based language with extensions including varying
length strings, processes, event mechanisms, and an
associative data language called LEAP [7].

We were interested in choosing representations for
the abstract data structures of LEAP. The basic entities
manipulated by LEAP are called " i tems." An item is a
symbolic object much like a LISP atom. A variable,
called a datum, may optionally be attached to the item.
Datums can be either simple variables or arrays. Items
are often categorized by the data type of the attached
datum. Thus we have integer items (items with an
integer variable as datum), set items (items with a set
variable as datum), untyped items (items with no
datum), and so forth. Items are allocated either at
compile time via declarations or dynamically from a
heap at execution time (via the built-in function called
NEW). The lifetime of items and their datums does not
follow Algol block structure. An item and its datum
exist until explicitly deleted by the use of the D E L E T E
procedure.

LEAP also contains "sets" of items, "lists" of items,
and a ternary relation among items. Set and list values

377

have the same lifetime as arithmetic quantities. There
are set expressions, set variables local to a block, and
set datums. The ternary relation is global to the entire
program.

The subset of SAIL which was used in the prototype
system included integers, reals, strings, procedures,
items, sets, and lists. Explicitly excluded from the
subset were arrays, recursive procedures, go-to state-
ments, multiprocessing, events, and the ternary rela-
tion of LEAP. A recent extension to the system [17]
now performs selection of representations for the ter-
nary relation.

In the prototype system we chose representations
only for sets of items and lists of items. A set is a
conceptually unordered collection of items in which
any given item appears at most once. Operations built
into SAIL to manipulate sets include: union, intersec-
tion, difference, element insertion, element deletion,
test for membership, and iterating through the mem-
bers of a set expression. A list is a linear sequence of
items. It behaves much as a flexible length array or
string of items except that there are primitives for
inserting or deleting items at arbitrary positions within
the list. Operations on lists include: fetching or storing
an item by ordinal position within the list; concatenat-
ing two lists; removing items from a list (either by
ordinal number within the list or by giving the name of
the item to be removed); inserting items into the LIST
(before or after an ordinal position or a particular
item); and iterating through the elements of a list.

Let us now look at an example of a program written
with sets and lists and see how the prototype system
chose representations for it.

Example
The program (see Figure 1) computes a spanning

tree for a graph. The graph consists of a set of nodes
(NODESET) and a set of undirected edges between
pairs of nodes (EDGES) . The program assumes that
there is a path (through zero or more other nodes)
between every pair of nodes. A spanning tree for the
graph consists of a subgraph containing all the original
nodes and a subset of the edges of the original graph
such that:

(1) For any pair of distinct nodes there exists a
path between the nodes.

(2) There is no path from a node to itself (subgraph
is cycle-free).

The basic algorithm is the E Q U I V A L E N C E algo-
rithm given by Knuth [11, Algorithm 2.3.3E] modified
to record the edges used. The technique used is to
partition the nodes into groups. Each group will have
the property that there exists a path from each node to
every other node in the group. The program starts by
placing each node in a separate group. It then looks at
each edge. If the edge connects two nodes in the same
group, then the program ignores that edge. Otherwise
it records the edge in the set of edges which will

Communica t ions May 1978
of Volume 21
the A C M N u m b e r 5

Fig. 1.
1.
2.

3.

4.

5.
6.
7.
8.
9.
10.

11.
12.
13.
14.
15.

16.
17.
18.
19.

20.
21.

22.
23.
24.
25.
26.
27.

(144)
(557)
(413)
(144)

(0)

(24)
(24)
(24)
(24)

(1)
(25)
(1)
(1)

(72)
(72)

(72)
(72)
(72)
(24)
(24)
(24)

28. (24)
29. (72)
30. (1)
31. (1)

32.
33.
34.

(24)

(24)

35. (24)

36. (24)

37. (24)
38. (1)

(1) begin "SPANNING TREE"
set EDGES, NODESET, SETOFGROUPS,

TREESET;
list itemvar FIRSTGROUP,SECONDGROUP,

EDGETEMP,
FIRST ,SECOND ,X;

list itemvar procedure GROUPOF
(list itemvar NODE);

begin "GROUPOF"
while (FATHER(NODE) neq NODE) do

NODE := FATHER(NODE);
return(NODE);

end "GROUPOF";
procedure M E R G E G R O U P

(list itemvar GROUP1 ,GROUP2);
begin " M E R G E G R O U P "

remove GROUP2 from SETOFGROUPS;
FATHER(GROUP2) := GROUP1;

end " M E R G E G R O U P " ;
comment AT THIS POINT WOULD HAVE CODE

TO EITHER BUILD THE GRAPH INLINE
OR READ THE GRAPH FROM AN INPUT
DATA SET

THE RESULT IS THE SET OF NODES OF
THE GRAPH (NODESET), AND THE SET
OF EDGES (EDGES);

comment EACH NODE INITIALLY ITS OWN
GROUP;

foreach X such that X in NODESET do
FATHER(X) := X;

