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1. Introduction 2. Optimality Conditions 

In the past, integer programming test problems have 
generally been obtained from practical applications or 
have been randomly generated. These problems have 
had the disadvantage that their solutions could not be 
known for the purposes of  benchmarking integer pro- 
gramming codes without explicitly solving them. I f  the 
problems are of  a degree of  difficulty appropriate to 
integer programming test problems, solving them to 
completion is an expensive if not a practically impossible 
procedure. 

In this report, we present an alternate approach to 
test problem construction motivated by a procedure of  
Rosen and Suzuki [9] for the construction of  (continuous 
variable) nonlinear programming test problems with 
known optimal solution via the use of  the Kuhn-Tucker  
conditions [7]. Since the Kuhn-Tucker  conditions them- 
selves cannot serve as sufficient optimality conditions for 
integer programs, which are inherently nonconvex, we 
have developed a new class of  sufficient optimality con- 
ditions particularly appropriate for integer programs. In 
certain cases these conditions can be thought of  as gen- 
eralizations of  linear programming complementari ty 
conditions. 

The problem class to be considered has the form1: 

maximize cx 
subject to Ax <_ b, 0 <_ x <_ d, 

xj integer, j ~ 1 __C N = { 1, 2 ..... n} (P) 

where A is an m x n matrix, c, d, and x ~ R" ,  b E R m, 

and I contains the set of  indices corresponding to integer 
variables ( I  = N for pure integer programs). Given x* 
E R", conditions will be established which imply that x* 
solves a problem of  the form (P). 

Existing sufficient optimality criteria for problems of  
the form (P) include the relaxation criterion [4]. The 
relaxation criterion states that, if  x* is optimal for any 
problem whose objective function is c x  and whose fea- 
sible region contains the feasible region of  (P) (and is 
thus called a "relaxation" of  (P)), then x* solves (P) if 
and only if x* is feasible for (P). This criterion forms the 
basis of  branch and bound and cutting plane algorithms 
[4]. The relaxation criterion, however, is not amenable 
to constructing test problems because it leads to problems 
whose solutions are easily computed. 

In Section 2, new sufficient optimality conditions are 
derived, in Section 3, examples of  the sufficient opti- 
mality conditions are given. In Section 4, application of  
the sufficient conditions to test problem generation is 
discussed. In Section 5, some directions for further re- 
search are presented. 

~Most mixed integer programming formulations of physical 
models have bounded feasible regions, and most integer programming 
codes require that upper bounds on the variables be specified. Corollary 
4 considers the case in which upper bounds are absent. Vectors may be 
row vectors or column vectors. IfA is an m × n matrix, x andy E R n 
and u E R m, then xy will denote f__ff~j xjyj and uAx will denote 
~TLj ~_j%j uiA,jxj. It is also assumed throughout the body of this report 
that all data elements are rational 
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In order to develop sufficient optimality conditions 
for x* in (P), it is convenient to introduce a problem 
obtained from (P) by the transformation of  variables x 
= y +  x*. 

LEMMA 1. C o n s i d e r  the  m i x e d  in teger  p r o g r a m  

maximize cy 
subject to Ay <_ s*, -x* ~ y _< d - x*, 

yi integer, i E 1 _ N = { 1, 2 ..... n} (Q) 

where  A is an  m × n m a t r i x ,  c, d, a n d  y E R n, x *  

R~-(L  d) ,  2 a n d  s* E R'~. Then  y* = 0 solves (Q) if a n d  

o n l y  i f  x = x *  so lves  (P) with b = A x *  + s*. 

PROOF. The proof  follows directly from the transfor- 
mation of  variables. [] 

For  purposes of  future reference, we state a lemma 
giving sufficient optimality conditions for (P) obtained 
from linear programming (LP). These conditions are of  
little practical interest since they will hold only if the 
integrality constraints of  (P) are irrelevant. The new 
optimality conditions to be developed below are a gen- 
eralization of  these LP conditions in which the "comple-  
mentari ty" requirement ((3) below) is replaced by a 
"quasicomplementari ty" requirement. 

In what follows, .4, b, c, and d refer to data for (P), 
and m, n, and I denote, respectively, the number  of  
constraints, number  of  variables, and index set of  integer 
variables for (P). 

