
1

HMT: A Hardware-Centric Hybrid Bonsai Merkle
Tree Algorithm for High-Performance

Authentication
Rakin Muhammad Shadab, Yu Zou, Sanjay Gandham, Amro Awad & Mingjie Lin

Abstract—Merkle tree is a widely used tree structure for au-
thentication of data/metadata in a secure computing system. Even
though recent state-of-the art secure systems use MAC based
authentication to protect the actual data, they still use smaller-
sized MT, namely Bonsai Merkle Tree (BMT) to protect the
metadata such as encryption counters. Common BMT algorithms
were designed for traditional Von Neumann architectures with
a software-centric implementation in mind, hence they use a
lot of recursions and are often sequential in nature. However,
the modern heterogeneous computing platforms employing Field-
Programmable Gate Array (FPGA) devices require concurrency-
focused algorithms to fully utilize the versatility and parallel na-
ture of such systems. The predominantly recursive and sequential
nature of the traditional BMT algorithms make them challenging
to implement in such hardware-based setups. Our goal for this
work is to introduce HMT, a hardware-friendly BMT algorithm
that enables the verification and update processes to function
independently and provides the benefits of relaxed update while
being comparable to eager update in terms of update complexity.
The methodology of HMT contributes both novel algorithm
revisions and innovative hardware techniques to implementing
BMT. We use a partitioned BMT caching scheme that allocates
a separate write-back cache for each BMT level, thus allowing for
low upper bounds for dirty evictions compared to the traditional
BMT caches and providing support for the implementation of
existing BMT algorithms, especially lazy update on FPGA-based
hardware. Then we introduce the aforementioned hybrid BMT
algorithm that is hardware-targeted, parallel and relaxes the
update depending on BMT cache hit but makes the update
conditions more flexible compared to lazy update to save ad-
ditional write-backs. Deploying this new algorithm, we have
designed a new BMT controller with a dataflow architecture,
speculative buffers and parallel write-back engines that allows for
multiple concurrent relaxed authentication on-flight which was
not possible with the conventional lazy algorithm. Our empirical
performance measurements have demonstrated that HMT can
achieve up to 7x improvement in bandwidth and 4.5x reduction
in latency over baseline in subsystem level tests. In a real secure-
memory system on a Xilinx U200 accelerator FPGA, HMT
exhibits up to 14% faster execution in standard benchmarks
compared to state-of-the art BMT solution on FPGA.

I. INTRODUCTION

Due to the massive advancements in fields like cloud com-
puting and blockchain technology, data privacy and security
in local memory and/or servers becomes critically important
nowadays. Recent rise in cyber and hardware-based attacks
makes it crucial to employ state-of-the art attack mitigation
and defence mechanisms in both general-purpose and embed-
ded system scenarios. There are several adversarial methods
that an attacker can use to gain access to information of
unsuspecting users. One of the well-known memory based

attacks is a data replay attack where an intruder can replace
some blocks of data and/or metadata with a previously used
redundant block and subsequently utilize this exploit to obtain
extra information on the access pattern [8]. As such, mitigating
this type of attacks against data privacy and data security
stipulates a strong authentication mechanism.

Generally data or plaintext is encrypted in a secure environ-
ment to protect against data confidentiality-based attacks [13].
However, even the encrypted data will still be vulnerable to
aforementioned memory replay attacks [8]. Therefore, strong
integrity authentication methods must be used in a secure com-
puting system in order to meet the standard performance and
security requirements. Prevalently, Merkle tree or hash trees
have been used to authenticate data and/or tagged metadata
as they provide robust security against malicious replays [13],
[24]. More recently, separate MAC based verification algo-
rithms have started to be adopted for data authentications,
which allows for the use of a smaller sized Bonsai Merkle
Tree (BMT) to protect only the metadata such as encryption
counters [24]. However, standard BMT update algorithms were
originally developed to be used in general purpose computing
systems, therefore often containing a large number of recursive
function calls [10]. Unfortunately, although fairly easy for
software-based implementations, these recursive and sequen-
tial functions are generally not suitable to be implemented
With Register Transfer logic (RTL) on FPGA devices deployed
in heterogeneous and embedded computing environments.
Also, the highly sequential nature of these techniques limits
the potential performance improvements provided by such
systems. This problem is very relevant since the use of
FPGA devices in different domains has been on the rise in
recent years due to their versatility, performance benefits, low
power requirements and support for heterogeneous computing.
With the rapid emergence of FPGA devices for security and
accelration in cloud and blockchain applications [5], [22], [28]
and state-of-the art FPGA-driven secure embedded platforms
such as ARES [34], mitigating these two implementation
challenges become ever more urgent because of the necessity
of using BMT-based authentication in many mission-critical
heterogeneous and embedded computing systems.

Technically, there are two most common methods of updat-
ing a BMT: either eagerly updating all the tree nodes up to the
top (with or without a write-through/write-back BMT cache)
or just updating the cached nodes in an intermittent manner
(with a write-back BMT cache). It is important to note that
the counter read/verification operation remains identical across

ar
X

iv
:2

20
4.

08
97

6v
2

 [
cs

.C
R

]
 1

8
Se

p
20

23

2

both of the update methods and the authentication process
terminates once a cached node is encountered. The use of a
BMT cache, while improving performance, makes the hard-
ware implementation of these techniques more challenging due
to the additional constraint of recursively verifying uncached
tree nodes. Even though the first method, termed eager update,
suffers from recursive nature of the verification and update, it
can still be implemented on hardware in its native form without
a cache by unrolling the recursions. However, the second
update technique, known as lazy update [35], necessitates
the use of write-back BMT caches to store the tree nodes.
Traditional BMT cache is usually shared between all the BMT
levels. In the case of lazy update, such unified cache structure
can cause very high number of evictions since a BMT node
from any level can evict a node from any other level. This
can yield additional complexities since there might be dirty
evictions from the cache and each of these evictions can
potentially cause further evictions due to extra authentication
steps involved with write-backs [10]. As a result, there might
potentially be significant number of supplemental recursive
chains.

Therefore, it is very challenging to implement an unrolled
version of lazy BMT update method on hardware using RTL
logic since the upper bound for recursions is usually high,
not fixed and it will vary with BMT cache size. However,
despite its complex nature, lazy update method usually saves
a lot of memory access and reduces probable authentication
overhead during writes thanks to its relaxed update philosophy
and provides potential performance improvements over eager
update for write-dependent scenarios. Therefore, it is desirable
to use it in the systems where real-time performance is of
critical concern. The only effective method to use lazy BMT
propagation technique on FPGA with traditional BMT caching
is to use an embedded/soft-core processor as a controller
to host a software-based high-level implementation of the
algorithm. However, due to the overheads of the internal
instructions of a processor, such a system will have huge
performance degradation compared to a native RTL-based
version. While using per-level caching similar to ARES [34]
makes an RTL implementation of lazy BMT feasible, its algo-
rithmic bottlenecks still limit the exploitation of concurrency
on an FPGA-based design.

We claim the following contributions in this paper:
• We talk about the difficulties of unbounded recursions in

intermittent BMT updates and introduce a parallel cache
structure that allots a dedicated BMT cache to each level
of the tree, consequently limiting the upper bound of
the aforementioned recursions and making it feasible to
implement relaxed update BMT techniques in RTL.

• Leveraging this new cache subsystem, We present a
hardware-friendly hybrid BMT mechanism called HMT
that maintains the propagation complexity of eager update
but relaxes the update conditions even further than lazy
update to solve the issue of additional evictions and write-
backs and allows for only one dirty eviction per tree level
in each authentication.

• Next, specifically for this hybrid algorithm, we develop a
dataflow architecture that enables simultaneous process-

ing of multiple in-flight verification requests which was
not possible with traditional BMT algorithm. The archi-
tecture, while resembling HERMES [32] work, handles
write requests differently and adds write-back engines to
handle dirty evictions for relaxed updates.

• The HMT subsystem is directly compared against an-
other intermittent BMT logic (lazy update) in isolated
testing scenarios and also pitted against a state-of-the art
eager update implementation (HERMES [32]) in a real
secure embedded memory-based system with synthetic
benchmarks, demonstrating its bandwidth and latency
advantages in both experimental setups on Xilinx U200
FPGA platform. The subsystem level tests depict 4.5x
latency reduction and 7x uplift in bandwidth over tra-
ditional lazy update whereas the synthetic benchmarks
in integrated system level tests show up to 14% better
execution performance over HERMES.