SETOFGROUPS := NODESET;
foreach EDGETEMP such that

EDGETEMP in EDGES do
begin

FIRST := ENDI(EDGETEMP); SECOND :=
END2(EDGETEMP);

FIRSTGROUP := GROUPOF(FIRST);
SECONDGROUP := GROUPOF(SECOND);
if FIRSTGROUP neq SECONDGROUP then

begin
put EDGETEMP in TREESET;
MERGEGROUP(FIRSTGROUP,

SECONDGROUP);
end;

end;
print ("EDGES OF SPANNING TREE") ;
foreach EDGETEMP such that

EDGETEMP in TREESET do
begin

string itemvar NODENAME 1, NODENAME2;
FIRST := ENDI(EDGETEMP);

SECOND := END2(EDGETEMP);
NODENAME1 := NAME(FIRST);

NODE-
NAME2 := NAME(SECOND);

print(datum(NODENAME 1) ,"
datnm(NODENAME2));

end;
end "SPANNING TREE"

constitute the spanning tree (TREESET) and merges
the two groups into one.

The groups are represented by trees consisting of
the nodes within the group. Given any node in such a
tree, the root of that tree may be found by following
the chain of FATHER links. The FATHER link from
the root node of a tree will be to itself. The root of the
tree is used to name the group. Two nodes of the graph
are in the same group if the roots of their group trees
are the same. To merge two groups the program simply
finds both root nodes and changes the FATHER link
of one root node to point to the other root node.

378

The program has the following abstractions:

1. Nodes
2. Edges
3. A map from an edge to the two nodes connected by

the edge.
4. A map from a node to its father in the tree

representing a group of connected nodes.
5. A set of all the nodes.
6. A set of all the edges.
7. A set of the edges making up the spanning tree.

We represent the NODES by items, the EDGES
by items, the maps by specific positions within list
datums of NODE and EDGE items, and the sets by
SAIL se t s .

For the maps we have the following:

DATUM(NODE) (1) is an item with a string datum
for the name of the node.

DATUM(NODE) (2) is the node which is the FA-
THER of this NODE in its group tree.

DATUM(EDGE) (1) is one node which isan endpoint
of the edge.

DATUM(EDGE) (2) is the other endpoint of the
edge.

For notational simplicity we assume that there are
macros: NAME(X), which expands to DATUM(X) [1];
FATHER(X), which expands to DATUM(X)[2];
ENDI(X), which expands to DATUM(X)[1]; and
END2(X), which expands to DATUM(X)[2].

Note that in full SAIL (not the subset implemented
by the prototype system) we would probably imple-
ment the maps by using the ternary relation.

The reader is advised to look at the Appendix for a
description of the syntax of SAIL used in the following
example. In Figure 1 the numbers to the left are for
reference only and would not appear in the source text.

The prototype system consists of several phases.
The first phase involves monitoring of the program
(using default implementations of the abstract data
structures) to determine the frequency of the various
operations. The second phase involves a static flow
analysis of the program to determine the range of each
set or list expression and also to determine which
operations are performed on the individual sets and
list. The third phase is user interrogation in which the
programmer is asked questions about attributes of the
set and list operations which may alter choice of
representation. The fourth phase is the selection of
representations using a method similar to hill climbing.
The final phase consists of compiling and executing the
program again, this time using the representations
selected by the fourth phase.

Monitoring
The monitoring phase consists of having the user

compile his program with a special version of the SAIL
compiler. The special compiler inserts counters into

Communications May 1978
of Volume 21
the A C M Number 5

the generated code that will enable the system to
determine how many times each statement in the
program was executed. This compiler uses the standard
SAIL representations for sets and lists (linked lists). The
user then runs the program with an input data set he
considers typical. The counts of the statements for a
typical run of the example are included in parentheses
to the left of the program in Figure 1. For this
particular execution of the program a graph with 25
nodes and 72 edges was used. Monitoring in the
prototype system consists only of keeping statement
counters.

Flow Graph
The program source text and the file containing the

values of the counters above are then processed by a
program which builds a flow graph of the user program.
Each node of the graph represents either some control
information (such as a procedure call or a beginning of
a loop) or a LEAP operation. The flow graph does not
include expressions or statements dealing with non-
LEAP entities unless the statement also uses a LEAP
construct such as D A T U M . The costs of nOn-LEAP
constructs are considered separately during the selec-
tion phase. Associated with each node is the value of
the counter indicating how many times the correspond-
ing statement was executed in the sample run. The
system uses this flow graph to analyze the user's
program to determine how the SETS and LISTS are
used.