LEMMA 2. L e t  x *  E R~-( I ,  d) ,  s*, u ° E R'g , a n d  v °, w ° 

R~-. I f  

c = A r u ° - - v ° + w ° ,  (1) 
b = , ' Ix* + s*, (2) 
s*u  ° + x * v  ° + ( d - x *  )w ° = 0, (3) 

then  x *  so lves  (P). 
PROOF. Since s* _> 0 and 0 _< x* _< d, y* = 0 is 

feasible for (Q). For y feasible for (Q) we have 

A y  <- s*, (4) 
- y  -< x*, (5) 
y --< d - x*. (6) 

Multiplying (4) by u °, (5) by v °, (6) by w ° and summing, 
we find 

cy = u ° A y  - v°y + w°y  <- s*u  ° 

+ x * v  ° + ( d -  x * ) w  ° = 0 

(7) 

using (1) and (3). Since cy  <_ 0,y* = 0 solves (Q). By (2) 
and Lemma 1, it follows that x* solx~s (P). [] 

Note that the triple (u °, v °, w °) is a feasible solution 
to the d u a l  of  the linear program (CRQ) obtained by 
relaxing the integrality requirements of  (Q), and that 0 
= s*u  ° + x * v  ° + ( d  - x * ) w  ° is the objective value of  the 
dual of  (CRQ) at ( u  °, v °, w°). By the duality theory of  

2R~- will denote {x E R"lx >_ 0} and R$(I, d) will denote {x E R"I0 
<- x -< d and xi integer for i E I}. 
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linear programming, O is an upper bound on the optimal 
objective value of (CRQ) and thus must also be an upper 
bound on the optimal objective value of (Q). Since y* 
= 0 is feasible for (Q), it must therefore also be optimal. 
This line of argument furnishes an alternative method of 
proof for the lemma. 

The conditions used in Lemma 2 are the Kuhn- 
Tucker conditions [7] as applied to LP. No use is made 
of the integrality constraints of (P), so, as may be seen 
from the alternate proof, the Kuhn-Tucker conditions 
are not satisfied at x* unless x* is also a solution to 
(CRP), the continuous relaxation of (P). It is thus desir- 
able to have more general optimality conditions which 
make use of the integrality requirements. 

The following lemma gives a "double relaxation" 
optimality condition for (Q) that may be specialized to 
yield a variety of  optimality conditions. 

LEMMA 3. (Double relaxation conditions) Consider 
the problem 

maximize cy 
subject toy  E F (8) 

where c and y ~ R", and let F~ ~ F, F2 ~ F, and define 
Mx( F1 ) to  be 

sup cy 
subject to y E F~, (9) 

and Me(Fz) to be 

infcy  
subject to cy > 0 

y ~ Fz. (10) 

I f  y* = 0 is feasible f o r  (8)  and M~(171) < M2(172), then y* 
= 0 is optimal f o r  (8). The condition MI(F1) < Mz(F2) is 
also a necessary condition f o r  optimality o f  y* = 0 i f  F~ 
= F z = F .  

PROOF. Suppose y* --- 0 is nonoptimal for (8). Then 
there exists a ~ E F such that c~, > 0. Since ~ ~ F~ and 
y ~ F2,5' is feasible for both (9) and (10), from which we 
have c~ < M~(F1) < Mz(Fz) < @, a contradiction. Thus 
y* = 0 must solve (8). 

The condition M~(Fx) < Mz(Fz)  is also a necessary 
optimality condition in the case F1 = F2 = F. For, if y* 
= 0 is an optimal solution of (8), then F1 = F implies 
M~(F~) = 0 and F2 = F implies Mz(Fz) = +oo, since the 
set over which the inf  is taken in (10) is empty. [] 

Note that the ordinary single-relaxation optimality 
conditions correspond to the special case in which F~ is 
such that MI(F~) = 0 and F2 = F~ (so that Mz(Fz) = 
+oo), and that the linear objective function cx can be 
replaced by a nonlinear objective function if(x) in the 
problems (8), (9), and (10). The ability to employ two 
relaxations F~ and Fz, one in a minimization problem 
and one in a maximization problem, provides a degree 
of flexibility that is unavailable when employing the 
ordinary relaxation optimality conditions, and this flex- 
ibility turns out to be particularly useful for test problem 
construction. 
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Lemma 4 below is a special case of Lemma 3, which 
provides a generalization of Lemma 2. Lemma 4 makes 
use of  a generalization to rationals of the number theo- 
retic concept of greatest common divisor (god). Specifi- 
cally, the generalized greatest common divisor of n ra- 
tionals cl, c2 . . . . .  c~ (assumed not all 0), denoted as ggcd 
(cl, c2 . . . . .  c~), is defined to be the minimum of 

cjz i subject to ~ cjzj > 0  
j~l  j~l  

and zy integer, j -- 1, 2 . . . . .  n. 

It is shown in [3] and [8] that this definition is, in some 
sense, the dual of the usual definition of the gcd, and 
that its value is the usual god when the arguments cj are 
all integers. Reference [3] also shows that the ggcd is well 
defined and positive when the arguments cj are rationals 
(not all 0) and gives a number of important properties of 
this function. I f  the arguments cj are integers, the ggcd 
may be efficiently computed by the Euclidean algorithm 
in at most 5[loglo Cp] + n + 3 iterations, where 

cp = mir~i,, o (Icil} as shown in [1]. 