II. TECHNICAL BACKGROUND

The primary idea of Merkle tree-based verification was in-
troduced in a work of Leslie Lamport [14], [27]. Consequently,
this idea was extended upon to create a binary tree where
the tree leafs are constructed from an irreversible function
applied on its children [20], [27]. Usually a cryptographic
hash function is used for this purpose [11]. Even though a
Merkle tree can effectively mitigate different memory-based
integrity attacks including splicing, spoofing and replay, its
huge memory overhead of has been a major obstacle for
its widespread adoption for the use-cases where data au-
thentication is of paramount importance [8]. This problem
was solved by the proposal of a smaller tree called Bonsai
Merkle Tree (BMT) that leverages counter-mode encryption
technique where the encrypted data would be protected by a
hash-based MAC (HMAC) and the tree only needs to protect
encryption metadata [24]. Another variant of MT, known
as parallel/SGX-style tree or Tree of Counters (ToC) yields
higher level nodes using a combination of encryption counters
and children nodes and supports parallel update operations
[1], [35]. However, ToC implementation typically faces issues
with parallel operations in a real-time system due to high
overheads and makes the design considerably more complex
than BMT in recovery-critical systems [12]. Merkle tree and
similar integrity trees have been used in different domains for
data/metadata authentication or integrity verification. Such tree
structures have also been used in for message authentication
in blockchain implementations and attack prevention in smart
grid systems [7], [15], [16]. There have been notable work with
MT-based integrity check in fields like wireless networks [4],
[26] and cloud computing [17], [21]. The significance of BMT
in hardware security is also noteworthy, especially with the
emergence of new technologies like Non-Volatile Memory
(NVM) where the ability of data retention after a crash allows
an attacker to temper the confidentiality and integrity of
stored information before the system can fully recover [1],
[30], [35]. The use of BMT is noticeable in modern FPGA-
based reconfigurable systems as a few of the recent FPGA-
targeted secure memory platforms have been using eager BMT
for integrity authentication of security metadata, while also

3

featuring novel hardware-level optimizations [32]–[34].
Utilization of a MT metadata cache can help improving the

throughput of a MT subsystem [10], [25]. There have been
two general methods of updating a BMT during integrity ver-
ification, called eager and lazy update process respectively [3].
The eager update scheme propagates the update to every tree
node in an update chain all the way up to the root node
during each counter modification, therefore requiring a lot of
memory access since each parent node needs to be brought to
the cache during every operation and each of them needs to be
overwritten in the event of a counter write. The lazy update
method, on the contrary, only modifies the tree chain up to
a cached parent/grandparent node of the data/metadata. The
update is not propagated to the higher level nodes in the update
chain until the node is evicted from the BMT cache. In other
words, reaching a cached node will stop the update process and
the node will be used as a temporary root for future updates
and authentication of all the children nodes covered by it as
long as it resides in the cache. As a result, most of the write
requests incurred by sequential real-world applications might
generate BMT update chains that only need to advance up
to couple of levels above the counter until a cached node is
found in the BMT cache. This scenario enables a reduction
in the total number of memory access during write operation
and also eliminates some of the extra verification requirements
caused by additional writes to the uncached upper level nodes.

BMT integrity authentication & update requires hash oper-
ations on lower level children nodes and form the respective
parent nodes in the upper level from the newly generated hash.
The encryption counters are hashed and a first level BMT
node is engendered from every counter respectively. Every first
level node is then hashed and each resultant hash value is then
truncated to form a part of the respective parent nodes in the
tree. The process is repeated until the tree structure converges
to only one parent. This final parent node is truncated to
generate the root of tree. The root is always written to a secure
on-chip storage as opposed to the regular BMT nodes that are
kept in the memory and brought to the BMT cache during
ongoing operations. Specifically, consider an example (Fig. 1)
where some encryption counter needs to be verified by a BMT.
For every write to a counter, the eager update process must
modify all the parent nodes in the update chain accordingly
including the root, even if one or more nodes in the chain
might already be present in the BMT cache. On the contrary,
the lazy update scheme (Fig. 1) does not involve accessing the
parent nodes as regularly as eager update and stops as soon
as a cached node is found. This scheme requires the use of a
write-back metadata cache.

III. THREAT MODEL

The threat model for this work is as follows:
• The memory lies in an unprotected region and is sus-

ceptible to different hardware-based attacks including
splicing, spoofing and replay attacks. It is also possible
to consider other potential attacks that can be mitigated
by a traditional BMT structure.

• Every other component of the system, including the BMT
subsystem, possible encryption subsystem and the user

logic resides within secure region.
• The system emphasizes on real-time performance and

does not consider crash-consistency or data/metadata re-
covery.

IV. CONSTRAINTS OF RELAXING UPDATES & OUR
SOLUTION

The lazy update propagation has the potential to provide
better throughput over the eager update in terms of write per-
formance. However, its possible run-time randomness makes
it unappealing for a real-time embedded system. Due to the
mandatory inclusion of a write-back cache, in the worst case,
every authentication request might result in several evictions
from the cache. In case of dirty eviction, each of these evicted
blocks will yield a write-back respectively. However, the nodes
need to propagate their updates to the parent/grandparents
before the write-back process is complete. Since the update
algorithm is recursive in nature, the potential extra verification
during these updates might cause even more dirty evictions and
as a consequence more write-backs and updates. The worst-
case scenario might see all these recursive chains to go on
until all the dirty nodes are evicted from the cache, therefore
potentially inducing unbounded increase in latency, which is
detrimental to real-time computing performance.

Let’s assume that the CTR3 needs to be modified (Fig. 2).
The BMT controller will need to fetch its parent node and
update it to propagate this change. After the fetch and sub-
sequent verification of the parent A1, node B3 & B4 might
get evicted. Assuming B3 to be a dirty node, its parent C2
needs to be updated B3 is written back to the memory. Since
C2 is not cached, it will have to read together with C1 from
memory and verified first. After the verification prcoess, C2
is now put in the cache and as a consequence, A5 is evicted.
A5 will need to update its parent B3 before write-back and
since B3 does not reside the cache any more, it needs to
be read from memory and hence will need to be verified.
However, caching B3 again will result in an eviction for A3.
As a consequence, the evictions can continue in an unbounded
manner until there is no more dirty eviction. Since theoretically
a node can evict any other node from the BMT, the process
can go on until all the dirty blocks are thrashed from the
cache in the worst-case situation. Therefore, the total number
of recursive update/authentication chain due to dirty evictions
can be very large in the worst case, equalling to the size of
the cache. The worst-case upper bound for dirty evictions will
also scale proportionately with the size of BMT cache (upper
bound = S/64 where S is the size of BMT cache). An increase
in the cache size will make the recursive upper bound to go up
accordingly and it can be huge for bigger caches. For example,
if a 5-level BMT (excluding the counter and root level) with
S = 16KBs of unified BMT cache where each cache block is
64B in size, the worst-case scenrio will see 16KB/64B = 256
worst-case evictions and as many write-backs and recursive
chains during one single read/write request. Even though the
chances of the worst-case scenario to take place in a real-
time system are low, it is still theoretically possible to have
notably reduced performance due to the worst-case evictions
and any potential lazy BMT authentication setup will need to

4

C12

Root

CTR 1 CTR 2

A 12

CTR 3 CTR 4

A 34

CTR 5 CTR 6

A 56

CTR 7 CTR 8

A 78

B 12 B 34

uncached cached
Eager Update always

advances up to the root
Lazy Update stops upon reaching a

cached node

CTR 1 CTR 2

A 12

CTR 3 CTR 4

A 34

CTR 5 CTR 6

A 56

CTR 7 CTR 8

A 78

B 12 B 34

C12

Root

Figure 1: Eager & lazy update propagation

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4

C1 C2

Root

Uncached Cached
Evicted
by A3

B2 is cached,
verification ends

B3 must update the parent
before write-back, but parent
C2 is not in the cache

Caching C2 in the causes
eviction for A5 & the
verification chain of A5
might evict A3

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4

C1 C2

Root

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4

C1 C2

Root

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4

C1 C2

Root

CTR 1 CTR 2 CTR 3 CTR 4 CTR 5 CTR 6 CTR 7 CTR 8
CTR 1 CTR 2 CTR 3 CTR 4 CTR 5 CTR 6 CTR 7 CTR 8

CTR 1 CTR 2 CTR 3 CTR 4 CTR 5 CTR 6 CTR 7 CTR 8

1
2

3

CTR 1 CTR 2 CTR 3 CTR 4 CTR 5 CTR 6 CTR 7 CTR 8

4

Figure 2: A depiction of how unbounded evictions might happen during lazy update.

be designed with this caveat in mind.
As the evictions are not deterministic by nature, it is

highly challenging to unroll the lazy verification algorithm
into a hardware-friendly design targeting ASICs and FPGAs.
Perhaps the only realistic solution to use this scheme in
FPGAs in its traditional form is to incorporate the method
in a high-level language and run it on a real-time processor
while using the FPGA fabric to implement the supporting
elements including BMT cache and hash modules. However,
the massive overhead due to software-based implementation
and the internal instructions of the driver processor might
result in humongous performance degradation.