Meta-Evaluation
The next phase of the system involves traversing

the flow graph in a form of flow analysis we call "meta-
evaluation." There is a data structure (in our system,
which is written in SAIL, this takes the form of the
ternary relation of LEAP) which contains entries for
each possible set variable, list variable, declared item,
the class of items allocated by a particular call to the
NEW item allocator, possible datums for each item,
and so forth. The result of meta-evaluation will be to
change this data structure so that it contains informa-
tion about which of the classes of items (either individ-
ual declared items or all the items allocated by a
specific NEW) are possible members of each set and
Last at each point in the program. Information concern-
ing which primitives are applied to each set and list
variable or temporary is also derived. The process of
meta-evaluation starts by looking at the node of the
flow graph representing the entry point to the main
program. At each node the meta-evaluator usually
performs some operation to update its data structure.
Thus at an assignment to a set variable node it deter-
mines the possible set of items (declared or NEWs)
which can be elements of the set expression on the
right-hand side of the assignment and then updates the
model of the possible contents of the set variable being
assigned to. After updating the data structure, it then

379

meta-evaluates all nodes which are immediate succes-
sors to the current node. Normally each node has a
single successor, but control nodes such as those rep-
resenting IF-statements or CASE-statements have
more than a single successor, When we reach a node
which JOINs two paths in the flow graph (such as
following an IF-THEN-ELSE) , we compute the sets of
potential elements of the variables by merging the sets
of potential elements from each path. Loops are re-
peatedly meta-evaluated until a single recta-evaluation
causes no new information to be added to the data
structure. The process of meta-evaluation is conserva-
tive. It always errs on the side of assuming that the set
of potential elements of variables is larger than might
actually be true in execution of the program. The meta-
evaluator will never say that an item is not an element
of the variable when it actually might be.

The meta-evaluation of the example derives infor-
mation such as: the domain of N O D E S E T and
S E T O F G R O U P S is only the set of items which repre-
sent N O D ES in the graph; the domain of the list
datums of the node items is the set of items used for
naming nodes and the set of node items; the only
operations performed on T R E E S E T are insertion and
the foreach iteration; and so forth.

After the meta-evaluation phase the system has a
model of the possible domain of each set and list
variable, the primitives applied to each variable or
expression, and which variables and expressions are
operands to particular instances of the binary set and
list operators. Note that there are techniques other
than meta-evaluation for obtaining the same informa-
tion. Classical summary flow analysis techniques [2,
10], particularly use-define chaining [1], could be
modified to provide the same information.

Partitioning into Equivalence Classes
In the next part of the static analysis phase the

system makes classes of variables and expressions for
which it will choose the same low-level implementa-
tion. Consider a binary set operation such as union.
The most general library would need to have imple-
mentations taking sets represented in two .different
ways as arguments to the union and produce a set in a
third representation. Thus we might have a union
routine taking one set represented by a hash table and
uniting it with another set represented by a binary tree,
producing a set represented as a bit map. The cost of
coding such a library would be exorbitant; the number
of concrete implementations of the binary operators
varies with the cube of the number of representations.
Alternatively, if you allow representation conversions,
the number of conversion routines varies with the
square of the number of representations. For the
prototype system, we made a simplifying assumption
that for each implementation of a binary operator the
input and output sets (or lists) are restricted to the
same representation. So, the size of our library need

Communications May 1978
of Volume 21
the ACM Number 5

only expand linearly with the number of low-level
representations. This assumption induces an equiva-
lence relation upon the set and list variables and
expressions. Two variables or expressions will be in the
same equivalence class if they are operands to the same
instance of an operator. Thus, the part of the static
analysis phase following meta-evaluation computes
these equivalence classes using information derived
from meta-evaluation. For the example in Figure 1 this
produces five equivalence classes: the class consisting
of the list datums of the items representing nodes; the
class of the list datums of the items representing edges;
the class consisting of the variables SETOFGROUPS
and NODESET; the class consisting of the variable
EDGES; and the class consisting of the variable
TREESET. The variables SETOFGROUPS and NO-
DESET were placed in the same class because of the
assignment statement at line 18.

One result of partitioning into equivalence classes
is that the number of different selections that the
system has to make has been reduced. In sample
programs we have noticed that classes typically have
five or more variables. The number of decisions is thus
reduced by a factor of five. We could, of course, merge
all the classes into a single class and then make only
one decision about how to represent all sets in a
program, but this is too gross an action as it forces sets
with completely different properties to be represented
in the same manner. Our partitioning scheme allows
the most individual choice of representation with the
constraint that concrete implementations of the binary
operators take as operands and produce as results a
single representation.

The system next merges all the attributes (domains,
primitives used, etc.) from the individual variables and
expressions within a class to obtain the attributes of the
class itself. For the example in Figure 1 the system
derives that the operations on the class containing the
variable EDGES consist only of insertion and iteration
(foreach). The same operations are performed on
TREESET. Operations on the list datums of the node
and edge items are selection and replacement based on
ordinal position in the list.

User Interaction Phase
After partitioning we enter a user interaction phase.

The user is asked about the parameters of the cost
functions of the representations. In the example, the
user is asked questions about the individual LEAP
statements of his program such as the set insertion in
line 26. The user is asked the average size of the set,
the probability that the set is empty, and the probability
that the item being inserted is already a member of the
set. Similar questions are asked about the set iterations
of lines 16 and 31 and so forth. Given the values of the
parameters along with the frequency counts (obtained
through monitoring), the selection phase will be able
to compute estimated cost (in cpu time) for the opera-

380

Table I. Remove S e t - R e m o v e Item from Set.
~- = Proportion of Time Item is in the Set
h = Size of Set.