If  the arguments cj are rational, then (in theory) the 
ggcd may be computed by determining the absolute 
value w of the least common multiple of the denomina- 
tors (this requires one gcd computation), multiplying the 
cj by ~o, taking the gcd of  the resulting integers (this 
requires a second gcd computation), and dividing the 
result by ~0. (In the nonrational case, the ggcd may or 
may not exist--its existence depends on a duality relation 
given in [8]--and we do not consider this case here.) 

L~MMA 4. Let  x* E R~.( I, d), s*, u ° ~ R"2, and v °, 
w° E R~.. I f  

c =  ATu° - -  V° + W °, ( l l )  
b = A x *  + s*, (12) 
~$o = s * u  ° + x * v  ° + ( d - x * ) w  ° < To, 

where To = ggcd (cl, c2 .... , cn), ( 13 ) 
j fE I ~ cj = O (14) 

(continuous variables have cost coefficients of 0), then x* 
solves (P). 

PROOF. By the same argument used in Lemma 2, y* 
= 0 is feasible for (Q), and, for any y feasible for (Q), we 
have 

cy = u°ay  - v°y + w°y <_ s*u ° 
(15) 

+ x*v ° + ( d -  x * ) w  ° = go < To 

from (11) and (13). Let F =- {),lAy <_ s*, - x* <_ y <_ d 
- x*, yj integer, j ~ I}, F1 - (.ylAy <- s*, - x* <_ y ~ d 
- x*), F2 -=- {yiyj integer, j E I}, so that F i s  the feasible 
region of (Q), F1 is the continuous relaxation of (Q), and 
F2 is the relaxation of (Q) obtained by discarding all 
constraints other than integrality. From (15) it follows 
that MI(F1) = (maximum cy subject to y ~ F1) < "yo, 

and from (14) and the definition of the ggcd we find that 
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M z ( F z )  = (minimum cy subject t o y  ~ F2 and cy > O) 
= (minimum Y,y~t cyyj subject to 

~,,~2 GYJ > 0 and ~j integer, j ~ I) = 3'0. 

Thus M~(F~) < Me(F2) and it follows from Lemma 3 
that y* = 0 solves (Q), whence, by (12) and Lemma 1, 
x* solves (P). [] 

Lemma 4 is a generalization of Lemma 2 in that the 
primal solution pair (x*, s*) and the dual solution trio 
(u °, v °, w °) are required to be complementary in Lemma 
2, but in Lemma 4 the quantity 6o is allowed to assume 
a positive value less than %. The relations (13) thus 
require only that the primal solution pair (x*, s*) and 
the dual solution trio (u  °, v °, w °) be "not too far from 
complementary." (When (13) holds we say that the 
solutions are 6o-quasicomplementary.) 

Since (u °, v °, w °) is feasible for the dual of the 
continuous relaxation of  (Q), note that (13) also implies 
that the optimal value of  (CRQ) can be as large as ~o. 
Thus, from the relaxation viewpoint, the gap between 
the optimal values of  (P) and (CRQ) can be as large as 
~o in this case rather than 0 as in Lemma 2. 

Finally, the relations (13) may be interpreted geo- 
metrically as requiring that the level line of cx passing 
through an optimal solution of (CRP) lie "below" the 
level line cx = cx* + yo passing through those x (with x~ 
integer for i ~ I)  with the "next larger" value of  cx. 

Note also that optimality conditions stronger than 
those of  Lemma 4 can be obtained by including more 
constraints in/:1 and/or  F~. For example, F2 could be 
taken to be the set (Yl - x*  _<y  _< d - x*,  y~ integer,  i 

I) ,  in which case yo may be replaced in (13) by the 
optimal value of 

m i n i m i z e  ( c x  - cx* ) 

sub jec t  to c x  > cx*,  0 <_ x <_ d*, 

x l  i n t ege r  fo r  i ~ I. 

(Note that this is an integer programming problem since 
the continuous variables have cost coefficients of  0 and 
thus play no role.) Although the inclusion of  such addi- 
tional constraints would, in general, lead to an increase 
in the value of "/o appearing in (13) (i.e. yo would no 
longer be ggcd (Cl, c2 . . . . .  cn), but rather a larger value), 
this approach would have the practical disadvantage of  
requiring the solution of an integer or mixed-integer 
programming problem in order to obtain yo rather than 
the much simpler calculation of the ggcd. Thus there is 
a tradeoff between the size of the value of  yo appearing 
in (13) and the effort required to compute ~/o. The 
optimality conditions that we have elected to use do not 
require the solution of  an integer program to obtain yo, 
but, on the other hand, generate a relatively small yo, 
reducing the likelihood that (13) will be satisfied. In 
constructing an integer programming algorithm based on 
Lemma 3, however, refinements in the relaxations Fa 
and F~ would generally be required. (See Section 5.) 

The following lemma will be used in a further gen- 
eralization of optimality conditions for (P). 