We introduce a new cache architecture to solve the afore-
mentioned challenges (Fig.3). Our caching structure uses mul-
tiple parallel caches, each covering one tree level instead of
having one unified cache for all the tree levels. While ARES
[34] used similar caching technique, that was intended to
only solve the recursive verification during regular integrity
check/updates since ARES didn’t have to deal with write-back
recursion in the first place due to the eager update nature of
its BMT. On the other hand, the per-level caching scheme
in this work changes the eviction process drastically for the
lazy update BMT. Any uncached tree node corresponding to
a particular level can now only evict another node from the
same level. Also, an evicted block can no longer contribute
to the eviction of another same-level block during its write-
back chain and can only evict a block from the parent level.
Furthermore, the solitary child node of the root is assigned a
dedicated cache and as a consequence, it will never be evicted.

Only a node from the
same level can cause an

eviction

Partitioned
BMT Cache N

Unified BMT
Cache

Nodes from different levels
can be mapped to the same

cache line

A1-A2Line-0

Line-1

Partitioned
BMT Cache

N-1

Partitioned
BMT Cache 1

C1-C2

B3-B4 A7-A8

A1-A2
Line-0

Line-1

A3-A4

A5-A6 A7-A8

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

B
1

B
2

B
3

B
4

A
1

A
2

R
oot

Figure 3: The use of partitioned cache to reduce worst-case
upper bound compared to a regular BMT cache

All of the aforementioned features will limit the chances of
dirty evictions. As a result, this parallel & split cache design
imposes a deterministic restriction on the number of evictions
since the critical bound for total number of evictions during a
single counter operation will now only depend on the number
of levels (which is usually fixed for a given data size) and
not the size of the cache. Each cache in this design access the
memory independently. Since they are designated for different

5

levels of the tree, they don’t share the same nodes and as such,
there is no conflict among them.

For this proposed cache structure, we calculate the total
number of worst-case write-back recursive chains or in other
words, total number of worst-case evictions due to a counter
read or write = (2(N−1) − 1) = (2n − 1) where n = N − 1
and N is the number of tree level. If we reassess the last
example for a 5-level tree with the new cache architecture, The
value n = 5 − 1 = 4. Therefore, the worst-case upper bound
for dirty evictions = 24 − 1 = 15, demonstrating more than
17x reduction compared to the same example with a unified
cache. Unlike the previous case, this upper bound number will
remain unchanged for a particular size of BMT even if the
cache size changes. This situation allows us to finally unroll
all the recursive loops of the chash algorithm in RTL since
now we have a fixed and considerably smaller hard bound for
the total number of possible recursive chains during a counter
read/write request.

V. THE HMT ALGORITHM: DESCRIPTION AND
THEORETICAL UPPER BOUND

Upstream
Logic

(Counter
Cache)

RTL Lazy
BMT

Controller

BMT Cache -1
BMT Cache -2

BMT Cache -N

DRAM

1

Read Req
2

Node req

3

Mem access
(if needed)BMT Cache

Subsystem

4

Node rsp

5
Node caching (if

needed)

7

Read rsp

No new
req from
processor
until step

7

6
Write-back & tree
update (if evicted)

Figure 4: The sequential workflow of a regular Lazy BMT
Controller

Even though our proposed cache architecture allows for a
theoretical upper bound for worst-case recursive chains due
to dirty evictions that is independent of the cache size, it
shows a non-linear increase in the number of worst-case write-
backs with an increase in number of tree levels. This aspect
of the design makes it very difficult for the MT subsystem to
scale up with the number of levels without making significant
changes in the existing design. Also, even though the base
lazy update algorithm can now be unrolled and realized on
hardware with Hardware Description Language (HDL) thanks
to our proposed cache structure, its sequential workflow only
enables one integrity check process at a time. As a result, some
blocks in the execution path can remain idle for most part of
the operation even when they can process new requests. For
example, as shown in fig.4, a counter cache that holds the
encryption counters sends a counter verification/read request
when there is a miss in the cache. The counter cache and
the rest of the user logic is stalled until the completion of
this single counter read/verification request by a sequential
lazy BMT controller and no new verification/update requests
can be made by the processor or upstream logic until the
verification response for the current operation is received.
This can create bottlenecks for the system as the rest of
the subsystem and even some of the modules within BMT
subsystem might remain idle for long periods. To solve these

Algorithm 1 HMT Algorithm
1: L : Current BMT level
2: N : BMT height
3: M : Verification mask for all levels
4: H : Cache hit flag
5: while Counter channel is not empty do
6: if Dirty eviction from level L then
7: DL+1 ← Read data from parent L+1
8: OL+1 ← Read offset from parent L+1
9: if HL+1 hit then

10: Update parent in the cache
11: Write CL to memory
12: return Success
13: else
14: Update parent(s) in the memory until a hit
15: Update cached parent
16: return Success
17: end if
18: else if Counter update request then
19: DL+1 ← Read data from channel L
20: OL+1 ← Read offset from channel L
21: if HL+1 hit then
22: Update parent in the cache
23: return Success
24: else
25: Update parent(s) in the memory until a hit
26: Update cached parent
27: return Success
28: end if
29: else if Counter verification request then
30: DL+1 ← Read counter
31: ML+1 ← 1
32: for l← L to N do
33: if Hl ̸= 1 then
34: DL+1 ← Read data from channel l
35: OL+1 ← Read offset from channel l
36: Ml ← 1
37: else
38: Ml ← 0
39: end if
40: end for
41: return VERIFICATION (D,O,M)
42: end if
43: end while
44:
45: function V(E)RIFICATION(D,O,M)
46: for l← L+ 1 to N − 1 parallel do
47: if Ml and H(DL) ̸= Dl−1(Ol−1) then
48: return Error
49: end if
50: end for
51: return Success
52: end function

problems, we propose a new hybrid and hardware-efficient
algorithm called HMT. HMT is primarily based on lazy update
technique but differs in two areas - (1) An update to an
unverified node no longer requires a verification of the said
node, instead it is updated directly in the memory. Therefore
update and verification functionalities are now independent
from each other, (2) Instead of bringing in an unverified node
to the cache, then verifying and updating it, this new algorithm
updates all the upper level nodes in the memory until it hits a
cached node. This process does not involve bringing any nodes
to the cache, therefore it eliminates any secondary evictions
that might have happened due to the write-back chains of
primary evictions. Let’s consider a verification of counter 1
with our aforementioned partitioned cache structure(Fig. 5).
As the request for parent node A1&A2 incurs a cache miss,
it needs to be verified by comparing its hash against cached
B1&B2 node and then stored in the cache . However, bringing

6

Uncached Cached Evicted Evicted & written back

Primary Eviction, will be
written back to the
memory

Secondary
Eviction

Updated in the cache Updated in the memory

 HMT
Lazy update

Updated directly in the
memory

No Secondary
Eviction

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4

C1 C2

Root

CTR 1 CTR 2 CTR 3 CTR 4 CTR 5 CTR 6 CTR 7 CTR 8

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4

C1 C2

Root

CTR 1 CTR 2 CTR 3 CTR 4 CTR 5 CTR 6 CTR 7 CTR 8

Primary Eviction, will be
written back to the
memory

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4

C1 C2

Root

CTR 1 CTR 2 CTR 3 CTR 4 CTR 5 CTR 6 CTR 7 CTR 8

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4

C1 C2

Root

CTR 1 CTR 2 CTR 3 CTR 4 CTR 5 CTR 6 CTR 7 CTR 8

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4

C1 C2

Root

CTR 1 CTR 2 CTR 3 CTR 4 CTR 5 CTR 6 CTR 7 CTR 8

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4

C1 C2

Root

CTR 1 CTR 2 CTR 3 CTR 4 CTR 5 CTR 6 CTR 7 CTR 8

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4

C1 C2

Root

CTR 1 CTR 2 CTR 3 CTR 4 CTR 5 CTR 6 CTR 7 CTR 8

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4

C1 C2

Root

CTR 1 CTR 2 CTR 3 CTR 4 CTR 5 CTR 6 CTR 7 CTR 8

Figure 5: HMT algorithm compared against lazy update algorithm

A1&A2 to the cache causes a dirty eviction of A5&A6.
Now, according to lazy update method, this eviction requires
updating the parent node B3&B4 before the evicted node can
be written back to the memory. Since B3&B4 is not cached,
it is needed to be read from memory, verified and then put
in the cache before this update. But doing so results in a
dirty eviction of B1&B2. This eviction will then have its own
write-back chain that involves updating C1&C2 node. On the
other hand, our new hybrid algorithm just requires updating
the parent node, no authentication is needed even if the node
doesn’t reside in the cache. In this case, B3&B4 is directly
updated in the memory. Since the node is not brought to
the cache, its parent cached node will also be updated. But
unlike lazy update, there will no longer be any more evictions
engendered by a previous write-back. Therefore, we will only
have the primary evictions caused by the original verification
chain of a counter. Since each cache level allows for only one
eviction per operation, the number of worst-case evictions will
be equal to the number of tree level. Also, updating a counter
will no longer involve any evictions since it will follow our
hybrid update policy. Therefore, instead of the overhead of
(2(N−1) − 1) like in the case of lazy BMT, a N-level HMT-

based BMT with our parallel cache subsystem will have an
upper bound of only N write-backs for counter verification
and 0 write-backs for counter update. This upper bound now
follows a very linear and direct correlation with the number
of BMT levels.