Set Removal
Representation empty Set nonempty of last

Linked list 14 23 + 13h/2 + 277r 82
AVL tree 11 32 + 88z- + 20*LOG2(h) 140
Bit-Array 48 48 48
Hash table 11 42 + 3h/8 + 25rr 294
Bit-string with un- 15 51 + 6rrh + 50rr 149

sorted linked list
Attribute bit 27 27 27
Sorted variable 11 17 + 21.5*LOG2(~) + 3rr 240

length array + 3"rrh

tion with the various representations. Many of the
questions currently asked by the system could be
answered by additional monitoring. However, there
are also questions (such as expected lifetime of new
items) which are extremely difficult to determine with-
out very detailed (and expensive) monitoring. Other
questions, such as whether the size of a set is bounded
by some constant independent of input data, are gen-
erally impossible to answer if only monitoring and
inference based on monitoring are used. We feel that
some form of user interrogation or assertions within
the user's program will always be necessary.

Representation Library
The prototype system contains a fixed library of

representations for sets and lists. The representations
for sets are: sorted linked lists; AVE (height balanced
binary) trees; a bucket hash table (with 32 buckets);
fixed length boolean arrays (bit arrays); variable length
(in multiples of 10 words) sorted array; a boolean field
within records for items; and a combination of fixed
length boolean array and unsorted linked list. Repre-
sentations of lists are: one-way linked lists; two-way
linked lists; and variable length arrays. The system
contains a library of cost functions alluded to earlier.
These functions provide estimated costs of each imple-
mentation of each primitive operation as a function of
such things as set size, probability of booleans being
true, and so forth. A typical set of cost functions is
given in Table I. In addition to cpu-time cost functions,
the system also contains functions which will predict
the amount of memory needed for a representation as
a function of the maximum and average sizes of the
abstract data structure during execution. The questions
asked during the user interaction phase were to provide
the parameters to these time and space cost functions.

Selection
The final phase is selection. This phase starts with

the system determining which representations are ap-
plicable for each equivalence class. A representation is
not applicable if the class uses primitives which are not
coded for the representation or if the representation
needs information at compile time which is not availa-

Communications May 1978
of Volume 21
the ACM Number 5

ble. In our example the system could not use fixed
length bit arrays for the sets E D G E S and T R E E S E T
because the maximum size of the sets depended on
input data. After applicability is determined, the sys-
tem asks the user if he wants to pick representations
for some of the equivalence classes himself. The user is
presented with applicable representations and may
either pick one for the class or let the system later
automatically pick one.

Our criterion for automatic selection is to minimize
the expected space-time product for the execution of
the resulting program. To optimize the total space-time
product the system c a n n o t simply minimize the space-
time product for individual classes because the terms
involving the space used in storing one class are multi-
plied by the time used in execution of primitives on
another. The selection process uses an iterative tech-
nique similar to hill climbing. It first computes the
space and time costs for each class in each program
segment (the main program and the individual proce-
dures). If any representation uses both less time and
less space than any other representation for the class
then it is picked immediately. In our example, the list
classes corresponding to the datums of node and edge
items are thus best represented by one-way linked lists.
The class containing the variables S E T O F G R O U P S
and N O D E S E T is similarly best represented by a
sorted linked list. Though there is not a single best
representation, according to this criterion for E D G E S
the domination test (better time and space considered
individually) narrows the choices for E D G E S to using
either a linked list or hash table representation. The
choices for T R E E S E T are similarly reduced to either
using a linked list or an AVL tree. If there is not a
single choice the system computes the total space-time
product for each remaining representation for each
class considered by itself (ignoring cross-terms with
other classes). For the initial guess of the best represen-
tation for each class the system picks the representation
which minimizes this space-time product. In the exam-
ple this causes the classes for both T R E E S E T and
E D G E S to be represented initially by sorted linked
lists.

Now the system attempts to improve upon this
choice by considering the cross-terms between classes.
The system tries changing the representation for a
single class to see if it can get an improvement in the
total expected cost. It continues to attempt this for
each class in turn until it has tried to change the
representations of every class and has failed to get an
improved cost. Thus, if any representation is changed,
we will then cycle through all the other classes and
attempt to find better representations for them as well.
The process terminates when after having picked a new
representation (best given the representations of the
other classes) we cannot find a better representation
(in the sense of decreasing total cost of the program)
for any other class. Note that this technique has the

381

problem normally associated with hill climbing, that of
finding local minima. A good though not necessarily
optimal assignment of representations to classes is thus
obtained. In our example the representation for
T R E E S E T is changed to become the AVL tree and the
representation for E D G E S is changed to become a
hash table. It is interesting to note that E D G E S and
T R E E S E T are identical as far as the program is
concerned except for size and the number of times that
they are operated upon. They both have the same
operations (insertion and iteration) performed on
them. The size of E D G E S on the average was 72 (after
initialization staying constant in size) while the size of
T R E E S E T was 12 (starting as empty and growing to
size 24 over the life of the program). The number of
insertions and iterations involving E D G E S was several
times larger than for T R E E S E T . Thus we see that the
system was able to choose different data representa-
tions for quite similar sets based upon the size and
frequency of operations performed upon them.