4 1 4  

LEMMA 5. Suppose x* is optimal f o r  each o f  the 
problems 

m a x i m i z e  c (k)x 

subject  to x ~ F, k = 1, 2 . . . . .  p ( 16 )  

where x*, c Ik), k -- 1, 2 . . . . .  p ~ R n, and let )~h > 0 be 
scalars, k = 1, 2 . . . . .  p.  Then x* is optimal f o r  the problem 

m a x i m i z e  cx  

subject  to x E F where c = ~ j A h c  ~hl. 

PROOF. Since x* is optimal for the problems (16), it 
is feasible for (16) and (17). For any x E F, ClklX <_ 
CCklX *, k = 1, 2 . . . . .  p,  and since hk --~ 0, k = 1, 2 . . . . .  p, 
it follows that 

p p 

cx = ~ X,d'lx < ~ X,d'Jx*= cx*, 
k=l  k = l  

establishing the optimality of  x* for (17). [] 
A generalization of Lemma 4 is now obtained by 

representing c as a nonnegative linear combination o fp  
vectors c tlJ, c ~2), ..., c tp) such that x* is optimal for 
problem (P) with c = c tin, k = 1, 2 . . . . .  p, and applying 
Lemma 5. The c tm will be divided into two groups. The 
set T will denote the set of  indices k such that j C 1 
cJ ~) = 0; group 1 will contain those c tk~ such that k E T; 
and group 2 will contain those c tk) such that k C T. Thus 
group 1 contains those c tk) where only integer variables 
may have nonzero costs c} k), and group 2 contains those 
c tk) where some continuous variables have nonzero costs 
c~ ~). For the c tk) in group 1, we require that a dual 
solution trio (u ~k), v ~ ,  w ~ )  be 6h-quasicomplementary 
with the primal solution pair (x*, s*) where 6~ < ~,k = 
ggcd (c[ k), c~ k) . . . . .  ct~ k)) and apply Lemma 4; for the c ~k~ 
in group 2, we require that a dual solution trio (u Ik), v ~k), 
w tk)) be complementary with the primal solution pair 
(x*, s*) and apply Lemma 2. The main sufficient opti- 
mality criteria for mixed integer programming problems 
now follows: 

THEOREM 1. (Sufficient optimality criteria). Let  x* 
E R$(I ,  d), s* ~ R'g, u tk) ~ R'g, k = 1, 2 . . . . .  p,  v ~), w ~) 

R ~ , k =  1 ,2  . . . . .  p , A ~ > O , k =  1 ,2  . . . . .  p,  T =  ( k [ j  

I ~ c~ )=  0),  I f  

c ~k~ = ,4 Tu~ - v ~ + w ~ ,  k = 1, 2 . . . . .  p,  (18)  

( Dual feasibility) 
p 

c = ~ AkC ~ ,  (19) 
k=l  

(Composition) 

b = A x *  + s*, (20) 
( Primal feasibility ) 

k ~ T ~  6~ - s*u t~ + x*v ~ (21) 
+ ( d  - x * ) w  ~ < y~ 

where y~ -- ggcd ( c[ k~, c~ ~ . . . . .  c~>), 

(Quasicomplementarity) 

k ~ T ~  s*u ~ + x*v ~) + ( d  - x * ) w  ~) = 0, (22) 
(Complementarity)  
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then x* solves (P). 
PROOF. By (20), s* > 0, and  0 _< x* _< d, x* is feasible 

for  (P). I f k  ~ T a n d  c = c ~k), then by L e m m a  4 x* solves 
(P). I f  k ~ T and  c = c ~k~, then by L e m m a  2 x* solves 
(P). Hence,  by  (19) and L e m m a  5, x* solves (P). [ ]  

The  quanti t ies  x* and s* will be referred to, respec- 
tively, as the solution vector and the slack vector;, u ~ ,  v ~ ,  
and w ~ will be referred to as u-, v-, and  w- multipliers; 
the c ~ vectors will be referred to as component cost 
vectors; the X~ scalars will be referred to as component 
weights; the componen t s  k such that  k ~ T will be 
referred to as integer components; the componen t s  k such 
that  k ~ T will be referred to as continuous components; 
8~ will be referred to as the index ofquasicomplementarity 
for  the kth  component ;  and, for integer components k, 
y~ will be referred to as the critical index for the kth  
component .  In  addition, the quantit ies x*v ~ + 
(d  - x*)w ~) and s*u ~) will be referred to, respectively, 
as the solution quasicomplementarity index and the slack 
quasicomplementarity index for the kth component .  

COROLLARY 1. (all ~ < 1) Let  x* ~RT- (I,  d), s* 
R~, u ¢~) ~ R~,  k = 1, 2 . . . . .  p,  v ¢~, w ¢~ ~ R - g ,  k = 1, 2, 
.... p ,#~_>O,  k = 1 ,2  . . . . .  p,  T =  { k l j ~ . I ~ c j  ~ = 0 } ,  
and c t~) be an integer vector, k = l, 2 . . . . .  p.  I f  

c ~ = A rut~ - v ~ + w tk), k = 1, 2 . . . . .  p,  (23) 
P 

c = ~ #~c ~), (24) 
k=l 

b = Ax*  + s*, {25) 

k E T ~ ¢~ = s*u t~ + x*y  ~> + ( d - x* )w t ~ <  1, (26) 

k ~ T ~  s*u ~ + x*v ~ + (d  - x * ) w  ~ = 0 (27) 

then x* solves (P). 