The write-back mechanism will follow the relaxed update
process before writing an evicted block into the memory and
just like the update, it won’t require any verification of the
parent blocks. We have also made concurrent verification of
multiple metadata blocks a part of our proposed algorithm.
Hence we have a combined framework for verification and
a relaxed update propagation, both of which are independent
processes under our new algorithm.

VI. HMT CONTROLLER DESIGN

The presence of independent parallel authentication and
relaxation of the update requirements in HMT algorithm
enable us to use a dataflow architecture for HMT controller.
This architecture allows for a separate compute stage for each
of the tree level and every stage can accept a new request as
soon as it finishes the current task. None of the stages will have
to wait for the complete verification of a counter before they

7

<hit,data>

Lower
level

Memory

Ctr stage MT stage 1 MT stage 2 MT stage N Root stage

Memory

M
em

o
ry

 A
cc

es
s

R
eq

u
es

ts

U
se

r
Lo

gi
c

HMT Controller

MT stage N-1

Parallel Veri�cation Unit
SHA 1

PV Req

<op,data>

<hit,op,idx,
offset,upd>

Upper Level

PV Rsp

ID Table

<id,op,data>

User Rsp

User
Req

is_verify

Ctr Stage
Logic

Hash

Ctr stage

PV Req

<hit,op,idx,
off,upd, ev_hash,
ev_idx, ev_off>

Upper Level

PV Rsp

is_verify
MT Stage

Logic

Hash

<rd_hit,
offset, data>

SB

BMT Cache

PV Req

<root>

PV Rsp

Root SB

is_verify

Lower level

Memory

Root Stage
Logic

Root stageMT Stage

WBE
Memory

<ev,
ev_dirty,
ev_addr>

Figure 6: HMT Controller with different compute stages

can start working on the integrity check for the next counters.
Hence it will enable multiple parallel counter verification
which was not supported by original lazy update techniques.
Our proposed HMT controller supports three different compute
stages, just like HERMES controller [32] - one for counter
stage, one for root stage and N identical BMT stages where
N is the number of tree levels.

A. Counter Stage

This Stage uses an FIFO ID table to store counters that
are being authenticated/updated. Each entry in the ID table
includes additional metadata such as a unique id and the
type of operation (read/write). Once an entry in the ID table
is verified, it is taken out and the response is sent to the
user logic. Unlike HERMES [32] where there is an entry in
the table regardless of whether it is a counter verification or
update, our design only requires the counter verification/read
requests to be registered in the ID table (algorithm 2). Since
the counter update process doesn’t involve any verification,
those operations aren’t included in the table and instead
the write response is sent to the upstream logic from BMT
controller as soon as the update is propagated to a cached
node.

B. BMT Stage

Each of the BMT stages are designed to perform the same
set of tasks - verification, update and write-back. Since counter
and root levels are fixed, a BMT with random size can be
easily supported by simply varying the number of BMT stages.
A parallel verification unit is connected to all the stages
(Fig. 6). Each of the MT stages use a speculative buffer (SB)
to store the unverified data during an ongoing verification

and the stored node can be used for subsequent operations
in the meantime. These nodes will be written to the cache
once the said verification is done. However, similar to the
update mechanism in the counter stage, a write/update request
doesn’t involve buffering any nodes in the SB. Instead, the
write process directly updates the relevant entry in the SB if
it resides there. This modified node won’t be a new SB entry.

Rather, it will overwrite the old version of that node. If
the node is not hit in SB, the update logic will search for
the requested node in the corresponding BMT cache and
eventually memory if required and update the node where it
currently resides. As described in the previous section, this
technique doesn’t fetch any nodes to SB or even BMT cache
during update/write. In other words, if SB hit and Cache hit
are both zero, then the controller would directly update the
node in the memory instead of bringing it to the cache or SB
(algorithm 2). As a result, the MT logic also doesn’t have
to go through parallel verification (PV) block during node
updates. This process is different from HERMES [32] where
every request must have a corresponding entry in SB and also
must go through PV block during access of unverified nodes,
regardless of the counter request type (read/write).

Another marked difference with the HERMES BMT ar-
chitecture is the presence of a Write-Back (WB) engine in
our design. It allows the write-back of a node during a
dirty eviction from a particular level while allowing for other
compute levels to work simultaneously. The addition of WB
engine makes any relaxed algorithm including HMT to work
with this dataflow architecture. Since node verification is done
asynchronously, the caching of a buffered node after authenti-
cation is decoupled from the ongoing counter operation. As a

8

Algorithm 2 HMT Controller Workflow
1: function C(O)UNTER STAGE
2: while 1 do
3: if There is counter request then
4: Calculate index and offset of the parent hash
5: if Counter read then
6: Read ctr from memory
7: Make an entry in id table with req id, ctr, off, op = 0

8: Forward op = 0, ctr to PA
9: Forward op = 0, hit = 0, idx, off, upd = 0 to MT Stage

10: else
11: Write ctr to memory
12: Calculate hash h of ctr
13: Forward op = 0, hit = 0, idx, off, upd = h to MT Stage
14: end if
15: end if
16: end while
17: end function
18: function M(T) STAGE
19: while 1 do
20: if There is MT request from previous level & no node write-back request then
21: Read entryop, hit, idx, off, upd from previous level
22: Calculate index and offset of the parent hash
23: if op = 0 then
24: if hit = 1 then
25: Forward op = 0, hit = 1, idx = 0, off = 0, upd = 0 to next level
26: Done
27: end if
28: Read bmt node from SB or BMT cache
29: hit status ← SB hit or cache hit
30: Forward op = 0, hit = hit status, idx, off, upd = 0 to next level
31: Forward hit = 0, off, data = bmt node to PA
32: if hit = 0 then
33: Make an entry of op = 0, idx, dirty = 0, bmt node in SB
34: end if
35: else if op = 1 then
36: Read bmt node from SB or BMT cache
37: if SB hit = 1 then
38: new bmt node = upd(bmt node, update)

39: Over-write the previous entry in SB with op = 0, idx, dirty = 1, new bmt node

40: Forward op = 1, hit = 1, idx = 0, off = 0, upd = 0 to next level
41: else if Cache hit = 1 then
42: new bmt node = upd(bmt node, update)

43: Update bmt node in BMT cache to new bmt node

44: Forward op = 1, hit = 1, idx = 0, off = 0, upd = 0 to next level
45: else
46: new bmt node = upd(bmt node, update)

47: Calculate hash h of new bmt node
48: Update bmt node in volatile memory to new bmt node

49: Forward op = 1, hit = 1, idx = 0, off = 0, upd = h to next level
50: end if
51: end if
52: else if There is node write-back request of relaxed update for current level then
53: Calculate index and offset of the parent hash
54: Calculate hash h of ev node
55: Write ev node to ev add in the volatile memory
56: Forward ev valid = 1, ev hash = h, ev idx, ev off to the next level
57: Go back to MT request
58: else if There is node write-back request of relaxed update from previous level then
59: Calculate index and offset of the parent hash
60: Read parent node from SB or BMT cache
61: if SB hit = 1 then
62: new parent node = upd(parent node, update)

63: Over-write the previous entry in SB with op = 0, idx, dirty =
1, new parent node

64: Forward ev valid = 0, ev hash = 0, ev idx = 0, ev off = 0 to the next
level

65: else if Cache hit = 1 then
66: new parent node = upd(parent node, update)

67: Update parent node in BMT cache to new parent node

68: Forward ev valid = 0, ev hash = 0, ev idx = 0, ev off = 0 to the next
level

69: else
70: new parent node = upd(parent node, update)

71: Calculate hash h of new parent node

72: Update parent node in volatile memory to new parent node

73: Forward ev valid = 1, ev hash = h, ev idx, ev off to the next level
74: end if
75: Go back to MT request
76: end if
77: end while
78: end function
79: function R(O)OT STAGE
80: while 1 do
81: if There is MT request from previous level then
82: Read entryop, hit, idx, off, upd from previous level
83: if op = 0 then
84: if hit = 1 then
85: Done
86: end if
87: Read root2 from SB or root register
88: Forward root2 to PA
89: else if op = 1 then
90: Read root2 from SB or root register
91: if SB hit = 1 then
92: Forward update to SB
93: Return rsp = 1 to upstream logic
94: else
95: Forward update to root register
96: Return rsp = 1 to upstream logic
97: end if
98: end if
99: end if
100: end while
101: end function

result, a dirty eviction from the BMT cache due to the caching

of a new node might overlap with a current operation on the
evicted node. In order to maintain metadata persistence, any
write-back request will always get prioritised over an ongoing
MT operation. If the eviction takes place in a BMT cache
pertaining to the current level, then the node is hashed and
its information is relayed to the next MT stage (algorithm 2).
Otherwise, if the write-back request comes from a preceding
level, then the parent node in the current level is checked and
updated using the aforementioned HMT write technique. If the
parent is not hit in SB/cache, then the node is hashed and the
hash value is conveyed to the next stage until a cached node
is arrived upon. As expected from a relaxed update logic, a
cache hit in any of the BMT levels would result in skipping
all the upper stages and terminate the process in the current
stage, no matter whether the counter request corresponds to
verification/update.

