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ABSTRACT
Recent rapid advancements in deepfake technology have allowed
the creation of highly realistic fake media, such as video, image,
and audio. These materials pose significant challenges to human
authentication, such as impersonation, misinformation, or even a
threat to national security. To keep pace with these rapid advance-
ments, several deepfake detection algorithms have been proposed,
leading to an ongoing arms race between deepfake creators and
deepfake detectors. Nevertheless, these detectors are often unreli-
able and frequently fail to detect deepfakes. This study highlights
the challenges they face in detecting deepfakes, including (1) the
pre-processing pipeline of artifacts and (2) the fact that generators
of new, unseen deepfake samples have not been considered when
building the defense models. Our work sheds light on the need for
further research and development in this field to create more robust
and reliable detectors.

CCS CONCEPTS
• Security and privacy→ Security services.
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1 INTRODUCTION
Deepfakes, a term derived from “deep learning” and “fake” has
gained popularity in recent years due to their ability to manipulate
images, videos, and audio in a highly realistic manner using artificial
intelligence (AI) algorithms. With the increasing sophistication of
deepfakes, there is a growing need for effective methods of deepfake
detection to combat their potential for harm [24, 30]. In response,
an increasing number of deepfake detection methods have been
proposed, employing techniques such as biometric analysis using
appearance and behaviors [1], inter-frame inconsistencies using
spatiotemporal data [26], texture enhancement withmulti-attention
maps [31], few shot-based [14] and continual learning-based [7, 8]
methods for deepfake detection generalization, in addition to other
deep learning algorithms [2, 12, 13, 25].

The robustness of deepfake detectors is crucial, particularly in cy-
bersecurity applications such as Facial Liveness Verification, where
their failure could have serious consequences [15]. In this paper, we
aim to shed light on some of the challenges that deepfake detectors
face when deployed in real-world situations. By exploring these

Figure 1: Illustration of the face detected from different
engines. While the first approach uses a fixed-size central
cropped patch from the detected face, the second resizes it,
resulting in stretched input image for detectors.

obstacles, we hope to provide insight into the limitations of current
deepfake detection methods and stimulate further research in this
critical area.

To address the challenges of deepfake detection, it is crucial
to understand the limitations and pitfalls of existing approaches.
Despite the emphasis on detection accuracy, there is a lack of con-
sideration for explainability in deepfake detection. In this article,
we will delve into two specific scenarios where using deepfake de-
tectors may lead to unexpected results. Firstly, a mismatch between
the pre-processing pipeline used in the deployment and the one
used during training can compromise the detector’s performance.
Secondly, a lack of diversity in the datasets used during training
can lead to biased and unreliable results.

Pre-processing: A newcomer to the field of deepfake detection
may encounter challenges in obtaining accurate results when using
an off-the-shelf detection tool, as they may not be familiar with
the pre-processing pipeline of the tool. It is important to note that
deepfake videos are not simply fed directly into the detector. This is
because the deepfake detectionmodels typically require the input of
a certain size, whereas the original image/video may be a different
size. To deal with this, pre-processing is performed, which may
obscure the deepfake artifacts that the detector relies on. Worse,
there is no standard pre-processing pipeline nor a standardized size
for inputs to deepfake detectors. This paper aims to shed light on
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Table 1: Performance (ACC and AUC) of deepfake detector trained on raw FaceForensics++ datasets, and validated under
different circumstances.

Test type FF++ test set (dlib4) Video comp. dlib15 MTCNN4 Adv. noise CelebDF-v2
ACC 0.980 0.615 (↓ .365) 0.951 (↓ .290) 0.970 (↓ .010) 0.002 (↓ .978) 0.526 (↓ .454)
AUC 0.994 0.788 (↓ .206) 0.989 (↓ .005) 0.993 (↓ .001) 0.000 (↓ .994) 0.573 (↓ .421)

the impact of pre-processing on the detection process and provide
explainability/guidance around one of the major preprocessing
tasks — when to crop versus resize input.

Pre-processing techniques, such as resizing and cropping, are
widely used in the pipeline of deepfake detectors, but their effects
on detection performance are often overlooked. Our analysis re-
veals that resizing elongates the face to match the specified size,
while cropping does not have this effect. This can lead to issues if
the model is trained on stretched faces but deployed on naturally
proportioned images. On the other hand, shrinking the input size
through resizing may result in crucial features being lost. Therefore,
we have found that selecting resizing over cropping when reducing
the input size would negatively impact detection accuracy.