The  opt imal i ty  condit ions in Theo rem 1 are more  
general  than  the condit ions in L e m m a  4. L e m m a  4 
requires that  only integer variables m a y  have  nonzero  
costs cj and that  the gap between the opt imal  objective 
value of  (P) and the opt imal  objective value o f  (CRP)  be 
less than yo = ggcd (Cl, c2 . . . . .  c~). However ,  i f  c can be 
expressed as a nonnegat ive  linear combina t ion  o f  com- 
ponent  cost vectors c ~1 where  each p rob lem (Pk) (prob-  
lem (P) with c = c ~k)) is such that  L e m m a  2 or L e m m a  
4 holds, cont inuous variables  in (P) m a y  have  nonzero  
costs cj and the gap between the opt imal  objective value 
o f  (P) and the op t imal  objective value o f  (CRP)  m a y  be 
considerably larger than  %. Such cases are exhibited in 
the examples  o f  Section 3, where  the condit ions in Theo-  
rem I hold and  the condit ions in L e m m a  4 do not. 

Al though T h e o r e m  1 is more  general  than  the K u h n -  
Tucker  condit ions and  L e m m a  4, it is not a necessary 
condit ion that  must  hold at an op t imal  solution. Tha t  is, 
given an o p t i m u m  x* to (P), it m a y  not be possible to 
find nonnegat ive  scalers k~, ?,2 . . . . .  )~. and  dual  solution 
trios (u ~), v ~), w¢~)), k = 1, 2 . . . . .  p ,  such that  the 
condit ions in T h e o r e m  1 hold. Such a case is exhibited 
in I3]. 
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The  next corrollaries follow immedia te ly  since 
bounded  variable  mixed integer p r o g r a m m i n g  p rob lems  
can always be expressed in the fo rm (P). 

C O R O L L A R Y  2 .  Consider the problem 3 

max imize  cx  

subject to A i x  <_ bi, i E Q~, A~x >_ b~, i ~ Q2, A i x  = hi, i ~ Q:~, 

O<_x<_d 
x~ integer, i E 1 C N = { 1, 2 ..... n} (P2) 

where A is an m × n matrix, c, d, and x ~ R", b E R m, 
and Q~ ~ Q2 @ Q.3 = M = {1, 2, .... m}. Le t  x* ~ RT- (1, 
d), s* E R'g, u ~k) ~ R m, k = 1, 2 . . . . .  p,  v ~k), w I~) E R~- , k 
= 1 ,2  . . . . .  p , ) ~ > _ O , k =  1,2  . . . . .  p, a n d T =  { k l j ~ : l  
=* c~ k) = 0}. I f  

C(2k) ~ , , (k) 
= Aijut -- 

iEQILIQ3 

Ao.  v?' + w?', 
iE Q2 

k= 1,2 . . . . .  p , j =  1,2 . . . . .  n, (28) 

P 

c = ~ Xkc ~k~, (29) 
k= l  

f Aix* + s* i f  i E Q1, 
bi = JA ix*  - s* i f i  E Q2, (30) 

[Aix* if i e Q3, 

i E Q1 U Q2 ~ u} k) > 0, (31) 

k E  T ~ d k =  ~ ~l,,i'*'~k) 
i~QIUQ2 

+ x*v ~k) + ( d -  x*)w ~kl < yk (32) 
where yk = ggcd (cl ~kl, c2 ¢k) . . . . .  c~k)), 

k f~ T ~  ~ s ~  k~ 
jEQIUQ2 

+ x*v ~k) + ( d -  x*)w ~k) = O, (33) 

then x* solves (P2). Note  that  for equali ty constraints,  
the corresponding u~ k) multipliers are unrestr icted in 
sign. 

COROLLARY 3. Suppose (P3) is the same problem as 
(P2) except that the objective is to minimize. I f  all o f  the 
assumptions o f  Corollary 2 hold except that the algebraic 
signs in (28) are reversed, then x* solves (P3). 

COROLLARY 4. Suppose (P4) is the same problem as 
(P2) except that there are no explicit upper bounds on the 
variables (i.e. no d vector). I f  all o f  the assumptions o f  
Corollary 2 hold, except that the w ~k> vectors along with 
the terms in (28), (32), and (33) containing w ~kl are omitted, 
then x* solves (P4). 