C. Root Stage

The root stage consists of a root SB and the root register
access logic. The authentication process involves bringing the
root to the SB and then use it for verification of the child
node. The update process on the other hand modifies the root
on SB or directly in the root register (if not found in the SB).

VII. POTENTIAL IMPLEMENTATION

As mentioned in multiple literature ([1]–[3], [6], [9], [34],
[35]), integrity verification is crucial in secure memory-based
systems where the contents of the memory is encrypted and
the encryption metadata is protected by an integrity tree.
ARES (cite [34]) demonstrates the use of such secure memory-
based setup in FPGA-driven embedded platform especially
with the presence of non-volatile memory as the presence of a
hardware-optimized, eager-update BMT is required for atomic
recovery of metadata after a system crash.

Even though a relaxed BMT doesn’t support crash-recovery,
it can theoretically provide a potential uplift in the run-time
system throughput over the eager BMT in write-heavy scenar-
ios. Therefore, a secure FPGA-based embedded system with
regular DRAM can benefit from the run-time improvements
offered by HMT (Fig.7). In addition to the use of AES
encryption and HMAC modules, this system also uses an
intermediate counter cache to store the verified counters and
skips BMT authentication if the counter is hit in the counter
cache. Our system, while closely resembling ARES [34],
diverges in the sense that it utilizes a volatile DRAM instead
of NVM and employs relaxed-update BMT mechanism.

HMT can facilitate the use of a write-back counter cache
since it doesn’t need the counter updates to be propagated
to the BMT all the time. A write-back counter cache doesn’t
send any write propagation requests to the BMT during write
hit. In this case, the counter cache sends an update request
to the BMT only during a dirty counter eviction and it can
be overlapped with the regular counter read/write operation.
In other words, BMT in this system is only used if there is
a read miss in the counter cache or a dirty counter eviction.
Hence, HMT can provide additional performance benefits for
counter writes. On the contrary, eager-update BMT like the
ones used in ARES [34] and HERMES [32] must be paired

9

CTR Write-Back

CTR Miss/Evict

Recon�gurable FPGA Fabric

AES

HMAC

CTR Cache
 BMT

Controller
Logic

DATA HMAC CTR MTParallel BMT
Cache

Plaintext/Ciphertext Transaction

DRAM

CTR

CTR
E

m
b

ed
d

ed
P

ro
ce

ss
o

r
HMAC Transaction

Node
Access

Figure 7: A FPGA-based secure-memory system where HMT can be utilized

with a write-through counter cache since every counter update
must be persisted in the BMT. As the encryption subsystem
always requires the previous counter to be fetched first and
then incremented and written back during encryption process,
a data write operation in all of these systems always comprises
of a counter read miss/hit + counter write hit and there is no
counter write miss logic used in the counter cache.

VIII. EXPERIMENTAL SETUP & RESULTS

The experimental setup for testing our design includes
both subsystem-level and integrated test cases. To test the
BMT subsystem isolatedly and measure its peak throughput
(Fig. 5), we use RSTBenchmark module [32] that is based
on the Repetitive Sequential Traversal (RST) access pattern,
commonly used in other recent benchmark suites such as
Shuhai [29]. The benchmark IP is designed in Verilog RTL
and a MicroBlaze soft-core processor is used to control it. The
IP generates RST access traces for different stride lengths to
emulate the counter requests from a real encryption counter
cache. The BMT subsystem consists of BMT controller and
our proposed parallel BMT caches. We test the HMT subsys-
tem against a RTL-based lazy update BMT subsystem under
the same setup. In other words, both the lazy BMT and HMT
controller uses the same cache subsystem. The BMT size for
both the BMT subsystem is set to 3 levels and they can protect
up to 2MBs of data. Since each tree level has its own cache,
they are set to different (1KB L1 + 448BL2 + 64B L3) sizes
to have a combined BMT cache size of 1.536KB and all the
BMT caches are 4-way set associative write-back caches. The
BMT structure under test is a 8-ary tree with 64 bytes of node
size. We also test an insecure system that relies on a direct
access to the memory without any BMT authentication.

The integrated testing utilizes an embedded secure-memory
setup including a memory encryption IP to encrypt/decrypt the
application data, a hash-based message authentication code
(HMAC) generator for data authentication, a counter cache
to store the encryption counters and a BMT subsystem for
metadata/encryption counter authentication (fig. 7). A MicroB-
laze processor with a 32 KB L1 cache is used as application
driver for benchmarking purposes. In this case, a HMT-based
setup is compared against a state-of-the art baseline eager
update BMT implementation i.e. HERMES. We use HMT
in two different configurations in this system - one with a
write-through counter cache mechanism (relaying every write
to a cached counter to the BMT) and the other one with a
write-back counter caching scheme (only eviction of a dirty
counter from the counter cache will deploy a update request
to the BMT). On the other hand, the HEMES-based system
exclusively uses a write-through counter cache as expected.

The BMT size is set to 5-level (metadata corresponding to
128 MB of actual data being protected), the counter cache
size is 32 KB and the total BMT cache size used is 40.3 KB
(32KB+4KB+4KB+128B+128B) respectively, identical to the
ARES system [34]. Both the counter cache and BMT caches
are direct-mapped caches. The encryption, HMAC and counter
cache IPs are sequential in nature and can only process a single
request at a time. Aside from the counter cache mechanism
and the BMT subsystem, all the other components across all
three secure-memory systems remain identical. We use SHA1
hash for the BMT authentication/update in every system.

A Xilinx U200 FPGA accelerator card is used to test all of
our designs.

A. Resource Consumption

LUT Flip-flop BRAM Tile

Lazy Update Controller (3L) 60860(2.8%) 65922(3.5%) 37.5(1.7%)
HMT Controller (3L) 107318(9.1%) 115581(4.9%) 0(0%)
HERMES Controller (5L) 275300(23.3%) 316600 (13.4%) 29(1.4%)
HMT Controller (5L) 328024(27.7%) 317274(13.4%) 29(1.4%)
RSTBenchmark IP 1602(0.1%) 1342(0.1%) 0(0%)
BMT Cache (3L) 8974(0.76%) 5711(0.24%) 0(0%)

BMT Cache (5L) 48912(4.1%) 40447(1.71%) 128(5.9%)

TABLE I: Hardware resource utilization numbers for the experimental
setup

The HMT controller incurs more than 40% higher LUT and
similar Flip-flop consumption compared a 3-level lazy BMT.
However, this trade-off is justified since the the HMT con-
troller contains notably more complex logic and is tuned for
considerably better throughput. Evidently, the lazy BMT uses
some BRAM resources while the HMT controller incurs none.
The lazy BMT needs the extra BRAM to collect the evicted
nodes during a counter verification/update and then write-back
at the end of the operation since unlike in HMT, the dirty
evictions related to a counter authentication in regular lazy
update always happen during that operation. In comparison
with the HERMES controller, a 5-level HMT design accounts
for additional 19% LUT and almost similar flip-flop usage. We
assume the LUT overhead to be caused by the opportunistic
update logic used in HMT as opposed to a uniform eager-
update mechanism employed by HERMES.

B. Subsystem Testing

As mentioned before, we use variable memory stride lengths
in RSTBenchmark to emulate encryption counter access and
calculate peak bandwidth of BMT subsystem especially in
more randomized access cases. The metadata locality reduces
as the accesses with larger strides ensures more misses in the

10

26 29 212 215
101

102

103

B
an

dw
id

th
(M

B
/s

)

77.1 76.4 76.4 76.8

18.1 17.4 16.5 15.2

578.0 605.7 605.7 605.7

130.3

99.9 103.1

138.9

22.8 21.2 20.5 19.8

956.2 965.4 965.4 965.5HMT write
Lazy MT write
Insecure write
HMT read
Lazy MT read
Insecure read

mt1 mt2 mt3 allmiss
101

102

103

La
te

nc
y

in
 c

yc
le

81

112
141

160

267.1 282.0

395.0

734.0

84

120

156 164

254
283

408

721

HMT read
Lazy MT read
HMT write
Lazy MT write

Figure 8: Read & write throughput of HMT against the insecure and lazy update system(top), write & read latency comparison
between Lazy update and HMT controller for hits in different levels of BMT caches(bottom)

BMT caches of lower levels. The HMT controller is essentially
a fully pipelined design and as such, can handle multiple
incoming requests even before the completion of previous
authentications. Also, the use of SB ensures speculative opera-
tions based on the nodes currently under authentication which
is especially helpful for applications with good data locality.
The lazy BMT, on the other hand, is constrained by its sole
operation at a given time. On top of that, it doesn’t have the
performance enhancements like the use of SB or the reduction
in potential evictions due to algorithmic modifications. As a
result, HMT demonstrates upto 7x read and 5x more write
throughput improvements (Fig. 8) over baseline (lazy update).
However, even with these performance enhancements, there
is still room for improvement compared to the bandwidth
of the insecure system in Fig. 8. Due to its unique nature
of update, we assume that the write performance of HMT
largely relies on BMT cache size instead of stride length
of the access and the constant write bandwidth supports our
assumption. On the other hand, the read throughput drops with
the higher stride lengths as the HMT encounters more read
misses with less spatial locality. However, the stride size of 215

unexpectedly provides better performance and we assume it’s
due to additional hits in SB since the system keeps accessing
the same two data locations repeatedly.