Dataset/Deepfake generator diversity: In recent years, the
diversity of deepfake datasets and deepfake generators has prolif-
erated, supporting research in the area. Some of the most popular
deepfake datasets include DeepFake Detection Challenge [5], Face-
Forensics++ [21], and Celeb-DF [17]; and they vary in terms of
quality and methods used for generating them. Alongside this, a
wide range of generators have been published, aiming to be more
accessible and user-friendly, including DeepFaceLab, GAN-based
and AutoEncoder-based generators.

Nevertheless, most state-of-the-art (SoTA) deepfake detectors
have been developed to detect a specific type of deepfake dataset,
leading to performance degradation on new, unseen deepfakes.
Their generalization limitations also include the variation in deep-
fake quality, as demonstrated by their poor performance on com-
pressed or manipulated inputs. Our study illuminates the corre-
lation between deepfakes datasets. In particular, we employ both
frequency transformation and deep-learning embeddings to visual-
ize their interdependence and distribution. In this way, we highlight
undisclosed reasons that may lead to the poor performance of a
biased detector that was learned from limited types of deepfakes or
limited generation toolkits.

2 BACKGROUND
While the term deepfakes can be used to refer to any artificial
replacement using AI, we limit ourselves in this work to facial
deepfakes [19]. In general, there are two categories of facial ma-
nipulation approaches: face reenactment and face-swapping. Face
reenactment involves changing the facial expressions, movements,
and speech of a person in a video to make it appear as though they
are saying or doing things they never actually did. In face-swap
deepfakes, the face of a person in a video or image is replaced with
someone else’s face, making it appear as if the latter person was
present in the original footage.

In this study, we utilize the FaceForensics++ dataset [21], which
is a well-known deepfake dataset that was created for validating
different deepfake detection algorithms. From 1000 real videos,
the authors generated a corresponding 1000 synthesized videos

using DeepFakes [3], Face2Face [28], FaceSwap [4], NeuralTex-
tures [27], and FaceShifter [16] algorithms. Among these, Neural-
Textures and Face2Face are reenactment methods; the others are
face-swapping algorithms. In addition, to increase the diversity,
we include CelebDF-v2 [17] dataset, which is created by several
published deepfake apps for face swapping, and fine-tuned by a se-
quence of post-processing steps, making it a highly realistic dataset.

3 METHODOLOGY
3.1 Data-preprocessing
For FaceForensics++ datasets, we follow the same preprocessing
step as in ADD [11]: 92,160, 17,920, and 17,920 images for training,
validation, and testing, respectively. Each set has a balanced number
of real and fake images, and the fake images are derived from all five
deepfake datasets. For the CelebDF-v2, we used 16,400 for solely
validating the pre-trained model.

In order to detect faces from a video, we used the dlib [9] toolkit
with padding factor of 15% and 3%, respectively, and MTCNN with
padding of 4% to simulate different face detection engines.

3.2 Training and validation
We utilized ResNet50 as our detector and built a binary classifier.
All the input images were resized to 224×224, and we used detected
faces with padding of 3% for training. The models were trained with
the Adam [10] optimizer with a learning rate of 2𝑒 − 3, scheduled
by one-cycle strategy [23]. Only random horizontal flip is applied
during training. We used a mini-batch size of 192. During every
epoch, the model was evaluated ten times, and we saved the best
weight based on the validation accuracy. Early stopping [20] was
applied when the model didn’t not improve after 10 consecutive
validation times.

4 EVALUATION
In this section, we evaluate the pre-trained model under the follow-
ing different scenarios discussed below. The experimental results
are presented in Table 1.

4.1 Video compression
Deepfakes are detected by their subtle artifacts, represented by
high-frequency components. Various methods of lossy compres-
sion, including video compression and JPEG compression, can suc-
cessfully eliminate these fine-grained artifacts, leading high rate of
false-positive prediction. As shown in the second column of Table
1, we applied the H.264 codec with constant rate quantization pa-
rameters of 23 to raw videos. As a result, the pre-trained detector
drastically dropped its accuracy from 98% to 61.2%.
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Figure 2: High-frequency discrepancies of central cropped face (Left; Crop: 156) vs. resize large cropped face (Right; Resize: 156).
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Figure 3: Similarities between frequency density lines from Figure 2. The higher values indicate the higher similarities between
datasets (Left; Crop: 156 and Right; Resize: 156).