3. Examples 

Example  1. In  this example ,  the vectors d, x*, s*, 
u tk), v tk), w ~), the scalars )~k and  yk, and  the fourth row o f  

aAi denotes the/th row of A. 
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A were specified a priori; the remainder  o f  A, b, and c 
were then selected in such a manner  that  Theorem 1 
would hold. 

maximize 33xt + 5x2 + 48xz + 20x4 + 20xs, 
subject to 10x~ + 3x2 + 7x3 + 4x4 + 2xs _< 52, 

8Xl + 7 x 2  + 12x3 + 6x4 + 10x~ _< 103, 
4xl + 0 x ~  + 15x3 + 14x4 + 8xs _< 116, 

Xl + X2 + X3 + X4 + X5 = 10, 

0 -< (xl, x2, x0, x4, xs) -< (5, 10, 7, 9, 10), 
x j ,  x2, x3 integer. 

Solution: Max imum objective value -- 325, 
(x*, x*, xa*, x*, x ~  = (0, 1, 5, 1.5, 2.5), and 
(s*, s~, sa*, s4*) = (3, 2, 0, 0). We have, in the notat ion o f  
Corol lary 2, 

I = {1,2,3}, Q~ = {1,2,3}, Q2 = q~, Q3 = {4}. 

Let  Al = h2 = A3 = 1, 

u ~1) --  (2,  1, O, - 1 3 ) ,  

v ~I) = (2, 0, 0, 1, 1), 

w (" = (0, 0, 0, 0, 0), 
u (~) = (1, 2, 1, --30), 

v (2) = (0, 2, 1, 0, 0), 
w (2) = (0, 0, 0, 0, 0), 

u (3) = (0, 0,  0, 20) ,  
v (3) = (0, 0, 0, 0, 0), 

w (3) = (0, 0, 0, 0, 0). 

Note  that the u(4 k) are unrestricted in sign since the four th  
constraint  is an equality. Computa t ion  using (28) yields 

c (I) = (13, O, 13, O, 0), yt ffi 13, 
c (2) ---- (0 , - -15,  15 ,0 ,0) ,  y 2 =  15, 
c (3) = (20, 20, 20, 20, 20), y3 = 20, 

and 

3 

Akc ~k) = (33, 5, 48, 20, 20) = c, 
k= l  

whence (29) holds. Computa t ion  using (30) yields 

b = (42, 103, 116, 10). 

Since Q~ t3 Q2 - {1,2,3}, (31) holds. For  this example,  
T = {1,2}, and (32) holds since 

81 ~ s*u~ ~ + x*v  ~1~ + ( d -  x*)w ~" = 12 < 13 = yl, 
i=l 

3 

62 = ~ s~u~ 2~ + x*v  ~2~ + ( d -  x*)w ~2) = 14 < 15 < yz. 
i=1 

Finally, (33) holds since 

3 
X o*,,(3) X,p(3) oi--, "~ q- ( d - x * ) w  (3) = 0 .  

i= l  

Therefore  the conditions o f  Corol lary 2 are satisfied. 
For  this example,  a solution to the continuous relaxation 
o f  the problem is x ° -~ (0.82142, 0.00000, 4.62502, 
1.15177, 3.40178), with an objective value o f  = 340.179. 
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Thus  the gap between the optimal  objective value o f  the 
problem and the optimal  objective value o f  its cont inuous 
relaxation is 15.179. Note  that L e m m a  4 cannot  furnish 
a p roo f  o f  the optimali ty o f  x* in this case. 

Example  2. The  following class o f  problems is dis- 
cussed in reference [6] as an example o f  a class o f  difficult 
test problems: 

Maximize - x l  
subject to 2 p x l  - qx2  = p ,  x l ,  x2, >- O, integer. 

where (p, q) >_ (1, 3), integer, and gcd (2p, q) -- 1. 
Solution: Max imum objective value = - ½ (q + 1), 

(x*, x ~  = (½(q + 1), p), and sT= O. We have 

I = {1,2}, Q1 ---- Q2 = ~ Qa = {1}. 

Since gcd (2p, q) = 1, there exist integers #1, #2 such that 
2p#1 + q#2 = 1 [10]. Let  A1 = )~2 = 1, 

U ~I) = (#2), V tl) = (1,  0).  
Id (2) = ( - - / - t l ) ,  p(2) -~- ( 0 ,  0 ) .  

There  are no upper  bounds  on the variables, hence, no 
w-multipliers. Computa t ion  using (28) yields 

C (1) = (2#! p - 1, - - / t l q )  = (-#2q, -#2q),  yl > q, 
c ¢2) = (-2#~p, #lq), ]/2 > m a x  ( I / t i t ,  1), 

and c ~1) + c ~2) = ( -1 ,  0) = c, whence (29) holds. Since p 
= 2 p x * -  qx~, (30) holds. With one equali ty constraint,  
(31) holds trivially. For  this example,  T in (32) equals 
{1,2}, and 

(~1 = S *u(1) + X'V(1) + (d - x*)w (1) = ½ (q + 1) ~"Y1, 

62 = $*U (2) + X*V (2) + 

(d - x* )w  ~2~ = 0 < max (1#11, 1) _< y~, 

whence (32) holds and (33) holds vacuously.  Therefore  
the conditions o f  Corol lary 4 are satisfied. 