Lastly, a compiler takes the choices made during
selection and compiles the appropriate code for every
set and list operation based upon those choices.

3. Overview of Issues in Automatic Data Structure
Selection

The construction and use of the prototype system
has demonstrated to us many of the components nec-
essary for a practical automatic data structure selection
system. We have also seen many problems which will
have to be solved in order to construct a very good
system. In this section we will address some of the
issues of language design and system organization that
we feel should be considered by the implementor.

Language Constructs
Typical abstract types that we would expect to have

built into a high-level programming language would
include various kinds of reservoirs of data objects such
as stacks, sequences, first-in-first-out queues, sets, and
priority queues. Other built-in types should include n-
ary relations and general mappings from n-tuples into
k-tuples. Special purpose languages would have other
built-in abstract types peculiar to their problem do-
mains. For example, a language dealing with linear
equations would likely have matrices. A good general
purpose high-level language should include extension
mechanisms to allow users to implement their own
abstract types.

Criteria for Selections
In order to make decisions about which of many

implementations to use for a given abstract data struc-
ture, we need to have objective criteria for evaluating
tradeoffs. Normally we can fix some notion of expected

Communications May 1978
of Volume 21
the ACM Number 5

"cost" of executing a program. Our criterion for choos-
ing among data representations will be to minimize
that expected cost.

The cost of running a program is usually a function
of the total real time needed to execute the program,
the primary memory requirements, secondary memory
requirements, I/O channel usage, CPU usage, costs as-
sociated with various peripherals, and so forth. The
particular function will vary from installation to instal-
lation and often will depend on such factors as priority
associated with the job or time of day. Cost functions
normally contain too many parameters for us to fully
optimize. Our difficulties are compounded by the fact
that the choice of representations for the different
abstract data structures within a program cannot be
made independently. We are rarely able to optimize
the choice of representation to minimize the given cost
function. The payoffs from making good though per-
haps sub-optimal choices are, however, dramatic and
well worth the cost of our analyses.

For the remainder of the paper, the reader should
assume that the cost function is a simple nondecreasing
function of the primary memory space occupied by a
program and the CPU time needed by the program.
One such function (that which was used in the proto-
type system) is the integral of the primary memory as a
function of time (space-time product). The reader
should remember that actual cost functions are usually
more complicated.

Representation Alternatives
Given any abstract data type, it is rarely the case

that a single representation is optimal for all programs.
In general, we have to do a thorough analysis to
determine the tradeoffs of time and space as a function
of the size of the data structure and the frequencies of
the various primitives applied to it.

The first major question is whether to explicitly
represent the abstract structure at all. For example,
often it is better to represent mappings as programs.
The trigonometric functions are usually represented by
program segments rather than as explicit tables. Sets
can often be thought of as mappings from elements to
the Booleans TRUE or FALSE. If the mapping is a
simple one, such as for the set of all odd integers, the
set may best be represented by a predicate. Represen-
tation of an abstract data structure by a program
segment, however, is not always optimal and depends
upon frequencies of the various primitives on the
abstract data structure. We must evaluate the costs of
keeping the tables versus the costs of executing pro-
grams to evaluate the mappings. We must also consider
the alternative of computing and storing only those
values which the program uses. Thus we can imagine a
system (cf. POP-2 memo functions [5]) which com-
putes a value for a function only when it has not
previously computed the function for the same argu-
ments. The general technique involves first looking in

382

the table. If the function has previously been computed
for the particular argument, the value will be in the
table and we may simply return that value. Otherwise
we compute the value by executing the program seg-
ment, store the argument-value pair in the table, and
then return the value.

The considerations mentioned above indicate that
the representation problem for abstract types is ex-
tremely difficult independent of questions about how
data might be stored. Finding general techniques for
deciding when to store results and when to recompute
them is a research area in itself though of course
related to the problems of data structure selection.

For the remainder of this paper we assume that the
abstract data structures will be explicitly stored. We
consider systems which try to choose which storage
structures and associated algorithms ~re best for a
particular program.

Multiple Representations
Once we have decided to have explicit data struc-

tures as representations of abstract types, we must
decide which explicit data structure to use. In addition
to individual data structures, we must also consider the
possibility of using more than one representation.
There are several ways in which an abstract data
structure may be represented beneficially by more than
one concrete implementation. One technique is to
represent the structure redundantly by storing the same
data in two or more ways. The motivation for this
strategy is that often there is no one representation
which is most efficient or even applicable for all the
primitive operations applied to the given abstract struc-
ture [17]. Consider a small finite set of integers. A bit
map is not efficient for iterating through a nondense
set. An efficient representation for iteration is a linked
list, but this is not nearly as efficient for testing
membership as the bit map. Therefore, for a particular
program, it might be optimal to represent such a set
both ways, by using the bit map for membership
queries and the linked list for iteration. Of course we
must consider the extra costs for storage and for
inserting or removing elements from the set. However,
if the operations of membership testing and iteration
dominate the program's cost, then the redundant rep-
resentation is justified.