For latency measurement, we create custom access patterns
with specific addresses that would ensure BMT cache hits in
different levels. ’mt0’, ’mt1’ and ’mt2’ indicates a cache hit
in first, second and third level respectively while ’all Miss’
represents a cache miss in every level. We name the BMT
structure in a way such that the first level indicates the parent
level of counter level, the second level is the grandparent level
and so on. The combination of our new HMT algorithm and
dataflow architecture results in noticeable improvement of the
latency for both read and write . As each compute stage in
the HMT controller can be activated individually and there’s
no additional wait time involved, they can hide the memory
access and hash latency effectively. The read or verification
pipeline in HMT controller reduces the overhead of multiple
hash latency to approximately one single hash latency by
leveraging parallel verification module. On the other hand,
while the lazy update controller breaks down the algorithm
into different operations, some of the elements in the datapath
remains stalled during particular parts of the algorithm. Our
RTL lazy MT speculatively pre-fetches requests for hiding
extra latency in case of cache misses in multiple levels, but
doesn’t store the additional upper level nodes if a lower level
hits in the cache. However, since the immediate child of the
root is only 64 bytes in size and has its own cache, it will

11

never be evicted after it is brought to the cache and therefore,
our lazy BMT does not pre-fetch the root. As a result, in case
of ’all miss’, the verification of lower level nodes need to wait
for the root authentication first. The HMT controller, however,
handles this scenario in the same way as any other cache miss
and lowers the overhead by approximately 4.5x for both read
and write. The performance and latency difference between

read write mixed
0

50

100

150

200

250

300

N
um

be
r o

f e
vi

ct
io

ns

38

0

38

63 63

189

HMT
Lazy MT

Figure 9: Number of evictions from BMT cache for different
scenario)
lazy BMT and HMT subsystems depict a notable improvement
for the MT authentication due to algorithmic and architectural
changes in HMT controller.

In order to compare write-back scenario, We set the stride
length of RSTBenchmark to a fixed value of 26 to access
every counter and performed counter write followed by a read
operation for both lazy BMT and HMT subsystems with a
cache size of 2.2KB (2KB L1+ 128B L2 + 128B L3). This
setup allows for evictions in a easily repeatable sequential
manner as it will give rise to additional secondary evictions
caused by the primary evictions in lazy MT. For this test, we
consider all evictions from a BMT cache to be dirty evictions.
As expected, the counter write results in 0 evictions for HMT
compared to 63 for lazy update (fig. 9). This is due to the fact
that HMT doesn’t require fetching a node to cache or SB on
cache miss during a write operation. It also doesn’t mandate
any integrity check on cache miss during update and directly
updates the nodes in the memory until a cached node is found.
For counter read, we can see a 40% reduction in evictions
for HMT over the lazy MT. This is also self-explanatory as
due to the absence of parent node caching during write-back,
the evicted blocks cannot contribute to additional evictions in
HMT system even during an eviction due to read operation.
As such, the HMT only encounters primary evictions caused
by counter verification chain and the worst-case evictions
for a HMT operation is only N where N is the number of
BMT levels. In the mixed-mode operation where the write is
followed by read, the HMT system achieves 5x reduction in
number of write-backs due to the gains from both read and
write scenarios.

C. Integrated Testing

The overall real-time system read latency for our
integrated test setup (fig. 7) can be characterized
by a model, T system = T processor +
max(T encryption, T hmac)+max(T ctr cache, T bmt)

where T processor is the latency overhead of processor
instructions, T encryption is the encryption/decryption
latency, T hmac is the HMAC generation/verification
overhead, T ctr cache is the counter cache access latency
and T bmt is the overhead incurred by the BMT subsystem.
T bmt and T processor depends on the workload and
the rest of the parameters remain more or less constant
throughout the test. Since the HMAC is generated on
ciphertext, encryption and HMAC modules can operate in
parallel once an encrypted data block is fetched during read
operation. Since the test systems are only differentiated by the
BMT implementations, the actual performance uplift depends
on the number of BMT accesses. For example, if an access
request results in a read hit in the counter cache, the BMT
will not be employed at all and max(T ctr cache, T bmt)
turns into just T ctr cache which guarantees that all the
systems will produce similar results for that particular
access. Conversely, a read miss or updates on a cached
counter will require BMT authentication/updates and the
the total latency will be influenced by T bmt instead. As a
result, the BMT might be a system bottleneck only when a
large number of counter accesses are missed in the counter
cache. For write scenario, the latency can be defined by
T system = T processor + T encryption + T hmac +
max(T ctr cache, T bmt) as the HMAC module has to
wait for the encryption IP to decrypt the fetched data block
and then re-encrypt the modified plaintext into ciphertext
before it can generate the new HMAC value. In this case,
the system latency is even more dependent on T bmt since
the BMT overhead can be drastically different across the
configurations. For example, HERMES-based setup will
propagate every write to the BMT even if the counter is
cached and then the update is always persisted all the way
up to the root of the tree. HMT with a write-through counter
cache will still generate a BMT update request for every
write, but the HMT mechanism will stop the update if any
tree node in the chain is cached and will not involve any
node fetch, resulting in a lower overhead.

Finally, HMT with write-back counter cache should reduce
T bmt further by only requiring a tree update during a dirty
counter eviction from the counter cache. Since all the IPs
other than BMT subsystem are of blocking nature and cannot
generate more than one on-flight request at any given time,
the BMT cache evictions for HMT will always be performed
in the background and won’t have any impact on the system
latency. It is important to mention that every data write in these
integrated systems will result in a counter read (the updated
counter is written back to the counter cache and the update
is either immediately propagated to the BMT(WT counter
cache) or during a dirty counter eviction (WB counter cache)).
However, every data read will only result in a counter read.

For integrated system benchmarking, we use STREAM
benchmark [18], [19], FIR, IIR benchmarks from DSPStone
[31] benchmark suite and BINARYSEARCH benchmark from
BEEBS [23] test suite to compare the system level task exe-
cution time between baseline and OMT systems. The problem
size for all these benchmark are set the same as the config-
uration in ARES [34] (16, 128, 12 & 128 MB respectively).

12

FIR IIR BINARYSEARCH STREAMCOPY STREAMSCALE STREAMADD STREAMTRIADD
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.87
0.98

0.89 0.92 0.92 0.93 0.91
0.86

0.98
0.88 0.91 0.91 0.91 0.9

HERMES system
HMT system - WT counter
HMT system - WB counter

Figure 10: Performance comparison between HERMES-based and HMT-based systems in standard benchmarks

Every encryption counter protects 4KBs of consecutive data
blocks (ciphertext) and therefore, the performance difference
among these platforms should increase notably with highly
randomized data accesses i.e. higher counter access random-
ization (as a result, higher BMT utilization) and early write
terminations in BMT. The mathematical model developed in
HERMES [32] work with the parameters from [30], [35]
to approximate the BMT performance in a real-time FPGA-
based secure system also supports this notion as it predicts
very low BMT overhead for applications with high locality
and larger difference in performance for more randomized
workloads. Hence we see interesting shifts across benchmarks
in fig. 10 since some of them might exhibit more data locality
then others. The IIR workload being highly sequential and
compute-intensive, shows very little difference across all three
systems. On the other hand, STREAM shows notably better
performance in the HMT systems despite being a sequential
workload. This difference is due to the fact that STREAM is
a write-heavy workload with minor computation overhead and
since each write in HERMES system is always propagated to
the root of the BMT, the potential early write terminations
in HMT allows for lowering of T bmt. HMT also lowers the
execution time by up to 14% and 12% respectively in FIR and
BINARYSEARCH benchmarks over HERMES. While FIR
is more compute-heavy compared to STREAM, it schedules
comparatively more randomized memory visits and hence
incurs a lot of extra BMT usage which should explain the
performance uplift for HMT

Even though BINARYSEARCH exhibits high data locality
(according to the analyses in ARES [34]), the write access pat-
tern during the key initialization at the start of the benchmark
will have notable less overhead for the relaxed update as most
of the updates in HMT will stop at the lowest level of BMT
cache due to the immediate counter read before the write.
HERMES, on the other hand, will have to keep updating every
chain to the root and in this case, will find most of the update
chains to have at least one BMT cache miss (since the previous
read will stop at a cached node and won’t cache higher level
nodes anymore in that case) and will need to authenticate these
nodes first. As a consequence, T bmt overhead will be notably
reduced.