4.2 Face extraction approach
The effects of using different face extraction approaches are indi-
cated in the fourth and fifth columns of Table 1. While the MTCNN
detector can slightly reduce the performance of the ResNet50 model,
using dlib with larger padding can substantially decrease its perfor-
mance in terms of both accuracy and AUC scores. We argue that
since the model had learned only from the facial features, the com-
plex background in some contexts affected the model’s attention.

Our second exercise in this category was inspired by a recent
live-face detection algorithm [29] which proposed to use fixed-
size patches cropped from the original faces instead of resizing
the input. The explained reason is that resizing step can distort the
discriminative features. To further examine this hypothesis, we con-
ducted a pilot study in which we selected 5,000 images from each
deepfake dataset and performed central crop and resizing steps,
respectively, on them, as illustrated in Figure 1. Next, we applied
Fourier transformation and extracted the average density represen-
tation of each dataset in the frequency domain [6]. The results are
provided in Figure 2. As one may observe, central cropping results
in high-frequency differences between datasets. Resizing, on the
other hand, pushes the high-frequency representations of datasets
close together, making it difficult to distinguish.

4.3 Adversarial noise
Deep neural networks are well known for their adversarial nature
showing through their vulnerability against adversarial examples.
The adversarial samples are created by adding small, often im-
perceptible, perturbations to the original inputs. To validate this
property, we apply one-step 𝐿∞ white-box PGD attack [18] with
a small perturbation size of 1/255 and step size 𝜖 = 1/255. As in-
dicated in the sixth column of Table 1, almost all the predictions
are flipped, as demonstrated by an accuracy score close to zero.
Therefore, deploying deepfake detectors in practice should con-
sider this aspect and have proper pre-processing steps or defense
mechanisms to eliminate the effect of adversarial samples.

4.4 Data shift
Data shift refers to changes in the statistical properties of the data
distribution used to train the detection model compared to the
distribution of data the model encounters in deployment. In fact,
data shift in deepfake detection can be a result of different factors:
ethnicity (e.g., Asian vs. African), environment (e.g., indoor vs. out-
door), generating method (e.g., Neural texture vs. FaceSwap). We
show the results of cross-dataset validation in the final columns
of Table 1. Although the model was trained over five datasets of
FaceForensics++, it still struggles to distinguish deepfake from the
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Figure 4: t-SNE visualization of various deepfake datasets us-
ing a pre-trained self-supervised learning embedding model

CelebDF-v2 dataset, indicated by its performance of approximately
random guesses.

To explain this phenomenon, we perform two experiments to
visualize the relationships between datasets. First, from the density
representations of datasets from Figure 2, we use negative distance
to indicate the closeness between datasets that are formulated as
𝑚𝑎𝑥 − ||𝑎 − 𝑏 | |22. As we can observe from Figure 3, the cropping
step introduces less relationship between datasets compared to
resizing. Nevertheless, in both approaches, there is less relation
between FaceForensics++ datasets and CelebDF-v2, both in real and
deepfake parts. In our second experiment, we utilize a pre-trained
“self-supervised learning” model, SBI [22], with EfficientNet-B4
backbone to get the intermediate representations of each deep-
fake dataset. As illustrated in Figure 4, each deepfake dataset has
its own distribution in the latent space. Therefore, if a detection
model solely learns a single dataset, its decision boundary may
lose its generalization for others, leading to the degradation of its
performance.

5 REMARKS
Despite a plethora of ongoing research aimed at improving the
accuracy of deepfake detectors, there is also a multitude of factors
that hinder their performance. These include pre-processing steps,
intendedmanipulation from attackers, and ongoing advancement of
deepfake technology induces the low generalization of pre-trained
detectors. In this paper, we quantially and visually expose these
factors from the explainability viewpoints. This study also raises the
awareness of researchers of not only developing effective deepfake
detectors but also putting their effort into mitigating those crucial
factors, reducing false positive and negative rates in practice.
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