Jeroslow and Kor tanek  [6] show that the solutions to 
this class o f  problems require an arbitrari ly large number  
o f  cuts using the G o m a r y  algori thm as p and q become 
large. What  is even more  interesting is that the solution 
to the cont inuous relaxation o f  the problem is always 
(xL x~) = (½, 0) with an objective value o f -  ½, regardless 
o f  p and q. Thus,  as q becomes large, so does the 
differential  between the optimal  objective value o f  the 
problem and the optimal  objective value o f  its cont inuous 
relaxation. The  gap is q / 2  and yo = ggcd (cl, c2) = 1. 

Example  3. The  following example is a plant loca- 
tion problem. Material  is shipped from supply points to 
demand  points along routes connecting the supply points 
to the demand  points. Each supply point  has associated 
with it a capacity limiting the amount  o f  material  which 
can be shipped out o f  it and a fixed cost incurred if  any 
material  is shipped out o f  it. Each demand  point has an 
associated demand  which is the amount  o f  material  
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required to be shipped into it. Each route has associated 
with it a variable cost incurred for each unit of material 
shipped along it. The problem is to minimize the total 
cost satisfying the capacity restrictions and the demand 
requirements. 

The sufficient optimality conditions derived in Sec- 
tion 2 have been used to develop a test-problem generator 
for such plant location problems (see Section 4). The 
generator was used to construct the following problem, 
with 3 supply points, 3 demand points, and 7 routes. 
(This small problem was constructed for illustrative pur- 
poses; much larger problems have been constructed with 
the generator.) The data for the problem are indicated in 
Figure 1. 

The mixed integer programming formulation of  the 
problem is 

min imize  9xj + 3x2 + Ix3 + 1 IX4 + 5X,5 + 9X6 + Ix7 + 266Xa + 162X9 
+ 110Xl0 

subject  to - x j  - x 2  - x 3  +52xs  --> 0, 

--x4 --xs +40x9 --> O, 

- x 6  - x 7  +28x10 --> 0, 
x~ +x4 +x6 --- 29, 
x2 +x~ = 19, 

x3 +x7 = 17, 
xl ,  x2, x3, x4, xs, x6, x7 --> 0, x8, xg, xl0 = 0 or 1. 

Here, xl, x2 . . . . .  x7 correspond to the amounts of  material 
shipped along the routes, and xa, x9, xlo are 0-1 variables, 
where 0 designates a closed supply point (no material 
shipped out of  it) and l designates an open supply point 
(fixed cost incurred). 

Solution: Minimum objective value = 681, with 
(x*, x*, x*, x~, x*, xL x*, Xs* x9* x *o) ---- (0, 0, 0, 18, 19, 
11, 17, 0, 1, 1) and optimal slacks (s~, s~, s*, sL s~, s ~  
= (0, 3, 0, 0, 0, 0). 

Thus supply points 2 and 3 should be open (number- 
ing them consecutively) and an optimal shipping sched- 
ule is given by the following table: 

Route  Supply  D e m a n d  A m o u n t  
point  point  sh ipped  

1 ! l 0 
2 ! 2 0 
3 l 3 0 
4 2 1 18 
5 2 2 19 
6 3 1 11 
7 3 3 17 

We have 

1 = {8,9,10}, Q1 = q~, Q2 -- {1,2,3}, Q.~ = {4,5,6}. 

Let )~ = 54/46, ~2 = 1, u (~) = (3, 3, 3, -3 ,  -3 ,  -3) ,  v ~) 
= (0, 0, 0, 0, 0, 0, 0, 0, 18, 0), w") = (0, 0, 0, 0, 0, 0, 0, 18, 
0, 38), u ~2~ = (2, 0, 2, -11 ,  -5 ,  -3) ,  V 2) = w (2) = 0. Note 
that wjck) must be 0 for j_< 7 because there are no explicit 
upper bounds on xj for j _ 7. Computation using (28) 
(with the algebraic signs reversed for a minimization 
problem) yields 

c (1) -- (0, 0, 0, 0, 0, 0, 0, 138, 138, 46), ym -- 46, 
c ~2)--(9,3, 1, 11,5,9,  l, 104,0,56), "/2= l, 

4 1 7  

Fig. 1. P lan t  locat ion p rob lem cons t ruc ted  by  the test p rob l em gener-  
ator. 