These benchmark results are in line with the performance
model described in HERMES [32] and the latency model
discussed above. In all of these cases, the write-back counter

caching doesn’t provide any real benefits over the write-
through counter cache configuration for HMT since a lot of
HMT chains should be terminated pretty early due to the
cached BMT nodes from earlier operations anyway.

Seq Write Seq Read Rand Write Rand Read
0

2

4

6

8

10

12

14

16

B
an

dw
id

th
 (M

B
/s

)

13.35

11.7

6.7

8.0

13.4

11.7

10.2

7.7

13.42

11.7
10.8

7.67

HERMES system
HMT system - WT counter
HMT system - WB counter

Figure 11: Bandwidth comparison for read and write accesses
As the standard applications used above don’t employ

BMT in an excessive manner, We traverse through the entire
data range with sequential and randomized read & write
operations to saturate the counter access datapath11. Unlike
in ARES [34], each of these tests in our platforms are done
consecutively (instead of running one at a time) and the access
patterns of writes directly affect the following read operations.
As seen from fig. 12, the sequential read and write accesses
incur a hit in the counter cache more than 98% of time. A

Seq Write Seq Read Rand Write Rand Read
0

20

40

60

80

100

120

C
ou

nt
er

 c
ac

he
 s

ta
ts

 a
s

%
 o

f t
ot

al
 a

cc
es

s

98.4 98.4

1.4 1.41.6 1.6

98.6 98.6

Write/Read Hit
Write/Read Miss

Figure 12: Counter cache hit and miss frequency

write hit should activate the BMT to update the corresponding

13

tree chain for HERMES & HMT-WT Counter systems (HMT-
WB Counter system activates BMT write only during a dirty
counter eviction from the counter cache). However, since very
few percentage of the preceding counter read are missed for
before a counter write (Fig.12), both the relaxed and the eager
update BMT in this case visit memory very infrequently and
avoid additional verification since most of the update chains
will have BMT cache hits in every tree level. As a result, the
overall write overhead for eager BMT i.e. HERMES will drop
due to low number of verification chains (Fig.13). This unique
situation diminishes the performance advantage of relaxed
write over eager update as HERMES will return the write
response back to the counter cache as soon as it encounters
BMT cache hit in all levels for an update chain and not wait
for the updates to all the levels to finish, masking most the
extra hashing overhead for updates in every level. As a result,
even though HMT will terminate the update chain as soon
as it reaches the first cached node, the effective overhead
reduction will be very minimal compared to HERMES in this
case and both the systems produce similar results. We have
found HMT in write-back counter configuration in this test to
provide very close results to the write-through configuration
as the HMT-WT system will have negligible overhead due to
high number of BMT cache hits in the first level. As mentioned
above, a counter read hit does not require BMT utilization and
therefore very few of the counter accesses will go through
BMT verification for sequential read, making it also showcase
a constant throughput regardless of the BMT implementation.
As a result, T bmt remains constant across all the systems
for the sequential read. The BMT utilization sees a dramatic

MT0 MT1 MT2 MT3 MT4
0

500000

1000000

1500000

2000000

V
er

ifi
ca

tio
n

ch
ai

ns
 d

ue
 to

 m
em

or
y

ac
ce

ss

3548 448 56 6 0

1834634 1834009 1834043

1573150

0

Seq Write
Rand Write

Figure 13: Authentication overhead for HERMES during write
accesses
increase in case of randomized write/read scenario where
almost every access reaches BMT for verification/update due
to very high percentage of counter miss. In this case, HMT will
still experience earlier update terminations due to its update
policy as it will still find a cached node before the root/last
level in most of the update scenarios. However, HMT overhead
will now be noticeable higher compared to the sequential write
as most of the updates might no longer have a node hit at the
first level. As such, the write-back configuration now further
reduces T bmt since considerably lower number of writes will

need to be propagated to the BMT in HMT-WB system and
it results in 6% uplift in performance. On the other hand, the
eager update BMT will need to go through a lot of additional
verification chains (Fig.13) since it will need to visit DRAM
a lot more frequently and then verify the fetched node first
before caching it. As a result, HERMES system will not be
able to hide the extra hashing overhead of the updates up to
root anymore since this time the BMT controller will need
to wait until the end of these verification chains to issue a
write response to the counter cache. The extra verification
loops and a typically long update overhead increases the
T bmt and causes the write bandwidth of the baseline to
drop by up to 38% compared to the HMT implementations.
The random read, on the other hand, demonstrates a slightly
lower read bandwidth for both HMT systems since they suffers
from numerous dirty write-back chains due to high number
of evictions compared to sequential read. The eager update
doesn’t need to maintain any write-back update chain and only
writes back the evicted block to memory.

IX. CONCLUSION

With both algorithmic improvements and hardware inno-
vations, we have developed a novel BMT update algorithm
to facilitate a dataflow architecture for BMT verification with
intermittent propagation. This new BMT framework not only
improves the performance over the existing BMT techniques
but also makes the design and nature of the BMT propagation
very hardware-efficient and suitable for FPGA-based heteroge-
neous and embedded systems. Experimental results from both
susbsytem and system level tests also provide evidence to our
claims and results in up to 14% better performance in real-
time standard benchmarks. We plan to extend the framework
to support integration with other state-of-the art BMT designs
in the future.

APPENDIX A
WORST-CASE EVICTION FOR PARALLEL BMT CACHE

Let us consider that the function Em evicts a dirty block
from mth level of BMT, the function Wm writes to mth level
& the function Vm verifies the integrity of the node during
memory access and updates the node if required. We assume
the worst-case scenario for the eviction, that is - fetching a
BMT node from the memory and caching it would cause
eviction of a dirty node from the same level as the fetched
node (except from the immediate lower level of root) for our
proposed cache architecture. Reading or writing to an mth

level node requires accessing that node from the memory as the
node is not present in the BMT cache. The value m is within
[1, N] where N is the number of levels in the BMT (excluding
counter and root level) and 1 denotes the immediate parent
level of the counters. Every node accessed from the memory
must be authenticated first. Once the integrity is verified, the
node might or might not be updated depending on the type of
operation (read/write) and put into the cache. As mentioned
above, writing the node to the cache would cause a dirty
eviction in the worst-case. Therefore, Wm can be written as,

Wm −→ Em + Vm (1)

14

However, evicting a dirty cache block from mth level would
involve updating the parent node. As a consequence, Em

would be related to Wm+1,

Em −→ Wm+1 (2)

The integrity authentication of an mth level node requires
hashing of the corresponding node. The generated hash is
compared against the immediate parent node. As part of our
worst-case assumption, none of the upper level nodes in the
current update/verification chain would be cached beforehand.
In other words, the parent would not reside in the cache for the
m+ 1th level and caching it would yield another dirty eviction
from the same level. In addition, the parent node itself must
also be verified and updated as before.

Vm −→ Em+1 + Vm+1 (3)

Both eq. 1 & 3 can now be modified with the information
from eq. 2.

Wm −→ Wm+1 + Vm (4)

Vm −→ Vm+1 +Wm+2 (5)

Since the highest level of the tree (the level below the root)
will have only one node, it will occupy only one cache block.
As a result, this node is never going to be evicted under our
proposed scheme as there is no other node at the same level
to evict it from the cache. In other words, eviction from N th

level never takes place, so EN doesn’t exist. Based on this
assumption, we can determine the terminal condition from eq.
3 when m = N − 1.

VN−1 −→ VN (6)

If m = N , eq. 1 yields,

WN −→ VN (7)

Using eq. 5, 6, 7 eq. 4 can be expanded further. The expanded
equation should be our desired expression for the worst-case
upper bound.

Therefore, we can write,

Wm −→ Wm+1 +Wm+2 + Vm+1

−→ Wm+1 +Wm+2 +Wm+3 + Vm+2

−→ Wm+1 +Wm+2 +Wm+3 + ...VN

−→
N∑

k=m+1

Wk + VN

−→ Wm+1 +

N∑
k=m+2

Wk + VN

−→
N∑

k=m+2

Wk + VN +

n∑
k=m+2

Wk + VN

−→ 2[

N∑
k=m+2

Wk + VN]

−→ 22[

N∑
k=m+3

Wk + VN]

−→ 2N−m[

N∑
k=N

Wk + VN]

−→ 2N−m[WN + VN]

−→ 2N−m+1VN

Our cache scheme requires the N th level node to be
authenticated only during the first time it is brought from the
memory. All the other times, the verification/update chain will
stop at (N − 1)th level. So we have,

Wm −→ 2(N−1)−m+1VN−1 + VN (8)

Here, m = 1 represents update of the immediate parent of
a counter during counter write. Therefore, this case includes
all the possible recursive chains during a write to counters,
including the write-back chains due to evictions. However,
the presence of V N in eq. 8 represents the original update
chain corresponding to the counter write operation. In order
to derive the relationship for only the recursions due to dirty
evictions, we should remove VN and subtract 1 from the co-
efficient 2(N−1)−m+1 to leave out the original write update
chain. Making these changes and using m = 1, we have,

WmWriteback
−→ (2(N−1) − 1)VN−1 (9)

Finally, the total number of worst-case write-back recursive
chains or in other words, total number of worst-case evictions
due to a counter write for our partitioned cache architecture =
(2(N−1) − 1) = (2n − 1) where n = N − 1. Similarly, it can
be proved that a counter read will have the same number of
worst-case evictions.