In addition to total redundancy, there is also the
possibility of partial redundancy. An example where
partial redundancy is often used is in the mapping
between virtual page numbers and physical page num-
bers in a paged memory system. In many such systems,
there is a table for each user of the mappings between
the user's logical pages and the physical pages in either
primary or secondary memory. Part of that table is also
kept in a high speed associative memory of relatively
small capacity. On each address calculation, the mem-
ory mechanism first looks in the associative memory
for the mapping information, and only if it is not there

Communications May 1978
of Volume 21
the ACM Number 5

does it look in the user's complete page map. Since the
associative memory is at least an order of magnitude
faster than primary memory, a net speedup for page
mapping will occur. Similar uses of partial redundancy
are seen in keeping directories of open disk files in
primary memory, using buffer memories (caches), and
so forth.

Two or more distinct implementations may benefi-
cially be used to represent an abstract data structure
when the frequency of the various primitives using that
data structure changes greatly over time within the
program. We often see that there are distinct phases
within the lifetime of an abstract structure, for exam-
ple, a dynamic construction phase when the structure is
changing rapidly in size and a processing phase when
the structure is relatively static. If we can recognize
these phases, we can use different representations for
each phase, with a translation of representation be-
tween the phases.

One more way in which multiple representations
are valuable occurs when a user's abstract structure can
be decomposed into two or more disjoint abstract data
structures. For example, if the user program uses a
ternary relation in which all makes, erases, and
searches for instances of the relation have the first
component specified as a constant, then we can act as
if the ternary relation were a number of binary rela-
tions. Consider a ternary relation which has entries like
(F A T H E R O F , JOHN, TOM), (SALARYOF, JOHN,
10000), (F A T H E R O F , ALICE, TOM), and (SA-
L A R Y O F , TOM, 20000). If the first component is
always specified, we can treat the relation as the two
disjoint binary relations F A T H E R O F and SALA-
RYOF and possibly use different representations for
each binary relation.

Information Gathering: Library
In order to make the decision of which member of

a library of implementations to use, we must have
knowledge about how the abstract data structure is
used within the program (size, primitives used, and
their frequencies), and we must also have knowledge
about the costs of the various implementations. Let us
first consider the library of implementations.

The cost of using an implementation is a function of
the resources which it uses. With our simple cost
formula of the space-time product, the cost of a given
implementation consists of terms involving the storage
occupied by the data structure and manipulation algo-
rithms and the processing time associated with manip-
ulations on the data structure.

The space used by a representation is often easily
computed. For example, if we are representing a set by
a linked list of nodes, the space needed is merely the
size of each node times the length of the list plus some
small constant for header information. The length of
the list would normally be the number of elements in

383

the set. If, however, the manipulation algorithms may
insert the same element of the set into the concrete
structure more than once (it may be cheaper to always
insert rather than check if the element is already there) ,
then the computation of space needed is not so simple
but would depend on the number of times each element
is likely to be inserted in the set. Similar problems
occur if we have schemes where we do not always
recover space when the abstract structure contracts in
size. For example, we often store information on disk
with each item being placed on a particular track or in
an overflow area if its track is filled. When a previously
filled track has elements removed, we are very unlikely
to search the overflow area to find elements which can
be moved to their home track. Thus the amount and
kind of storage needed by a representation is not
always simple to determine. Fortunately we can often
get simple functions of expected storage cost which
give us good approximations for the storage costs.

Processor time requirements for the various manip-
ulation routines are also not always straightforward to
determine. Many routines cannot be mathematically
analyzed to give us closed form cost functions. When
the routines cannot be analyzed, we may monitor
executions of them and statistically infer cost functions.
In the prototype system described earlier, the various
algorithms used could be mathematically analyzed by
using the techniques of counting machine instructions
executed described by Knuth [7]. Occasionally, a few
simplifying approximations were used in order to ob-
tain closed form cost functions.

In creating a selection system, we thus must com-
pute formulas for the storage and processor costs using
the individual representations. These functions should
be placed into a library of functions which can be used
in a selection phase. This implies that to add a new
representation to the library we need only provide its
manipulation routines and its cost functions. We do not
need to alter the main structure of our selection system.

Information Gathering: User Program
When choosing a representation for an abstract

data structure, it is crucial to know how the data
structure is used within the user program (which prim-
itives are used, how often, the size of the data struc-
ture, and so forth). Once we have determined such
attributes, we can evaluate the cost functions to predict
how costly a particular representation would be. We
can then choose that representation which will tend to
minimize the total cost of running the program.