~ ~ Oommd I~nts 
V'lmd 

~ Corn 

N 

and 
2 

Akc (~) = (9, 3, 1, 11, 5, 9, 1,266, 162, 110) = c, 
k~l  

whence (29) holds. Computation using (30) yields b = 
(0, 0, 0, 29, 19, 17). Since u (1), u (2~ _> 0, (31) holds. For 
this example, T = {1} and (32) holds since 

6 10 

81 = Y, s .7' + xTv?' 
i=l j=l  

10 

+ ~ ( 1 - x j ~ w J ) ' = 4 5 < 4 6 = y l .  
j=8 

Finally, (33) holds since 
6 10 10 

X sruT' + X xTv  2' + (1 - 
i=1 j = l  j~S 

Therefore, the sufficient optimality conditions are 
satisfied. For this example, a solution to the continuous 
relaxation of  the problem is 

x ° = (1, 19, 17, 0, 0, 28, 0, .711538, 0, 1) 

with an optimal objective value of  -~ 634.269. The gap 
between the optimal objective value of  the problem and 
that of  its continuous relaxation is 46.731. 

4. Applications to Test Problem Generation 

The sufficient optimality conditions derived in Sec- 
tion 2 have been used to construct integer and mixed 
integer programs arising from three classes of  problems 
with physical interpretations. These are generalized cap- 
ital budgeting, plant location, and generalized transpor- 
tation problems. 

Generalized capital budgeting problems are pure in- 
teger programming problems with upper-bounded vari- 
ables and nonnegative data. Reference [21 describes a 
procedure for the generation of  generalized capital budg- 
eting problems with known optimal solutions. Compu- 
tational experience on problems generated by the pro- 
cedure is also given in [2]. 

C o m m u n i c a t i o n s  M a y  1978 
o f  V o l u m e  21 
the A C M  N u m b e r  5 



Plant location and generalized transportation prob- 
lems are two classes of network problems which may be 
formulated as mixed integer programming problems. 
Both of these classes of problems have sparse constraint 
matrices. Reports are in preparation which will describe 
procedures for the generation of classes of problems of 
these types with known optimal solutions. 

All of these procedures for constructing test problems 
of the form (P) with a known optimal solution x* make 
use of Theorem I. Some of the data comprising (P) are 
generated randomly according to parameter values spec- 
ified by the user, and the remainder of the data are 
generated in such a manner that Theorem l will be 
satisfied. The procedures have been coded in Fortran 
and can generate test problems and solutions according 
to a small number of user-specified parameter values. 

problems with known optimal solutions. Tech. Rep. No. 260, Comp. 
Sci. Dept., U. of Wisconsin, Madison, Wis., 1975. 
3. Fleisher, J.M., and Meyer, R.R. A new class of sufficient 
optimality conditions for integer programming. Tech. Rep. No. 248, 
Comptr. Sci. Dept., U. of Wisconsin, Madison, Wis., April, 1975. 
4. Garfinkel, R.S., and Nemhauser, G.L. Integer Programming. 
Wiley, New York, 1972. 
5. Gomory, R., and Baumol, W. Integer programming and pricing. 
Econometrica 28, (1960), 521-550. 
6. Jeroslow, R.G., and Kortanek, K.O. On an algorithm of 
Gomory. SIAM J. Appl. Math. 21 (July 1971), 55-59. 
7. Mangasarian, O.L. Nonlinear Programming, McGraw-Hill, New 
York, 1969. 
8. Meyer, R.R., and Fleisher, J.M. Strong duality for a class of 
integer programs. Tech. Rep. No. 256, Comptr. Sci. Dept., U. of 
Wisconsin, Madison, Wis., May 1975. I"o appear in JOTA. 
9. Rosen, J.B. and Suzuki, S. Construction of nonlinear 
programming test problems. Comm. ACM 8, 2 (Feb. 1965), 113. 
10. Stark, H.M. An Introduction to Number Theory. Markham, 
Chicago, 1970. 

5. Directions for Further Research 

As shown by an example in [3], the conditions of 
Theorem l are not necessary optimality conditions for 
all problems of the form (P). This suggests characterizing 
the class of problems that can be constructed by using 
Theorem l, and thereby determining a class of problems 
for which the conditions of Theorem l are also necessary 
for optimality (i.e. they would be necessary in the sense 
that they must hold at some optimal solution). Alterna- 
tively, a class of mixed integer programs for which the 
Theorem l conditions were not necessary optimality 
conditions might be identified, and it might be possible 
to show that the problems in this class were, in some 
sense, a "difficult" set of mixed-integer programs. 

Another area for further research lies in constructing 
an integer programming algorithm which makes use of 
the double relaxation conditions of Lemma 3. More 
specifically, Lemma 3 could be used in conjunction with 
the branch-and-bound algorithm by appropriately relat- 
ing the sets F1 and F2 to the relaxations used in branch- 
and-bound. 

Finally, the use of the dual variables, u, v, and w of 
the Theorem 1 conditions for sensitivity analysis is being 
studied. For example, if x* solves (P) and Theorem 1 
holds, the u-multipliers can be used to determine a class 
of problems with varying right-hand sides b such that x* 
solves each of  the problems in that class. Additionally, 
the relationship of  these dual variables to the dual prices 
discussed by Gomory and Baumol [5] is under study. 
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