REFERENCES

[1] Mazen Alwadi, Kazi Zubair, David Mohaisen, and Amro Awad.
Phoenix: Towards ultra-low overhead, recoverable, and persistently
secure nvm. IEEE Transactions on Dependable and Secure Computing,
2020.

[2] Amro Awad, Suboh Suboh, Mao Ye, Kazi Abu Zubair, and Mazen Al-
Wadi. Persistently-secure processors: Challenges and opportunities for
securing non-volatile memories. In 2019 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), pages 610–614. IEEE, 2019.

[3] Amro Awad, Mao Ye, Yan Solihin, Laurent Njilla, and Kazi Abu Zubair.
Triad-nvm: Persistency for integrity-protected and encrypted non-volatile
memories. In Proceedings of the 46th International Symposium on
Computer Architecture, pages 104–115, 2019.

[4] Diana Berbecaru and Luca Albertalli. On the performance and use of
a space-efficient merkle tree traversal algorithm in real-time applica-
tions for wireless and sensor networks. In 2008 IEEE International
Conference on Wireless and Mobile Computing, Networking and Com-
munications, pages 234–240. IEEE, 2008.

[5] Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad
Ewais, Naif Tarafdar, Juan Camilo Vega, Ken Eguro, Dirk Koch, Suranga
Handagala, Miriam Leeser, et al. The future of fpga acceleration
in datacenters and the cloud. ACM Transactions on Reconfigurable
Technology and Systems (TRETS), 15(3):1–42, 2022.

[6] Zhengguo Chen, Youtao Zhang, and Nong Xiao. Cachetree: Reducing
integrity verification overhead of secure non-volatile memories. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2020.

[7] Janvi Dattani and Harsh Sheth. Overview of blockchain technology.
Asian Journal of Convergence in Technology, 5(1):1–3, 2019.

[8] Reouven Elbaz, David Champagne, Catherine Gebotys, Ruby B Lee,
Nachiketh Potlapally, and Lionel Torres. Hardware mechanisms for
memory authentication: A survey of existing techniques and engines.
Transactions on Computational Science IV, pages 1–22, 2009.

15

[9] Alexander Freij, Shougang Yuan, Huiyang Zhou, and Yan Solihin.
Persist level parallelism: Streamlining integrity tree updates for secure
persistent memory. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 14–27. IEEE, 2020.

[10] Blaise Gassend, G Edward Suh, Dwaine Clarke, Marten Van Dijk,
and Srinivas Devadas. Caches and hash trees for efficient memory
integrity verification. In The Ninth International Symposium on High-
Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.,
pages 295–306. IEEE, 2003.

[11] Shay Gueron. Memory encryption for general-purpose processors. IEEE
Security & Privacy, 14(6):54–62, 2016.

[12] Xijing Han, James Tuck, and Amro Awad. Dolos: Improving the
performance of persistent applications in adr-supported secure memory.
In MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 1241–1253, 2021.

[13] Michael Henson and Stephen Taylor. Memory encryption: A survey
of existing techniques. ACM Computing Surveys (CSUR), 46(4):1–26,
2014.

[14] Leslie Lamport. Constructing digital signatures from a one-way function.
Technical report, Citeseer, 1979.

[15] Hongwei Li, Rongxing Lu, Liang Zhou, Bo Yang, and Xuemin Shen. An
efficient merkle-tree-based authentication scheme for smart grid. IEEE
Systems Journal, 8(2):655–663, 2013.

[16] Iuon-Chang Lin and Tzu-Chun Liao. A survey of blockchain security
issues and challenges. Int. J. Netw. Secur., 19(5):653–659, 2017.

[17] Jian Mao, Yan Zhang, Pei Li, Teng Li, Qianhong Wu, and Jianwei Liu. A
position-aware merkle tree for dynamic cloud data integrity verification.
Soft Computing, 21(8):2151–2164, 2017.

[18] John D McCalpin et al. Memory bandwidth and machine balance in
current high performance computers. IEEE computer society technical
committee on computer architecture (TCCA) newsletter, 2(19-25), 1995.

[19] Larry W McVoy, Carl Staelin, et al. lmbench: Portable tools for
performance analysis. In USENIX annual technical conference, pages
279–294. San Diego, CA, USA, 1996.

[20] Ralph C Merkle. A digital signature based on a conventional encryption
function. In Conference on the theory and application of cryptographic
techniques, pages 369–378. Springer, 1987.

[21] Arun Prasad Mohan, Angelin Gladston, et al. Merkle tree and
blockchain-based cloud data auditing. International Journal of Cloud
Applications and Computing (IJCAC), 10(3):54–66, 2020.

[22] Hyunyoung Oh, Kevin Nam, Seongil Jeon, Yeongpil Cho, and Yunheung
Paek. Meetgo: A trusted execution environment for remote applications
on fpga. IEEE Access, 9:51313–51324, 2021.

[23] James Pallister, Simon Hollis, and Jeremy Bennett. Beebs: Open
benchmarks for energy measurements on embedded platforms. arXiv
preprint arXiv:1308.5174, 2013.

[24] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin.
Using address independent seed encryption and bonsai merkle trees to
make secure processors os-and performance-friendly. In 40th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO
2007), pages 183–196. IEEE, 2007.

[25] G Edward Suh, Dwaine Clarke, Blaise Gasend, Marten Van Dijk, and
Srinivas Devadas. Efficient memory integrity verification and encryption
for secure processors. In Proceedings. 36th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2003. MICRO-36., pages 339–
350. IEEE, 2003.

[26] Zemin Sun, Yanheng Liu, Jian Wang, Fang Mei, Weiwen Deng, and
Yuming Ge. Non-cooperative game of throughput and hash length for
adaptive merkle tree in mobile wireless networks. IEEE Transactions
on Vehicular Technology, 68(5):4625–4650, 2019.

[27] Michael Szydlo. Merkle tree traversal in log space and time. In Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, pages 541–554. Springer, 2004.

[28] Xiuxiu Wang, Yipei Niu, Fangming Liu, and Zichen Xu. When fpga
meets cloud: A first look at performance. IEEE Transactions on Cloud
Computing, 2020.

[29] Zeke Wang, Hongjing Huang, Jie Zhang, and Gustavo Alonso.
Benchmarking high bandwidth memory on fpgas. arXiv preprint
arXiv:2005.04324, 2020.

[30] Mao Ye, Clayton Hughes, and Amro Awad. Osiris: A low-cost mech-
anism to enable restoration of secure non-volatile memories. Technical
report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United
States), 2018.

[31] Vojin Zivojnovic. Dspstone: A dsp-oriented benchmarking methodology.
Proc. Signal Processing Applications & Technology, Dallas, TX, 1994,
pages 715–720, 1994.

[32] Yu Zou, Amro Awad, and Mingjie Lin. Hermes: Hardware-efficient
speculative dataflow architecture for bonsai merkle tree-based memory
authentication. In 2021 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 203–213. IEEE, 2021.

[33] Yu Zou and Mingjie Lin. Fast: A frequency-aware skewed merkle tree
for fpga-secured embedded systems. In 2019 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pages 326–331. IEEE, 2019.

[34] Yu Zou, Kazi Abu Zubair, Mazen Alwadi, Rakin Muhammad Shadab,
Sanjay Gandham, Amro Awad, and Mingjie Lin. Ares: Persistently
secure non-volatile memory with processor-transparent and hardware-
friendly integrity verification and metadata recovery. ACM Transactions
on Embedded Computing Systems (TECS), 21(1):1–32, 2022.

[35] Kazi Abu Zubair and Amro Awad. Anubis: ultra-low overhead and
recovery time for secure non-volatile memories. In Proceedings of the
46th International Symposium on Computer Architecture, pages 157–
168, 2019.

	Introduction
	Technical Background
	Threat Model
	Constraints of Relaxing Updates & Our Solution
	The HMT algorithm: Description and Theoretical Upper Bound
	HMT Controller Design
	Counter Stage
	BMT Stage
	Root Stage

	Potential Implementation
	Experimental Setup & Results
	Resource Consumption
	Subsystem Testing
	Integrated Testing

	Conclusion
	Appendix A: Worst-Case Eviction For Parallel BMT Cache
	References