There are three major techniques for determining
such information. The first consists of statically analyz-
ing the program. This can give us information about
which primitives are used. However , the sizes of data
structures and the frequency of execution of the various
primitives will normally depend on input data which is
not considered during the static analysis. This suggests

Communications May 1978
of Volume 21
the ACM Number 5

the second alternative of requiring the user to provide
the information. This can be done either through
interactive conversations between the representation
selection program and the user or by requiring the user
to make assertions or special declarations within the
source program. The major difficulty with this ap-
proach is that often the user does not know the answers
to the questions. As a program develops the attributes
may change, and thus the user must be very careful to
keep the information up to date. The third alternative
is to monitor executions of the program, gathering
statistics of the number of times primitives are exe-
cuted, the size of data structures, and so forth. This has
the disadvantage that the behavior of a program will
often change dramatically as a function of the input
data. The temptation of monitoring the program only
once with a single input data set must be avoided. We
also realize that the sample data sets used in program
preparation and debugging are normally not typical of
production runs. Therefore we should periodically in-
clude monitoring in production runs and investigate
whether it is best to change the representation of the
abstract structures. In making the decision to change
the representation we must, of course, evaluate the
cost of restructuring an existing database.

A combination of all three techniques will be nec-
essary to get sufficient information to intelligently
choose data representations.

Representation Selection
A selection program which has a library of cost

functions for various representations and the parame-
ters from the user's program for those cost functions
can compute approximate expected costs for the pro-
gram using particular assignments of representations to
the individual abstract data structures of the program.

The selection process is essentially an assignment
problem. In general we may have K different abstract
data structures (DS(1), DS(2), DS(3), , . . , DS(K)).
For each data structure DS(I), we have N(/) different
choices of representation. As we stated earlier, de-
pending on the cost function, the optimal assignment
of representations might not be found by optimizing
individual choices. In such a situation (as when we are
using the space-time product as our criterion), to find
.the optimal assignment we must potentially consider all
possible combinations of representations for the indi-
vidual structures. If, for example, we have 20 different
abstract data structures, each having 10 possible rep-
resentations, a brute force technique would have to
look at perhaps 20 TM different assignments to determine
which is the best. Clearly we cannot consider all these
alternatives. We must apply structuring and heuristic
techniques which will cut down the range of possibili-
ties. We realize that by employing these techniques we
may pick a suboptimal assignment, but we hope that
our heuristics will give us a reasonably good one. The

384

particular heuristics used will depend on the cost
function.

4. Conclusion

The use of abstract data structures contributes to
the construction of better programs. In the past, pro-
grammers have not used them because they were not
part of the programming language. Recent program-
ming languages have provided abstract data structures,
but they normally have only a single general-purpose
implementation for each abstract type, which cannot
be efficient for all purposes. In this paper we have
proposed a system (and demonstrated its feasibility in
the prototype implementation described) which is a
tool for producing efficient programs using abstract
data types.

The techniques presented here are not only valua-
ble for selecting data representations but also would be
highly useful in selecting algorithms. Problem domain
specific systems would be very useful in the fields of
numerical analysis, statistics and many other areas.

Appendix. SAIL Notation

The notation used in the example (Figure 1) is a
modified version of the SAIL syntax. SAIL has notation
which is highly similar to Algol-60. The differences
(which appear in the example) are:

1. Block n a m e s - F o l l o w i n g any begin the p rogrammer may insert a
string constant . The p rogrammer may also insert a string constant
after any end. If there is a string constant following an end. the
compiler checks to make sure that is the same constant as
followed the opening begin.

2. I t e m v a r s - A n i temvar is simply a variable which holds i tems. It is
often preceded by a data type. A list i temvar is thus a variable
which will hold i tems whose da tums are lists. An integer itemvar
would be a variable which holds i tems whose da tums are integers.
Just as an integer procedure re turns values (whole numbers)
which can be stored in an integer variable, a list itemvar proce-
dure returns values (i tems with list da tums) which may be stored
in a list i temvar variable.

3. D a t u m - T o reference the da tum connected with an item we use
the pseudo-funct ion datum. The datum construct looks at the
type of i tem (or i temvar) to decide which data type the da tum is.
Thus da tum(CLASS1) where CLASSI is a list i temvar will
behave just as a list variable. When da tum(CLASS1) appears on
the left side of an assignment s ta tement , the da tum of the item is
replaced. Otherwise the da tum of the item is fetched.

4. List se lectors- -Lis ts may be indexed just as if they were a one
dimensional array of i tems with the lower bound of the d imension
equal to 1. If we had a list variable L V A R , LVAR[2] corresponds
to the second item in the list.

LVAR[2] := i temexpression;

will remove the second e lement of the list and replace it with the
value of the i temexpression. In the example we were using a list
to represent mappings . These lists were da tums of i tems. Thus
the construct

da tum(CLASSVAR)[2]

means to take the second e lement of the list which is the da tum

Communica t ions May 1978
of Volume 21
the A C M Number 5

of the item stored in the itemvar CLASSVAR.
5. Foreach s ta tements-Foreach statements are similar to FOR-

loops which use itemvar instead of integer loop-control variables.

foreach X such that X in SETEXPR do

will mean to execute the statement following the do once for each
element in the set with the itemvar "iX'," receiving in turn each
element of the set. Since sets are conceptually unordered, the
implementation does not define the order in which the elements
of the set will be placed in "X."

6. PUT (REMOVE). These statements insert (remove) an item into
(from) a set variable.

Received August 1976; revised May 1977

References
1. Allen, F.E., and Cocke, J. A program data flow analysis
procedure. Comm. ACM 19, 3 (March 1976), 137-146.
2. Allen, F.E. Bibliography on program optimization. Rep.
RC5767, IBM T.J. Watson Res. Ctr., Dec. 1975.
3. Birtwistle, G. et al. DECSYSTEM-10 SIMULA Language
Handbook. Rep. C8398, C8399, Swedish Nat. Defense Res. Inst.,
Stockholm, Sweden, 1974.
4. Bobrow, D.G., and Raphael, B. New programming languages
for artificial intelligence research. Computing Surveys 6, 3 (Sept.
1974), 155-174.
5. Burstall, R.M., Collins, J.S., and Popplestone, R.J.
Programming in POP.2. Edinburgh U. Press, Edinburgh, Scotland,
1971.
6. ECL Programmer's Manual. Ctr. Res. Comptng. Tech.,
Harvard U., Cambridge, Mass., Dec. 1974.
7. Feldman, J., and Rovner, P. An Algol-based associative
language. Comm. ACM 12, 8 (Aug. 1969), 439-449.
8. Feldman, J., et al. Recent developments in S A I L - a n ALGOL-
based language for artificial intelligence. Proc. AFIPS 1972 FJCC,
AFIPS Press, Montvale, N.J., pp. 1193-1202.
9. Geschke, C.M., and Mitchell, J.G. On the problem of uniform
references to data structures. IEEE Trans. Sofiware Eng. SE-1
(June 1975), 207-219.
10. Kildall, G. Global expression optimization during compilation.
TR-72-06-02, Ph.D. Diss., Dept. Compt. Sci., U. of Washington,
Seattle, Wash., June 1972.
11. Knuth, D.E. The Art of Computer Programming. Vol. 1 :
Fundamental Algorithms. Addison-Wesley, Reading, Mass., 1968.
12. Knuth, D.E. Structured programming with goto statements.
Computing Surveys 6, 4, (Dec. 1974), 261-301.
13. Liskov, B., and Zilles, S. Programming with abstract data
types. Proc. Symp. on Very High Level Languages. Sigplan Notices
(ACM) 9, 4 (April 1974), 50-59.
14. Low, J. Automatic Coding: Choice of Data Structures.
Interdisciplinary Syst. Res. Rep. 16, Birkha/iser Verlag, Basel,
1976.
15. Low, J., and Rovner, P.. Techniques for the automatic
selection of data structures. Conf. Rec. Third ACM Symp. on
Principles of Programming Languages, Atlanta, Ga., Jan. 1976, 58-
67.
16. Reiser, J. SAIL USER MANUAL. Tech. Rep. STAN-CS-76-
574, Compt. Sci. Dept., Stanford U., Stanford, Calif., Aug. 1976.
17. Rovner, P. Automatic representation selection for associative
data structures. Ph.D. Th., Harvard U., Cambridge, Mass; Tech.
Rep. TR10, U. of Rochester, Rochester, N.Y., Sept. 1976.
18. Schwartz, J. Optimization of very high level languages--l:
Value transmission and its corollaries. In Computer Languages, Vol.
I, Pergamon Press, Elmsford, N.Y., 1975, 161-194.
19. Tennenbaum, A. Type determination for very high level
languages. Ph.D. Th., Courant Inst. Math. Sci., New York U., New
York, Oct. 1974.
20. Wegbreit, B., and Spitzen, J.M. Proving properties of complex
data structures. J. ACM 23, 2 (April 1976), 389-396.
21. Wulf, W.A., London, R.L., and Shaw, M. An introduction to
the construction and verification of ALPHARD programs. IEEE
Trans. Software Eng. SE-2, 4, (Dec. 1976). 253-265.

385

P r o g r a m m i n g J . J . H o r n i n g

L a n g u a g e s E d i t o r

Incorporation of Units
into Programming
Languages
Michael Karr and David B. Loveman III
Massachusetts Computer Associates

The issues of how a programming language might
aid in keeping track of physical units (feet, sec, etc.)
are discussed. A method is given for the introduction
of relationships among units (a watt is volts*amps, a
yard is three feet) and subsequent automatic
conversion based upon these relationships. Various
proposals for syntax are considered.

Key Words and Phrases: units, language design,
compiler construction, language syntax

CR Categories: 4.12, 4.22

General permission to make fair use in teaching or research of
all or part of this material is granted to individual readers and to
nonprofit libraries acting for them provided that ACM's copyright
notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery. To
otherwise reprint a figure, table, other substantial excerpt, or the
entire work requires specific permission as does republication, or
systematic or multiple reproduction.

This work was supported by the U.S. Army, Frankford Arsenal,
under Service Contract No. DAAA-74-c0530 and Battelle/Army
Research Office Scientific Service Program.

Authors' address: Massachusetts Computer Associates, Inc.,
Wakesfield, MA 01880.
© 1978 ACM 0001-0782/78/0500-0385 $00.75

Communications May 1978
of Volume 21
the ACM Number 5

